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Figure 4.2: Two-dimensional representation of the expanding failure surfaces for 

the accurate model with imprecisely known input parameters, where the black dot 

represents the location of the nominal parameter values 

 
The dot in Figure 4.2 represents the exact values of the input parameters K1 and 

K2. The formation of the failure contours and their increasing size can be seen in the 

figure. The model form used in the development of this figure was the “accurate” model 

form, and that is why the failure contours are centered on the true parameter values. A 

three dimensional representation of the failure surfaces as they expand with increasing 

prediction error is shown in Figure 4.3.  
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Figure 4.3: Three-dimensional representation of the failure surfaces for the accurate 

model 

 
Figure 4.3 illustrates the relationship between the error in the model output (i.e. 

lack of fidelity) and the size of the domain of parameter values encompassed by the 

failure surface. As expected, the domain of acceptable parameter values encompassed by 

each failure surface increases with increasing error in the model output. It can be seen 

that the contours increase in size quite rapidly, suggesting that the model possibly has a 

favorable trade-off between fidelity and robustness. It can also be seen that the error in 

predictions increases very rapidly for small values of K1 and K2, which is expected. As 

the values of K1 and K2 approach zero, the frame becomes unstable and thus yields large 

lateral deformations. On the other hand, for very large values of K1 and K2, the frame 

becomes stiffer and asymptotically converges to having fully rigid columns. Thus, the 

increase in discrepancy between predictions and experiments develops much more 

slowly. This relationship is depicted in Figure 4.4. 
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Figure 4.4: Relationship between increasing connection stiffness (Ki) and the mean 

prediction error 

 
Moreover, as the model form changes, shifts in the origin of the failure contours 

would be expected. This shift is due to the introduction of model bias and/or 

compensating effects between the uncertain parameters into the prediction results.   

4.3 Inexact Models with Uncertain Input Parameters 
 
 In this study, the two inaccurate finite element models that are used to analyze the 

portal frame displacements are assumed to underestimate and overestimate the shear area 

coefficients necessary to incorporate the shear deformation by 5% in both models (i.e., 

95% of the shear area and 105% of the shear area, respectively) in the element stiffness 

matrices, therefore, introducing two different model forms. This will unavoidably 

introduce imperfections into the models ultimately changing each model’s behavior. The 

failure surfaces for the two inexact models are generated and shown in Figures 4.5 and 

4.6.  
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Figure 4.5: Two-dimensional failure surfaces for the inexact model with 95% shear 

deformations 

 
 As seen in Figure 4.5, the underestimation of the shear area causes the failure 

surfaces to shift downward, which is evident when compared to Figure 4.2. As shown, 

the nominal parameter values represented by the black dot in the figure no longer fall at 

the center of the initial (smallest) failure surface. This shift is a result of the 

compensations between model imperfections and uncertain input parameters. This entails 

that the model requires lower values of K1 and K2 to increase the lateral deformations of 

the frame since less shear deformations are accounted for due to less shear area. As 

expected, the opposite effect is seen in Figure 4.6 for the inexact model that is 

overcompensating for shear deformations.  
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Figure 4.6: Two-dimensional representation of failure surfaces for 105% shear 

deformations 

 
In Figure 4.6, the compensating effects caused by the imprecision in the model 

due to overcompensation of shear deformations causes an upward shift in the failure 

surfaces, encompassing larger values of K1 and K2. Referring back to Figure 4.4, the 

larger stiffness values create stiffer connections and, therefore, decrease the model’s 

calculated lateral displacements and, in turn, the prediction error. It can also be seen that 

the initial failure surface is larger than that of the two previous models, meaning that this 

model can allow for more variations in the parameter values for this level of fidelity.  

4.4 Utilizing the Failure Surfaces 
 
 The failure surfaces for the three models are evaluated for their probability of 

successfully satisfying the fidelity threshold values. Here, the unbounded sets of input 

parameter values are centered at the nominal parameter values, which in this study are the 

exact values of K1 and K2 used in the formulation of the exact model and also given in 



 49

Table 4.2. For each fidelity threshold value evaluated, the uncertainty parameter α is 

increased from 0-100% of its original size at steps of 20%. The original size of α is set as 

[(K i-K i*0.125),(Ki+Ki*0.125)]. Thus, an α value of zero indicates this initial range. 

Fidelity thresholds are evaluated between 0.01-1.41% error.  Figures 4.7, 4.8 and 4.9 

show a single failure surface from each of the three models being compared to a set of 

parameter values for K1 and K2 of a certain size.   

 

 
 

Figure 4.7: Failure surface for the accurate model at R = 0.885% being evaluated 

for αααα = 40% 
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Figure 4.8: Failure surface for the inexact model accounting for 95% shear 

deformations at R = 0.885% being evaluated for αααα = 40% 

 

 

Figure 4.9: Failure surface for the inexact model accounting for 105% shear 

deformations at R = 0.885% being evaluated for αααα = 40% 
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By comparing the failure surfaces in Figures 4.7, 4.8 and 4.9, it can be seen that 

their sizes and locations differ for all three models. Given that these failure surfaces are 

all associated with the same fidelity threshold Rt = 0.885%, this proves the existence of 

multiple model forms that can satisfy the same fidelity requirement. However, from the 

method proposed in this manuscript, it can also be seen how the utilization of the failure 

surfaces distinguishes between the models even though all three still satisfy the same 

fidelity threshold. The area of the parameter set that falls within the failure surface 

represents each model’s ability to satisfy that fidelity requirement. Figures 4.10, 4.11 and 

4.12 display the interaction between increasing prediction error and increase uncertainty 

parameter and their effect on each model’s probability of successfully satisfying the 

fidelity threshold.  

 

 
 

Figure 4.10: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the accurate model 
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Figure 4.11: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the model with 95% shear 

deformations 

 

 

Figure 4.12: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the model with 95% shear 

deformations 
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Figure 4.10 illustrates the trade-off between the fidelity, uncertainty parameter 

and probability of success. In this figure, one cannot improve the probability of success 

without decreasing the uncertainty parameter and/or decreasing the model fidelity (i.e., 

increasing prediction error). These attributes are said to be antagonistic and are the reason 

that the model developer is also a decision maker.  

Figures 4.11 and 4.12 display these antagonistic trade-offs between the three 

attributes except for a small region in both figures (the far right side of both figures) 

where the antagonistic traits do not hold true. This can occur when model bias and 

compensating effects between model parameters cause the failure surface to shift away 

from the nominal parameter values, as shown in Figures 4.5 and 4.6. In this situation, 

when the unbounded nested sets are applied to the increasing failure surfaces, only the 

extreme values of a set fall within the failure surface, yielding a small probability of 

success. However; the successive sets, which are larger than the previous sets contain 

more values that fall within the failure surface and, thus, yield a larger probability of 

success. Therefore, with increasing uncertainty in the input parameters, the model’s 

probability of successfully satisficing the fidelity requirement increases.  

 Given these three figures, it can be seen that the accurate model in Figure 4.10 

displays more favorable trade-offs in that its probability of success increases more 

quickly than the other two models. Though this may seem intuitive, it does signify that 

the proposed method is effective in helping the model developer identify the model that 

best represents the physical experiment, even in the face of parametric uncertainty. This 

is further illustrated in Figures 4.13, 4.14 and 4.15.  
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Figure 4.13: Probability of Success versus Prediction Error for a constant αααα 

 

Figure 4.14: Probability of Success versus the uncertainty parameter for constant R 

 
 

Figure 4.15: Prediction error (inverse of fidelity) versus the uncertianty parameter 

for a constant Ps 
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Figure 4.13 shows that the probability of successfully satisfying the fidileity 

requirements for the accurate model increases much faster than the two inexact models 

given a constant  value of the uncertainty parameter. In this figure, the value of the 

uncertainty parameter is zero, which means that the initial set range of parameter values 

was used for evaluation.  

From Figure 4.14, it can be seen that as the uncertinaty parameter is allowed to 

expand, and the probability of success for all three models begins to converge. This 

means that the differences in model form are more distinguishable for lower values of 

input parameter uncertainty. Once a sufficient amount of uncertainty is allowed in the 

input parameters, the compensations between the bias errors and parameter uncertainties 

allow the two inaccurate models to yield a probability of success similar to that of the 

accurate model.  

Figure 4.15 compares the fidelity and the uncertianty parmaeter for a single 

probability of success. Here, the decision maker can establish a minimum probability of 

success requirement and then evaluate which model performs best given the increasing 

uncertianty in input parameters. The common factor in all three figures is that the 

decision maker must be able to decide upon the threshold values to be able to make 

informed decisions. The following section explains the use of an optimization algorithm 

to assist in this process. 
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CHAPTER FIVE 

MODEL EVALUATION USING MULTI-OBJECTIVE OPTIMIZATION 
 
 

The approach discussed in Chapter 3 and demonstrated in Chapter 4 on a case 

study application of a steel portal frame for model selection naturally leads to a multi-

objective optimization problem with three distinct objectives: fidelity, uncertainty in 

input parameters and probability of success of satisfying the fidelity with a given amount 

of uncertainty in the input parameters. As reported earlier, these three objectives tend to 

be uncooperative in nature, and thus a single solution that optimizes all of these 

objectives does not always exist in the solution space. However, a set of solutions that are 

better than all other solutions can be obtained.  

Unlike single objective optimization, the purpose of which is to search for a single 

best design, multi-objective optimization yields a family of optimum designs, which is to 

find multiple Pareto-optimal solutions. When the objectives are conflicting (or 

uncooperative), it is not possible to have a single solution which simultaneously 

optimizes all objectives (Deb et al. 2002). However, a set of solutions, referred to as 

Pareto front that are better than all other solutions can be obtained. These designs 

constitute a Pareto optimum set (or Pareto front), as illustrated in Figure 5.1. 
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Figure 5.1: Illustration of a Pareto Front 

A general multi-objective optimization problem can be expressed as: 

                                     

( ) ( ) ( ) ( )1 2Minimize:   , , ,  

Subject to: ( ) 0 1,...,

l

i

f f f

g i n

= …  
≤ =

F d d d d

d             (Equation 12)

 

with f  representing each of the single objective functions, and g representing the 

constraint functions. The Pareto front can be viewed as a set of designs, which dominate 

all other designs (Marler and Arora 2004). The domination relationship is defined as 

follows: 

• design B is dominated by design A, if A is superior to B in at least one criteria 

(i.e., fi(d)A< fi(d)B for at least one i), and  

• A is not inferior to B in all other criteria (i.e., fi(d)A≤ fi(d)B for all other i). A 

design that is not dominated by any other design is included in the Pareto front  
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Thus, the Pareto front supplies a clear, visual representation of the trade-off between 

multiple objectives as, among the Pareto front solutions, one cannot gain improvement in 

one of the objectives without  compromising  the other objective(s). 

Many multi-objective optimization methods can also be implemented to derive 

the Pareto front such as MOEAs, Zitzler and Thiele’s (1998) strength Pareto EA (SPEA), 

Knowles and Corne’s (1999) Pareto-archived evolution strategy (PAES), and Rudolph’s 

(1997) elitist GA. Over the past decade, a number of evolutionary algorithms (MOEAs) 

have also been suggested to solve such multi-objective problems (Fonseca and Fleming 

1993; Hom et al. 1994; Srinivas and Deb 1994). Among the evolutionary algorithms, the 

low computational requirements, its elitist approach and parameter-less sharing make 

Non-dominated Sorting Genetic Algorithm (NSGA-II) a widely-used algorithm (Deb et 

al. 2002). 

Herein, NSGA-II is employed to solve the proposed multi-objective model 

selection problem introduced in Chapter 4 considering, first, probability of success and 

fidelity of the prediction obtained with the nominal parameter values, and then, second, 

all three objectives. The two-objective optimization will yield a line of optimal solutions 

that separates two areas; one area containing feasible solutions and the other containing 

infeasible solutions. The three-objective optimization yields a three-dimensional surface 

of solutions which separates two volumes, again one feasible and the second, infeasible. 

A population size of 50 is used for each generation, and the converged solution (i.e., 

Pareto front) is acquired after 100 generations.  
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Figure 5.2: Evaluation of the accurate model through multi-objective optimization 

considering fidelity (error), uncertainty (αααα) and probability of success 

 

 

Figure 5.3: Evaluation of the inaccurate model through multi-objective optimization 

considering fidelity (error), uncertainty (αααα) and probability of success 

 
 As shown in Figure 5.2, as the uncertainty parameter increases in magnitude the 

optimal solutions only exist for lower probabilities of success. Also, more optimal 

solutions exist for high levels of error (low fidelity) as well. The surfaces shown in 

Figures 5.2 and 5.3 not only represent the optimal solutions to the multi-objective 
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problem, but they also separate feasible solutions from infeasible solutions. Less optimal, 

but feasible, solutions exist above and behind the surfaces, while infeasible solutions 

would exist below the surfaces. This is due to the antagonistic qualities between the three 

objectives. 

By comparison of Figures 5.2 and 5.3, one can see that the Pareto front surface of 

the accurate model in Figure 5.2 obtains more solutions with low error (high fidelity) and 

high uncertainty. This, in turn, translates to a more robust model. Also, it can be seen that 

the accurate model contains higher probability of success solutions. As a DM, the 

evaluation of these three attributes yields a clear model choice of the accurate model.  
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CHAPTER SIX 

CONCLUSION 
 
 

In numerical modeling, uncertainties inherently exist due to unknown or partially 

known values of input parameters as well as an imperfect understanding or lack of 

knowledge of the underlying physics that drive the model. These uncertainties often lead 

to compensating effects between the input parameters that may give the modeler a false 

perception of the accuracy of the model. Compensating effects between input parameters 

typically result in the existence of non-unique solutions. Although we acknowledge that 

the existence of a “perfect” model is highly unlikely, it is necessary to implement criteria 

that adequately distinguish between the robustness of multiple model forms with varying 

domains of acceptable input parameter which satisfy the same fidelity threshold value. At 

the same time the criteria cannot be overly conservative leading to unrealistic, over-

designed systems. Therefore, the method presented in this manuscript assesses different 

model forms based on three criteria: fidelity-to-data, robustness-to-uncertainty, and 

probability of successfully satisfying a predefined fidelity threshold requirement.  

In this manuscript, a new methodology is proposed for assessing the robustness of 

a simulation model to discriminate between multiple models that yield similar 

predictions. Instead of estimating the boundary of solutions which satisfy a given level of 

information, the proposed approach implements an optimization algorithm which solves 

for the exact boundary of solutions that satisfy a given level of prediction fidelity, or 

otherwise known as the inverse error of the predictions. This boundary is referred to as 

the model’s failure surface. By accurately defining the failure surface, the modeler can 
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then exploit this domain by spatially comparing the contained parameter values with 

increasing sets of the modeler’s best estimation of the real parameter values. These sets 

of parameter values are unbounded, monotonically increasing sets of values whose size 

are defined by a metric known as the uncertainty parameter α. The increasing magnitude 

of α represents increasing the uncertainty in the parameter values. A spatial comparison 

refers to comparing the parameter values contained in the failure surface to those 

contained in the increasing input parameter sets.  

The goal of this procedure is to quantify how the model reacts to uncertainty in 

the input parameters, also known as the model’s robustness to uncertainty. Therefore, the 

ratio of the number of parameter values from the set that fall within the failure surface 

domain to the total number of parameter values in the set is used as the metric to quantify 

this relationship. In this manuscript, this measure is known as the probability of success.  

More specifically, it is the probability of the model to successfully satisfy the fidelity 

threshold value associated with a particular failure surface. Thus, this method defines 

three metrics that are used by the model developer to decide upon the most appropriate 

model form, the model fidelity, uncertainty parameter and probability of success. To 

highlight the conflicting relationships between these metrics, a multi-objective 

optimization procedure is performed using a non-dominated genetic sorting algorithm 

known as NSGA-II. From these results, a modeler can make an informed decision as to 

which model form best characterizes the realistic phenomenon being simulated.  
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