





Figure 4.2: Two-dimensional representation of thex@anding failure surfaces for
the accurate model with imprecisely known input paameters, where the black dot

represents the location of the nominal parameter Vaes

The dot in Figure 4.2 represents the exact valfi¢seoinput parameters;kand
K,. The formation of the failure contours and theicreasing size can be seen in the
figure. The model form used in the developmenthid figure was the “accurate” model
form, and that is why the failure contours are esd on the true parameter values. A

three dimensional representation of the failurdas@s as they expand with increasing

prediction error is shown in Figure 4.3.
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Figure 4.3: Three-dimensional representation of théailure surfaces for the accurate

model

Figure 4.3 illustrates the relationship betweendher in the model output (i.e.
lack of fidelity) and the size of the domain of gaweter values encompassed by the
failure surface. As expected, the domain of acddptparameter values encompassed by
each failure surface increases with increasingremdhe model output. It can be seen
that the contours increase in size quite rapidiggesting that the model possibly has a
favorable trade-off between fidelity and robustndssan also be seen that the error in
predictions increases very rapidly for small valog¥; and K, which is expected. As
the values of Kand K, approach zero, the frame becomes unstable andiglds large
lateral deformations. On the other hand, for vengé values of Kand K, the frame
becomes stiffer and asymptotically converges tangafully rigid columns. Thus, the
increase in discrepancy between predictions ancererpnts develops much more

slowly. This relationship is depicted in Figure 4.4
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Figure 4.4: Relationship between increasing conneaon stiffness (K) and the mean

prediction error

Moreover, as the model form changes, shifts inatgin of the failure contours
would be expected. This shift is due to the intaitun of model bias and/or

compensating effects between the uncertain parasnete the prediction results.

4.3 Inexact Models with Uncertain Input Parameters

In this study, the two inaccurate finite elemermd®ls that are used to analyze the
portal frame displacements are assumed to unde@stiand overestimate the shear area
coefficients necessary to incorporate the sheasraeftion by 5% in both models (i.e.,
95% of the shear area and 105% of the shear asaeactively) in the element stiffness
matrices, therefore, introducing two different mioderms. This will unavoidably
introduce imperfections into the models ultimatethanging each model’s behavior. The
failure surfaces for the two inexact models areegated and shown in Figures 4.5 and

4.6.
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Figure 4.5: Two-dimensional failure surfaces for tle inexact model with 95% shear

deformations

As seen in Figure 4.5, the underestimation ofghear area causes the failure
surfaces to shift downward, which is evident whempared to Figure 4.2. As shown,
the nominal parameter values represented by thek lolat in the figure no longer fall at
the center of the initial (smallest) failure sudacThis shift is a result of the
compensations between model imperfections and tamenput parameters. This entails
that the model requires lower values afdfd K; to increase the lateral deformations of
the frame since less shear deformations are acewuot due to less shear area. As
expected, the opposite effect is seen in Figure fdr6the inexact model that is

overcompensating for shear deformations.
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Figure 4.6: Two-dimensional representation of failue surfaces for 105% shear

deformations

In Figure 4.6, the compensating effects causedhbyimprecision in the model
due to overcompensation of shear deformations saaseupward shift in the failure
surfaces, encompassing larger values olaKd K. Referring back to Figure 4.4, the
larger stiffness values create stiffer connectiansl, therefore, decrease the model's
calculated lateral displacements and, in turn pttegliction error. It can also be seen that
the initial failure surface is larger than thattloé two previous models, meaning that this

model can allow for more variations in the paramegdues for this level of fidelity.

4.4 Utilizing the Failure Surfaces

The failure surfaces for the three models areuatad for their probability of
successfully satisfying the fidelity threshold vedu Here, the unbounded sets of input
parameter values are centered at the nominal p&earaues, which in this study are the

exact values of Kand K used in the formulation of the exact model and gisen in
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Table 4.2. For each fidelity threshold value eveddathe uncertainty parameteris
increased from 0-100% of its original size at step80%. The original size af is set as
[(Ki-Ki*0.125),(Ki+K*0.125)]. Thus, ana value of zero indicates this initial range.
Fidelity thresholds are evaluated between 0.019%.4tror. Figures 4.7, 4.8 and 4.9

show a single failure surface from each of thedghredels being compared to a set of

parameter values for;kand K of a certain size.

x 10" ‘
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Figure 4.7: Failure surface for the accurate modeht R = 0.885% being evaluated

for a=40%
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Figure 4.8: Failure surface for the inexact model ecounting for 95% shear

deformations atR = 0.885% being evaluated foix = 40%
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Figure 4.9: Failure surface for the inexact model ecounting for 105% shear

deformations atR = 0.885% being evaluated foix = 40%
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By comparing the failure surfaces in Figures 4.8,ahd 4.9, it can be seen that
their sizes and locations differ for all three misd&iven that these failure surfaces are
all associated with the same fidelity threshBjd= 0.885%, this proves the existence of
multiple model forms that can satisfy the sameliig@equirement. However, from the
method proposed in this manuscript, it can alssdsn how the utilization of the failure
surfaces distinguishes between the models everglthall three still satisfy the same
fidelity threshold. The area of the parameter $et tfalls within the failure surface
represents each model’s ability to satisfy thaglftgt requirement. Figures 4.10, 4.11 and
4.12 display the interaction between increasinglipt®n error and increase uncertainty
parameter and their effect on each model’'s proibalaf successfully satisfying the

fidelity threshold.
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Figure 4.10: Three-dimensional plot of probabilityof success versus the uncertainty

parameter versus prediction error (inverse of fideity) for the accurate model
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Figure 4.11: Three-dimensional plot of probabilityof success versus the uncertainty
parameter versus prediction error (inverse of fideity) for the model with 95% shear

deformations
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Figure 4.10 illustrates the trade-off between tigelity, uncertainty parameter
and probability of success. In this figure, onenmnmprove the probability of success
without decreasing the uncertainty parameter andéoreasing the model fidelity (i.e.,
increasing prediction error). These attributessaiid to be antagonistic and are the reason
that the model developer is also a decision maker.

Figures 4.11 and 4.12 display these antagonistidetoffs between the three
attributes except for a small region in both figufghe far right side of both figures)
where the antagonistic traits do not hold true.sTéan occur when model bias and
compensating effects between model parameters ¢heasmilure surface to shift away
from the nominal parameter values, as shown inregg4.5 and 4.6. In this situation,
when the unbounded nested sets are applied tntheasing failure surfaces, only the
extreme values of a set fall within the failurefage, yielding a small probability of
success. However; the successive sets, which ager lthan the previous sets contain
more values that fall within the failure surfacedathus, yield a larger probability of
success. Therefore, with increasing uncertaintythiem input parameters, the model’s
probability of successfully satisficing the fidglitequirement increases.

Given these three figures, it can be seen thaaticarate model in Figure 4.10
displays more favorable trade-offs in that its @iobty of success increases more
quickly than the other two models. Though this rsagm intuitive, it does signify that
the proposed method is effective in helping the ehaveloper identify the model that
best represents the physical experiment, evenerfdte of parametric uncertainty. This

is further illustrated in Figures 4.13, 4.14 anti4.
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Figure 4.13 shows that the probability of succdbsfsatisfying the fidileity
requirements for the accurate model increases rfasthr than the two inexact models
given a constant value of the uncertainty paramétethis figure, the value of the
uncertainty parameter is zero, which means thatnitial set range of parameter values
was used for evaluation.

From Figure 4.14, it can be seen that as the unagrtparameter is allowed to
expand, and the probability of success for all ¢hneodels begins to converge. This
means that the differences in model form are masgnduishable for lower values of
input parameter uncertainty. Once a sufficient ambaf uncertainty is allowed in the
input parameters, the compensations between tlseebiars and parameter uncertainties
allow the two inaccurate models to yield a prokigbibf success similar to that of the
accurate model.

Figure 4.15 compares the fidelity and the uncetyigmarmaeter for a single
probability of success. Here, the decision makerestablish a minimum probability of
success requirement and then evaluate which madtrms best given the increasing
uncertianty in input parameters. The common fadtomll three figures is that the
decision maker must be able to decide uponthineshold valuedo be able to make
informed decisions. The following section explaihe use of an optimization algorithm

to assist in this process.
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CHAPTER FIVE

MODEL EVALUATION USING MULTI-OBJECTIVE OPTIMIZATION

The approach discussed in Chapter 3 and demortkirat€hapter 4 on a case
study application of a steel portal frame for mosellection naturally leads to a multi-
objective optimization problem with three distinabjectives: fidelity, uncertainty in
input parameters and probability of success ofatig the fidelity with a given amount
of uncertainty in the input parameters. As repoeadier, these three objectives tend to
be uncooperative in nature, and thus a single isoluthat optimizes all of these
objectives does not always exist in the soluticacep However, a set of solutions that are
better than all other solutions can be obtained.

Unlike single objective optimization, the purpogeMbich is to search for a single
best design, multi-objective optimization yield&anily of optimum designs, which is to
find multiple Pareto-optimal solutions. When the jemives are conflicting (or
uncooperative), it is not possible to have a singtdution which simultaneously
optimizes all objectives (Deb et al. 2002). Howeeerset of solutions, referred to as
Pareto front that are better than all other soh#ti@an be obtained. These designs

constitute a Pareto optimum set (or Pareto frast)|lustrated in Figure 5.1.
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Figure 5.1: Illustration of a Pareto Front
A general multi-objective optimization problem dagexpressed as:
Minimize:F(d) = [ f,(d).f,(d),...,f (d)]
Subjecttog d ¥ Oi= 1..n (Equation 12)
with f representing each of the single objective funstiomndg representing the
constraint functions. The Pareto front can be vitag a set of designs, which dominate
all other designs (Marler and Arora 2004). The daation relationship is defined as
follows:
e design B is dominated by design A, if A is supeti@B in at least one criteria
(i.e., f(d)A< fi(d)B for at least on®, and
e A is not inferior to B in all other criteria (i.efy(d)A< fi(d)B for all otheri). A

design that is not dominated by any other desigmcisided in the Pareto front
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Thus, the Pareto front supplies a clear, visuatesgntation of the trade-off between
multiple objectives as, among the Pareto fronttsmhg, one cannot gain improvement in
one of the objectives without compromising thieeotobjective(s).

Many multi-objective optimization methods can als® implemented to derive
the Pareto front such as MOEAs, Zitzler and Thge(@998) strength Pareto EA (SPEA),
Knowles and Corne’s (1999) Pareto-archived evotustvategy (PAES), and Rudolph’s
(1997) elitist GA. Over the past decade, a numlb@volutionary algorithms (MOEAS)
have also been suggested to solve such multi-olgeptoblems (Fonseca and Fleming
1993; Hom et al. 1994; Srinivas and Deb 1994). Agthre evolutionary algorithms, the
low computational requirements, its elitist apptoand parameter-less sharing make
Non-dominated Sorting Genetic Algorithm (NSGA-IIwadely-used algorithm (Deb et
al. 2002).

Herein, NSGA-II is employed to solve the proposedlthrobjective model
selection problem introduced in Chapter 4 considgrfirst, probability of success and
fidelity of the prediction obtained with the nomim@arameter values, and then, second,
all three objectives. The two-objective optimizatwill yield a line of optimal solutions
that separates two areas; one area containingofeaslutions and the other containing
infeasible solutions. The three-objective optimmatyields a three-dimensional surface
of solutions which separates two volumes, againfeasible and the second, infeasible.
A population size of 50 is used for each generatamd the converged solution (i.e.,

Pareto front) is acquired after 100 generations.
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Figure 5.2: Evaluation of the accurate model throu multi-objective optimization

considering fidelity (error), uncertainty (a) and probability of success
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Figure 5.3: Evaluation of the inaccurate model thragh multi-objective optimization

considering fidelity (error), uncertainty (o) and probability of success

As shown in Figure 5.2, as the uncertainty paramatgeases in magnitude the
optimal solutions only exist for lower probabilgieof success. Also, more optimal
solutions exist for high levels of error (low fidkg) as well. The surfaces shown in

Figures 5.2 and 5.3 not only represent the optismiitions to the multi-objective
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problem, but they also separate feasible solutilm infeasible solutions. Less optimal,
but feasible, solutions exist above and behindsindaces, while infeasible solutions
would exist below the surfaces. This is due toahtagonistic qualities between the three
objectives.

By comparison of Figures 5.2 and 5.3, one canlssethe Pareto front surface of
the accurate model in Figure 5.2 obtains more moistwith low error (high fidelity) and
high uncertainty. This, in turn, translates to aenmbust model. Also, it can be seen that
the accurate model contains higher probability o€cess solutions. As a DM, the

evaluation of these three attributes yields a aleadlel choice of the accurate model.
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CHAPTER SIX

CONCLUSION

In numerical modeling, uncertainties inherentlysexiue to unknown or partially
known values of input parameters as well as an ifepe understanding or lack of
knowledge of the underlying physics that drive thiedel. These uncertainties often lead
to compensating effects between the input parasi¢bet may give the modeler a false
perception of the accuracy of the model. Compengagffects between input parameters
typically result in the existence of non-uniqueusians. Although we acknowledge that
the existence of a “perfect” model is highly unliket is necessary to implement criteria
that adequately distinguish between the robustoksaultiple model forms with varying
domains of acceptable input parameter which satisfysame fidelity threshold value. At
the same time the criteria cannot be overly corsem leading to unrealistic, over-
designed systems. Therefore, the method presemtddsi manuscript assesses different
model forms based on three criteria: fidelity-tdajarobustness-to-uncertainty, and
probability of successfully satisfying a predefirfetklity threshold requirement.

In this manuscript, a new methodology is proposedgsessing the robustness of
a simulation model to discriminate between multipleodels that yield similar
predictions. Instead of estimating the boundargadfitions which satisfy a given level of
information, the proposed approach implements amdgation algorithm which solves
for the exact boundary of solutions that satisfgiwen level of prediction fidelity, or
otherwise known as the inverse error of the praahst This boundary is referred to as

the model’s failure surface. By accurately definthg failure surface, the modeler can
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then exploit this domain by spatially comparing ttentained parameter values with
increasing sets of the modeler's best estimatioth@freal parameter values. These sets
of parameter values are unbounded, monotonicatlseasing sets of values whose size
are defined by a metric known as the uncertaintampatero.. The increasing magnitude
of a represents increasing the uncertainty in the pat@nvalues. A spatial comparison
refers to comparing the parameter values containethe failure surface to those
contained in the increasing input parameter sets.

The goal of this procedure is to quantify how thedel reacts to uncertainty in
the input parameters, also known as the model'sstoless to uncertainty. Therefore, the
ratio of the number of parameter values from thetisat fall within the failure surface
domain to the total number of parameter valuebé@nset is used as the metric to quantify
this relationship. In this manuscript, this measarknown as the probability of success.
More specifically, it is the probability of the meldto successfully satisfy the fidelity
threshold value associated with a particular failsurface. Thus, this method defines
three metrics that are used by the model develmpdecide upon the most appropriate
model form, the model fidelity, uncertainty paraareand probability of success. To
highlight the conflicting relationships between dbe metrics, a multi-objective
optimization procedure is performed using a non4dated genetic sorting algorithm
known as NSGA-Il. From these results, a modelermake an informed decision as to

which model form best characterizes the realigtienq@menon being simulated.
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