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Abstract

In this thesis, we consider the implications of solving the quantum measurement problem for

the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian

description of semiclassical gravity based on standard quantum mechanics - the Schroedinger-Newton

theory - and two well-established predictions that come out of it, namely, gravitational ’cat states’

and gravitationally-induced wavepacket collapse. Then we review three quantum theories with

’primitive ontologies’ that are well-known known to solve the measurement problem - Schroedinger’s

many worlds theory, the GRW collapse theory with matter density ontology, and Nelson’s stochas-

tic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of

semiclassical gravity and evaluate their implications for gravitational cat states and gravitational

wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger’s

many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes

the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from

Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress

gravitational cat states so as not to be in contradiction with experiment, while allowing for gravita-

tional wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson’s

stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravita-

tional cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are

experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this

implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they

can be experimentally tested against each other in future molecular interferometry experiments that

are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
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Chapter 1

Introduction

The problem of formulating a quantum theory of gravity has been around since the early

1930’s, and in the seventy years since, a complete and consistent theory of quantum gravity still

seems far off [1]. However, there is an intermediate step to quantum gravity that seems to be more

tractable - just as there can be semiclassical theories in electrodynamics [2] which approximate the

fully quantum effects of QED, so there could be semiclassical theories of gravity that approximate

the fully quantum theory of gravity (whatever that theory turns out to be). By semiclassical, we

mean a classical gravitational field coupled to quantized matter. The problem of how to consistently

couple a classical gravitational field to quantized matter was first addressed by M¿ller and Rosenfeld,

who proposed the modified Einstein equation (also called the “M¿ller-Rosenfeld” equation)

Gnm =
8πG

c4
< T̂nm >, (1.1)

where < T̂nm >=< ψ|T̂nm|ψ >. Using standard/textbook quantum mechanics, this turns out to be

the only way to incorporate a quantum description of the right hand side of (1) while keeping the

left hand side a classical field [?]. This theory clearly implies nonlinearities in quantum mechanics

since (1) says that the metric couples to the wavefunction, and vice versa. It is notable also that

(1) is predicted from the semiclassical approximation to the Wheeler-deWitt equation in canonical

quantum gravity [3]. Moreover, the broad research program of “emergent gravity” is based on the

idea that the gravitational field is not quantized and that (1) is a fundamental description of the

coupling between quantized matter and gravity [3].
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The literature contains a number of criticisms of semiclassical gravity [4,6–9], but none

seems decisive [3,5,10,11]. For example, one might argue that measurements with nonquantized

gravitational waves could violate the uncertainty principle for quantized matter [7]; but there are

intrinsic limitations to the measurement of even a classical gravitational field [5, 12]. As another

example, it is possible that the necessary measurement would require an apparatus massive enough to

collapse into a black hole [11]. Experimentally, neutron interferometry [13] and microscopic deflection

experiments [14] show that quantum matter interacts gravitationally as expected, but these results

do not require quantization of the gravitational field itself. More direct experimental tests have been

proposed using superpositions in Bose-Einstein condensates [15], as well as gravitational radiation

from quantum systems [16], but neither is practical yet. On the observational side, the density

perturbations in the CMB spectrum predicted by eternal cosmic inflation (which uses semiclassical

gravity effects) may also soon be tested with the Planck Satellite’s mapping of the CMB power

spectrum [?].

However, these various proposals depend on the general relativistic effects predicted by (1).

Since (1) is very hard to study analytically or numerically, researchers have also looked at its New-

tonian limit, the Schroedinger-Newton (SN) theory, and studied that regime in-depth. As it turns

out, the SN theory makes straightforward predictions, one of which has already been experimentally

tested (the prediction of ’cat states’) [14] and another which may be testable in the next generation

of molecular interferometry experiments (gravitational wavepacket collapse) [17].

Despite all this work, very little has been done on the implications of the interpretation of

quantum mechanics for semiclassical gravity [18,19]. Nevertheless, there are open questions regarding

how (1) solutions to the quantum measurement problem and (2) formulating quantum theory in an

ontological1 way might change the very formulation of a semiclassical gravity theory, as well as the

empirical predictions of semiclassical gravity. These are questions we will explore here. To do this

in the simplest and most straightforward way, we will make use of nonrelativistic, spinless versions

of quantum mechanics.

The paper is outlined as follows. In section 2, we review the SN theory and two of its

well-known predictions - cat states and gravitational wavepacket collapse. Section 3 reviews the

measurement problem in standard quantum mechanics, and how it might be relevant to semiclassi-
1’Ontological’ is a word commonly used in the quantum foundations literature to refer to a theory which posits

elements of physical reality.
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cal gravity. Section 4 motivates the usefulness of quantum theories that have “primitive ontologies”

(a term to be defined later), in formulating semiclassical theories of gravity. Section 5 reviews three

ontological quantum theories that are known to solve the measurement problem - Schroedinger’s

many-worlds interpretation, the Ghirardi-Rimini-Weber collapse theory with matter-density ontol-

ogy, and Nelson’s stochastic mechanics. In section 6 we formulate Newtonian models of semiclassical

gravity based on these three ontological quantum theories and evaluate their implications for the SN

predictions of cat states and gravitational wavepacket collapse. Finally, in section 7, we summarize

our findings and discuss their implications for the idea of semiclassical gravity more generally.
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Chapter 2

Part I

2.1 Schroedinger-Newton Theory

2.1.1 Formalism

To obtain the Schroedinger-Newton description of the semiclassical gravity theory described

by (1), we must take its Newtonian limit [CITE]. Making the approximations gnm = ηnm + hnm,

|Tnm|/T 00 = |Tnm|/ρ << 1, and v << c, (1) reduces to the semiclassical Newton-Poisson equation

∇2V (x, t) = −4πGm|ψ(x, t)|2, (2.1)

with solution V (x, t) = −G
´ m|ψ(x′,t)|2

|x−x′| d3x′, and ψ satisfying the nonlinear integro-differential

Schroedinger equation,

i~∂tψ(x, t) = − ~2

2m
∇2ψ(x, t) +mV (x, t)ψ(x, t). (2.2)

Although the SN equations are nonlinear, |ψ|2 still satisfies the quantum continuity equation

∂|ψ|2

∂t
= −∇ ·

[
− i~
2m

(ψ∗∇ψ − ψ∇ψ∗)
]
, (2.3)

and |ψ|2 is interpreted as a probability density per standard quantum mechanics.

The N-body generalizations (ignoring the interaction potential term for simplicity) are as
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follows:

∇2V (x, t) = −4πG

ˆ
dx′1...dx

′
N |ψ(x′1...x

′
N , t)|2

N∑
i=1

miδ
3(x− x′i), (2.4)

and

i~∂tψ(x1...xN , t) = −
N∑
i=1

~2

2mi
∇2
iψ(x1...xN , t) +

N∑
i=1

miV (xi, t)ψ(x1...xN , t), (2.5)

with solution

V (xi, t) = −G
N∑
j=1

ˆ
mj |ψ(x′1...x

′
N , t)|2

|xi − x′j |
dx′1...dx

′
N . (2.6)

Moreover, |ψ|2 is conserved via

∂|ψ|2

∂t
= −

N∑
k=1

∇k ·
[
− i~
2mk

(ψ∗∇kψ − ψ∇kψ∗)
]
, (2.7)

allowing for the standard quantum mechanical probability interpretation in the N-body case.

The coupled equations defined by (2)-(3) or (5)-(6) are known as the Schroedinger-Newton

(SN) equations. They describe a physical world in which the wavefunction in configuration space

drives the dynamical evolution of a mass-density field (or a set of N mass-density fields in the

N-system case) in 3-space, the evolving mass-density field(s) sources a real classical gravitational

potential in 3-space, and this gravitational potential couples back to the wavefunction, thereby

altering the dynamical evolution of the mass-density field (i.e. the so-called gravitational ‘back-

reaction’).

Let us now consider two well-established predictions of this theory.

2.1.2 Empirical Predictions

2.1.2.1 Cat States

The above formulation of semiclassical gravity has a well-known prediction that makes it

an empirically problematic theory - it admits ‘cat state’ solutions.

Elaborating the example by Ford [?], suppose we have a quantum state ψ = 1√
2

[φ1 + φ2],
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where each state in the superposition corresponds to a macroscopic mass distribution in a distinct

location (e.g. a 1000 kg mass occupying a volume located on the left or right side of a room).

Inserting ψ into (2) gives

∇2V = −4πG
[m

2
|φ1|2 +

m

2
|φ2|2

]
, (2.8)

or the prediction of a semiclassical gravitational field which is an average of the fields due to the

two distributions separately (in this case, the gravitational field is the sum effect of two 500 kg

masses on opposite sides of the room). However, we would expect that an actual measurement

of the gravitational field should correspond to a single 1000 kg mass density source occupying a

single location, but in different locations in different measurement trials. Unfortunately, such a

measurement outcome is not predicted by anything in the SN equations. Moreover, Page and

Geilker’s torson balance pendulum experiment1 has already disconfirmed the gravitational field

predicted by (6) [?, ?]. However, we don’t really need the Page and Geilker experiment to tell us

this; if we trust our perceptual experiences of the physical world, it is obvious that this prediction

can’t be right since we don’t (for example) feel the gravitational pull of a messy smear of suns

occupying every possible 3-space volume.

It should be remarked that incorporating the effects of quantum decoherence does not get rid

of these cat states (for essentially the same reason that decoherence doesn’t solve the measurement

problem); all decoherence can do is ensure that φ1(q)·φ2(q) ≈ 0 (i.e. φ1 and φ2 have disjoint supports

in configuration space) for all q = (x1, ..., xN ) so that there are no interference terms contributing

to the r.h.s. of (6).

Hence, some other modification of the SN equations is needed in order to rid the theory of

cat state solutions and make it empirically adequate.
1Their experiment tested the gravitational response of a torsion balance to the presence of macroscopic masses.

The quantum aspect of the experiment was entirely in the method of choosing the locations of these masses. The
choice was determined by a quantum random number generator so that, depending on the value of some quantum
variable, the masses would be sent either to the left or the right of the balance. Page and Geilker found that the
balance responded only to the presence of a mass and not the expectation value of where the mass would go.
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2.1.2.2 Free Particle Wavepacket

It turns out the nonlinearities in (3) also lead to observable consequences. Consider a free

wavepacket of mass m with initial Gaussian form

ψ(r, 0) =
(α
π

)3/4
e−αr

2/2, (2.9)

with width α−1/2. As first shown by Salzman and Carlip [CITE], the time-evolution of ψ will depend

on two competing effects, the quantum mechanical spreading of the wave function and its Newtonian

’self-gravitation’. The latter arises from because semiclassical gravity treats a wavefunction as a

distributed source. For a very low mass, self-gravitation should be negligible, while for a high

enough mass, the wavefunction should undergo ’gravitational wavepacket collapse.’

We can estimate the critical mass at the boundary between wave packet spreading and

collapse by first noting that the peak probability density for a free particle occurs at

rp(t) ∼ (α)
−1/2

(
1 +

α2~2

m2
t2
)
. (2.10)

This peak probability location accelerates outward at a rate aout = r̈p ∼ ~2/m2r3p, and balances the

inward gravitational acceleration ain ∼ Gm/r2p at t = 0 when

m ∼
(
~2
√
α

G

)1/3

. (2.11)

For an initial width of α = 5 × 1016meters−2 (equivalently, 0.5 microns), the mass (12) is on the

order of 1010amu. Salzman and Carlip were the first to numerically test this prediction and found

that “collapse” occurred at 104amu instead. However, Giulini and Grossardt [CITE] re-did their

numerics and found that the mass scale at which collapse occurred was in fact about 1010amu.

More precisely, they found that for the initial width of 0.5 microns, a Gaussian wavepacket will start

shrinking, reaching a minimum of 0.4 microns in 30,000 seconds, and dispersing again thereafter [?].

This finding has since been confirmed by Van Meter [CITE].

It should be remarked that this gravitational wavepacket collapse effect observed by Salzman

& Carlip and Giulini & Grossardt does not solve the cat states problem - all the wavepacket collapse

effect potentially2 does is ensure that each state in the superposition will localize separate, 500 kg
2We say “potentially” because, as we’ve noted, Giulini and Grossardt observe a rebound effect after the collapsing

wavepacket reaches its minimum width, and it’s not clear that this rebound effect goes away for larger masses
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mass distributions around their respective locations in 3-space.

The special focus on the width of 0.5 microns comes from actual molecular interferometry

experiments in which the wave nature of complex molecules (e.g. carbon fluorofullerene C60F48)

has been demonstrated (see, e.g. [[?, ?, ?]] for an overview). It has also been suggested that the

next generation of molecular interferometry experiments with macromolecule clusters [CITE] may

be able to reach the mass scale of 1010amu, thereby allowing for the possibility of an experimental

test of gravitationally-induced wavepacket collapse.

2.2 The Measurement Problem

Here we briefly review the measurement problem of quantum mechanics and examine how

it’s relevant to the empirical predictions of the SN theory considered in 2.2.1 and 2.2.2. We prefer

the formulation of Maudlin [CITE], who first notes that the following three claims are mutually

inconsistent:

1. The wavefunction of a system is complete, i.e. the wavefunction specifies (directly or indirectly)

all of the physical properties of a system.

2. The wavefunction always evolves in accordance with a linear dynamical equation (the Schroedinger

equation).

3. Measurements of, e.g. the spin of an electron always (or at least usually) have determinate

outcomes [...].

Now, consider a two-valued observable S with eigenvectors ψ1 and ψ2, and let Φ0 denote its wave-

function in the “ready-state” and Φ1 (Φ2) the state of the apparatus if the measurement yields ψ1 or

ψ2. Then the time-evolution of the combined system Û (ψi ⊗ Φ0) = ψi ⊗ Φi holds, where iε {1, 2}.

So for the general superposition state

ψ = c1ψ1 + c2ψ2, (2.12)

the action of Û on it gives

Û (ψ ⊗ Φ0) = c1ψ1 ⊗ Φ1 + c2ψ2Φ2. (2.13)

[Grossardt, personal communication].
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Whereas this is a superposition of different pointer states, individual measurements always result in

either Φ1 or Φ2. Thus, in contrast to our experience, standard quantum mechanics does not explain

how the joint object-apparatus system ends up in a definite state3.

We note that this conclusion is at odds with claims 1 and 2. Thus, assuming claims 1 and

2 contradicts claim 3. Any proposed resolution to this problem has to therefore deny at least one

of the three claims. Denial of claim 1 amounts to assuming the necessity of “hidden-variables”, i.e.

additional physical variables or parameters that would make it possible in principle to predict the

result of a single measurement on a single quantum system. Formulations of quantum mechanics

that deny claim 1 are, unsurprisingly, called “hidden-variable” theories. Denial of claim 2 amounts

to assuming some process during measurement that interrupts the linear time-evolution of quantum

systems, and causes the wavefunction to “collapse” into a definite state. Formulations of quantum

mechanics that deny claim 2 are thusly called “collapse theories”. Finally, denial of claim 3 amounts

to assuming a “many-worlds interpretation” of the wavefunction and its unitary time-evolution.

Interestingly, the SN theory denies claim 2 but still suffers from the measurement problem

- the predicted cat state solutions clearly contradict claim 3, and the gravitational wavepacket

“collapse” effect caused by the nonlinearities of the theory is, as we showed earlier, inadequate to

suppress those cat state solutions. So this tells us that not all methods of denying claims 1 and/or

2 lead to a resolution of the measurement problem. Nevertheless, from these observations, it seems

reasonable to suggest that the cat states problem of the SN theory may be a consequence of the

measurement problem. We would therefore like to know if the three main approaches to solving

the measurement problem - hidden-variable theories, collapse theories, and many-worlds theories -

eliminate the cat state solutions or can reinterpret the cat state solutions in a way that’s consistent

with claim 3. We would also like to know if the different approaches to solving the measurement

problem, when extended to Newtonian descriptions of semiclassical gravity, will make the same

prediction for the evolution of a free particle wavepacket as the SN theory.

3Although this argument used the simplifying assumptions of ideal measurements and pure states for both object
and apparatus, the conclusion remains effectively unchanged in the completely general case of non-ideal measurements,
mixed states, interactions with the environment, etc. [CITE].
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Chapter 3

Part II

3.1 Quantum Theories With Primitive Ontologies

In choosing theories of quantum mechanics based on the three solutions to the measurement

problem, we would like each theory to also have a clear primitive ontology (PO). By PO, we simply

mean “variables describing the distribution of matter in space-time” [CITE]. Note that a quantum

theory in which only the wavefunction is ontological (i.e. an element of physical reality) does not have

a PO, because the wavefunction lives in configuration space rather than space-time. In addition to

having physical clarity regarding what they are fundamentally about, theories with the appropriate

PO’s allow us to derive the familiar macroscopic image of (fermionic) matter distributions in space-

time like tables, chairs, cats, etc. Additionally, quantum theories with PO’s (which we will call

“quantum POT’s”) allow for the derivation of precise empirical predictions.

The SN theory, as it turns out, is a quantum POT. For both the single and many particle

case, the theory fundamentally describes the dynamical evolution of a mass-density in space-time,

m|ψ(x, t)|2, and the classical gravitational potential V (x, t) sourced by this mass-density. Moreover,

the empirical predictions of cat states and gravitational wavepacket collapse were derived directly

from the dynamics of this PO. In a sense, the assumption of a PO is almost required in formulating

a semiclassical theory of gravity; a classical gravitational field is a field in space-time, and by far

the most straightforward possibility for a source for such a field is a mass-density that also lives in

space-time. As we will see, two of the three ontological quantum theories we will consider make use

of the same PO as the SN theory. The one that doesn’t leads to different empirical predictions from
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the former two and the SN theory.

3.2 Three Quantum POTs That Solve the Measurement Prob-

lem

Here we review the theoretical structures of three quantum POTs that solve the measure-

ment problem - (1) Schroedinger’s many-worlds, (2) the Ghirardi-Rimini-Weber collapse theory

with matter-density ontology, and (3) Nelson’s stochastic mechanics - and out of which we will

construct Newtonian models of semiclassical gravity. Each of these theories represents one of the

three main approaches to solving the measurement problem. Additionally, these three theories have

unambiguous PO’s defined in terms of the mass parameter of quantum systems. Consequently, it

is straightforward to show how they can be extended to Newtonian models of semiclassical gravity.

For simplicity, we will restrict ourselves to the nonrelativistic versions of these theories without spin.

3.2.1 Schroedinger’s Many-Worlds Theory

The many-worlds interpretation of nonrelativistic quantum mechanics has several variants

[CITE], but only one so far that employs a primitive ontology. That version, called “Sm” (where

S is for the Schroedinger equation and m is for the mass-density function, to be defined later)

[CITE], assumes a matter-density field m(x, t) in space-time whose dynamical evolution is tied to

the Schroedinger evolution of the wavefunction. In Sm, the wavefunction is taken to be an ontic field,

but it is the ontic mass-density field in space-time which composes physical objects and from which

we derive the familiar macroscopic image of (fermionic) matter distributions like tables, chairs, cats,

etc. (hence why it’s the primitive ontology). The ontic wavefunction is always hidden from direct

observation, living as it does in configuration space instead of space-time.

Formulating this theory more precisely, the matter-density field for a single system is defined

as

m(x, t) = m|ψ(x, t)|2, (3.1)

11



with ψ evolving by the usual linear Schroedinger equation of quantum mechanics,

i~∂tψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x, t)ψ(x, t). (3.2)

In the generalization to an N-body system,

m(x, t) =

N∑
i=1

mi

ˆ
dx1...dxNδ

3(x− xi)|ψ(x1, ..., xN , t)|2, (3.3)

and

i~∂tψ(x1, ..., xN , t) = −
N∑
i=1

~2

2mi
∇2
iψ(x1...xN , t) + V (x1...xN , t)ψ(x1...xN , t). (3.4)

The function (15) is the most natural matter-density field in 3-space that one can define from the

|ψ|2 distribution in configuration space. The formula says that, starting from |ψ|2, one integrates

out the positions of N−1 particles to obtain a density in 3-space. Since the number i of the particle

that was not integrated out is arbitrary, it gets averaged over. The weights mi are just the masses

associated with the variables xi.

This theory is in fact equivalent to Erwin Schroedinger’s first quantum theory, which he soon

after rejected because he thought it was inconsistent with experiment. After all, the spreading of the

continuous mass density arising from the Schroedinger evolution in (16) would appear to contradict

the familiar localized detection events for quantum particles, such as in the two-slit experiment.

Yet, it appears that Schroedinger’s rejection may have been premature - it turns out, as Allori et

al. show [CITE], Sm was the first many-worlds theory.

To see why, consider the Schroedinger-cat wavefunction ψ = 1√
2

[φalive + φdead]. Since

φalive and φdead are macroscopic states with disjoint support, we have malive(x, t) which behaves

like the mass density of a live cat, and mdead(x, t) which behaves like the mass density of a dead

cat. Note also that, since the linearity of the Schroedinger equation means φalive and φdead evolve

independently of each other, the live cat and the dead cat, i.e. malive(x, t) and mdead(x, t), do not

interact with each other. More generally, whenever the configuration space wavefunction consists of

12



disjoint packets φ1, ..., φL,

ψ =

L∑
`=1

φ`, (3.5)

it follows that

m(x) =

L∑
`=1

m`(x), (3.6)

where m`(x) is defined in terms of φ` via (13). Moreover, time-evolution via the Schroedinger

equation preserves the disjoint support of the φ`’s (up to Poincare recurrence times) so that

m(x, t) =

L∑
`=1

m`(x, t). (3.7)

In other words, (21) says that there are L dynamically evolving mass-density fields superimposed on

a single space-time. These mass density fields can be regarded as parallel “worlds” in the sense that

each field gives a macroscopic image of the dynamics of a physical object in space-time, corresponding

to all the possible states in the Hilbert space of ψ. And, as in the Schroedinger cat example, these

parallel worlds don’t interact each other due to the linearity of the Schroedinger evolution.

So the “many-worlds” here are the many contributions m` , and L is the number of the

different worlds. However, we must realize that the concept of a “world” does not enter in the

definition of the theory. The theory is merely defined by the postulate that m(x, t) means the

density of matter together with the laws (17) and (18) for ψ and m. The concept of a “world” is just

a practical matter, useful in comparing the m function provided by the theory to our observations.

We note that, although there is no wavefunction collapse in Sm, this is not in contradiction

with experiments. When the cat wavefunction interacts with the wavefunction of a measurement

apparatus (i.e. a ’pointer’ that points to a live or dead cat), it also interacts with the wavefunction

of the experimenter so that, for an ideal measurement, the wavefunction of the experimenter also

splits into two macroscopically disjoint copies, one of which entangles with the state of the live cat,

the other with the dead cat; So each of the copies of the experimenter will ’see’ either a live cat or

a dead cat. In this way. the measurement problem also gets solved (or ’dissolved’).

Before addressing the question of how Sm ensures that experimenters will see statistics that

match those of standard quantum mechanics, there is the question Sm addresses the “incoherence
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problem” or the problem of how it can make sense to talk of probabilities when all possible outcomes

are realized in different worlds. Allori et al. say they prefer the approach of Everett, who denied that

the incoherence problem is a genuine problem and appealed to the statistical mechanical notion of

typicality to interpret probabilities. To motivate typicality for Sm, they begin by making claim(1):

The relative frequencies for the results of experiments that a typical observer sees agree,

within appropriate limits, with the probabilities specified by the quantum formalism.

By what a “typical observer sees,” e.g. relative frequencies corresponding to some property P, it is

meant that P occurs in “most” worlds. When this is true, it is said that the behavior is typical, or

that P typically holds, or that P is typical. Allori et al.’s definition of “typical” is that each world

m` is assigned a weight

µ` =

ˆ
d3xm`(x, t) = ||ψ`||2

N∑
i=1

mi. (3.8)

They then make claim(2):

A property P holds typically (or, for most worlds) if and only if the sum of the weights

µk, given by (18), of those worlds for which P holds is very near the sum of the weights

of all worlds.

This is shown with a simple example. Consider an observer performing a large number n

of independent Stern–Gerlach experiments for which quantum mechanics predicts “spin up” with

probability p and “spin down” with probability q = 1− p. Let this n-part experiment begin at time

t0 and end at time t; now consider just one world at time t0. Assume that the sequence of outcomes,

e.g. ↑↓↓↑ ... ↓↑↑↑ gets recorded macroscopically and thus in m`(·, t). The one world at time t0 splits

into L ≥ 2n worlds at time t, or

ψ(t) =

L∑
`=1

φ`(t), (3.9)

and

m(x, t) =

L∑
`=1

m`(x, t). (3.10)

Now some of the worlds at time t feature a sequence in which the relative frequencies of the outcomes
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agree, within appropriate limits, with the quantum probabilities p and q. However, this is true only

of some worlds, but not all. It is a property P that a world may have or not have.

So we want to ask if P is typical. Let L(k) be the set of those ` such that the world m`

features a sequence of k spins up and n− k spins down. All together, these worlds have weight

∑
`εL(k)

µ` =

(∑
i

mi

) ∑
`εL(k)

||ψ`||2 =

(∑
i

mi

) n

k

 pkqn−k. (3.11)

Because n is large, the weight is overwhelmingly concentrated on those worlds for which the relative

frequency k/n of “up” is close to p. This follows from the law of large numbers, which ensures

that, if we generated a sequence of n independent random outcomes, each “up” with probability p

or “down” with probability q, then the relative frequency of “up” will be close to p with probability

close to 1. Thus the total weight of the worlds with k/n ≈ p is close to the total weight. Thus,

this example shows how claim(2) yields claim(1), and how Sm is empirically equivalent to standard

quantum mechanics.

Finally, we note that Allori et al. show how Sm has a straightforward formal generalization

to relativistic quantum field theory, thereby making it a viable competitor to both standard quantum

mechanics and (in principle) standard relativistic quantum field theory.

3.2.2 Ghirardi-Rimini-Weber Collapse Theory with Matter-Density On-

tology

The Ghirardi-Rimini-Weber (GRW) collapse theory with matter-density ontology is a dy-

namical collapse theory which keeps the equations of the original GRW theory [CITE] and adds

a primitive ontology that takes the form of a continuous matter-density field m(x, t) in space-time

whose dynamical evolution is tied to the GRW evolution of the wavefunction [CITE]. The most com-

mon acronym for such a theory is GRWm, where “m” stands for “mass”. In GRWm, the wavefunction

is taken to be an ontic field, but it is the ontic matter-density field in space-time from which we

derive the familiar macroscopic image of (fermionic) matter distributions like tables, chairs, cats,

etc. (hence why it’s the primitive ontology). The ontic wavefunction is always hidden from direct

observation, living as it does in configuration space instead of space-time. Let’s formulate this theory

more precisely.
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For a single system, the GRWm mass-density field is defined as

m(x, t) = m|ψ(x, t)|2, (3.12)

with ψ evolving by the usual linear Schroedinger equation of quantum mechanics until it undergoes

discrete, instantaneous, intermittent collapses according to the GRW collapse law. The GRW col-

lapse law says that the wavefunction collapse time T occurs randomly with constant rate per system

of Nλ = λ = 10−16s−1, where the post-collapse wavefunction ψT+ = limt↘Tψt is obtained from the

pre-collapse wavefunction ψT− = limt↗Tψt through multiplication by the Gaussian function

ψT+(x) =
1

C
g(x−X)1/2ψT−(x), (3.13)

where

g(x) =
1

(2πσ2)3/2
e−

x2

2σ2 (3.14)

is the 3-D Gaussian function of width σ = 10−7m, and

C = C(X) =

(ˆ
d3xg(x−X)|ψT−(x)|2

)1/2

(3.15)

is the normalization factor. The collapse center X is chosen randomly with probability density

ρ(x) = C(x)2, and the spacetime locations of the collapses are given by the ordered pair (Xk,Tk) .

In the generalization to an N-body system,

m(x, t) =

N∑
i=1

mi

ˆ
dx′1...dx

′
Nδ

3(x′i −X)|ψ(x′1, ..., x
′
N , t)|2, (3.16)

where the N-body ψ evolves by the N-body linear Schroedinger equation and is subject to the GRW

collapse law

ψT+(x1, ..., xN ) =
1

C
g(xi −X)1/2ψT−(x1, ..., xN ), (3.17)
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where

C = C(X) =

(ˆ
dx′1...dx

′
Ng(x′i −X)|ψT−(x′1, ..., x

′
N )|2

)1/2

, (3.18)

and i is chosen randomly from 1, ..., N.

The equations of GRWm for a single system say the following - a wavefunction in 3-space,

which evolves by the linear Schroedinger equation until it undergoes the random collapse process in

(27), drives the dynamical evolution of a mass-density field in 3-space via (26). When the wavefunc-

tion collapses, it localizes the mass-density field around a randomly chosen point in 3-space, with

width 10−7m, and the probability of the randomly chosen point is largest where the mod-squared

of the uncollapsed wavefunction is largest, as indicated by (29).

For N-systems, the wavefunction lives in configuration space R3N and evolves by the N-body

linear Schroedinger equation until it undergoes the collapse process in (31); this wavefunction drives

the dynamical evolution of N mass density fields in 3-space via (30) so that when the wavefunction

collapses, it randomly localizes the mass density fields around randomly chosen (non-overlapping)

points in 3-space, each of width 10−7m, and with probability density given by the square of (32).

The measurement problem is solved because the GRW law gives a mathematically well-

defined prescription for how and when the Schroedinger evolution is interrupted, and why experi-

ments on single quantum systems always result in the observation of point-like objects1 . Because

of (29) resp. (32) the statistical predictions of GRWm are in agreement with those of standard

nonrelativistic quantum mechanics for all current experiments, though slight deviations due to the

GRW collapse law are predicted and are in principle experimentally testable [CITE]. Recently, the

GRWm theory was extended to the case of relativistic quantum field theory [CITE], thereby making

it a viable competitor to both standard quantum mechanics and standard quantum field theory.

3.2.3 Nelson’s Stochastic Mechanics

In Nelson’s stochastic mechanics [CITE], it is hypothesized that, in the vacuum of free space,

a point particle of mass m and position 3-vector x(t) is constantly undergoing diffusive motion with
1Here I am implicitly talking about experiments in which the system Hamiltonian changes non-adiabatically so as

to not have to address the special case of weak measurements.
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drift, as modeled by the stochastic differential equation of motion,

dx(t) = b(x(t), t)dt+ dW(t). (3.19)

The vector b(x(t), t) is the ’mean forward’ drift velocity of the particle, and W(t) is a Wiener

process modeling the particle’s interaction with a homogeneous and isotropic noise field2 which is

hypothesized to cause the diffusive motion.

The Wiener increment, dW(t), is assumed to be Gaussian with zero mean, independent of

dq(s) for s ≤ t, and with covariance,

Et [dWi(t)dWj(t)] = 2νδijdt, (3.20)

where Et denotes the conditional expectation at time t. It is then assumed that the magnitude of the

diffusion coefficient ν is proportional to the reduced Planck’s constant, and inversely proportional

to the particle mass m so that

ν =
~

2m
. (3.21)

We emphasize that although equations (33)-(35) are formally the same as those used for

the kinematical description of classical Brownian motion in the Einstein-Smoluchowski (E-S) theory,

the physical meaning here is different; the E-S theory uses (33)-(35) to model the Brownian motion

of macroscopic particles in a classical fluid in the large friction limit [CITE], whereas Nelson uses

(33)-(35) to model frictionless stochastic motion for elementary particles hypothesized to interact

with a noise field permeating the vacuum of free space3.

In addition to (33), the particle’s trajectory q(t) also satisfies the time-reversed equation,

dx(t) = b∗(x(t), t) + dW∗(t), (3.22)

where b∗(x(t), t) = −b(x(−t),−t) is the mean backward drift velocity, and dW∗(t) = dW(−t) is

the time-reversed Wiener differential. The dW∗(t) has all the properties of dW(t), except that it
2Nelson has suggested that his hypothesized noise field could have an electromagnetic origin [CITE]. However, in

his original paper, the noise field is taken as a formal assumption of the theory.
3On the other hand, Garbaczewski [CITE] has argued that it is also possible to interpret Nelson’s use of (33) as the

large-friction limit of a dissipative stochastic particle dynamics in phase-space, provided a suitable form of microscopic
energy conservation is incorporated into the formalism.
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is independent of dq(s) for s ≥ t. With these conditions on dW(t) and dW∗(t), (33) and (36)

respectively define forward and backward Markov processes on R3.

Corresponding to (33) and (35) are the forward and backward Fokker-Planck equations,

∂ρ(x, t)

∂t
= −∇ · [b(x, t)ρ(q, t)] +

~
2m
∇2ρ(x, t), (3.23)

∂ρ(x, t)

∂t
= −∇ · [b∗(x, t)ρ(x, t)]− ~

2m
∇2ρ(x, t), (3.24)

where (37) is the time-reversal of (38), and ρ(x, t) is the probability density of x(t) satisfying the

normalization condition, ˆ
ρ0(x)d3x = 1. (3.25)

The average of (37) and (38) results in the continuity equation

∂ρ(x, t)

∂t
= −∇ ·

[
∇S (x, t)

m
ρ(x, t)

]
, (3.26)

under the assumption of an irrotational ’current velocity’ field given by

v(x.t) =
∇S(x, t)

m
=

1

2
[b(x, t) + b∗(x, t)] . (3.27)

Here, S is to be physically interpreted as the velocity potential for a statistical ensemble of

non-interacting identical particles. It is thereby analogous to the S function used in the Hamilton-

Jacobi formulation of Liouville statistical mechanics [CITE]. (In fact, we shall see that the dynamical

evolution of Nelson’s S ends up being governed by the so-called Quantum Hamilton-Jacobi equation.)

By subtracting (37) from (36), we also obtain the ‘osmotic velocity’,

u(x, t) =
~

2m

∇ρ(x, t)

ρ(x, t)
=

1

2
[b(x, t)− b∗(x, t)] , (3.28)

which fixes ρ as the common, ‘equilibrium’ probability density (in analogy with a thermal equilibrium

density) for solutions of (33) and (35), even though it is time-dependent.

In our view, the physical meaning of (42) has been misconstrued by some researchers

[SMOLIN, KYPRIANIDIS, BOHM & HILEY, SPEKKENS], so we wish to emphasize that this

expression for the osmotic velocity also appears in the E-S theory, as Nelson himself points out, and
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it does not mean that ρ must be interpreted as the physical cause of the osmotic velocity of Nelson’s

particle. (Indeed, such an interpretation would be logically and physically inconsistent with the

earlier interpretation of ρ as a probability density.) Rather, in analogy with the E-S theory, Nelson

postulates that an osmotic potential field, R(x, t), imparts to his particle a velocity, ∇R(x(t), t)/m,

which is then counter-balanced by the osmotic pressure, (~/2m)∇ρ(x(t), t)/ρ(x(t), t), due to the

noise field that his particle propagates through. Nelson’s osmotic velocity is then the equilibrium

velocity acquired by his particle when ∇R/m = (~/2m)∇ρ/ρ, where ρ depends on R as ρ = e2R/~.

Hence, the physical cause of u is R, and (10) is just a mathematically equivalent rewriting of this

relation.

So far we have only presented the kinematics of Nelson’s particle. To present the dynamics,

we must first motivate Nelson’s analogues of the Ornstein-Uhlenbeck mean derivatives. The mean

forward and backward derivatives of x(t) are defined as follows:

Dx(t) = lim
∆t→0+

Et
x(t+ ∆t)− x(t)

∆t
, (3.29)

D∗x(t) = lim
∆t→0+

Et
x(t)− x(t−∆t)

∆t
. (3.30)

Because dW(t) and dW∗(t) are Gaussian with zero mean, it follows that Dx(t) = b(x(t), t) and

D∗x(t) = b∗(x(t), t), hence the names ’mean forward’ and ’mean backward’ velocities. To compute

the second mean derivative, Db(x(t), t) (or D∗b(x(t), t)), we must expand b in a Taylor series up

to terms of order two in dx(t):

db(x(t), t) =
∂b(x(t), t)

∂t
dt+ dx(t) · ∇b(x(t), t) +

1

2

∑
i,j

dxi(t)dxj(t)
∂2b(x(t), t)

∂xi∂xj
+ . . . , (3.31)

From (33), we can replace dxi(t) by dWi(t) in the last term, and when taking the average in (41),

we can replace dx(t) · ∇b(x(t), t) by b(x(t), t) · ∇b(x(t), t) since dW(t) is independent of x(t) and

has mean 0. Using (34), we then obtain

Db(x(t), t) =

[
∂

∂t
+ b(x, t) · ∇+

~
2m
∇2

]
b(x(t), t), (3.32)
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and likewise

D∗b∗(x(t), t) =

[
∂

∂t
+ b∗(x, t) · ∇ −

~
2m
∇2

]
b∗(x(t), t). (3.33)

From these properties, and invoking Newton’s 2nd law, we can construct Nelson’s time-symmetric

mean acceleration equation4,

ma(x(t), t) =
m

2
[D∗D +DD∗]x(t) = −∇V (x(t), t). (3.34)

By applying the mean derivatives to x(t), using (41) and (42) to obtain b = v + u and b∗ = v− u,

and removing the dependence of the mean acceleration on the actual particle trajectory x(t) so that

a(x(t), t)→ a(x, t), (48) yields

ma(x, t) = m

[
∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t)− u(x, t) · ∇u(x, t)− ~

2m
∇2u(x, t)

]
= ∇

[
∂S(x, t)

∂t
+

(∇S(x, t))
2

2m
− ~2

2m

∇2
√
ρ(x, t)√
ρ(x, t)

]
= −∇V (x, t),

(3.35)

where a(x, t) is the acceleration field over the statistical ensemble of point masses when the particle

position x(t) is not known. Integrating both sides of (49), we then obtain the Quantum Hamilton-

Jacobi equation,

−∂S(x, t)

∂t
=

(∇S(x, t))
2

2m
+ V (x, t)− ~2

2m

∇2
√
ρ(x, t)√
ρ(x, t)

, (3.36)

which describes the total energy field over the ensemble, and upon evaluation at x = x(t), the total

energy of the actual point mass along its actual trajectory.

Although the last term on the right hand side of (50) is often called the ’quantum potential’,

note that it arises from the terms in (49) involving u. So it is actually a kinetic energy term arising

from the osmotic velocity component of Nelson’s particle. Hence, in equation (50), the quantum

potential should be physically understood as a kinetic energy field arising from the osmotic velocity

field over the ensemble.

The pair of nonlinear equations coupling the evolution of S and ρ, as given by (40) and
4A more general definition of the mean acceleration exists due to Davidson [CITE]. However, Nelson’s original

definition is sufficient for our purposes.
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(50), are generally known as the Hamilton-Jacobi-Madelung (HJM) equations, and can be formally

identified with the imaginary and real parts of the Schroedinger equation under polar decomposition

[CITE]. However, as Takabayasi [CITE] and Wallstrom [CITE] pointed out, (40) and (50) are not

mathematically equivalent to the Schroedinger equation unless one imposes a special condition on

∇S, namely that

˛
L

∇S · dx = nh. (3.37)

As soon as this condition is imposed5, the solution space of (40) and (50) is identical to the solution

space of the Schroedinger equation, and we can combine (40) and (50) into

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) + V (x, t)ψ(x, t), (3.38)

where ψ(x, t) =
√
ρ(x, t)eiS(x,t)/~ is single-valued. Here the wavefunction is to be interpreted as an

epistemic field, or a field encoding information about the possible position and momenta states that

the particle can occupy, because it is defined in terms of ρ and S, both of which are fields defined

over a statistical ensemble of point masses.

Applying Nelson’s dynamics to systems of N-particles and N-particle potentials results in the

N-particle generalizations of the equations of motion. The forward stochastic differential equation

of motion becomes

dxi(t) = bi(x1(t), ...,xN (t), , t)dt+ dWi(t), (3.39)

where bi(x1(t), ...,xN (t), t) = (1/mi)∇iS(x1(t), ...,xN (t), t)+(~/2mi)∇ilnρ(x1(t), ...,xN (t), t), while

the HJM equations become

∂ρ

∂t
= −

N∑
i=1

∇i ·
[(
∇iS

mi

)
ρ

]
, (3.40)

5Wallstrom [CITE] has argued that the fact that one must add this condition ad-hoc means that Nelson’s stochastic
mechanics fails to derive quantum mechanics. However, Schmelzer [CITE] has argued that one can in fact motivate
(26) from imposing boundary conditions on ρ which are natural to the physical assumptions in Nelson’s stochastic
mechanics. Derakhshani [CITE] has also proposed a reformulation of Nelson’s stochastic mechanics which derives this
condition without making logically circular reference to the Schroedinger equation.
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and

−∂tS =

N∑
i=1

(∇iS)
2

2mi
+ V −

N∑
i=1

~2

2mi

∇2
i

√
ρ

√
ρ
, (3.41)

where V = V (x1, ...,xN , t). Similarly, the mean acceleration equation becomes

mai |xi=xi(t)= m

[
∂vi
∂t

+ vi · ∇ivi − ui · ∇ui −
~

2m
∇2ui

]
|xi=xi(t)

= ∇i

[
∂S

∂t
+

N∑
i=1

(∇iS)
2

2m
−

N∑
i=1

~2

2mi

∇2
i

√
ρ

√
ρ

]
|xi=xi(t)= −∇iV |xi=xi(t) .

(3.42)

Upon imposing the N-particle quantization condition

N∑
i=1

˛
L

∇iS · dqi = nh, (3.43)

we can combine (54) and (55) to get the N-particle Schroedinger equation,

i~
∂ψ

∂t
= −

N∑
i=1

~2

2mi
∇2
iψ + V ψ, (3.44)

where ψ(x1, ...,xN , t) =
√
ρ(x1, ...,xN , t)e

iS(x1,...,xN ,t)/~ is single-valued.

Nelson’s stochastic mechanics has generalizations to nonrelativistic spin-1/2 particles [CITE],

relativistic derivations of the Klein-Gordon equation [CITE] and Dirac equation [CITE], and even

relativistic scalar field theory [CITE]. It is an example of a hidden-variables theory6 because the

wavefunction is supplemented by additional physical variables, namely, point masses in 3-space.

The point masses also constitute the PO of the theory since configurations of point masses compose

familiar macroscopic (fermonic) matter distributions like tables, chairs, cats, etc. The measurement

problem is solved (or rather ’dissolved’) in Nelson’s theory because the point masses have definite

positions in 3-space at all times, and experiments always result in apparatus pointers pointing to

the 3-space locations of these point masses.

Nelson’s theory is closely related to the more widely known hidden-variables theory called
6Not only is it a hidden-variables theory, but it is a nonlocal hidden-variables theory because, for non-factorizable

(entangled) probability densities which arise in the multi-particle case, the equations of motion (31) and (34) imply
that the trajectory of one point mass instantaneously depends on the trajectory of the other point masses. This means
Nelson’s stochastic mechanics will violate the Bell inequality in the same way standard quantum mechanics does for
EPRB type experiments, as demonstrated by Petroni [CITE].
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de Broglie-Bohm theory (dBB) [CITE] in that both theories have point particles as their primitive

ontology, and the current velocity in Nelson’s theory is mathematically the same as the ’guiding

equation’ in dBB. And like dBB, the statistical predictions of Nelson’s stochastic mechanics (as

formulated here) reproduce those of standard nonrelativistic quantum mechanics for all times when

the probability density for the particles is equivalent to |ψ|2 - indeed, if ρ0 = |ψ|2, it is easy to see

that this density is locally conserved in time, evolving as it does via the continuity equation (40)

or (54). Another feature in common with dBB is that deviations from the statistical predictions of

standard quantum mechanics are logically possible when ρ0 6= |ψ|2, and it can be shown analytically

as well as numerically that dynamical relaxation to the ’equilibrium’ density |ψ|2 will occur for a

restricted class of well-behaved initial ’nonequilibrium’ densities [CITE]. In other words, standard

quantum mechanics emerges from the ’equilibrium limit’ of Nelson’s stochasic mechanics. Although

the nonequilibrium case allows for a wealth of ’new physics’ to be studied, for this paper, we will

restrict our analyses to the equilibrium case for simplicity.

It might be asked why Nelson’s stochastic mechanics was chosen for this paper over dBB,

given their similarities and that dBB is more widely known and accepted in the physics literature

(not to mention mathematically much simpler to formulate). First, while dBB’s hidden variables

are also point particles, it is not clear that these point particles must be interpreted as actual point

masses - in fact, it is not even clear that mass should be considered a property carried by the particles

as opposed the wavefunction [CITE]. It turns out one can make plausible arguments for both views

(though, in our opinion, the arguments are more persuasive for the view that the wavefunction

carries the mass)7. By contrast, the very formulation of Nelson’s theory makes it unambiguous that

the particles must be point masses - the stochastic differential equations (33)-(34) describe a point

mass undergoing Brownian motion with drift in 3-space.

7In a future paper we intend to discuss these arguments and explore the implications of both views for formulating
Newton-dBB theories of semiclassical gravity.
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Chapter 4

Part III

Here we will formulate the Newtonian theories of semiclassical gravity based on Sm, GRWm,

and Nelson’s stochastic mechanics; in addition, we will derive the empirical predictions of these

theories for cat states and the free particle wavepacket.

4.1 Newtonian Semiclassical Gravity in Schroedinger’s Many-

Worlds

4.1.1 Formalism

For a single system, the “Sm-Newton” (SmN) equations are defined as follows. The Sm

matter-density field

m(x, t) = m|ψ(x, t)|2, (4.1)

acts as a source in the Newton-Poisson equation

∇2V (x, t) = −4πGm(x, t), (4.2)
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where V (x, t) = −G
´ m(x′,t)
|x−x′| d

3x′. This classical gravitational self-potential couples back to the

wavefunction via the nonlinear integro-differential Schroedinger equation,

i~∂tψ(x, t) = − ~2

2m
∇2ψ(x, t) +mV (x, t)ψ(x, t). (4.3)

In the N-body generalization (ignoring the interaction potential term for simplicity), the

matter-density field is

m(x, t) =

N∑
i=1

mi

ˆ
dx1...dxNδ

3(x− xi)|ψ(x1, ..., xN , t)|2, (4.4)

which sources the N-body self-potential via

∇2V (x, t) = −4πG

ˆ
dx′1...dx

′
N |ψ(x′1...x

′
N , t)|2

N∑
i=1

miδ
3(x− x′i), (4.5)

where

V (xi, t) = −G
N∑
j=1

ˆ
mj |ψ(x′1...x

′
N , t)|2

|xi − x′j |
dx′1...dx

′
N . (4.6)

This N-body potential couples to the N-body ψ via

i~∂tψ(x1...xN , t) = −
N∑
i=1

~2

2mi
∇2
iψ(x1...xN , t) +

N∑
i=1

miV (xi, t)ψ(x1...xN , t). (4.7)

Note that SmN is mathematically identical to SN theory, but differs in its probability inter-

pretation - SN theory presumes the usual Born-rule probability interpretation of standard quantum

mechanics whereas SmN uses typicality to argue that “typical” observers will see experimental statis-

tics that match those of standard quantum mechanics. SmN also allows for an interpretation of the

matter-density field associate with each branch of the wavefunction as a “world”, but this is merely

a practical convenience, with no physical distinction from how the matter-density field behaves in

SN theory.
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4.1.2 Empirical Predictions

Being mathematically identical to SN theory, SmN also admits cat state solutions and

thereby makes the same empirically inadequate predictions from such solutions. So SmN is also

inconsistent with the Page and Geilker experiment and with our macroscopic experiences of the

physical world. SmN also predicts the gravitational wavepacket collapse effect observed in SN theory,

and as in the SN theory, this doesn’t help solve the cat states problem - all the effect does is further

localize each SmN “world” around its location in 3-space (in addition to the localization effects that

will arise from quantum decoherence). Thus, the Sm solution to the measurement problem does not

help solve the problems that arise in SN theory.

4.2 Newtonian Semiclassical Gravity in the Ghirardi-Rimini-

Weber Collapse Theory with Matter-Density Ontology

4.2.1 Formalism

For a single system, the “GRWm-Newton” (GRWmN) equations are defined as follows. Start-

ing from the GRWm matter-density field

m(x, t) = m|ψ(x, t)|2, (4.8)

we can use this as a source in the Newton-Poisson equation

∇2V (x, t) = −4πGm(x, t), (4.9)

where V (x, t) = −G
´ m(x′,t)
|x−x′| d

3x′. This gravitational self-potential couples back to the wavefunction

via (3), but now the wavefunction undergoes discrete and instantaneous intermittent collapses ac-

cording to the GRW collapse law. That is, the collapse time T occurs randomly with constant rate

per system of Nλ = λ = 10−16s−1, where the post-collapse wavefunction ψT+ = limt↘Tψt is ob-

tained from the pre-collapse wavefunction ψT− = limt↗Tψt through multiplication by the Gaussian

function

ψT+(x) =
1

C
g(x−X)1/2ψT−(x), (4.10)
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where

g(x) =
1

(2πσ2)3/2
e−

x2

2σ2 (4.11)

is the 3-D Gaussian function of width σ = 10−7m, and

C = C(X) =

(ˆ
d3xg(x−X)|ψT−(x)|2

)1/2

(4.12)

is the normalization factor. The collapse center X is chosen randomly with probability density

ρ(x) = C(x)2, and the spacetime locations of the collapses are given by the ordered pair (Xk,Tk) .

Between collapses, the wavefunction just evolves by the SN equation (61).

The generalization to an N-body system is as follows. The matter-density field becomes

m(x, t) =

N∑
i=1

mi

ˆ
dx′1...dx

′
Nδ

3(x′i −X)|ψ(x′1, ..., x
′
N , t)|2, (4.13)

which sources the N-body self-potential via

∇2V (xi, t) = −4πG

ˆ
dx′1...dx

′
N |ψ(x′1...x

′
N , t)|2

N∑
i=1

miδ
3(x′i −X), (4.14)

where

V (xi, t) = −G
N∑
j=1

ˆ
mj |ψ(x′1...x

′
N , t)|2

|xi − x′j |
dx′1...dx

′
N . (4.15)

This N-body potential couples to the N-body ψ via (65), and the N-body ψ is subject to the GRW

collapse law

ψT+(x1, ..., xN ) =
1

C
g(xi −X)1/2ψT−(x1, ..., xN ), (4.16)

where

C = C(X) =

(ˆ
dx′1...dx

′
Ng(x′i −X)|ψT−(x′1, ..., x

′
N )|2

)1/2

, (4.17)

and i is chosen randomly from 1, ..., N.

The equations of GRWmN for a single system say the following - a wavefunction in 3-space,
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which evolves by (61) and undergoes the random collapse process in (68), drives the dynamical

evolution of a matter-density field in 3-space via (66). When the wavefunction collapses, it localizes

the matter density around a randomly chosen point in 3-space to a width of 10−7m, and with the

probability of the randomly chosen point being largest where the mod-squared of the uncollapsed

wavefunction is largest, as indicated by (70). This evolving mass density field also sources a real

classical gravitational potential in 3-space via (67), which couples back to the wavefunction via (61),

which in turn alters the evolution of the mass density field via (66) again.

For N-body systems, the wavefunction lives in configuration space R3N , evolves by (65),

and undergoes the collapse process in (75); this wavefunction drives the dynamical evolution of N

mass density fields in 3-space via (71) so that when the wavefunction collapses, it randomly localizes

the mass density fields around randomly chosen (non-overlapping) points in 3-space, each of width

10−7m, and with probability density given by (76). As before, each of these mass density fields acts

as a source for a gravitational potential in 3-space that couples back to the N-system wavefunction

via (65), which in turn alters the evolution of the mass density fields via (71) again.

4.2.2 Empirical Predictions

Like the SN equations, the Schroedinger equation for the GRWmN wavefunction also admits

cat states, but because the GRWmN wavefunction undergoes random collapses according to (68) or

(74), which scales with the number of systems, those cat states are not macroscopically observable.

(Also, the gravitational field produced by a cat state for a single elementary particle is presumably far

too weak to be experimentally measured.) For example, for a massive object composed of Avogadro’s

number of systems, the collapse rate is ∼ 107 1
s . So the individual mass fields composing the massive

object will be localized around definite points in space frequently enough to give the appearance of

a macroscopic mass distribution occupying a particular volume of space.

Returning then to the example of a 1000 kg mass in the cat state ψ = 1√
2

[φ1 + φ2], it is

clear that the number of systems needed in practice to compose such a mass distribution would

imply an astronomically faster collapse rate. Moreover, when such collapses take place via (74),

formula’s (71) and (75) say that the result will be the appearance of a single 1000 kg mass localized

on either the left or right side of the room (assuming the collapse center X for each system can take

a binary outcome - either the left or right side of the room) with equal frequency. Correspondingly,

the gravitational field measured with a classical test particle will look like it is due to only one mass
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density source at one location. In this way, the gravitational field predicted by GRWmN is consistent

with that observed in the Page and Geilker experiment, in contrast to SN theory and SmN.

Since the branches of the GRWm wavefunction evolve by the SN equations in between the

GRW collapse events, it is clear that those branches can also undergo the gravitational wavepacket

collapse effect observed in numerical simulations of the SN equations for a free Gaussian wavepacket,

given the same mass and initial width.

One might ask if GRW collapse might also be observable at the mass scale of 1010amu, and

perhaps happen ‘on top of’ the gravitational collapse effect for a Gaussian wavepacket. If we make

the generous assumption that in GRWmN a mass of 1010amu corresponds to 1010 systems of 1 amu,

this gives an approximate collapse rate of 10−6 1
s , or 106s for each collapse. In other words, to have

a chance of observing the GRW collapse effect, we would have to maintain the coherence time of the

wavepacket for at least∼ 33 times longer than the timescale for the wavepacket to reach the minimum

width through gravitational collapse. It remains to be seen whether technological advancements in

molecular interferometry that allow for maintaining coherence times of 30,000 seconds will also allow

for maintaining coherence times of 106s or greater. Even so, we note that if gravitational collapse is

not observed at the mass scale predicted by the dynamics of the SN equations, this will be sufficient

to falsify GRWmN as a semiclassical theory of gravity. And if self-localization is observed, it would

be strong evidence for GRWmN or some dynamical collapse variant of GRWmN.

4.3 Newtonian Semiclassical Gravity in Nelson’s Stochastic

Mechanics

4.3.1 Formalism

In “Newton stochastic mechanics” (NSM) for a single particle, the point mass acts as a

source for a classical gravitational potential via the Newton-Poisson equation

∇2Vg(x, t) = −4πGmδ(x− x(t))δ(t− t′), (4.18)

30



where Vg(x, t) = −G
´ ´ mδ(x−x(t))δ(t−t′)

|x−x(t)| d3x(t)dt′. Here x(t) can either be the stochastic trajectory

x(t) = x(0) +

tˆ

0

b(x(t), t)dt+ W(t)−W(0), (4.19)

satisfying the forward stochastic differential equation

dx(t) = b(x(t), t)dt+ dW(t), (4.20)

or the mean trajectory obtained from solving the mean acceleration equation

a(x(t), t) =
∂v(x(t), t)

∂t
+v(x(t), t) · ∇v(x(t), t) = −∇

m

[
Vext(x(t), t)− ~2

2m

∇2
√
ρ(x(t), t)√
ρ(x(t), t)

]
, (4.21)

where v(x(t).t) = ∇S(x(t), t)/m. In the former case, the gravitational potential would be a stochas-

tic field because it depends on a stochastic position variable. In the latter case, it would be a ’mean

potential’, defined as it would be in terms of the mean trajectory.

If we want to couple the gravitational potential back to the HJM equations (and hence

the Schroedinger equation) for the point mass, it would first have to enter somehow into the mean

acceleration equation (79). In effect, we would be assuming that as the point mass undergoes its

mean acceleration, it feels a mean gravitational ’self-force’ from the mean gravitational potential

it produces1. At first sight, we might think to calculate this self-force by computing the term

−∇ [mVg(x(t), t)]. However, this doesn’t work because the gravitational field obtained from −∇Vg

will blow up at x = x(t)2. To properly do this calculation, we must appeal to the linearized

approximation of classical general relativity 3[CITE]. (The full derivation of the gravitational self-

force expression in the Newtonian limit is carried out in the Appendix.)
1Note that Vg(x, t) blows up at x = x(t). However, as is standardly done in classical electrodynamics for point

charges, we can assume that some renormalization method is possible to remove the infinite gravitational self-energy.
2In fact, the same problem comes up in classical electrodynamics for a point charge - although a point charge

produces a Coulomb potential from the Poisson equation ∇2VC(x, t) = 4πkqδ(x− x(t))δ(t− t′), one cannot compute
the Coulomb self-force from the expression −∇ [qVC(x(t), t)] because the electric field obtained from −∇VC will also
blow up at x = x(t). Instead, what is commonly done to compute the electrostatic self-force [CITE] is to start from
the Lienard-Wiechart Coulomb potential, make the approximation of a slowly moving point charge, and use an energy
conservation argument to deduce the presence of a (time-averaged) electrostatic self-force, i.e. the “radiation reaction
force” of a point charge.

3We could also take the route of assuming a naive gravitational analog of relativistic classical electrodynamics, and
then deriving a radiation reaction force expression for a point mass analogous to the radiation reaction force expression
for a point charge. However, the linearized approximation of classical general relativity gives an importantly different
expression for the radiation reaction force on a point mass, and we would like our treatment to be consistent with
general relativity so as to make a future general relativistic extension of NSM possible.
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In linearized gravity, a slow moving particle of mass m acted upon by an applied force and

radiating gravitational waves will, in a time-averaged sense, experience a radiation reaction force

given by

Fr.r.(t) = −2

5

Gm

c5
d5Ĩij(t)

dt5
x(t), (4.22)

where x(t) is the trajectory of the particle and Ĩij ≡ Iij − 1
3δ
ijIkk is the quadrupole moment tensor.

We can then include this expression in the r.h.s. of the mean acceleration (79):

a(x(t), t) =
∂v(x(t), t)

∂t
+v(x(t), t)·∇v(x(t), t) = −Fr.r.(x(t), t)

m
−∇
m

[
Vext(x(t), t)− ~2

2m

∇2
√
ρ(x(t), t)√
ρ(x(t), t)

]
.

(4.23)

Removing the dependence of the mean acceleration on the actual particle trajectory x(t) so that

a(x(t), t)→ a(x, t), and computing the derivatives on v(x, t), (81) becomes

a(x, t) = ∇

[
∂S(x, t)

∂t
+

(∇S(x, t))
2

2m

]
= −Fr.r.(x, t)

m
− ∇
m

[
Vext(x, t)−

~2

2m

∇2
√
ρ(x, t)√
ρ(x, t)

]
. (4.24)

The r.h.s. says that the radiation reaction force is now a force field over the statistical ensemble of

fictitious point masses. Explicitly,

Fr.r.(x, t) = −2

5

Gm

c5
d5Ĩij(x, t)

dt5
x, (4.25)

where x is the location of a particular point in the ensemble and Ĩik(x, t) is the quadrupole moment

tensor field over the ensemble. Integrating both sides of (82), we obtain the Quantum-Hamilton-

Jacobi equation

−∂S(x, t)

∂t
=

(∇S(x, t))
2

2m
+

ˆ x

0

Fr.r.(x, t) · dx + Vext(x, t)−
~2

2m

∇2
√
ρ(x, t)√
ρ(x, t)

, (4.26)

where we notice that the gravitational radiation reaction force field plays the role of a dissipative
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work field term. Alternatively, we can recognize that

ˆ x

0

Fr.r.(x, t) · dx =

ˆ t

0

Fr.r.(x, t) · v(x, t)dt = −1

5

G

c5

ˆ t

0

...
Ĩ (x, t)ij

...
Ĩ (x, t)ijdt = −

ˆ t

0

LGW (x, t)dt,

(4.27)

and rewrite (84) as

−∂S(x, t)

∂t
=

(∇S(x, t))
2

2m
−
ˆ t

0

LGW (x, t)dt+ Vext(x, t)−
~2

2m

∇2
√
ρ(x, t)√
ρ(x, t)

. (4.28)

Recalling also that the stochastic trajectory (77) has an associated probability density ρ(x, t) satis-

fying the continuity equation

∂ρ(x, t)

∂t
= −∇ ·

[
∇S (x, t)

m
ρ(x, t)

]
, (4.29)

and imposing the quantization condition

˛
L

∇S · dx = nh, (4.30)

we can combine (86) and (87) to obtain the Schroedinger equation

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) + Vext(x, t)ψ(x, t) +−

ˆ t2

t1

LGW (x, t)dtψ(x, t), (4.31)

where ψ(x, t) =
√
ρ(x, t)eiS(x,t)/~ is single-valued.

For the N-particle case, we would have

ai(xi, t) |xi=xi(t)=

[
∂vi
∂t

+ vi · ∇ivi
]
|xi=xi(t)= −

Fr.r.i

mi
|xi=xi(t) −

∇i
mi

[
Vint + Vext −

N∑
i=1

~2

2mi

∇2
i

√
ρ

√
ρ

]
|xi=xi(t),

(4.32)
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giving

−∂S
∂t

=

N∑
i=1

(∇iS)
2

2mi
−

N∑
k=1

ˆ t2

t1

LiGW (xk, t)dt+ Vint + Vext −
N∑
i=1

~2

2mi

∇2
i

√
ρ

√
ρ
, (4.33)

where 1
5
G
c5

...
Ĩ (xk, t)ij

...
Ĩ (xk, t)

ij = LkGW (xk, t). Along with

∂ρ

∂t
= −

N∑
i=1

∇i ·
[(
∇iS

mi

)
ρ

]
, (4.34)

and

N∑
i=1

˛
L

∇iS · dqi = nh, (4.35)

we can combine (91) and (92) to get the N-particle Schroedinger equation,

i~
∂ψ

∂t
= −

N∑
i=1

~2

2mi
∇2
iψ −

N∑
k=1

ˆ t2

t1

LkGW dtψ + Vintψ + Vextψ, (4.36)

where ψ(x1, ...,xN , t) =
√
ρ(x1, ...,xN , t)e

iS(x1,...,xN ,t)/~ is single-valued.

4.3.2 Empirical Predictions

Because NSM has point masses as the PO, it solves the cat state problem rather trivially.

This we can see by considering again the general superposition state

ψ = c1ψ1 + c2ψ2. (4.37)

In terms of this state, we can write the drift for the Nelsonian point mass as

b = v + u =
~
m
=(
∇ψ
ψ

) +
~
m
<(
∇ψ
ψ

). (4.38)

Since |ψ|2 = |c1ψ1|2 + |c1ψ2|2 + 2|c1ψ1||c1ψ2|< {cos (S1 − S2) /~}, this means the dynamics of the

particle will depend on both ψ1 and ψ2 . Recalling now that in a measurement the action of Û on
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(96) gives

Ψ = Û (ψ ⊗ Φ0) = c1ψ1 ⊗ Φ1 + c2ψ2 ⊗ Φ2 = Ψ1 + Ψ2, (4.39)

which are macrosuperpositions, this implies that the Nelsonian point mass (which contains all the

real physical mass in the system) evolving by (78) will depend on either Ψ1 or Ψ2 via either the

drift

b1 = v1 + u1 =
~
m
=(
∇Ψ1

Ψ1
) +

~
m
<(
∇Ψ1

Ψ1
), (4.40)

or

b2 = v2 + u2 =
~
m
=(
∇Ψ2

Ψ2
) +

~
m
<(
∇Ψ2

Ψ2
). (4.41)

So if, for example, the point mass ends up in the branch Ψ1, its dynamics will depend on (98) and the

component Ψ2 will evolve by the Schroedinger equation and have virtually no physical influence on

the motion of the point mass. Thus, macroscopically, the mass will be either here or there, thereby

being consistent with the Page and Geilker experiment and our perceptual experiences.

For the dynamics of a free Gaussian wavepacket associated with a single particle, we must

ask how the radiation reaction work field term −
´ t2
t1
LGW (x, t)dtψ(x, t) changes the dynamics of

the wavepacket. The answer is that it makes no change, because this work field term equals zero for

this case. The reason is that the quadrupole moment tensor field Ĩik(x, t) is equal to zero, since it is

defined in terms of the second mass moment (i.e. moment of inertia) Iij , and this is zero for a single

point mass moving in a straight-line path. Thus, NSM predicts that a free Gaussian wavepacket

for a single point mass should continue to disperse as it does in standard quantum mechanics, and

in contrast to the prediction of the SN theory. On the other hand, for a Gaussian wavepacket in

the N-particle case, the work field term will be non-zero because then Ĩik(x, t) will be non-zero and

time-dependent. Physically speaking, there will be some gravitational potential energy between the

point masses that will slowly be radiated away. However, because the combination of constants

G/c5 ∼ 10−53s3/kg ∗m2, the amount of potential energy radiated will be so small that it will make

virtually no change to the dynamics of the N-particle wavepacket. So even though there will be

some gravitational radiation in the N-particle case, the conclusion remains effectively the same - the
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wavepacket will continue to disperse as it does in standard quantum mechanics.
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Chapter 5

Conclusions and Discussion

To recap, we first outlined the theoretical structure of the SN theory and two of its well-

known predictions, namely, cat states and gravitational wavepacket collapse. We then noted that the

cat states problem seems to be closely related to the measurement problem in quantum mechanics.

We then reviewed the measurement problem and the possible approaches to solutions, and asked

if quantum theories that solve the measurement problem and that have primitive ontologies might

solve the cat states problem and/or make any change to the wavepacket collapse prediction. We

then reviewed the theoretical structures of three such quantum theories - Sm, GRWm, and Nelson’s

stochastic mechanics - and constructed Newtonian models of semiclassical gravity from these theories:

SmN, GRWmN, and NSM. We then explored the implications of these three models for the cat states

problem and gravitational wavepacket collapse. We found that (1) SmN makes no changes to either

and is thus empirically inadequate just like the SN theory; (2) GRWmN solves the cat states problem

for macroscopic superpositions and retains the gravitational wavepacket collapse effect, but allows

for GRW collapse to happen on top of the latter; (3) NSM solves the cat states problem as well,

but in a fundamentally different way from GRWmN. Moreover, NSM doesn’t predict gravitational

wavepacket collapse, in contrast to SN, SmN, and GRWmN.

So we found that the three different approaches to solving the measurement problem in

three quantum POTs does lead to different empirical predictions. Our findings indicate that the

only two empirically viable theories of Newtonian semiclassical gravity that we considered appear

to be GRWmN and NSM, and that these two theories make an (in principle) empirically testable

difference regarding gravitational wavepacket collapse. This leads to the exciting possibility that the
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next generation of molecular interferometry experiments can not only test for possible semiclassical

gravitational effects, but in doing so, also perhaps experimentally decide which approach to solving

the quantum measurement problem is the correct one, and by extension, tell us which is the correct

quantum theory. More precisely, if such interferometry experiments find that there is gravitational

wavepacket collapse (and perhaps also GRW or GRW-like collapse) under the predicted conditions,

this will rule out NSM and strongly support GRWmN (or dynamical collapse theories like it). On the

other hand, if such experiments find no gravitational wavepacket collapse under the predicted con-

ditions, this will rule out GRWmN and all dynamical collapse theories like it, while being consistent

with NSM (or hidden-variable theories like it).

The reason for the weaker conclusion in the latter case is because NSM’s prediction is a

negative one, while for GRWmN the predictions are positive - confirmation of positive predictions

is generally regarded as stronger evidence for a theory than confirmation of negative predictions,

because the latter seems more likely to be consistent with more than one theory. Indeed, while

semiclassical gravity effects are predicted by canonical quantum gravity and emergent gravity - both

of which are based on standard quantum mechanics - not all approaches to quantum gravity based

on standard quantum mechanics predict semiclassical gravity effects. Most notably, string theory

does not [CITE], nor does perturbative quantum gravity [CITE]. Moreover, it is hard to see why a

dynamical collapse or hidden-variables version of such approaches might change that. So, finding

no gravitational wavepacket collapse (or any other kind of collapse) under the predicted conditions

might also indicate that there are just no semiclassical gravitational effects at all. That would be an

interesting finding as well because then, it seems to us, this would indirectly rule out the canonical

approach to quantum gravity as well as emergent gravity theories (at least insofar as such theories

are based on standard quantum mechanics).

It could also be argued that if GRWmN and NSM don’t have consistent extensions to

general relativistic semiclassical gravity, then these are merely toy models and their nonrelativistic

predictions shouldn’t be taken seriously. Thus, an interesting research program would be to try to

extend GRWmN and NSM to the general relativistic regime, and to see if they might make other

experimentally (or observationally) testable differences, such as in the regimes of cosmology and

astrophysics.
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Appendix A Derivation Of Gravitational Radiation Reaction

Force In Linearized Gravity

In linearized gravity, the metric tensor gnm(x, t) = ηnm(x, t) + hnm(x, t), i.e. the flat

Minkowski metric plus a small perturbation. Introducing the “trace-reversed” amplitude h̄nm ≡

hnm − 1
2ηnmh, where h = hγγ , the Einstein field equations with source Tnm become

�h̄nm = −16πG

c4
Tnm, (1)

upon imposing the harmonic gauge

∂h̄nm

∂xm
= 0. (2)

Raising the indicies, (100) is a set of ten wave equations for h̄nm with Tnm as the source, and the

general solution can be written as

h̄nm(x, t) = 4G

ˆ
d3x′

[Tnm(x′, t′)]ret
|x− x′|

, (3)

where [.]ret means evaluation at the retarded time t′ = tret = t− |x− x′|. We can use this solution

to calculate the gravitational waves produced at large distances from a source moving with slow

velocities. First, we assume that r � Rsource and λ � Rsource, where r = |x − x′|, Rsource is

the characteristic size of the source, and λ = 2π/ω is the wavelength associated with the angular

frequency of variation of the source ω. Then we obtain the asymptotic gravitational wave amplitudes

h̄nm(x, t) →
r→∞

4G

r

ˆ
d3x′Tnm(x′, t− r). (4)

Over a limited angle range about any one direction, the gravitational wave produced is approximately

a plane wave at large r. This means that the standard analysis of polarization and energy flux for

plane waves can be applied here. This analysis depends only on the spatial components of the metric

perturbation, h̄ij(x, t). The corresponding sources of these spatial components are

ˆ
d3xT ij (t− r,x) , (5)

40



which can be put into a more useful form by using the flat-space conservation law ∂mT
nm = 0. Let

us consider one component of this, namely,

∂T tt

∂t
+
∂T kt

∂xk
= 0. (6)

If we differentiate this with respect to time, and use the symmetry T tk = T kt along with the

flat-space conservation law again, we obtain the relation

∂2T tt

∂t2
= − ∂

∂t

(
∂T tk

∂xk

)
= − ∂

∂xk

(
∂T tk

∂t

)
=

∂2T k`

∂xk∂x`
. (7)

Multiplying both sides of this equation by xixj and integrating over space, we find that the integral

over the r.h.s. can be carried out by parts; the surface terms vanish because the source is bounded.

The result is the identity

ˆ
d3xT ij(x, t) =

1

2

d2

dt2

ˆ
d3xxixjT tt(x, t). (8)

Since these gravitational waves have longth wavelengths, this implies the source is moving with low

(Newtonian) velocities. Thus, the energy density T tt(x, t) will be dominated by the rest-mass density

T 00 = µ(x, t), and the integral in (107) defines the second mass moment (i.e. moment of inertia),

Iij(t) ≡
ˆ
d3xµ(x, t)xixj . (9)

So the gravitational wave metric perturbation far from a weak, nonrelativistic source in the long-

wavelength approximation becomes

h̄ij(x, t) →
r→∞

2

r
Ïij(t− r), (10)

where the dot means a derivative with respect to time.

We will now use this result to find the quadrupole formula, i.e. the time-averaged radiated

power from a harmonically moving mass-density source emitting gravitational waves. Just as the

expression for the energy flux for a plane wave is (well-known to be) quadratic in the wave amplitude1,

so we should expect the total radiated power in gravitational radiation (LGW ) to be quadratic in Iij

1This expression takes the form f ∝ ω2A2.
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and its time-derivatives. To find the appropriate number of time-derivatives, we can note that the

wave amplitude (90) is proportional to Ïij , and there is an additional factor of ω2 in the expression

for a plane wave, so we should expect an extra time-derivative for each of the two factors of Ïij .

LGW also transforms like a scalar and so must be a quadratic scalar combination of Ïij . The only

two possibilities are
...
I ij

...
I
ij and

( ...
Ikk

)2
, but the correct one is picked out by the fact that there is

no radiation from a spherically symmetric system and, therefore, no energy loss. For a spherically

symmetric system x, y, and z are all equivalent, and Ïij ∝ δij . So the quadrupole moment tensor,

Ĩij ≡ Iij − 1

3
δijIkk , (11)

vanishes for spherical symmetry. LGW will therefore be proportional
...
Ĩ ij

...
Ĩ
ij

. The complete

quadrupole formula turns out to be

< LGW >=<
dE

dt
>T=

1

5

G

c5
<

...
Ĩ ij

...
Ĩ
ij
>T , (12)

where < . > denotes the time-average over a period of motion. This formula is the gravitational

analogue of the formula for the power radiated by an oscillating electric dipole in classical electro-

magnetism. And, just as in classical electrodynamics, one can associate a radiation reaction force

with (111):

1

5

G

c5
<

...
Ĩ ij

...
Ĩ
ij
>T=< Fr.r.(t) · v(t) >T . (13)

Assuming periodic motion and using integration by parts, one then finds

Fr.r.(t) = −2

5

Gm

c5
d5Ĩij(t)

dt5
x(t). (14)

This says that the rate at which a particle of mass m with time-varying Ĩij loses energy in grav-

itational waves is the same, in a time-averaged sense, as if it were acted on by the gravitational

radiation reaction force (113).
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