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Chapter 1 Introduction 

 

1.1 Nanoscale Structures, Devices and Materials 

Over the past 30 years, the die size of Intel transistors has decreased from 3 micrometers (Intel 

8086) down to currently 32 (Sandy Bridge) and 22 nanometers (Ivy Bridge) [1]. This reduction 

in size has allowed the number of transistors to increase from 29,000 in 1978 to over a billion 

currently. This drastic increase in the number of transistors is correlated with a drastic increase in 

computing power. Currently, complimentary metal-on-oxide semiconductor (CMOS) technology 

is preferred due to the low power consumption property in which the CMOS only consumes 

power when the inputs are being switched [2]. In general, a transistor can be thought of as a 

switch. A CMOS can be made from 2 complimentary metal-oxide-semiconductor field effect 

transistors (MOSFETs), as shown in Figure 1-1. For n-MOS transistors, an input signal (“Vin” in 

Figure 1-1) of a “1” (high voltage) indicates the “on” state whereas for the p-MOS, an input 

signal of a “0” (low voltage) indicates the “on” state. When the n-MOS is on, the p-MOS is off, 

limiting the current from Vdd (power supply) to “Vout”. Likewise, when the p-MOS is on, the n-

MOS is off, limiting the current from “Vout” to the ground. As such, very little power is 

consumed since current flow is blocked during the majority of the operation. The only time 

power is consumed is when both n-MOS and p-MOS are on when the input switches from high 

to low or vice versa.  
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Figure 1-1: CMOS made from an n-type and a p-type MOSFET 

 Another class of emerging nanoscale devices is nanoelectromechanical systems (NEMS).  

NEMS are electromechanical systems with submicron critical dimensions. NEMS have the 

potential to offer superior solutions to many areas including communications, information 

technology, medical, mechanical, and aerospace technologies as they can attain fundamental 

frequencies in the microwave range, mechanical quality factors in the tens of thousands, force 

sensitivities at the attonewton level, active masses in the femtogram range, mass sensitivity at the 

level of individual molecules, heat capacities far below a yoctocalorie, etc [3]. Although NEMS 

can be designed using a variety of materials including silicon, silicon carbide, single and 

multiwall carbon nanotubes, and other materials, silicon is one of the most actively investigated 

materials for many nanotechnology applications because of its technological importance. High 

performance NEMS such as nanoswitches [4] and nanoresonators [5] have been fabricated and 

demonstrated recently as shown in Figure 1-2. Such NEM devices provide tremendous 

opportunities and enable potential applications in mass memory storage, high-frequency 

electrical switches, and mass or force sensors. 
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Figure 1-2: Nanoelectromechanical Systems (NEMS). Left: a nanoswitch [4]. Right: an ultra-

high frequency nanoresonator [5]. 

 

 Parallel to the development of nanodevices, in the past decade, synthesis and processing 

techniques have been developed to create nanostructured materials with highly controlled 

material composition, structures and related physical properties [6-8]. Examples of the 

engineered nanostructures include nanotubes, quantum dots, superlattices, thin films and 

nanocomposites. Nanocomposites are composite materials which incorporate nanosized particles 

[9] or contain fibers with at least one dimension in the nano-scale [10]. In general, a 

nanocomposite can be regarded as a solid combining a bulk matrix and nano-scale phases. The 

phases can be nanoparticles, nanowires, nanoplatelets and etc. The addition of nanosized phases 

into the bulk matrix can lead to significantly different material properties compared to their 

macrocomposite counterparts, which include mechanical strength [11,12], toughness, optical 

properties, electrical conductivity and thermal conductivity [13]. Because of these extraordinary 

properties, nanocomposites promise new applications in many fields such as ultra-high strength 

and ultra-light automotive parts [14], nonlinear optics, biomedical applications [15,16], sensors 
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and actuators [17,18], and thermoelectric devices [19,20]. Figure 1-3 shows two examples of 

nanostructured materials in sensing and thermoelectric energy conversion applications. 

     

Figure 1-3: Nanostructured materials. Left: nanostructured microsensor [18]. Nanocomposite 

thermoelectric material [20]. 

 

 Many of the applications of nanodevices and nanostructured materials described above 

are enabled, controlled or facilitated by electrical signals. Design and characterization of such 

devices and materials can be accelerated by using efficient computational tools that incorporate 

accurate physical models. Modeling and simulation is essential to experimenting with new state-

of-the-art devices to determine feasibility for production. In essence, new techniques in modeling 

and simulation are required to pace with the development of the advent of new technologies. 

While various design and simulation tools are available for larger electronic devices and 

materials (critical dimension > 100 nm), they cannot be used for devices with nanoscale features. 

This is due to the “nano effects” such as defect, surface and quantum effects in nanostructures 

and nanomaterials. Among these “nano effects”, quantum effects are especially important for the 

development of nanoelectronic devices and materials. The quantum effects arise from the need to 

treat carriers as waves whereas the classical Boltzmann transport equations (BTE) treated 

carriers as particles: tunneling, interference and a varying electric field become important issues 
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to consider when modeling such small devices [21]. Quantum effects become significant or even 

dominant when the critical size of the device is less than 20 nm, leading to a very different 

behavior of electrons in these devices. For example, the electron charge distribution is 

significantly altered in NEMS switches when the thickness of the NEM switch is comparable to 

the quantum depletion length [3]. In nanocomposite thermoelectric materials, quantum 

confinement of the electrons in nanoparticles has a significant influence on the electrical 

conductivity, and consequently the energy conversion efficiency, of the materials [22].  

Therefore, quantum effects must be taken into account in the electronic modeling of nanoscale 

structures, materials and devices.   

1.2 Quantum Mechanical Electrostatic and Transport Models  

Various computational models and approaches have been developed to include the quantum 

effects in the analysis of nanostructures. Early models include the charge control and Gummel-

Poon models for bipolar junction transistors (BJTs) [23]. These models serve to predict circuit 

equivalent models of the transistors. In effect, these models approximate the current at the 

collector, base and emitter based on a common gain. The equations of the currents were obtained 

from the transport model for BJTs. The advantage of these models is that they are easy to 

implement and quick calculations can be done to evaluate certain voltage and current parameters. 

However, these models work well when the transistor size is relatively large. The models fail to 

incorporate quantum effects that result from the size reduction mentioned above. In addition, 

these models only focus on currents and voltage ratios at known junctions. 

 



6 
 

1.2.1 Schrödinger-Poisson Model for Electrostatic Analysis 

The use of the Schrödinger-Poisson iteration method has been demonstrated to model the 

quantum mechanical electrostatic behavior of semiconductor devices such as nanoscale 

MOSFET [24,25], quantum dots [26] and NEMS [3]. The Schrödinger equation, an eigenvalue 

problem, is solved to obtain the eigenenergies and wave functions of the system. For most 

applications, the lowest eigenenergies and corresponding wave functions are kept for the 

subsequent charge density calculations since they have the greatest impact on the charge 

distribution. The eigenenergies and wave functions obtained from the Schrödinger equation are 

used in the Fermi-Dirac calculation to find charge densities. The charge densities are then used in 

the Poisson equation to compute the electrical potential in the computational domain. The 

potential is then used in the Schrödinger equation to get an updated set of eigenenergies and 

wave functions. This process continues until a converged self-consistent solution is found for the 

potential or charge density.  The effective mass Schrödinger equation is in the form of: 

     
  

   
 

    

   
 

  

   
 

    

   
 

  

   
 

    

   
  (     )        (1-1) 

where H is the Hamiltonian operator,     is the wave function, En is the eigenenergy,   is the 

reduced Planck constant,   
 ,   

  and   
  are the effective masses in x-, y- and z-directions, 

respectively, U is the potential energy, Vh is the step potential energy at material hetero-

junctions, e is the electron charge, and   is the potential in the domain obtained from the Poisson 

equation, which is given by 

  (   )        ( )   ( )     
    

   (1-2) 
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where    is the dielectric permittivity, q is the magnitude of the electron charge, n and p are the 

electron and hole density, respectively, and   
  and   

  are the ionized donor and acceptor 

concentration, respectively. As both the Schrödinger and Poisson equations are second order 

partial differential equations (PDEs), standard numerical methods such as the finite difference 

method (FDM) and finite element method (FEM) can be employed straightforwardly to obtain 

the eigenenergies, wave functions, charge densities and potential. In both FDM and FEM, the 

computational domain is first discretized into a set of grid points or elements. The governing 

equations are then discretized over the grid points and elements. One clear advantage to the FDM 

or FEM is the use of a common discretization for both Schrödinger and Poisson equations, 

resulting in an efficient computation process. Numerical results obtained can be used to evaluate 

the complete charge density and potential profile of the device, which is another advantage over 

the Gummel-Poon and charge control models which only find voltages at certain specified 

locations. 

1.3.2 Schrödinger Poisson Model for Electron Transport Analysis 

The electrostatic Schrödinger-Poisson iteration method assumes the electrostatic equilibrium in 

the device and ignores the contributions from the current carrying leads of the structure. In other 

words, the aforementioned method is a closed boundary method computing the standing waves 

in the device, ignoring the solutions that extend to the input and output current carrying leads. To 

model both the current carrying states that are comprised of solutions in a device region and the 

current carrying lead region, a quantum transmitting boundary formulation was proposed 

[27,28]. In essence the quantum transmitting boundary method (QTBM) can be thought of as an 

extension of the Schrödinger-Poisson method with traveling plane wave open boundary 



8 
 

conditions applied at the leads. In the QTBM, the standing wave solution is decomposed into 

“sine” and “cosine” modes. The Schrödinger equation must be solved twice, once for the 

standing waves and once for the traveling waves. The charge density is calculated by using the 

traveling wave functions and the standing wave eigenenergies. The Poisson equation remains the 

same, with slight modifications when charge neutrality conditions are considered. 

1.3.3 Nonequilibrium Green’s Function Method for Electron Transport Analysis  

Another popular formulation for numerical electron transport analysis is the nonequilibrium 

Green’s function approach (NEGF) [29,30]. Like QTBM, NEGF approach is capable of 

modeling ballistic transport of electrons in nanostructures. In NEGF, as opposed to the 

Schrödinger-Poisson approach, Green’s function, which is a response of the system to a given 

perturbation, must be calculated. In addition, instead of coping with the open boundary 

conditions, a self-energy matrix is introduced in the NEGF. By composing the Hamiltonian for 

the entire system, the electron density and current density can be obtained. The expression of the 

nonequilibrium Green’s function is given by [30]: 

 ( )        ̃(   )           (1-3) 

where G is the Green’s function matrix,  ̃ is the reduced Hamiltonian, E is the energy, I is the 

identity matrix,           are the source and drain contact self-energy matrix, respectively. 

Once the Green’s function is computed for the device, the potential and charge distribution can 

be calculated from the Green’s function. More details of the method can be found in Ref. [29, 

30]. Advantages of NEGF include the ability to model open boundary conditions and eliminating 

the need of solving an eigensystem. The NEGF method has been demonstrated to accurately 
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simulate the behavior of double-gate MOSFETs [29]. However a major disadvantage to NEGF is 

the fact that it is computationally intensive, even though it does not solve an eigenvalue problem. 

In the NEGF method, many intermediate parameters have to be calculated and many linear 

systems have to be solved before the charge density and potential in the device can be obtained. 

For devices with large degrees of freedom (DOFs), solving for Green's function can be a tedious 

and computationally intensive process. 

1.3.4 Atomistic Models 

When the size of nanodevices reduces further, effective mass approximation of the Hamiltonian 

may not be valid anymore. Atomistic models are necessary in this case for accurate description 

of the electron behavior. A popular atomistic model that incorporates the electronic structure of 

atoms is called the tight binding model [31,32]. The Hamiltonian governing the atomic motions 

for    atoms can be written as [31]: 

  ∑
  

 

  
 

 ∑⟨  |   |  ⟩

 

           (1-4) 

where the first term is the kinetic energy of the ions, the second term is the electronic potential 

energy by summing the eigenvalues of n eigenstates from Hamiltonian    ,      is the repulsive 

potential between ions and    is an energy shift per atom. The tight binding matrix elements are 

typically constructed from a linear combination of the overlapping atomic orbitals on 

neighboring atoms [32]. The disadvantage of the tight binding model lies that the model 

parameters need to be fitted empirically to experimental results. Therefore, the reliability of the 

model is limited to physical situations which are similar to the experimental conditions under 

which the parameters were fitted. In addition, the model is typically constructed for interactions 
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between nearest neighbors only. Care must be taken when the range of interaction between the 

atoms becomes large. 

 A type of lower level atomistic modeling methods is the so-called Ab initio methods, 

typically based on Kohn-Sham density functional theory [33]. Starting with the Schrödinger 

equation for N non-interacting particles with an effective potential     ( ): 

(
  

  
       ( ))  ( )      ( ) (1-5) 

where    is the energy eigenvalue associated with eigenfunction    ( ). The density can be 

found as: 

 ( )  ∑|  ( )|
 

 

   

 (1-6) 

Since the effective potential is not known in most cases, for a given external potential  ( ), the 

following equation can be used to solve for effective potential: 

    ( )   ( )    ( )     ( ) (1-7) 

where  ( ) is the electrostatic potential and    ( ) is the exchange-correlation potential given 

by, respectively,  

 ( )    ∫   
 (  )

|    |
 (1-8) 

and  
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   ( )  
    

  ( )
 (1-9) 

In general,     is obtained through a local density approximation and thus     ( )  can be 

obtained from a given external potential  ( ). Ab initio models are generally considered as the 

most accurate approaches that are available for device simulations. However, a major 

disadvantage for this method is the computational cost for a large number of atoms. As such, the 

method is limited to small systems of several hundred atoms. Recently, however, new methods 

have been proposed to handle large systems, with the number of operations that scale linear with 

the size of the system [34]. 

1.4 Motivation of CMS based Approaches 

The goal of this research is to develop numerical methods that can accurately and efficiently 

model the electronic behavior of nanoscale semiconductor devices such as quantum wells and 

MOSFETs. Among the quantum mechanical models briefly described above, the Schrödinger-

Poisson model has its unique advantages. As a continuum model, it can describe the quantum 

mechanical behavior of electrons in nanostructures with dimensions ranging from several 

nanometers to several hundred nanometers. Standard numerical methods such as the finite 

element method can be used to implement the model straightforwardly, enabling the simulation 

of multi-dimensional devices with complex geometric features. These characteristics make the 

Schrödinger-Poisson model suitable for the computational analysis of quantum wells and 

MOSFETs. However, numerical solution of the Schrödinger-Poisson model can be expensive 

when the degrees of freedom (DOF) of the system are large. The main computational cost occurs 

in solving the discretized Schrödinger equation which is an eigenvalue problem with its 
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dimension equal to the DOF of the system. Depending on the numerical method employed, the 

computation cost of solving the eigenvalue problem is in the order of n
2
logn ~ n

3
, where n is the 

DOF of the system. Therefore, reducing the computational cost of solving the Schrödinger 

equation can largely accelerate the simulation process of nanodevices. 

 In this research, we propose a component mode synthesis (CMS) approach to reduce the 

computational cost of the numerical solution of the Schrödinger equation. CMS was originally 

developed as a modal order reduction method in solving large mechanical systems [35-37]. In 

the mechanical analysis using CMS, the large mechanical system is discretized into components 

and the component modes are calculated individually. A small set of component modes were 

retrained to construct a set of Ritz basis vectors. In this work, the CMS approach is extended in 

the Schrödinger-Poisson quantum mechanical electrostatic and transport analysis where a set of 

basis vectors are constructed to approximate the wave functions in each component. The global 

energy levels and wave functions are then recovered by the synthesis of these component wave 

functions. Different from mechanical analysis where only a few vibrational modes are sufficient 

to model the dynamic response, in some cases, it is necessary to calculate many energy levels 

and wave functions in order to compute the charge concentrations accurately. In addition to 

reducing the dimensions of the system, the procedure is fairly simple to implement. In addition, 

the accuracy can be tuned by adjusting the number of modes retained. If all modes are kept, the 

CMS solution is exactly the same as the solution obtained by solving the full eigensystem. This 

characteristic can be used to verify the correctness of the CMS implementation. The reduction of 

computational cost is crucial as the solution of the Schrödinger equation is present in both the 

electrostatic and electron transport analyses. In this thesis, the CMS approach is applied to 
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compute the electrostatic and transport properties of a set of semiconductor devices including a 

quantum wire and several multiple-gate MOSFETs.  

 The rest of the thesis is organized as follows. Chapter 2 describes the CMS approach for 

solving the Schrödinger equation; the self-consistent numerical solution of Schrödinger-Poisson 

equations for electrostatic analysis is presented in Chapter. 3; the CMS based Quantum 

Transmitting Boundary Method (QTBM) for electron transport analysis is presented in Chapter 

4; and Chapter 5 presents the conclusions. 
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Chapter 2 Component Mode Synthesis (CMS) Approach for Solving 

the Schrödinger Equation 

 

2.1 Effective Mass Schrödinger Equation and Its Finite Element Formulation 

As discussed in Chapter 1, the 3-D Schrödinger equation is given by 

     
  

   
 

    

   
 

  

   
 

    

   
 

  

   
 

    

   
  (     )        (2-1) 

where H is the Hamiltonian, U is the potential energy,   
        

  are the effective electron or 

hole mass in the x- and y-direction, respectively,    and    are the eigenpairs to be solved 

where n denotes the n-th of eigenstates.    is the energy difference at the heterojunction due to 

the band offset caused by two different materials. For many practical devices, the Schrödinger 

equation can be simplified to its 2-D version, i.e., the solution of the Schrödinger equation does 

not vary in the z-direction. This approximation can be justified due to the geometry of a quantum 

well, a 2-D device. For the MOSFET, this approximation is also valid since the cross-section of 

the MOSFET does not change in the z-direction. The 2-D Schrödinger equation can be written as 

     
  

   
 

    

   
 

  

   
 

    

   
  (     )        (2-2) 

 We employ the finite element method (FEM) to solve the 2-D Schrödinger equation. The 

process of FEA involves the transformation of the governing equation into an integral (weak) 

form. The domain is subsequently discretized into elements. On each element, the weak form 

equation is approximated by using the finite element shape functions to form local matrices and 
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vectors. The integrals in the integral equation are then evaluated through Gaussian quadrature 

[38]. Afterwards, the local matrices and vectors are then assembled into a global system of 

equations to be solved using a linear solver. The weak form of the Schrödinger equation, derived 

by Galerkin’s method of weighted residuals, is given as:  

 ∫     
  

 
 (      )   ̂

 

 

 ∫
  

 
 (    )     (   )   

 

∫  (   )(    )(  )    
 

 

(2-3) 

where  ̂ is the unit normal vector to the surface (or domain boundary)  . In electrostatic analysis, 

the wave functions are zero on the boundary of the device.  Therefore, the first boundary term 

∫    
 

 equals to zero since       on the closed boundary. The diagonal inverse effective 

mass matrix     is defined for each element as 

    [
    

  
     

 ] (2-4) 

In our implementation, 4-node linear quadrilateral elements are used to discretize the device 

domain. Within each element, the unknown wave function and its variation are approximated as  

             [

   

   

   

   

]                               [

    

    

    

    

] (2-5) 

Their derivatives are then given by 
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  ]
 
 
 

[

   

   

   

   

]            

[
 
 
 
   

  

   

  

   

  

   

  
   

  

   

  

   

  

   

  ]
 
 
 

[

    

    

    

    

] (2-6) 

where                 are the shape functions.  An arbitrary quadrilateral element is mapped 

onto a square master element as shown in Figure 2-1. The shape functions are defined on the 

master element as: 

   
 

 
(   )(   )                     

 

 
(   )(   ) (2-7) 

   
 

 
(   )(   )                     

 

 
(   )(   ) (2-8) 

 

Figure 2-1: An example of isoparametric mapping of 4-node linear quadrilateral elements. 

The derivatives of the shape functions defined on the master element are mapped to arbitrary 

quadrilateral element as 

[
   

  
  
   

  
 ]  [

   

  
  
   

  
 ]                           (2-9) 
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where J is the Jacobian matrix given by  

  

[
 
 
 
 
  

  

  

  
  

  

  

  ]
 
 
 
 

 (2-10) 

Substituting the approximations given in Eqs. (2-5, 2-6) into the weak form, Eq. (2-3), it can be 

shown that the weak form can be written as the following matrix form for each element: 

  [

   

   

   

   

]    [

   

   

   

   

]      
 [

   

   

   

   

] (2-11) 

where matrix    represents the second term in Eq. (2-3),    and    make up the third term in 

Eq. (2-3). The expressions of the element matrices       and    are 

    
  

 
∫ ∫
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   ( )      (2-12) 

    ∫ ∫ [

  

  

  

  

]

 

  

          

 

  

   ( )      (2-13) 

   ∫ ∫[

  

  

  

  

]

 

  

          

 

  

   ( )      (2-14) 
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where the term det( ), which can be thought of as an area scaling factor between an element and 

the master element, is the determinant of the Jacobian matrix given in Eq. (2-10). After all the 

element matrices are obtained, the global matrices are then constructed through the standard 

finite element assembly process. The global system is then obtained as  

(   )         (2-15) 

Eq. (2-15) is a generalized eigenvalue problem which can be solved by using standard solvers. 

2.2 CMS Method 

The general CMS process is composed of four basic steps: discretization of the domain into a 

discrete number of components, the composition of component basis vectors, the coupling of the 

components to form a DOF-reduced global system, the solution of the reduced global system 

assembled to produce the global wave functions. Figure 2-2 shows an example to illustrate the 

procedure. The meshed device domain is first decomposed into a set of components. Each 

component contains a number of elements. The portions of the component boundary are 

categorized into domain boundary or component interface. The eigenvalue problem obtained 

from the Schrödinger equation is solved in each component. As component DOF is typically 

much less than the global DOF, the computational cost is small to solve the component 

eigenvalue problems. Once the component wave functions (or component modes) are calculated, 

the wave functions in the components are then “synthesized” to produce the global wave 

functions. The obtained global wave functions and energy levels are used in the calculation of 

charge density in electrostatic or electron transport analysis, as shown in Figure 2-2. 
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Figure 2-2: Schematic of the component mode synthesis approach for solving the Schrödinger 

equation. 

 

For each component obtained from the domain decomposition as shown in Figure 2-2, the 

eigenvalue problem can be denoted as [39] 

(       )                                   (2-16) 
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where superscript j denotes the component number and m is the total number of components.    

can be assembled from    and    as described in Section 2.1 while    can be assembled from 

   given in Eq. (2-14). In an electrostatic analysis, the wave function ψ is zero on the domain 

boundary. As such, the degrees of freedom (DOF) associated with the wave functions on the 

global boundary can be neglected and discarded. These wave function DOFs are deleted in the 

implementation. The wave function DOFs in each component, excluding the deleted global 

boundary DOFs, are separated into attachment and interior parts. By definition, the attachment 

part contains the wave function DOFs on interface edges which are shared by different 

components. The interior part contains the wave function DOFs associated with the interior 

nodes of the component. Note that, in the implementation of this categorization of the DOFs, the 

global boundary type takes precedence over the attachment type. For example, if a node is both 

on the global boundary and an interface edge, it is treated as a global boundary node. The 

attachment and interior DOFs are denoted by subscripts “a” and “i”, respectively. With respect to 

the attachment and interior DOFs, Eq. (2-16) can be partitioned as 

([
   

 
   

 

   
 

   
 

]    [
   

 
   

 

   
 

   
 

]) [
  

 

  
 
]  [

 
 
] (2-17) 

The attachment DOFs are then fixed such that   
    and thus the following equation is 

obtained from Eq. (2-17): 

(   
       

 
)  

 
   (2-18) 

From Eq. (2-18), the eigenpairs (     
 
) can be computed for a component j. In CMS, a small set 

of eigenpairs are retained corresponding to the lowest energies from Eq. (2-18) and assembled 
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into a component modal matrix  ̂ 
 
. Our implementation uses both the maximum number of 

eigenpairs possible and the option of a set value. The option of having the maximum number of 

retained eigenpairs is included for implementation verification. In device simulations, however, 

it is not necessary to include all eigenpairs but rather a small set with respect to the total number 

of interior DOFs to achieve sufficient accuracy. The component modal matrix is given by 

 ̂ 
 
  [   

 
   

 
    

 ] (2-19) 

where k is the number of retained eigenvectors/wave functions. Note that the number k is much 

less than the number of total interior nodes present in a given component. Subsequently, a 

constraint modal matrix is obtained by applying      in the component and enforcing a unit 

wave function along the attachment DOFs in Eq. (2-17), i.e. 

[
   

 
   

 

   
 

   
 

] [
  

 

  
]  [

 

  
 ] (2-20) 

where each column of the identity matrix    is used to enforce wave function with unit 

magnitude at the corresponding attachment DOF while the wave functions of  the other 

attachment node DOF is fixed to zero.   
 
 is the resulting boundary reaction at the attachment 

DOFs. As such, the expression for the constraint modal matrix   
 
 associated with the interior 

DOFs can be obtained by 

  
 
  (   

 
)     

 
 (2-21) 

Once the matrices  ̂ 
 
   

 
 are obtained, the component wave functions can then be calculated by  



22 
 

    [
  

 

  
 
]
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 ̂ 

 
  

 

    
]
   

[
  

 

  
 
]

   

 
(2-22) 

where n is the total component DOFs, and r is the sum of the retained components and 

attachments DOFs.           are the identity and zero matrices associated with the 

corresponding attachment node, respectively. The vector [
  

 

  
 
]  is the generalized coordinate 

vector. Eq. (2-22) can be written in short form as 

         (2-23) 

 where    is referred to as the transformation matrix of component j. Eq. (2-23) shows that the 

wave functions of component j can be approximated as a linear combination of the column 

vectors of    with the elements of vector    as the coefficients. In other words, the column 

vectors of    serve as the basis vectors of component j. Furthermore, since k<< interior DOFs, 

r<<n. This reduction of modes enables CMS to greatly reduce the computational cost of 

calculating both component and global wave functions. On the other hand, this reduction of 

modes introduces an approximation error as well. The solution is only an approximation since 

only k eigenpairs are retained. The solution is exact only when the number of retained eigenpairs 

is equal to the total number of interior DOFs. Substituting Eq. (2-23) into Eq. (2-18), we obtain 

(       )       (2-24) 

Multiplying by the transpose of    to both side of Eq. (2-24) gives 

(  )
 
(       )       (2-25) 



23 
 

Eq. (2-25) can be written in short form as  

( ̅     ̅ )     (2-26) 

where 

 ̅  (  )
 
                              ̅  (  )

 
      (2-27) 

are the reduced matrices for component j. Subsequently, the matrices are assembled into a global 

modal system via the standard finite element assembly process to find the solution of  ̂: 

( ̂    ̂) ̂    (2-28) 

where  ̂ and  ̂ represent the global matrices assembled from of  ̅  and  ̅ , respectively. The 

global wave functions can be recovered by 

   ̂ ̂ (2-29) 

where  ̂ represents the global assembled transformation matrix of the assembled T
j
 matrices. 

 The fixed-interface CMS approach has several advantages. First of all, the approach has a 

relatively simple procedure for computing the basis vectors used in the transformation matrix. 

Additionally, the approach has a straightforward implementation of coupling of components to 

form the global modal system. Finally, the approach produces high accuracy in the computation 

of the low eigenvalues and the corresponding eigenvectors. 
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Table 2-1: Comparison of eigenenergies obtained from the CMS and direct approaches 

Direct Esin (eV) CMS Esin (eV) Direct Ecos (eV) CMS Ecos (eV) 

0.157682733371887 0.157927834442041 0.157330723099336 0.157544761897325 

0.160599364355327 0.161060945206333 0.159276642767386 0.159597734177530 

0.165480343803728 0.166291738177092 0.162751702463985 0.163244187447445 

0.172355688262674 0.173481584085488 0.167949927883989 0.168706046009338 

0.181267665576055 0.183140937278616 0.175013186427522 0.176407598345969 

 

 

      

(a)                                                                        (b) 
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(a)                                                                         (b) 

Figure 3-6: Density solutions for the Neumann boundary case: (a) direct approach and (b) CMS 

approach. 60 by 60 mesh domain. 

 

 

     

(a)                                                                        (b) 

Figure 3-7: Potential energy solutions for the Neumann boundary case (a) direct approach (b) 

CMS approach. 60 by 60 mesh domain. 
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Figure 3-8: Relative error of the eigenvalues obtained from the CMS approach compared with the 

results obtained from the direct method on a 80 by 80 mesh with Neumann boundary conditions. 

  

 The second device simulated in this section is an all-around MOSFET as shown in Figure 

3-9. The core of the MOSFET is n-type doped Si with a doping density of 10
18

 cm
-3. 

 The 

dielectric layer surrounding the Si core is SiO2 with a thickness of 10 Å. In order to obtain a 

more accurate result of the electron density in the MOSFET, effective mass anisotropicity of Si 

is accounted for in the simulation by treating the three orthogonal ladders of Si separately. That 

is, the Schrödinger equation must be solved for each ladder. The electron effective masses are 

taken to be 0.19   and 0.91   for Si in the transverse and longitudinal directions for each 

ladder, respectively. The electron effective mass for SiO2 is assumed to isotropic and is set as 

0.5  . The heterojunction step potential between Si and SiO2 is taken to be 3.34 eV. The relative 
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dielectric constants are set to be 11.9 and 3.9 for Si and SiO2, respectively. As in the quantum 

well case, it is found that the lowest 10 eigenpairs are sufficient for an accurate solution. A 

Dirichlet potential boundary condition of 0.5V was applied to the boundary (gate). For the CMS 

approach, the domain is further discretized into 4 by 4 components, with 9 component eigenpairs 

retained in each component. The domain mesh is varied between 40 by 40 elements to 200 by 

200 elements for the direct and CMS approaches. Figures 3-10 and 3-11 show the electron 

density and potential energy profile in the all-around MOSFET for the gate voltage of 0.5V. The 

results obtained from the direct and CMS approaches are almost identical. The positive gate 

voltage attracts the electrons in the doped Si towards the SiO2 dielectric layer. The corner effect 

of the MOSFET is significant. The CPU time comparison is shown in Figure 3-12. It is evident 

that the computational cost comparison for the all-around MOSFET is very similar to that for the 

quantum well simulation. When the mesh size is small (small DOFs) the computational cost 

reduction of the CMS approach is not significant due to the extra matrix calculations associated 

with the method. The advantage of the CMS approach becomes obvious when the mesh size 

increases. For this reason, the CMS approach is suitable for simulation of large systems. The 

relative error of the eigenenergies of the 3 ladders is shown in Figure 3-13. It is shown in the 

figure that the first and third ladders have the same error. This is due to the fact that the x-y plane 

is a symmetric plane of the ladders. The error of the second ladder, although different from that 

of the other two ladders, is in the same order. All results for relative error show a general trend 

that as the order of eigenvalues increases, the relative error between the direct and CMS results 

will increase. This is on par with expectations that in general, higher order eigenvalues tend to 

display more error. However, this error can always be reduced when more component modes are 

retained in each component. 
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Figure 3-9: Computational domain of an all-around MOSFET. 

 

 

     

(a)                                                                       (b) 

 Figure 3-10: Electron density solutions for the all-around MOSFET: (a) direct approach (b) 

CMS approach. 60 by 60 mesh domain. 
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(a)                                                                       (b) 

Figure 3-11: Potential energy solutions for the all-around MOSFET: (a) direct approach (b) CMS 

approach. 60 by 60 mesh domain. 

 

 

Figure 3-12: Comparison of the CPU times for a single ladder for meshes of different sizes.  
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Figure 3-13: Relative error of eigenvalues of the 3 ladders for an 80 by 80 mesh. Legend 

indicates the relative effective masses in (x,y,z) directions for silicon. 

 

 

  


