
Clemson University
TigerPrints

All Dissertations Dissertations

8-2017

Parsimonious Space-Time Temperature Series
Modeling
Yanbo Xia
Clemson University, yanbox@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Xia, Yanbo, "Parsimonious Space-Time Temperature Series Modeling" (2017). All Dissertations. 2009.
https://tigerprints.clemson.edu/all_dissertations/2009

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2009?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Parsimonious Space-Time Temperature Series Modeling

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Yanbo Xia

August 2017

Accepted by:

Dr. Robert Lund, Committee Chair

Dr. Peter Kiessler

Dr. Colin Gallagher

Dr. Xiaoqian Sun



Abstract

Climatological time series are often periodically and spatially correlated. High dimension-

ality issues arise when modeling periodically and spatially correlated time series data – often, even

simple multivariate models have more parameters than data points. This dissertation develops

parsimonious methods for fitting periodically and spatially correlated multivariate time series data.

Parsimonious VAR (vector autoregressive) and PVAR (periodic VAR) models are pursued here. The

layered procedure introduced by Lund et al. (1995) is adopted as a basic scheme, which removes

periodic correlation from the data in the first layer, and fits a stationary VAR model in the second

layer. The method is applied to a daily maximum temperature data set of seven cities in southeast-

ern U.S.. In addition, a portmanteau test is proposed for diagnosing serial correlations in periodic

multivariate residuals. The performance of the test is examined in simulated data.
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Chapter 1

Introduction

Time series modeling in the environmental settings often involves two aspects. On one hand,

climatological measurements such as air temperature, humidity, precipitation, and wind speed nat-

urally show periodic variations over time. On the other hand, the continuity of geological character-

istics and fluidity of the atmosphere often injects cross-correlation between climatological measure-

ments in spatially adjacent areas, making it beneficial to include multiple time series in the same

model. Hence, it is often necessary to consider both periodicity and multivariate aspects.

When studying such series, many methods from periodic time series theory and multivari-

ate time series can be used. However, one should also expect classical difficulties. Two of the most

prominent difficulties are the high dimensionality of multivariate models and the lack of data. Multi-

variate periodic time series usually have an enormous number of parameters, which in return causes

problems such as poor asymptotic behavior and poor interpretability of parameters. As explained

by Franses and Paap (2004), periodic time series data typically only contain a few dozen data points

in each season, which is problematic given the large number of model parameters.

In this chapter, we first study the literature on periodic and multivariate time series. Then

we briefly introduce periodic multivariate time series models and a multivariate climatological data

set with periodic features.
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1.1 Literature Review

Several types of theories are worth studying before considering methods for periodic vector

time series. The theories of periodic time series and multivariate time series are prominent in our

topic. Parsimonious periodic time series models and sparse vector time series models are useful when

dealing with the high dimensionality of periodic multivariate time series data. Additionally, some

methods from spatial statistics will be used in our methods.

1.1.1 Periodic Time Series

To date, periodic time series has been studied in detail (Lund et al. (1995), Lund and

Basawa (2000), Lund et al. (2006), Franses and Paap (2002), Franses and Paap (2004), Fuller

(2009)). A univariate time series {Xt; t ∈ Z} is called periodically correlated (PC) with period T

if E(Xt+T ) = E(Xt) and cov(Xt+T , Xs+T ) = cov(Xt, Xs) for all t, s ∈ Z. An alternative seasonal

notation {XnT+ν ; n ∈ Z, ν = 1, 2, . . . , T} is often used to emphasize periodic features of a PC series,

with nT + ν denoting season ν of the nth period. We further define the seasonal mean, seasonal

autocovariances, and seasonal autocorrelations respectively as follows:

µν = E
[
XnT+ν

]
,

γν(h) = E
[
(XnT+ν − µν)(XnT+ν−h − µν−h)

]
, h ∈ Z,

ρν(h) =
γν(h)√

γν(0)γν−h(0)
h ∈ Z,

where ν ∈ {1, 2, . . . , T} and all quantities are interpreted periodically with period T . In gener-

al, three types of periodic changes are considered in such series, including changes in the mean

({µν}Tν=1), variance ({γν(0)}Tν=1), and autocorrelations ({ρν(h)}Tν=1 for h 6= 0). When the seasonal

autocorrelation ρν(h) does not depend on ν, the time series is merely a stationary time series linearly

transformed with deterministic periodic parameters. Such series are often referred to as seasonally

adjusted series (Lund et al., 1995) and can be written in the form

XnT+ν = µν + σνYnT+ν

2



where {YnT+ν} is a stationary time series. Because a seasonally adjusted series is easier to handle

and usually requires a model with a much smaller number of parameters, it is worth checking this

model reduction before considering models featuring periodic autocorrelations.

A hypothesis test is proposed by Lund et al. (1995) to detect periodicities in autocorrelations.

This test uses an average squared coherence statistic for each lag h constructed from the discrete

Fourier transform of the series at a set of Fourier frequencies. If periodic changes in autocorrelations

are confirmed present, a periodic time series model should be considered for the data. Periodic

autoregressive moving-average (PARMA) models have been studied in the literature (Vecchia, 1985;

Lund and Basawa, 2000; Franses and Paap, 2004; Anderson et al., 2007). Methods for parameter

estimation and recursive predictions have been developed. Maximum likelihood estimates can be

computed via numerical methods, and PAR models can be estimated by solving the periodic Yule-

Walker moment equations. PARMA models can also be concatenated into stationary vector ARMA

models (Vecchia, 1985), thus allowing vector time series methods to be applied. For example, the

following PARMA model with AR order p < T and MA order q < T ,

XnT+ν =

p∑
i=1

φν(i)XnT+ν−i + ZnT+ν +

q∑
j=1

θν(j)ZnT+ν−j ,

can be concatenated into

Φ0Xn = Φ1Xn−1 + Θ0Zn + Θ1Zn−1, (1.1)

where X′n =

(
X(n+1)T X(n+1)T−1 · · · XnT+1

)
, Z′n =

(
Z(n+1)T Z(n+1)T−1 · · · ZnT+1

)
,

and

Φ0 =



1 −φT (1) −φT (2) · · · 0

0 1 −φT−1(1) · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


, Φ1 =



0 0 · · · 0

...
...

. . .
...

φ2(2) φ2(3) · · · 0

φ1(1) φ1(2) · · · 0


,

Θ0 =



1 θT (1) θT (2) · · · 0

0 1 θT−1(1) · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


, and Θ1 =



0 0 · · · 0

...
...

. . .
...

θ2(2) θ2(3) · · · 0

θ1(1) θ1(2) · · · 0


.
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Since Φ0 is invertible, (1.1) is equivalent to the vector autoregressive moving-average VARMA(1,1)

model

Xn = Φ−10 Φ1Xn−1 + Φ−10 Θ0Zn + Φ−10 Θ1Zn−1.

However, general VARMA methods usually have a large number of parameters. For PAR

model parsimony, Lund et al. (1995) first introduced a layered method that uses a PAR model of

low order to eliminate periodic changes in correlations, avoiding over-parameterization. Another

technique by Lund et al. (1995) and Lund et al. (2006) uses a short Fourier expansion of parameters

to parsimonize the model.

1.1.2 Multivariate Time Series

On the other side, an extensive theory for multivariate (or vector) time series has been

compiled (Lütkepohl, 1993, 2005; Reinsel, 2003; Porcu et al., 2012; Tsay, 2013). Most of the emphasis

has been placed on stationary vector series, introducing models with autoregressive (AR) and/or

moving-average (MA) structures; non-stationary vector series and periodic vector series are discussed

in Lütkepohl (1993).

Consider a d-dimensional vector series {Xt ∈ Rd; t ∈ Z}. Let µt = E(Xt) be the mean and

Γ(t, s) = E[(Xt − µt)(Xs − µs)
′] the matrix-valued autocovariance of the series. The definition of

(weak) stationarity is that the first and the second moments (mean and variance) are constants, i.e.,

there exists µt ∈ Rd and Γ0(·) : Z→ Rd, such that µt = µ and Γ(t, t− h) = Γ0(h), ∀t, h ∈ Z. For

simplicity, we assume {Xt} to be mean-zero in this paper unless otherwise stated, i.e. µt = 0, ∀t ∈ Z.

The series {Xt}∞t=−∞ is said to be a vector autoregressive (VAR) series if it is a solution to

the linear difference equation

Xt −
p∑
k=1

Φ(k)Xt−k = Zt, ν = 1, 2, . . . , T, (1.2)

where {Zt}∞t=−∞ is a white noise (WN) series with mean 0 and variance matrix Σ. Classic methods

for estimating univariate AR parameters have been extended to VAR models, including the Yule-

Walker method, least squares, and maximum likelihood (Lütkepohl, 1993).

4



1.1.3 Sparse VAR models

Davis et al. (2016) introduced a two-stage method for fitting VAR models with some pa-

rameters constrained as zero. Consider the following d-dimensional VAR model

Yt =

p∑
k=1

Φ̃kYt−k + Z̃t, (1.3)

with parameter constraint vec(Φ̃1| · · · |Φ̃p) = Rβ, where β is an m-dimensional vector of free pa-

rameters, and R is a full rank d2p ×m matrix. Since the only purpose of this constraint is to set

some of the parameters to zero, R should only have entries equal to 0 or 1. For example, for a

2-dimensional VAR(2) model with VAR parameters of the form

Φ̃1 =

a 0

0 0

 , Φ̃2 =

0 b

0 0


the constraint matrix R and the parameter β should be

R′ =

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

 , β =

a
b

 .

To derive parameter estimates of the constrained VAR model, the two stages of the method

in Davis et al. (2016) use a GLS method introduced by Lütkepohl (1993). The difference between

the two stages is in determining which parameters are set to zero. In the first stage, the Partial

Spectral Coherence (PSC) of each pair (i, j) of components of the vector series is computed, and the

pairs are sorted by the supremum of their squared PSC. The M pairs with the largest supremum

squared PSC’s are chosen, and VAR coefficients corresponding to all other pairs are set to zero.

The constrained model is estimated for each M ∈ {1, 2, . . . , d(d− 1)/2}, and an optimal number of

pairs, M∗, is determined according to the BIC criterion. In the second stage, more parameters are

picked from the M∗ non-zero pairs of the last stage, and set to zero. The parameters are prioritized

according to the magnitude of their corresponding t-statistics from the last stage. The remaining

non-zero parameters are estimated using the method from stage one.
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1.1.4 Spatial Statistics

A major part of our method relies on constructing a feasible autocovariance function of a

vector time series. Consider a stationary mean-zero vector time series {Xt}+∞t=−∞. The autocovari-

ance of this series is denoted by Γ(h) = E[XtX
′
t−h] = [γi,j(h)]di,j=1. By stationarity, Γ(·) has the

following properties:

(i) Γ(h) = Γ(−h)′,

(ii) |γij(h)| ≤
(
γii(0)γjj(0)

)1/2
, i, j ∈ {1, . . . , d},

(iii) γii(·) is an autocovariance function, i ∈ {1, . . . ,m}, and

(iv)
∑n
j,k=1 a′jΓ(j − k)ak ≥ 0 for all n ∈ {1, 2, . . . } and a1, . . . ,an ∈ Rd.

The non-negative definiteness condition (iv) is equivalent to

(iv’) The following matrix is non-negative definite for all n ∈ {1, 2, . . . }:

Gn =



Γ(0) Γ(1) Γ(2) · · · Γ(n− 1)

Γ(−1) Γ(0) Γ(1) · · · Γ(n− 1)

Γ(−2) Γ(−1) Γ(0) · · · Γ(n− 3)

...
...

...
. . .

...

Γ(1− n) Γ(2− n) Γ(3− n) · · · Γ(0)


. (1.4)

Conditions (i)–(iv) are sufficient to guarantee the existence of a stationary Gaussian series

with covariance function Γ(·) (but they are not a necessary condition for stationarity, see Lütkepohl

1993). The key property in building a parsimonious model in space is that these conditions are

naturally satisfied if {γij(h);h ∈ Z} are from a covariogram of a stationary spatial series.

Consider a univariate stationary zero-mean spatial series (also known as a random field)

{X̃(w); w ∈ Rk} on a k-dimensional space. The covariogram of the spatial series is defined by

C(h) = E
[
X̃(w) X̃(w − h)

]
, (1.5)

6



where h ∈ Rk is called the spatial lag. The covariogram is said to be separable if there exists

covariograms C1(·), . . . , Cs(·) on the complementary subspaces Rk1 , . . . ,Rks of Rk, such that

C(h) ≡ C1(h1)C2(h2) . . . Cs(hs)

for h1 ∈ Rk1 , . . . ,hs ∈ Rks , and h =
(
h1, · · · , hs

)
. The covariogram is said to be isotropic if it

depends only on the magnitude of h, i.e. if there exists a univariate function C̃(·) : R → R, such

that C(h) ≡ C̃(‖h‖). Here ‖ · ‖ can be any valid norm on Rk.

Much statistical research involves finding valid covariograms (Matérn, 2013; Cressie, 1993;

Cressie and Wikle, 2015). Several examples (see Cressie, 1993) of isotropic covariograms on Rk are

C(h) = σ2 exp(−a2‖h‖2), h ∈ Rk, (1.6)

C(h) = σ2[1 + ‖h‖2/b2]−β , h ∈ Rk, β > 0, (1.7)

C(h) = σ2(a2‖h‖/2)ν2Kν(a2‖h‖)/Γ(ν), h ∈ Rk, ν > 0, (1.8)

where Kν is the modified Bessel function of the second kind.

By using different norms, it is possible to define a larger family of feasible covariograms.

Applying linear transformations on the coordinates can also help construct different covariograms.

This is supported by the following lemma from Porcu et al. (2012).

Lemma 1. If {C(h)} is a covariogram of a k-dimensional stationary spatial series, and A is an

k × k invertible matrix, then {C(Ah)} is also a legitimate covariogram.

Apart from using isotropic covariograms, one dimension reduction tactic involves a separable

covariogram of form

C(v, t) = C1(v)C2(t), (1.9)

for some covariograms C1(·) on Rk−1 and C2(·) on R1. The separable form for time and space

possesses more flexibility than isotropic covariograms, as it allows modeling the effect of time and

space differently. However, in section 2.2.2, we will show that this construction imparts a covariance

with all components independent of all other component’s historical past. As this does not seem to

hold in our temperature data’s cross correlations, this construction does not satisfy our needs.

7



1.2 Periodic Vector Series

The emphasis in this dissertation is on periodic multivariate (vector) time series. A d-

dimensional series {Xt} is called periodically correlated (PC) with period T ∈ Z+ if for any t, s ∈ Z

E(Xt) = E(Xt+T ), and

E
(
Xt − E(Xt)

)(
Xs − E(Xs)

)′
= E

(
Xt+T − E(Xt+T )

)(
Xs+T − E(Xs+T )′

)
.

We denote its seasonal mean and seasonal autocovariance function of season ν = 1, 2, . . . , T by

µν = E(Xν), and

Γν(h) = E
(
Xν − E(Xν)

)(
Xν−h − E(Xν−h)

)
h ∈ Z

Again, we assume that µν = 0 for all ν = 1, 2, . . . , T unless otherwise noted. One simply subtracts

periodic sample means otherwise.

The series is called a pth order periodic vector autoregressive (PVAR) if it obeys

XnT+ν −
p∑
k=1

Φν(k)XnT+ν−k = ZnT+ν , ν = 1, 2, . . . , T, (1.10)

where {ZnT+ν ;n ∈ Z, ν = 1, 2, . . . , T} is periodic white noise: E[Zt] = 0, E[ZtZ
′
s] = 0 when t 6= s,

and E[ZnT+νZ
′
nT+ν ] = Σν for each ν = 1, 2, . . . , T and for all n ∈ Z. The marginal distribution of

ZnT+ν may change with ν.

Periodic vector series share many properties with univariate PC series. The concatenating

tactic described in section 1.1.1 can also be applied on periodic vector series (see Tsay, 2013). For

example, define

~Xn =
(
X′nT+T ,X

′
nT+T−1, . . . ,X

′
nT+1

)′
; (1.11)

a periodic VAR model can be concatenated into a VAR model:

~Xn = Φ̃1
~Xn−1 + Z̃n. (1.12)

This blocking allows methods for stationary vector series to be applied on periodic vector series,

but also has noteworthy disadvantages. First, as the dimension of the vector is multiplied by T ,

8



this method heavily increases the dimension of the problem, and hence relies on the estimation of a

large number of parameters, which could waste computational resources. In fact, a VAR model of

dimension dT requires pTd2 autoregressive parameters, Td(d+1)/2 white noise variance parameters,

and solving linear systems of dimension pdT . As climate data is often recorded monthly or daily,

periods of T = 12 or T = 365 are often encountered. A first order periodic VAR model for daily

data with d = 7 stations has 28105 free parameters to estimate, far more than can be easily handled

with standard gradient search techniques to optimize a model likelihood, and can even exceed the

number of data points. Second, it isolates parameters in different seasons, ignoring the fact that

the parameters may vary smoothly in the seasons. Besides, several components in the concatenated

VAR parameters
(
such as Φ̃1 in Equation (1.12)

)
may need to be set to zero, thus requiring sparse

VAR methods to be applied, and further complicateing the model.

Although techniques for univariate periodic time series as introduced in Lund et al. (2006)

and Anderson et al. (2007) are helpful for reducing the number of parameters in the model arising due

to time, how to reduce the number of parameters arising in the series due to the spatial component is

less clear. Also, there is no guarantee that any parsimonious form is from a legitimate causal model

replete with a non-negative definite autocovariance structure. This dissertation will show how to

build a periodic vector time series model with parsimonious use of parameters in both spatial and

temporal aspects, while guaranteeing a legitimate autocovariance structure.

1.3 Data

Weather data is often periodic. Multivariate time series sampled spatially often display

interdependence between different components. Motivating our methods are seven daily temperature

series from the Southeastern United States: Athens GA, Atlanta GA, Macon GA, Charlotte NC,

Greensboro NC, Raleigh NC, and Columbia SC. The data were downloaded from the National

Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI)

website 1 and contain daily maximum (high) temperatures from 1/1/1950 to 12/31/2009. To enforce

a period of T = 365 days, we omit any February 29th observations. This results in a minimal loss

of precision.

Figure 1.1a shows a plot of the Atlanta series. The daily sample mean, variance, and

1http://www.ncdc.noaa.gov/
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autocorrelations are also shown. Significant structure is evident in these plots. First, there is a

clear seasonal mean cycle in the series. Second, temperatures appear less variable in the summer

than in the winter. Third, autocorrelation during the Spring appears less than that in the Fall, at

both lags one and three. This is reasonable because cold fronts rapidly pass through the area in the

Spring, changing the day-to-day weather greatly, while in the Fall, long stretches of dry weather and

accompanying high pressure dominate, imparting more persistence (higher autocorrelation) into the

series.

(a) Daily maximum temperatures of Atlanta

(b) Fitted daily mean: Atlanta (c) Daily sample variance: Atlanta

(d) Daily sample autocorrelation at lag 1 (e) Daily sample autocorrelation at lag 3

Figure 1.1: Sample summaries by day of year: Atlanta

As mentioned in the last section, it is important to confirm if the autocorrelation of the

series is varying periodically. We adopt the coherence test introduce by Lund et al. (1995) to test

10



each of the seven series. Figure 1.2 is a plot of the average squared coherences of the Atlanta

series. A coherence spike is evident at h = 60, which indicates existence of periodic changes in the

autocorrelations of the Atlanta series according to Lund et al. (1995). Coherence plots of the other

six series are similar to this.

Figure 1.2: Average squared coherences for the Atlanta series

Since we are studying multiple time series, it is also worthwhile to learn if seasonally varying

cross-correlations exist between components. Figure 1.3 displays cross autocorrelations between the

Atlanta, GA series and the Charlotte, NC series at lag two (the Atlanta series two days ahead of

the Charlotte series) and lag minus one. Both of these quantities appear to be seasonally varying,

and similar features are seen in other cross-correlations.

(a) Lag 2 (b) Lag −1

Figure 1.3: Sample cross correlations between Atlanta and Charlotte

11



In Figure 1.4, we study how cross-correlations between temperatures at two stations are

related to the distance between the stations. Recall the introduction of spatial statistics in section

1.1.4. Here, we treat temperature as a spatial series {X̃(v, t)}, where v is a vector of geological coor-

dinates: (longitude, latitude). Figure 1.4a plots the sample cross-correlations between {X(v1, t)}Nt=1

and {X(v2, t)}Nt=1 against the distance ‖v1−v2‖Euc. Figure 1.4b plots the sample cross-correlations

between {X(v1, t)}N−1t=1 and {X(v2, t+ 1)}N−1t=1 against the distances. Since the longitude and lati-

tude are in degrees, the distance should also be in degrees. The cross-correlations at lag 0 show a

roughly linear relation with the spatial lag, while at lag 1, they also decrease roughly linearly as the

spatial lag increases. This feature is similar to the autocorrelations decrease as time lag increases,

which inspired us to treat time and space dimensions similarly in one of our future models.

(a) Lag 0 (b) Lag 1

Figure 1.4: Sample auto-correlations and cross-correlations

Our parsimonious PVAR model fits the correlations and cross-correlations with one function.

It is interesting to observe the structure of the sample correlations and sample cross-correlations.

Figure 1.5 plots all seven sample autocorrelations between lags zero and ten, along with all 42

pairwise cross correlation functions. Note that the 42 pairs include each pair of cities in different

orders, so that all 49 curves can be compared in the same graph. These curves have very similar

shapes, thus rendering possible to fit them with one model.

The rest of this dissertation proceeds as follows. In chapter 2, we introduce methods to

parsimoniously fit periodic vector time series. We also propose a residual test for periodic vector

residuals, and establish its asymptotic properties. The residual test and the methods are applied

to simulated data in sections 3.1 and 3.2, and on the temperature data introduced in section 3.3.

Section 4 concludes with several comments.
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Figure 1.5: Sample cross correlations vs distance between stations
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Chapter 2

Methods

In this chapter, we propose two methods to parsimoniously fit a periodic vector time series,

and a portmanteau test for periodic vector series. Section 2.1 introduces a layered method similar to

that in Lund et al. (1995). By using spline fits of seasonal means and other statistics, it significantly

reduces the number of parameters needed to eliminate the periodic means an variances of the series.

It then fits a sparse VAR model to the standardized series. Section 2.2 explain how to consolidate

parameters in a PVAR model. The final method we adopt will be a combination of these two

methods.

2.1 A Layered Method

As mentioned in Section 1.1, if a multivariate periodic time series {XnT+ν} can be linearly

transformed into a stationary series,

YnT+ν = Sν(XnT+ν − µν) (2.1)

then it would be parametrically more efficient to model the corresponding stationary series {Yt}.

A layered method for periodic vector series analogous to that in Lund et al. (1995) for univariate

series can be used.

The first layer is aimed at eliminating the periodic mean and variance in the series. Define
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the seasonal sample mean and variance of the series by

µ̂ν =
1

N

N−1∑
n=0

XnT+ν ,

Γ̂ν(0) =
1

N

N−1∑
n=0

(XnT+ν − µ̂ν)(XnT+ν − µ̂ν)′,

for ν = 1, 2, . . . , T , where N is the number of cycles in the data. In practice, it is possible that a set

of data does not contain a full number of cycles, i.e., the record length divided by period T is not an

integer, a case we dismiss as trite work. The series {XnT+ν} is then standardized by the following

linear transformation for each season ν,

YnT+ν = Γ̂ν(0)−
1
2 (XnT+ν − µ̂ν), (2.2)

where Γ̂ν(0)−
1
2 denotes the matrix square root of the inverse of Γ̂ν(0), i.e., a matrix Sν such that

S2
ν = Γ̂ν(0)−1.

As simple as this procedure is, it takes many parameters to standardize {XnT+ν}. A total

of dT parameters arise in µ̂ν , and dT + d(d+ 1)T/2 parameters in Sν , which exceeds 10000 in the

7-city daily temperature data. Therefore, it is worth modifying this procedure for parsimony. As is

shown in Section 1.3, each of the seven components in the seasonal means µ̂ν (as a function of ν) can

be fit with a spline with as few as six parameters, expending only 42 parameters in seasonal mean

estimation. For the variance standardizing, we fit each component of the matrix Sν with a spline,

because these are the coefficients directly applied on the series. More specifically, the ith component

of YnT+ν is a linear combination of components of XnT+ν − µ̂ν , with coefficients arising in the ith

row of Sν . For example, Figure 2.1 plots the 1st, 2nd, and 7th coefficients in the first row. All

components plotted show a relatively smooth change over the days of year. After this modification,

we are using only 6(d + d(d + 1)/2) = 210 parameters in the first layer. Note that this number is

proportional to d2; essentially, we have only parsimonized the time component of these parameters.

This count can still increase rapidly with d. With a large number of series in the model, it would

be beneficial to also parsimonize the spatial component. This will be discussed in the next section.

According to Lund et al. (1995), we should check the coherence of the autocorrelations of

{YnT+ν}. If there is still evidence of periodic autocorrelation, we can try other methods such as

fitting a PVAR(1) model to {XnT+ν} and defining {YnT+ν} as the residuals. These methods could
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Figure 2.1: Components of Γ̂ν(0)−
1
2 by day of year

use even more parameters and hence be harder to parsimonize. As such, we propose parsimonious

PVAR models.

In the second layer, a stationary time series model is fitted to {Yt}. Univariate ARMA

models or AR models can be fit to each component of {Yt} to suggest model orders for the eventual

VARMA/VAR model. In practice, although VARMA models tend to have less parameters than

VAR models, their fit is more computationally demanding than that for VAR models. However,

a VAR model for a daily series may need an AR order of about 30, meaning that there are well

over 1, 000 parameters arising in this layer. So if a VAR model is to be fitted, certain parsimonious

method needs to be adopted. In this work, we fit a sparse VAR model to the series {Yt} using the

method from Davis et al. (2016).

2.2 Parsimonious PVAR models

When modeling periodic vector series, one frequently deals with models with many param-

eters. Several attempts to reduce the number of parameters were made in the last section, but all of

them only reduce time parameters. When d is big, the models above can still have a large number

of parameters, and this number can increase very rapidly due to the term d2 arising in the model

parameter counts. The purpose of this section is to study ways of modeling a periodic vector series
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using a smaller set of parameters, and eventually develop a model that is parsimonious in parameters

in both time and space.

2.2.1 Time Parameter Consolidation

Lund et al. (2006) propose parsimonious periodic ARMA modeling strategies for univariate

series. A natural analogy is to apply the same methods to periodic vector series. Consider the

zero-mean periodic d-dimensional VARMA model governed by

XnT+ν −
p∑
i=1

Φν(i)XnT+ν−i = ZnT+ν +

q∑
j=1

Θν(j)ZnT+ν−j , ν = 1, 2, . . . , T, (2.3)

where {ZnT+ν} is a d-dimensional white noise with mean 0 and variance Σν during season ν.

Unconstrained, this model has
[
d2(p + q) + d(d + 1)/2

]
T parameters. An example of parametric

consolidation constraints on the autoregressive, moving-average, and white noise variance matrices

are:

Φν(i) =

K∑
k=0

AΦ
k (i)bk(ν), i = 1, 2, . . . , p;

Θν(j) =

K∑
k=0

AΘ
k (j)bk(ν), j = 1, 2, . . . , q;

Σν =

K∑
k=0

AΣ
k bk(ν),

(2.4)

for ν = 1, . . . , T , where AΦ
k (i), AΘ

k (j), and AΣ
k are d×d matrix coefficients, and {bk(·); k = 1, . . . ,K}

is a set of basis functions with period T . For example, a 1st order Fourier representation of Φν(i) is

Φν(i) = AΦ
0 (i) +AΦ

1 (i)cos
(2πν

T

)
+AΦ

2 (i)sin
(2πν

T

)
.

Other basis functions such as splines and wavelets may also be considered when appropriate.

It is necessary to check causality of the model in 2.3 with parameters constrained by e-

quations 2.4. However, since each equation in 2.3 involves random vectors of different seasons, the

VAR causality conditions cannot be applied on these equations separately. One needs to examine

the causality condition of the concatenated model as described in section 1.2. For example, the

concatenated VAR model 1.12 is causal if and only if the solution to the equation det(I− Φ̃1z) 6= 0

for all z ∈ C such that |z| ≤ 1.
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The number of free parameters under this constraint is
[
d2(p+q)+d(d+1)/2

]
K, which can

be considerably smaller than that of the original PVARMA model. However, the factor
[
d2(p+ q) +

d(d+ 1)/2
]
, which is related to the spatial aspect of the model, has not changed. In fact, under this

framework, it is difficult to associate the space-related components of matrices AΦ
k (i), AΘ

k (j), and

AΣ
k to some other factor, for example, distance, because the matrices lack spatial connotations. To

reduce parameter counts in this first factor, we need to find a circumstance where the components of

a matrix are closely related to the model, so that we can effectively “predict” all components from

a smaller number of parameters.

2.2.2 Spatial Parameter Consolidation

Spatial correlation analysis often associates correlations to spatial parameters, and can help

consolidate parameters. We start with some parameter consolidations on stationary vector series,

and then proceed to periodic vector series.

Consider a zero-mean stationary vector time series {Xt = (X
(1)
t , . . . , X

(d)
t )′; t ∈ Z}. Let

Γ(h) = E
(
XtX

′
t−h
)

be its lag-h autocovariance. Denote the entries of the autocovariance matrix by

γij(h) = entijΓ(h). Note that γij(h) is a covariance:

γij(h) = E(X
(i)
t X

(j)
t−h) = cov(X

(i)
t , X

(j)
t−h),

where X
(i)
t and X

(j)
t−h are respectively associated with the space and time indices (i, t) and (j, t−h).

Taking the temperature data as an example, X
(i)
t is the temperature of the ith station on day t, and

X
(j)
t−h is the temperature of the jth station on day t− h, each of them respectively associated with

coordinates (xi, yi, t) and (xj , yj , t − h). Note that this coordinate system has combined temporal

and spatial dimensions. It is possible to relate the covariance to these coordinates or to the distance

between the coordinates.

Suppose that there exist d row vectors v1,v2, . . . ,vd of dimension k − 1, such that

Xi,t ≡ X̃(vi, t).

Then the components {(X1,t, . . . , Xd,t)}+∞t=−∞ of vector time series {Xt} are viewed as a sample from

the spatial series {X̃(w); w = (v, t) ∈ Rk}. Thus, the covariance of the vector time series {Xt}∞t=−∞
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satisfies

γij(h) = E
[
Xi,tXj,t−h

]
= E

[
X̃(vi, t) X̃(vj , t− h)

]
= C

(
(vi − vj , h)

)
.

(2.5)

Since Γ(h) = E[XtX
′
t−h], the matrix in (1.4) is equivalent to

Gn = Var
[(

X′n|X′n−1| · · · |X′1
)′]

,

where the random vector

(
X′n|X′n−1| · · · |X′1

)
=
(
X̃(v1, n) . . . X̃(vd, n) | · · · | X̃(v1, 1) . . . X̃(vd, 1)

)
.

Based on the non-negative definiteness of a valid covariogram, Gn must be non-negative definite. In

short, as long as C(·) is a legitimate covariogram of a stationary spatial series, Γ(·) defined by (2.5)

is a legitimate covariance of a stationary vector time series.

In the context of our temperature data, we can assume that k = 3 and let v = (x, y) be

the coordinates (longitude, latitude) of the stations. Thus, the random variable X̃(v, t) denotes the

temperature at position v = (x, y) at time t. If the covariogram of {X̃(w)} is isotropic, then the

covariance of X̃(w1) and X̃(w2) is a function of the “distance” between their indices, ‖(w1 −w2)‖.

For example, the distance based on the Euclidean norm is

‖(w1 −w2)‖Euc =
√

(x1 − x2)2 + (y1 − y2)2 + (t1 − t2)2.

Based on lemma 1, we can apply a linear transformation on the indices to enlarge the family of

feasible covariance functions. For example, a model we will use fits the covariances of the seven-city

temperature data by covariogram 1.7, with norm ‖ · ‖ defined by

‖(x, y, t)‖ =
√

(b1x+ b2t)2 + (b3x+ b4y + b5t)2 + t2.

Now, suppose that {Xt} is a VAR(p) series defined by equation (1.2). With the covari-

ance function form specified, a VAR model can then be fitted by solving the Yule-Walker moment
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equations, which are



Γ(0) Γ(1) · · · Γ(p− 1)

Γ(−1) Γ(0) · · · Γ(p− 2)

...
...

. . .
...

Γ(1− p) Γ(2− p) · · · Γ(0)





Φ(1)′

Φ(2)′

...

Φ(p)′


=



Γ(−1)

Γ(−2)

...

Γ(−p)


, (2.6)

and

Γ(0) =

p∑
i=1

p∑
j=1

Φ(i)Γ(j − i)Φ(j)′ + Σ. (2.7)

Note that all autoregressive parameters are determined by the free parameters in the covariogram.

The optimal values of these parameters can be obtained by maximizing the model likelihood using

numerical methods. We summarize parameter estimation for this method as follows:

1. Construct the likelihood function of {Xt} given the vector of free parameters β:

(a) Given β, construct the covariance function Γ(·|β);

(b) Solve the Yule-Walker equations for the VAR parameters Φ(β)(k), k = 1, . . . , p, and Σ(β);

(c) Compute residuals given the series and the parameters defined above;

(d) Compute and return the model likelihood L
(
{Xt}|β

)
.

2. Numerically maximize the likelihood function to obtain the optimal parameter estimator β̂;

3. Go through steps (1a) and (1b) to estimate the VAR model.

Before proceeding, we provide a short digression on space-time separable covariograms sat-

isfying

C(v, t) = C1(v)C2(t), (2.8)

for some covariograms C1(·) on Rk−1 and C2(·) on R1. The following proposition shows that taking

a space-time separable covariogram in our method results in a VAR model whose coefficient matrices

Φ1, . . . ,Φp are all diagonal (not what we need).

Proposition 1. Suppose that {Xi,t}∞t=−∞ and i ∈ {1, . . . , d} are the components of a VAR series

{Xt}∞t=−∞. Then the following are equivalent.
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i) {Xi,t; i = 1, . . . , d}∞t=−∞ is a collection of univariate AR series, satisfying

Xi,t =

p∑
k=1

φii(k)Xi,t−k + Zi,t, , i = 1, . . . , d.

ii) Φ(k), k = 1, 2, . . . , p are all diagonal;

iii) The autocovariance of {Xt}∞t=−∞ is separable in that

Γ(h) = Γ(0)C2(h)

for some univariate autocovariance function C2(·).

Proof. Obviously, i) and ii) are equivalent and sufficient for iii). If iii) holds, then the Yule-Walker

equations become

C̃0 ⊗ Γ(0)


Φ(1)′

...

Φ(p)′

 = C̃1 ⊗ Γ(0), (2.9)

where ⊗ is the Kronecker product, and

C̃0 =



C2(0) C2(1) · · · C2(p− 1)

C2(−1) C2(0) · · · C2(p− 2)

...
...

. . .
...

C2(1− p) C2(2− p) · · · C2(0)


, and C̃1 =



C2(−1)

C2(−2)

...

C2(−p)


Applying the property (A⊗B)(C ⊗D) = (AC)⊗ (BD) yields

(
Ip ⊗ Γ(0)

)(
C̃0 ⊗ Id

)


Φ(1)′

...

Φ(p)′

 =
(
Ip ⊗ Γ(0)

)(
C̃1 ⊗ Id

)
.
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where Ik is the k × k identity matrix. Since Γ(0) is positive definite, Ip ⊗ Γ(0) is invertible. Hence,

(
C̃0 ⊗ Id

)


Φ(1)′

...

Φ(p)′

 =
(
C̃1 ⊗ Id

)
.

Now left multiply by
(
C̃0 ⊗ Id

)−1
and apply the property (A⊗B)−1 = A−1 ⊗B−1, producing


Φ(1)′

...

Φ(p)′

 =
(
C̃−10 ⊗ Id

)(
C̃1 ⊗ Id

)
=
(
C̃−10 C̃1

)
⊗ Id.

Therefore, Φ(`) is diagonal for each ` ∈ {1, . . . , p}.

Proposition 1 shows one way that a parsimonious VAR model can be constructed. Specifical-

ly, if C2(·) uses ` parameters, then Γ(0)C2(h) only uses `+d(d+1)/2 free parameters. Unfortunately,

our data does not appear space-time separable.

2.2.3 Space-Time Parametric Consolidation

A parsimonious PVAR model can be constructed using a similar tactic. In this section, a

covariogram model for a periodically stationary VAR series will be constructed, and the periodic

versions of the Yule-Walker equations and likelihood will be given.

Suppose f(t) = t + f0(t) is a time warping function where f0(·) is a function with period

T . Define Xi,t = X̃ (vi, f(t)), where vi and {X̃(v, t)} are defined as before. Then {Xt}∞t=−∞ with

Xt = (X1,t, . . . , Xd,t)
′ is a periodically stationary vector time series. To identify the periodically

varying covariance Γν(h) = E[XnT+νX
′
nT+ν−h], note that

γνij(h) := entij [Γν(h)]

= E[Xi,nT+νXj,nT+ν−h]

= E[X̃
(
vi, f(nT + ν)

)
X̃
(
vj , f(nT + ν − h)

)
]

= C(vi − vj , f(nT + ν)− f(nT + ν − h))

= C(vi − vj , h+ f0(ν)− f0(ν − h)).

22



To illustrate its role, the f0(·) obtained in our model fit is plotted in Figure 2.2a. The function

increases faster in Spring, causing a greater distance between f(nT + ν+h) and f(nT + ν). Thus, a

time lag of h days in Spring is like a lag of about 3h days in Fall, resulting in a lower correlation be-

tween observations at these two time points. Correspondingly, the fitted autocorrelation at lag 1 (for

a single station) is plotted in Figure 2.2b, which is close to the shape of the sample autocorrelation

at lag 1 in Figure 1.1d and supports our analysis.

(a) Fitted time warping function (b) Fitted autocorrelation at lag 1

Figure 2.2: Time warping function and its effect

If {XnT+ν} is the PVAR series in (1.10), then the PVAR coefficients can be computed from

the covariances via the Yule-Walker equations:



Γν−1(0) Γν−1(1) · · · Γν−1(p− 1)

Γν−2(−1) Γν−2(0) · · · Γν−2(p− 2)

...
...

. . .
...

Γν−p(1− p) Γν−p(2− p) · · · Γν−p(0)





Φν(1)′

Φν(2)′

...

Φν(p)′


=



Γν−1(−1)

Γν−2(−2)

...

Γν−p(−p)


,

and Σν via

Γν(0) =

p∑
i=1

p∑
j=1

Φν(i)Γν−i(j − i)Φν(j)′ + Σν .

Note that the parameters used to construct the PVAR coefficients Φν(i) and Σν , i = 1, . . . , p,

ν ∈ {1, . . . , T} are those used in C(·) and in f(·), which can be much less than the number of

original PVAR parameters.
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2.3 Model Evaluation

2.3.1 Likelihood

The methods introduced in sections 2.2.2 and 2.2.3 require evaluation of a Gaussian likeli-

hood. Given data {Xt}Nt=1, the likelihood of a PVAR model of order p is

LX
(
θ) = (2π)−Nd/2(det Gp)

−1/2
N∏

t=p+1

(det Σν(t))×

exp
{
− 1

2
~X′pG

−1
p
~Xp −

1

2

N∑
t=p+1

(Xt − X̂t)
′Σ−1ν (Xt − X̂t)

}
,

where ν(t) is the season of time t, i.e., ν(t) =
(
(t − 1) mod T

)
+ 1; ~Xp is the concatenated vector

~X′p = (X′p,X
′
p−1, . . . ,X

′
1); X̂nT+ν =

∑p
k=1 Φν(k)XnT+ν−k for t > p; and

Gp = var(~Xp) =



Γν(0) Γν(1) · · · Γν(p− 1)

Γν−1(−1) Γν−1(0) · · · Γν−1(p− 2)

...
...

. . .
...

Γν−p+1(1− p) Γν−p+1(2− p) · · · Γν−p+1(0)


.

One may also use the likelihood conditional on the first p observations,

LX
(
θ|X1, . . . ,Xp) = (2π)−

(N−p)d
2

N∏
t=p+1

(det Σν(t))
− 1

2 exp
{
− 1

2

N∑
t=p+1

(Xt − X̂t)
′Σ−1ν (Xt − X̂t)

}
,

(2.10)

What needs further discussion is the likelihood of models in the layered method in section

2.1. Recall that in the second layer, we fit the following sparse VAR model

Yt =

p∑
k=1

Φ̃kYt−k + Z̃t, (2.11)

with the parameter constraint vec(Φ̃1| · · · |Φ̃p) = Rβ and {Z̃t} a vector white noise sequence with

mean 0 and variance Σ(Y). For simplicity, we assume that {XnT+ν} has zero mean. Then definition
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(2.2) becomes YnT+ν = Γ̂ν(0)−
1
2 XnT+ν . Substituting this into (2.11) yields

Γ̂ν(0)−
1
2 XnT+ν =

p∑
k=1

Φ̃kΓ̂ν−k(0)−
1
2 XnT+ν−k + Z̃t,

⇐⇒ XnT+ν =

p∑
k=1

Γ̂ν(0)
1
2 Φ̃kΓ̂ν−k(0)−

1
2 XnT+ν−k + Γ̂ν(0)

1
2 Z̃t;

thus {XnT+ν} is a PVAR(p) series with

Φν(k) = Γ̂ν(0)
1
2 Φ̃kΓ̂ν−k(0)−

1
2 ,

ZnT+ν = Γ̂ν(0)
1
2 Z̃t.

It follows that the covariance matrix Σν for the PVAR(p) series is

Σν = E
(
ZnT+νZ

′
nT+ν

)
= E

(
(Γ̂ν(0)

1
2 Z̃t)(Γ̂ν(0)

1
2 Z̃t)

′)
= Γ̂ν(0)

1
2 Σ(Y)(Γ̂ν(0)

1
2 )′

From the derivations above, we know that det
[
Σν(t)

]
= det

[
Σ(Y)

]
det
[
Γ̂ν(0)

]
and

(Xt − X̂t)
′Σ−1ν (Xt − X̂t) =

(
Γ̂ν(0)−

1
2 (Yt − Ŷt)

)′
Σ−1ν

(
Γ̂ν(0)−

1
2 (Xt − X̂t)

)
= (Yt − Ŷt)

′Γ̂ν(0)−
1
2 Σ−1ν Γ̂ν(0)−

1
2 (Yt − Ŷt)

= (Yt − Ŷt)
′Σ(Y)(Yt − Ŷt).

Hence, the conditional likelihood in (2.10) is

LX
(
θ|X1, . . . ,Xp) = (2π)−

(N−p)d
2

N∏
t=p+1

(
det Σ(Y) det Γν(0)

)− 1
2×

exp
{
− 1

2

N∑
t=p+1

(Yt − Ŷt)
′Σ(Y)(Yt − Ŷt)

}

= (2π)−
(N−p)d

2 (det Σ(Y))
−N−p

2

N∏
t=p+1

(
det Γν(0)

)− 1
2×

exp
{
− 1

2

N∑
t=p+1

(Yt − Ŷt)
′Σ(Y)(Yt − Ŷt)

}
.

(2.12)
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Note that the conditional likelihood of the VAR model (2.11) is

LY (β|Y1, . . . ,Yp) = (2π)−
(N−p)d

2 (det Σ(Y))
−N−p

2 ×

exp
{
− 1

2

N∑
t=p+1

(Yt − Ŷt)
′Σ−1(Y)(Yt − Ŷt)

}
.

(2.13)

Comparing (2.12) with (2.13) yields

LX
(
θ|X1, . . . ,Xp) = LY (β|Y1, . . . ,Yp)

N∏
t=p+1

(
det Γν(0)

)− 1
2 .

Since our model evaluation will be based on the full model for the periodic vector series {XnT+ν},

this equation will be helpful as it relates the likelihood of {XnT+ν} to that of {Yt}.

2.3.2 Residual Diagnostics

Let {Ẑt}Nt=p+1 be the residual series of a fitted VAR(p) or PVAR(p) model. Note that this

series is based on {Xt}Nt=1; hence, the time index runs from p + 1 to N . For a VAR(p) series, the

residual is defined as Ẑt = Xt −
∑p
j=1 Φ̂(j)Xt−j , while the residual of a PVAR(p) series is defined

as ẐkT+ν = Xt −
∑p
j=1 Φ̂ν(j)XkT+ν−j . If the model is adequate, then {Ẑt}Nt=p+1 should have no

significant serial or cross-sectional correlations. To test this property, let R` be the theoretical lag

` cross-correlation matrix of the residual series. Our hypothesis of interest is

H0 : R1 = · · · = Rm = 0 vs R` 6= 0 for some ` ∈ {1, . . . ,m}

To test this hypothesis in the VAR case, a multivariate portmanteau statistic introduced by Hosking

(1980) is widely used. Among its variants, the original definition of the statistic is

Q(m) = N

m∑
`=1

tr
(
Ĉ(`)′Ĉ(0)−1Ĉ(`)Ĉ(0)−1

)
, (2.14)

where tr(·) is the trace function, and Ĉ(`) = 1
N−p

∑N
t=p+`+1 ẐtẐ

′
t−` is the lag ` cross-covariance

matrix of the residual series. If {Xt} is a stationary process and was adequately fitted by a VAR(p)

series, then Qk(m) follows a χ2 distribution asymptotically with d2(m− p) degrees of freedom.

The above statistic, however, does not apply directly to assess the residual correlations of
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a periodic time series. We follow the method of Hosking (1980) to construct portmanteau statistics

for testing residual correlations of a PVAR series. Define the seasonal autocovariance of residuals

by

Ĉν(`) =
1

n

∑
p+`<kT+ν≤N

ẐkT+νẐ
′
kT+ν−`,

where ν ∈ {1, 2, . . . , T} denotes the season, and n = d(N − p)/T e the number of cycles of the data.

The test statistic for season ν is defined by

Qν(m) = n

m∑
`=1

tr
(
Ĉν(`)′Ĉν(0)−1Ĉν(`)Ĉν−`(0)−1

)
. (2.15)

We will show that, under certain conditions, Qν(m) has an asymptotic χ2
(m−p)d2 distribution. It

can also be shown that the statistic for each season is asymptotically independent of that in other

seasons, based on which a statistic combining all seasons can be introduced.

For a causal PVAR series,

ẐkT+ν = ZkT+ν +

p∑
j=1

(Φν(j)− Φ̂ν(j))XkT+ν−j .

Let XkT+ν =
∑∞
w=0 Ψν(w)ZkT+ν−w be the moving average representation of the PVAR model.

Then

ẐkT+ν = ZkT+ν +

p∑
j=1

∞∑
w=0

(Φν(j)− Φ̂ν(j))Ψν−j(w)ZkT+ν−j−w.
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To formulate the sample autocorrelation of the residual series, note that

ẐkT+νẐ
′
kT+ν−`

=
[
ZkT+ν +

p∑
j=1

∞∑
w=0

(Φν(j)− Φ̂ν(j))Ψν−j(w)ZkT+ν−j−w

]
×
[
Z′kT+ν−` +

p∑
j=1

∞∑
w=0

Z′kT+ν−`−j−wΨν−`−j(w)′(Φν−`(j)
′ − Φ̂ν−`(j)

′)
]

= ZkT+νZ
′
kT+ν−`

+

p∑
j=1

∞∑
w=0

(Φν(j)− Φ̂ν(j))Ψν−j(w)ZkT+ν−j−wZ′kT+ν−`

+

p∑
j=1

∞∑
w=0

ZkT+νZ
′
kT+ν−`−j−wΨν−`−j(w)′(Φν−`(j)

′ − Φ̂ν−`(j)
′)

+Op(n
−1).

Hence,

Ĉν(`) = Cν(`) +

p∑
j=1

∞∑
w=0

(Φν(j)− Φ̂ν(j))Ψν−j(w)Cν−j−w(`− j − w)

+

p∑
j=1

∞∑
w=0

Cν(`+ j + w)Ψν−`−j(w)′(Φν−`(j)
′ − Φ̂ν−`(j)

′)

+Op(n
−1).

Note that for any ` 6= 0,

Cν(`) =
1

n

∑
p+`<kT+ν≤N

ZkT+νZ
′
kT+ν−` = Op(n

−1/2),

and since Ψν(k) = 0 for any k < 0,

Ĉν(`) = Cν(`) +

p∑
j=1

(Φν(j)− Φ̂ν(j))Ψν−j(`− j)Cν−`(0)

+

p∑
j=1

Cν(0)Ψν−`−j(−`− j)′(Φν−`(j)
′ − Φ̂ν−`(j)

′) +Op(n
−1)

= Cν(`) +

p∑
j=1

(Φν(j)− Φ̂ν(j))Ψν−j(`− j)Cν−`(0) +Op(n
−1).
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This is equivalent to

vec
[
Ĉν(`)

]
= vec

[
Cν(`)

]
+

p∑
j=1

[
(Cν−`(0)′Ψν−j(`− j)′)⊗ Id

]
vec
[
Φν(j)− Φ̂ν(j)

]
,

or

vec
[
Ĉν(`)

]
= vec

[
Cν(`)

]
+ Vν(`)vec

[
Φν − Φ̂ν

]
(2.16)

where

Vν(`) =

(
(Cν−`(0)′Ψν−1(`− 1)′)⊗ Id . . . (Cν−`(0)′Ψν−p(`− p)′)⊗ Id

)

and Φν =

(
Φν(1) Φν(2) . . . Φν(p)

)
(and similarly for Φ̂ν). Let Cν =

(
Cν(1) . . . Cν(m)

)
(and similarly Ĉν), and V′ν =

(
Vν(1)′, . . . ,Vν(m)′

)
. Then we can write (2.16) as

vec
[
Ĉν

]
= vec

[
Cν

]
+ Vνvec

[
Φν − Φ̂ν

]
. (2.17)

Lemma 2.

Wν := cov
(

vec
[
Cν

])
= diag

(
Σν−` ⊗Σν , ` = 1, 2, . . . ,m

)
.

Lemma 3.

VνW
−1
ν vec

[
Cν

]
= O(n−1/2).

Then, in a few steps, we can show that vec
[
Ĉν

]
=
(
Id2 − Qν

)
vec
[
Cν

]
+ Op(n

−1), where

Qν = Vν

(
V′νW

−1
ν Vν

)−1
V′νW

−1
ν . Left multiplying (2.16) by Qν and applying Lemma 3 yields

QνVνvec
[
Φν − Φ̂ν

]
= Qνvec

[
Ĉ
]
ν
−Qνvec

[
Cν

]
= −Qνvec

[
Cν

]
.

Note that QνVν = Vν ; hence,

Vνvec
[
Φν − Φ̂ν

]
+ Qνvec

[
Cν

]
= 0.

Comparing with (2.16) yields vec
[
Ĉν

]
=
(
Id2 −Qν

)
vec
[
Cν

]
+Op(n

−1).
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Theorem 1. Asymptotically,

vec
[
Ĉν

]
∼ Nd2

(
0, n−1(Imd2 −Qν)Wν

)
. (2.18)

Theorem 2. Asymptotically,

n
(

vec
[
Ĉν

])′
diag

(
Ĉν−` ⊗ Ĉν , ` = 1, 2, . . . ,m

)
vec
[
Ĉν

]
∼ χ2

(m−p)d2 . (2.19)

And the above statistic is equivalent to

Pν(m) = n

m∑
`=1

tr
(
Ĉν(`)′Ĉν(0)−1Ĉν(`)Ĉν−`(0)

)
. (2.20)
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Chapter 3

Results

3.1 Simulations: Periodic Multivariate Portmanteau Test

In this section, we study the behavior of the periodic vector portmanteau test statistics via

simulation. The study is performed first on white noise series, and then on residual series from model

estimations. If the test statistics have the desired asymptotic distribution under the null hypothesis,

the corresponding p-values are supposed to follow uniform distribution on the interval [0, 1]. We

observe the sample quantiles of p-values, which are equivalent to the empirical type I error rates of

the simulations.

3.1.1 Testing Periodic Vector White Noise

The first set of periodic vector white noise series {ZnT+ν} is generated as follows. Set vector

dimension d = 3, period T = 4, series length of 60 cycles (hence series length is 240), and seasonal
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variances

Σ1 =


1.08 0.08 −0.1

0.08 1.49 0.24

−0.1 0.24 1.72

 , Σ2 =


1.29 −0.18 0.31

−0.18 0.87 −0.23

0.31 −0.23 1.46

 ,

Σ3 =


1.05 0 0.01

0 0.36 0.37

0.01 0.37 0.85

 , Σ4 =


0.88 0.45 0.36

0.45 1.1 −0.28

0.36 −0.28 1.11

 .

The size 60 sample from each season ν, Zν ,ZT+ν , . . . ,Z59T+ν , is generated from a multivariate

normal distribution with mean 0 and variance Σν . The periodic multivariate test statistics Q(`), ` =

1, 2, . . . , 12 of the white noise series {ZnT+ν} are computed. According to Theorem 2, Q(`) ∼ χ2
`d2T ;

here the p-values are defined by p` = P
(
χ2
`d2T > Q(`)

)
. We generate n = 105 such series and

denote the p-values of each trial by p
(i)
` , i = 1, 2, . . . , n, and the empirical Type I error rates by

A`(α) = 1
n

∑n
i=1 1{p(i)` <α}, where 1E is the indicator function equal to 1 when E occurs, and 0

otherwise. The empirical Type I error rates for α = 0.05, 0.1, and 0.2 are as follows.

lag ` 1 2 3 4 5 6 7 8 9 10
α = 0.05 0.047 0.047 0.05 0.048 0.044 0.044 0.042 0.04 0.036 0.034
α = 0.1 0.098 0.101 0.102 0.096 0.092 0.09 0.087 0.083 0.079 0.073
α = 0.2 0.214 0.212 0.207 0.197 0.197 0.192 0.18 0.171 0.163 0.159

While the empirical Type I error rates at lower lags are reasonably close to the desired values, the

values for higher lags are noticeably lower. Further simulations show that, as the series lengths

increase, the p-values for any lag eventually converge to the uniform distribution Unif(0, 1). More

series of the same dimensions are generated, and the empirical Type I error rates are plotted against

the series lengths (in number of cycles) in Figure 3.1. Only the test results for lags 1, 4, 7, and 10

are plotted. Clearly empirical Type I errors at all lags converge appropriately as the series length

increases.

Empirical Type I error behaviors under different dimensions (d, T ) are shown in Figure 3.2.

While the convergence rate is significantly slower when d is larger, a larger T does not seem to have

a heavy effect on the convergence rate in terms of cycles; however, it should be noted that the same

number of cycles now correspond to a longer series as a period contains more seasons.

Next, periodic vector moving-average (PVMA) series are simulated to illustrate the Type
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Figure 3.1: Empirical Type I errors vs series lengths, d = 3, T = 4

(a) d = 7, T = 4 (b) d = 3, T = 12

Figure 3.2: Empirical Type I error plots for models with different dimensions

II error rate of the periodic multivariate portmanteau test. The series is defined by XnT+ν =

ZnT+ν + ΘZnT+ν where {ZnT+ν} is the same vector white noise defined above, and

Θ =


0.5 0.1 −0.2

−0.2 −0.4 0.1

−0.1 0 0.45

 .

Periodic multivariate portmanteau test statistics of the series {XnT+ν and their corresponding p-

values are computed, and empirical powers of the test A`(α) = 1
n

∑n
i=1 1{p(i)` <α} are plotted against

series lengths in Figure 3.3. All tests successfully confirme that {XnT+ν} is not a white noise series

with a sample series length of 100 or more.
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Figure 3.3: Power of periodic multivariate portmanteau test on PVMA series

3.1.2 Testing PVAR Residuals

Next, we generate series from the PVAR(2) model

XnT+ν = Φν(1)XnT+ν−1 + Φν(2)XnT+ν−2 + ZnT+ν , ν = 1, 2, . . . , T.

The parameters are estimated by solving the periodic Yule-Walker moment equations, and periodic

multivariate portmanteau test statistics Q(`), ` = 1, 2, . . . , 12 of the residuals are computed. Ac-

cording to Theorem 2, Q(`) ∼ χ2
(`−2)d2T , so the p-values are defined by p` = P

(
χ2
(`−2)d2T > Q(`)

)
.

n = 105 series are generated for each combination of dimensions, and the empirical Type I error

rates are plotted in Figure 3.4.

3.2 Simulations: Parsimonious PVAR Model

The same series simulated in section 3.1.2 are fitted with a parsimonious PVAR(2) model.

Periodic multivariate portmanteau test statistics Q(`), ` = 1, 2, . . . , 12 of the residuals are computed.

Here we define the p-values by p` = P
(
χ2
`d2T−12 > Q(`)

)
, where 12 is the number of parameters in

the parsimonious PVAR(2) model. Note that we are proposing this degree of freedom without a

proof. Since the parsimonious PVAR fit is based on numerically maximizing the likelihood, it runs

much slower, so we have only generated 1000 series for each given series length. As series length

increases, the empirical Type I error rates converges to the expected value, 0.1.
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(a) d = 3, T = 4 (b) d = 7, T = 4

(c) d = 3, T = 12 (d) d = 7, T = 12

Figure 3.4: Empirical Type I error rates testing PVAR residuals

Figure 3.5: Empirical Type I error rates testing residuals of parsimonious PVAR model
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3.3 Fitting the seven-city Data

The layered procedure described in section 2.1 is adopted as a basic scheme to fit the seven-

city daily temperature data. The periodic means are removed prior to fitting any model. In the first

layer, we compare different methods to eliminate the periodic variances. The methods include:

(a) SD (b) pSD

(c) PVAR (d) pPVAR

(e) SD-PVAR (f) pSD-pPVAR

Figure 3.6: Coherence test of standardization procedures

SD Standardize the series according to equation 2.1.
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pSD Standardize the series using spline fit of Sν in equation 2.1.

PVAR Fit a PVAR model to the series, and define the new series as the residuals from the PVAR

model.

pPVAR Fit a parsimonious PVAR model to the series, and defined the new series as the residuals from

the parsimonious PVAR model.

Note that only pSD and pPVAR are parsimonious methods. Coherence tests are performed on each

component of the resulting series. The test results for the first component for each method is plotted

in Figures 3.6a – 3.6d.

Here, the standardization methods SD and pSD failed to eliminate the periodicity, as the

coherence plots for both methods show a significant spike at h = 59. The PVAR method and

the pPVAR method also produce residual series with periodic correlations. Methods combining

standardization and fitting PVAR models are then used. Method SD-PVAR fits a PVAR(1) to

the standardized series defined by equation (2.2). Method standardizes the series using spline fits

of components of Γ̂ν(0)−
1
2 in equation (2.2), and fit the standardized series with a parsimonious

PVAR(3) model. Coherence tests are performed on each component of the residual series, and the

test plot of the first component from each method is plotted in Figure 3.6e – 3.6f. Both of these

two methods roughly eliminated periodicity in the series. Note that in method SD-PVAR, a total of

1
2d(d+ 1)T + d2T = 28105 parameters arise, while method pSD-pPVAR uses 6

2d(d+ 1) + 12 = 120

parameters.

Figure 3.7: VAR fit
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In the second layer, we fit the residual series from method pSD-pPVAR. A VAR model

is first fitted to the residuals to provide a suggestion of autoregressive order p. The AIC values

and average p-values from the multivariate Ljung-Box test are plotted in Figure 3.7. All VAR fits

resulted in very small p-values, indicating significant correlation in residuals of the VAR fits. The

AIC values suggest an AR order of p ≤ 22 be used.

Next, a sparse VAR model with p = 21 is fitted to the residuals from the first layer, with

choice of m, the number of unconstrained parameters, ranging from d2 = 49 to pd2 = 1029. Log

likelihood, AIC and BIC values are computed, and residuals from the sparse VAR fits are tested by

multivariate Ljung-Box test, with average p-values from the first 12 lags computed. These values

are plotted in Figure 3.8. Although BIC was suggested as criterion for selection of m value, neither

(a) AIC, BIC, and average p-value (b) Log likelihood and average p-value

Figure 3.8: ”AIC, BIC, log likelihood, and average p-values for sparse VAR fits”

BIC nor AIC suggests a value of m such that the sparse VAR fit would pass the residual test. Thus,

we propose a composite criterion which guarantees that the sparse VAR fit passes residual tests.

The m value is chosen to first guarantee that the average p-value is no less than 0.5, and yield the

smallest AIC/BIC value. This criterion suggests 417 as the best value for m, with log likelihood

−193603.7, AIC= 194437.7, and BIC=198575.3.
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Chapter 4

Conclusions and Discussion

In this dissertation, two parsimonious methods are proposed for fitting periodic vector time

series. The layered method is proposed as a general tactic for fitting periodic vector time series.

The parsimonious PVAR method is based on the construction of a feasible periodic autocovariance

function. The number of parameters it uses depends only on those arising in the model of the

periodic autocovariance function, and hence remains small even when the PVAR model dimensions

are big. However, it also suffers from several limitations:

• It relies heavily on a good fit of the periodic autocovariance function.

• It is limited to multivariate data with spatial relations. Consistent autocorrelation and cross-

correlation behaviors are expected for the method to work, in which case a larger dimension

could result in a better fit of the ACF. On the contrary, a vector series with a small dimension

may see failure to fit the ACF.

• The parameter estimation is based on numerical maximization of the likelihood function,

which requires constructing and solving the Yule-Walker equations of all seasons. Hence the

estimation is slow, especially when d and T are both large.

As a standalone method, the parsimonious PVAR method cannot produce a good fit on the seven-city

temperature data. However, as part of the layered procedure, it successfully removes the periodic

correlations from the original series, and worked as effective as the non-parsimonious method (SD-

PVAR) as suggested by the coherence test.
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A sparse VAR model was fitted to the seasonally adjusted series from layer one. Several

adjustments are made to the sparse VAR method:

• In the estimation of VAR models with linear constraints, the estimated generalized least squares

(EGLS) method from Lütkepohl (1993) was used, where the white noise variance Σ was ap-

proximated by estimators either from a least squares method or from an asymptotic theorem.

In practice, both these approximations are computationally demanding due to the large di-

mensions and the long record length. Instead of adopting these tactics of estimating Σ, we

use an iterative method, which turns out to converge within three iterations, much faster and

more accurate than the approximation method from Lütkepohl (1993).

• In the original sparse VAR method from Davis et al. (2016), the model fit is performed in two

stages, the first of which determines to constrain all parameters to zero which correspond to

some pairs of components. For example, the (1, 3) entry of Φ(1), . . . ,Φ(p) of a VAR(p) model

are all constrained to zero. When fitting the seven-city temperature data, this stage of model

fitting always suggest no parameter set to zero.

• Davis et al. (2016) suggests to depend the choice of m (the number of non-zero parameters)

solely on BIC. We suggest that the residual test results should also be considered, and a

cross-validation be performed when possible.

We have shown simulation results for the periodic multivariate portmanteau test, and have

indicated that the test should have bad asymptotic behavior when the period T is much larger.

Thus, the test is not performed on residuals of the seven-city data since the test statistic does not

converge to the proposed distribution at a series length of 60 years. However, the test is suggested

to be used when the period of the series is smaller.

40



Bibliography

Anderson, P. L., Y. G. Tesfaye, and M. M. Meerschaert (2007). Fourier-parma models and their
application to river flows. Journal of Hydrologic Engineering 12 (5), 462–472.

Cressie, N. (1993). Statistics for spatial data. John Wiley & Sons.

Cressie, N. and C. K. Wikle (2015). Statistics for spatio-temporal data. John Wiley & Sons.

Davis, R. A., P. Zang, and T. Zheng (2016). Sparse vector autoregressive modeling. Journal of
Computational and Graphical Statistics 25 (4), 1077–1096.

Franses, P. H. and R. Paap (2002). Forecasting with periodic autoregressive time-series models.
Oxford, UK, Blackwell Publishers Ltd.

Franses, P. H. and R. Paap (2004). Periodic time series models. OUP Oxford.

Fuller, W. A. (2009). Introduction to statistical time series, Volume 428. John Wiley & Sons.

Hosking, J. R. (1980). The multivariate portmanteau statistic. Journal of the American Statistical
Association 75 (371), 602–608.

Lund, R. and I. Basawa (2000). Recursive prediction and likelihood evaluation for periodic arma
models. Journal of Time Series Analysis 21 (1), 75–93.

Lund, R., H. Hurd, P. Bloomfield, and R. Smith (1995). Climatological time series with periodic
correlation. Journal of Climate 8 (11), 2787–2809.

Lund, R., Q. Shao, and I. Basawa (2006). Parsimonious periodic time series modeling. Australian
& New Zealand Journal of Statistics 48 (1), 33–47.

Lütkepohl, H. (1993). Introduction to multiple time series. Springer Verlag, Berlin.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business
Media.

Matérn, B. (2013). Spatial variation, Volume 36. Springer Science & Business Media.

Porcu, E., J.-M. Montero, and M. Schlather (2012). Advances and challenges in space-time modelling
of natural events, Volume 207. Springer Science & Business Media.

Reinsel, G. C. (2003). Elements of multivariate time series analysis. Springer Science & Business
Media.

Tsay, R. S. (2013). Multivariate Time Series Analysis: With R and Financial Applications. John
Wiley & Sons.

Vecchia, A. (1985). Periodic autoregressive-moving average (parma) modeling with applications to
water resources. JAWRA Journal of the American Water Resources Association 21 (5), 721–730.

41


	Clemson University
	TigerPrints
	8-2017

	Parsimonious Space-Time Temperature Series Modeling
	Yanbo Xia
	Recommended Citation


	Title Page
	Abstract
	List of Figures
	Introduction
	Literature Review
	Periodic Vector Series
	Data

	Methods
	A Layered Method
	Parsimonious PVAR models
	Model Evaluation

	Results
	Simulations: Periodic Multivariate Portmanteau Test
	Simulations: Parsimonious PVAR Model
	Fitting the seven-city Data

	Conclusions and Discussion
	References

