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Chapter 1 Introduction

1.1 Nanoscale Structures, Devices and Materials

Over the past 30 years, the die size of Intel transistors has decreased from 3 micrometers (Intel
8086) down to currently 32 (Sandy Bridge) and 22 nanometers (lvy Bridge) [1]. This reduction
in size has allowed the number of transistors to increase from 29,000 in 1978 to over a billion
currently. This drastic increase in the number of transistors is correlated with a drastic increase in
computing power. Currently, complimentary metal-on-oxide semiconductor (CMQS) technology
is preferred due to the low power consumption property in which the CMOS only consumes
power when the inputs are being switched [2]. In general, a transistor can be thought of as a
switch. A CMOS can be made from 2 complimentary metal-oxide-semiconductor field effect
transistors (MOSFETS), as shown in Figure 1-1. For n-MOS transistors, an input signal (“Vi,” in
Figure 1-1) of a “1” (high voltage) indicates the “on” state whereas for the p-MQOS, an input
signal of a “0” (low voltage) indicates the “on” state. When the n-MQOS is on, the p-MOS s off,
limiting the current from Vg4 (power supply) to “Vou”. Likewise, when the p-MOS is on, the n-
MOS is off, limiting the current from “Vy,” to the ground. As such, very little power is
consumed since current flow is blocked during the majority of the operation. The only time
power is consumed is when both n-MOS and p-MOS are on when the input switches from high

to low or vice versa.
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Figure 1-1: CMOS made from an n-type and a p-type MOSFET

Another class of emerging nanoscale devices is nanoelectromechanical systems (NEMS).
NEMS are electromechanical systems with submicron critical dimensions. NEMS have the
potential to offer superior solutions to many areas including communications, information
technology, medical, mechanical, and aerospace technologies as they can attain fundamental
frequencies in the microwave range, mechanical quality factors in the tens of thousands, force
sensitivities at the attonewton level, active masses in the femtogram range, mass sensitivity at the
level of individual molecules, heat capacities far below a yoctocalorie, etc [3]. Although NEMS
can be designed using a variety of materials including silicon, silicon carbide, single and
multiwall carbon nanotubes, and other materials, silicon is one of the most actively investigated
materials for many nanotechnology applications because of its technological importance. High
performance NEMS such as nanoswitches [4] and nanoresonators [5] have been fabricated and
demonstrated recently as shown in Figure 1-2. Such NEM devices provide tremendous
opportunities and enable potential applications in mass memory storage, high-frequency

electrical switches, and mass or force sensors.
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Figure 1-2: Nanoelectromechanical Systems (NEMS). Left: a nanoswitch [4]. Right: an ultra-
high frequency nanoresonator [5].

Parallel to the development of nanodevices, in the past decade, synthesis and processing
techniques have been developed to create nanostructured materials with highly controlled
material composition, structures and related physical properties [6-8]. Examples of the
engineered nanostructures include nanotubes, quantum dots, superlattices, thin films and
nanocomposites. Nanocomposites are composite materials which incorporate nanosized particles
[9] or contain fibers with at least one dimension in the nano-scale [10]. In general, a
nanocomposite can be regarded as a solid combining a bulk matrix and nano-scale phases. The
phases can be nanoparticles, nanowires, nanoplatelets and etc. The addition of nanosized phases
into the bulk matrix can lead to significantly different material properties compared to their
macrocomposite counterparts, which include mechanical strength [11,12], toughness, optical
properties, electrical conductivity and thermal conductivity [13]. Because of these extraordinary
properties, nanocomposites promise new applications in many fields such as ultra-high strength
and ultra-light automotive parts [14], nonlinear optics, biomedical applications [15,16], sensors
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and actuators [17,18], and thermoelectric devices [19,20]. Figure 1-3 shows two examples of

nanostructured materials in sensing and thermoelectric energy conversion applications.

10 nm
—

Figure 1-3: Nanostructured materials. Left: nanostructured microsensor [18]. Nanocomposite
thermoelectric material [20].

Many of the applications of nanodevices and nanostructured materials described above
are enabled, controlled or facilitated by electrical signals. Design and characterization of such
devices and materials can be accelerated by using efficient computational tools that incorporate
accurate physical models. Modeling and simulation is essential to experimenting with new state-
of-the-art devices to determine feasibility for production. In essence, new techniques in modeling
and simulation are required to pace with the development of the advent of new technologies.
While various design and simulation tools are available for larger electronic devices and
materials (critical dimension > 100 nm), they cannot be used for devices with nanoscale features.
This is due to the “nano effects” such as defect, surface and quantum effects in nanostructures
and nanomaterials. Among these “nano effects”, quantum effects are especially important for the
development of nanoelectronic devices and materials. The quantum effects arise from the need to
treat carriers as waves whereas the classical Boltzmann transport equations (BTE) treated

carriers as particles: tunneling, interference and a varying electric field become important issues



to consider when modeling such small devices [21]. Quantum effects become significant or even
dominant when the critical size of the device is less than 20 nm, leading to a very different
behavior of electrons in these devices. For example, the electron charge distribution is
significantly altered in NEMS switches when the thickness of the NEM switch is comparable to
the quantum depletion length [3]. In nanocomposite thermoelectric materials, quantum
confinement of the electrons in nanoparticles has a significant influence on the electrical
conductivity, and consequently the energy conversion efficiency, of the materials [22].
Therefore, quantum effects must be taken into account in the electronic modeling of nanoscale

structures, materials and devices.

1.2 Quantum Mechanical Electrostatic and Transport Models

Various computational models and approaches have been developed to include the quantum
effects in the analysis of nanostructures. Early models include the charge control and Gummel-
Poon models for bipolar junction transistors (BJTs) [23]. These models serve to predict circuit
equivalent models of the transistors. In effect, these models approximate the current at the
collector, base and emitter based on a common gain. The equations of the currents were obtained
from the transport model for BJTs. The advantage of these models is that they are easy to
implement and quick calculations can be done to evaluate certain voltage and current parameters.
However, these models work well when the transistor size is relatively large. The models fail to
incorporate quantum effects that result from the size reduction mentioned above. In addition,

these models only focus on currents and voltage ratios at known junctions.



1.2.1 Schrodinger-Poisson Model for Electrostatic Analysis

The use of the Schrddinger-Poisson iteration method has been demonstrated to model the
guantum mechanical electrostatic behavior of semiconductor devices such as nanoscale
MOSFET [24,25], quantum dots [26] and NEMS [3]. The Schrédinger equation, an eigenvalue
problem, is solved to obtain the eigenenergies and wave functions of the system. For most
applications, the lowest eigenenergies and corresponding wave functions are kept for the
subsequent charge density calculations since they have the greatest impact on the charge
distribution. The eigenenergies and wave functions obtained from the Schrddinger equation are
used in the Fermi-Dirac calculation to find charge densities. The charge densities are then used in
the Poisson equation to compute the electrical potential in the computational domain. The
potential is then used in the Schrodinger equation to get an updated set of eigenenergies and
wave functions. This process continues until a converged self-consistent solution is found for the
potential or charge density. The effective mass Schrddinger equation is in the form of:
h? 0%y, A7 0%y, h? 8%y,

- — — =E 1-1
21’1’1; 0x2 Zm; ayz 2m; 072 +U(Vh:e¢)q)n ann ( )

Hy, =

where H is the Hamiltonian operator, {, is the wave function, E, is the eigenenergy, # is the
reduced Planck constant, my, my and m; are the effective masses in x-, y- and z-directions,
respectively, U is the potential energy, V, is the step potential energy at material hetero-
junctions, e is the electron charge, and ¢ is the potential in the domain obtained from the Poisson

equation, which is given by

V- (eVp) = —q[-n($) + p($) + Nj — N;] (1-2)



where € is the dielectric permittivity, g is the magnitude of the electron charge, n and p are the
electron and hole density, respectively, and N, and N are the ionized donor and acceptor
concentration, respectively. As both the Schrodinger and Poisson equations are second order
partial differential equations (PDESs), standard numerical methods such as the finite difference
method (FDM) and finite element method (FEM) can be employed straightforwardly to obtain
the eigenenergies, wave functions, charge densities and potential. In both FDM and FEM, the
computational domain is first discretized into a set of grid points or elements. The governing
equations are then discretized over the grid points and elements. One clear advantage to the FDM
or FEM is the use of a common discretization for both Schrdodinger and Poisson equations,
resulting in an efficient computation process. Numerical results obtained can be used to evaluate
the complete charge density and potential profile of the device, which is another advantage over
the Gummel-Poon and charge control models which only find voltages at certain specified

locations.

1.3.2 Schrodinger Poisson Model for Electron Transport Analysis

The electrostatic Schrédinger-Poisson iteration method assumes the electrostatic equilibrium in
the device and ignores the contributions from the current carrying leads of the structure. In other
words, the aforementioned method is a closed boundary method computing the standing waves
in the device, ignoring the solutions that extend to the input and output current carrying leads. To
model both the current carrying states that are comprised of solutions in a device region and the
current carrying lead region, a quantum transmitting boundary formulation was proposed
[27,28]. In essence the quantum transmitting boundary method (QTBM) can be thought of as an

extension of the Schrodinger-Poisson method with traveling plane wave open boundary



conditions applied at the leads. In the QTBM, the standing wave solution is decomposed into
“sine” and “cosine” modes. The Schrédinger equation must be solved twice, once for the
standing waves and once for the traveling waves. The charge density is calculated by using the
traveling wave functions and the standing wave eigenenergies. The Poisson equation remains the

same, with slight modifications when charge neutrality conditions are considered.

1.3.3 Nonequilibrium Green’s Function Method for Electron Transport Analysis

Another popular formulation for numerical electron transport analysis is the nonequilibrium
Green’s function approach (NEGF) [29,30]. Like QTBM, NEGF approach is capable of
modeling ballistic transport of electrons in nanostructures. In NEGF, as opposed to the
Schrodinger-Poisson approach, Green’s function, which is a response of the system to a given
perturbation, must be calculated. In addition, instead of coping with the open boundary
conditions, a self-energy matrix is introduced in the NEGF. By composing the Hamiltonian for
the entire system, the electron density and current density can be obtained. The expression of the

nonequilibrium Green’s function is given by [30]:

G(E) = [EI-A(xy) — Zg — Zp] 2 (1-3)

where G is the Green’s function matrix, H is the reduced Hamiltonian, E is the energy, | is the
identity matrix, s and X, are the source and drain contact self-energy matrix, respectively.
Once the Green’s function is computed for the device, the potential and charge distribution can
be calculated from the Green’s function. More details of the method can be found in Ref. [29,
30]. Advantages of NEGF include the ability to model open boundary conditions and eliminating

the need of solving an eigensystem. The NEGF method has been demonstrated to accurately



simulate the behavior of double-gate MOSFETS [29]. However a major disadvantage to NEGF is
the fact that it is computationally intensive, even though it does not solve an eigenvalue problem.
In the NEGF method, many intermediate parameters have to be calculated and many linear
systems have to be solved before the charge density and potential in the device can be obtained.
For devices with large degrees of freedom (DOFs), solving for Green's function can be a tedious

and computationally intensive process.
1.3.4 Atomistic Models

When the size of nanodevices reduces further, effective mass approximation of the Hamiltonian
may not be valid anymore. Atomistic models are necessary in this case for accurate description
of the electron behavior. A popular atomistic model that incorporates the electronic structure of
atoms is called the tight binding model [31,32]. The Hamiltonian governing the atomic motions

for N, atoms can be written as [31]:
P?
H= z ﬁ + Z(ll)anTBllI’n> + Erep + EONa (1'4)
i n

where the first term is the kinetic energy of the ions, the second term is the electronic potential
energy by summing the eigenvalues of n eigenstates from Hamiltonian Hrg, E.,, is the repulsive
potential between ions and E, is an energy shift per atom. The tight binding matrix elements are
typically constructed from a linear combination of the overlapping atomic orbitals on
neighboring atoms [32]. The disadvantage of the tight binding model lies that the model
parameters need to be fitted empirically to experimental results. Therefore, the reliability of the
model is limited to physical situations which are similar to the experimental conditions under

which the parameters were fitted. In addition, the model is typically constructed for interactions
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between nearest neighbors only. Care must be taken when the range of interaction between the

atoms becomes large.

A type of lower level atomistic modeling methods is the so-called Ab initio methods,
typically based on Kohn-Sham density functional theory [33]. Starting with the Schrédinger

equation for N non-interacting particles with an effective potential v, ¢ (r):

2m

—h
<— vz + veff(T)> Yi(r) = Eqpi(r) (1-5)

where E; is the energy eigenvalue associated with eigenfunction ;(r). The density can be

found as:

n() = Y )1’ (1-6)

Since the effective potential is not known in most cases, for a given external potential v(r), the

following equation can be used to solve for effective potential:
Verr (1) = v(1) — e@(r) + vy (1) (1-7)

where ¢(r) is the electrostatic potential and v,.(r) is the exchange-correlation potential given

by, respectively,

n(r")

lr —7|

p(r) = —ef dr' (1-8)

and
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OE,.
én(r)

Uy (1) = (1-9)

In general, E,. is obtained through a local density approximation and thus v.¢(r) can be
obtained from a given external potential v(r). Ab initio models are generally considered as the
most accurate approaches that are available for device simulations. However, a major
disadvantage for this method is the computational cost for a large number of atoms. As such, the
method is limited to small systems of several hundred atoms. Recently, however, new methods
have been proposed to handle large systems, with the number of operations that scale linear with

the size of the system [34].

1.4 Motivation of CMS based Approaches

The goal of this research is to develop numerical methods that can accurately and efficiently
model the electronic behavior of nanoscale semiconductor devices such as quantum wells and
MOSFETs. Among the quantum mechanical models briefly described above, the Schrédinger-
Poisson model has its unique advantages. As a continuum model, it can describe the quantum
mechanical behavior of electrons in nanostructures with dimensions ranging from several
nanometers to several hundred nanometers. Standard numerical methods such as the finite
element method can be used to implement the model straightforwardly, enabling the simulation
of multi-dimensional devices with complex geometric features. These characteristics make the
Schrodinger-Poisson model suitable for the computational analysis of quantum wells and
MOSFETs. However, numerical solution of the Schrodinger-Poisson model can be expensive
when the degrees of freedom (DOF) of the system are large. The main computational cost occurs

in solving the discretized Schrédinger equation which is an eigenvalue problem with its
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dimension equal to the DOF of the system. Depending on the numerical method employed, the
computation cost of solving the eigenvalue problem is in the order of n’logn ~ n°, where n is the
DOF of the system. Therefore, reducing the computational cost of solving the Schrédinger

equation can largely accelerate the simulation process of nanodevices.

In this research, we propose a component mode synthesis (CMS) approach to reduce the
computational cost of the numerical solution of the Schrddinger equation. CMS was originally
developed as a modal order reduction method in solving large mechanical systems [35-37]. In
the mechanical analysis using CMS, the large mechanical system is discretized into components
and the component modes are calculated individually. A small set of component modes were
retrained to construct a set of Ritz basis vectors. In this work, the CMS approach is extended in
the Schrddinger-Poisson quantum mechanical electrostatic and transport analysis where a set of
basis vectors are constructed to approximate the wave functions in each component. The global
energy levels and wave functions are then recovered by the synthesis of these component wave
functions. Different from mechanical analysis where only a few vibrational modes are sufficient
to model the dynamic response, in some cases, it is necessary to calculate many energy levels
and wave functions in order to compute the charge concentrations accurately. In addition to
reducing the dimensions of the system, the procedure is fairly simple to implement. In addition,
the accuracy can be tuned by adjusting the number of modes retained. If all modes are kept, the
CMS solution is exactly the same as the solution obtained by solving the full eigensystem. This
characteristic can be used to verify the correctness of the CMS implementation. The reduction of
computational cost is crucial as the solution of the Schrédinger equation is present in both the

electrostatic and electron transport analyses. In this thesis, the CMS approach is applied to
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compute the electrostatic and transport properties of a set of semiconductor devices including a

quantum wire and several multiple-gate MOSFETSs.

The rest of the thesis is organized as follows. Chapter 2 describes the CMS approach for
solving the Schrodinger equation; the self-consistent numerical solution of Schrédinger-Poisson
equations for electrostatic analysis is presented in Chapter. 3; the CMS based Quantum
Transmitting Boundary Method (QTBM) for electron transport analysis is presented in Chapter

4; and Chapter 5 presents the conclusions.

13



Chapter 2 Component Mode Synthesis (CMS) Approach for Solving
the Schrodinger Equation

2.1 Effective Mass Schrédinger Equation and Its Finite Element Formulation
As discussed in Chapter 1, the 3-D Schrédinger equation is given by

h? 0%y, h* 0%y, Rh* 9%y,
2my 0x*  2my dy?  2my 0z?

Hy, = + U(Vh, ey, = Eqy (2-1)

where H is the Hamiltonian, U is the potential energy, my and my, are the effective electron or
hole mass in the x- and y-direction, respectively, ¥, and E,, are the eigenpairs to be solved
where n denotes the n-th of eigenstates. V}, is the energy difference at the heterojunction due to
the band offset caused by two different materials. For many practical devices, the Schrodinger
equation can be simplified to its 2-D version, i.e., the solution of the Schrédinger equation does
not vary in the z-direction. This approximation can be justified due to the geometry of a quantum
well, a 2-D device. For the MOSFET, this approximation is also valid since the cross-section of
the MOSFET does not change in the z-direction. The 2-D Schrddinger equation can be written as

h* 0%y, Rh? 8%y,
2m; 0x*  2my dy?

Hlpn = + U(Vhr eq))an = Enwn (2'2)

We employ the finite element method (FEM) to solve the 2-D Schrodinger equation. The
process of FEA involves the transformation of the governing equation into an integral (weak)
form. The domain is subsequently discretized into elements. On each element, the weak form

equation is approximated by using the finite element shape functions to form local matrices and
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vectors. The integrals in the integral equation are then evaluated through Gaussian quadrature
[38]. Afterwards, the local matrices and vectors are then assembled into a global system of
equations to be solved using a linear solver. The weak form of the Schrodinger equation, derived

by Galerkin’s method of weighted residuals, is given as:

2 -
- f S % My, - A @3
r

hZ
4 f B sy, - M (Vg,)da + f (50) (U — Ep)($)d02 = 0
Q 2 Q

where 1 is the unit normal vector to the surface (or domain boundary) T'. In electrostatic analysis,
the wave functions are zero on the boundary of the device. Therefore, the first boundary term

fr ...dI" equals to zero since &y, = 0 on the closed boundary. The diagonal inverse effective

mass matrix M~ is defined for each element as

M-1 = [1/(1)'(1; 1/(:n;] (2-4)

In our implementation, 4-node linear quadrilateral elements are used to discretize the device

domain. Within each element, the unknown wave function and its variation are approximated as

lIJnl 61IJnl
o= Ny Ny Ny N[00 S =[N: N Ny N[t @)
Llln4, éSlIJn4

Their derivatives are then given by

15



[E)Nl 0N, OJN; 6N4] Yot [6N1 ON, 0N, 6N4] 8P

V. = | 0x o0x o9x  9x ||Un2 Vs _lox ox o9x  9x |[OUn2
Wn= 16N, oN, oN; ON,||yys Wn=[9N, aN, aN; ON.||sys

lay dy 0y ayJ Wna lay dy dy 0Oy 1LoUp,

(2-6)

where N;, N,, N;and N, are the shape functions. An arbitrary quadrilateral element is mapped
onto a square master element as shown in Figure 2-1. The shape functions are defined on the

master element as:

1 1
Ny =Z(1+f)(1+n) N, =Z(1—€)(1+n) (2-7)
1 1
N3 =Z(1—f)(1—n) N4=Z(1+€)(1—77) (2-8)
Al
2, o !
3' * 4
1 1 3 (1,0) X

Figure 2-1: An example of isoparametric mapping of 4-node linear quadrilateral elements.

The derivatives of the shape functions defined on the master element are mapped to arbitrary

quadrilateral element as

dN; azv] [aN aN] _r

% 3y % o i=1,234 (2-9)
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where J is the Jacobian matrix given by

o
_ 0%
J= 0x
an

9y
943
ay
am

(2-10)

Substituting the approximations given in Egs. (2-5, 2-6) into the weak form, Eq. (2-3), it can be

shown that the weak form can be written as the following matrix form for each element:

Wn1 Wn1
e llJHZ e anz
T Lpn3 v LIJn3
Lpnél» LIJn4

Wn1
Wn2
llJr13
llJr14

= E, M® (2-11)

where matrix T€ represents the second term in Eq. (2-3), V€ and M® make up the third term in

Eq. (2-3). The expressions of the element matrices T¢, V¢ and M€ are

'0N1 aNl_
d¢  0m
11 aNz aNz aNl E)Nz aN3 aN4'|
n e 9t 0% 0% 0%
e— -Tpg—1 -1| I )
=3 f f oN; oNg|) M) laN1 9N, 9N; 6N4Jdet(l)dzdn (2-12)
T e Tan on on dn on
0N, ONy
| 0§ On |
11 [N1
Ve= jJU Ez [N: N N3 Ny]det(])dgdn (2-13)
-1 -1 N4_
1 1[Ny
M"= f f 22 [N: Np N3 NyJdet(J) d§dn (2-14)
-1 -1 N4_
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where the term det(]), which can be thought of as an area scaling factor between an element and
the master element, is the determinant of the Jacobian matrix given in Eq. (2-10). After all the
element matrices are obtained, the global matrices are then constructed through the standard

finite element assembly process. The global system is then obtained as

(T+ Vg, = E,My, (2-15)

Eq. (2-15) is a generalized eigenvalue problem which can be solved by using standard solvers.

2.2 CMS Method

The general CMS process is composed of four basic steps: discretization of the domain into a
discrete number of components, the composition of component basis vectors, the coupling of the
components to form a DOF-reduced global system, the solution of the reduced global system
assembled to produce the global wave functions. Figure 2-2 shows an example to illustrate the
procedure. The meshed device domain is first decomposed into a set of components. Each
component contains a number of elements. The portions of the component boundary are
categorized into domain boundary or component interface. The eigenvalue problem obtained
from the Schrédinger equation is solved in each component. As component DOF is typically
much less than the global DOF, the computational cost is small to solve the component
eigenvalue problems. Once the component wave functions (or component modes) are calculated,
the wave functions in the components are then “synthesized” to produce the global wave
functions. The obtained global wave functions and energy levels are used in the calculation of

charge density in electrostatic or electron transport analysis, as shown in Figure 2-2.
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Domain
electrostatic & transport component
analysis modes
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Figure 2-2: Schematic of the component mode synthesis approach for solving the Schrédinger
equation.

For each component obtained from the domain decomposition as shown in Figure 2-2, the

eigenvalue problem can be denoted as [39]

(@ —EM)P =0 j=12,..,m (2-16)
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where superscript j denotes the component number and m is the total number of components. @’
can be assembled from T¢ and Ve as described in Section 2.1 while M/ can be assembled from
M€ given in Eq. (2-14). In an electrostatic analysis, the wave function y is zero on the domain
boundary. As such, the degrees of freedom (DOF) associated with the wave functions on the
global boundary can be neglected and discarded. These wave function DOFs are deleted in the
implementation. The wave function DOFs in each component, excluding the deleted global
boundary DOFs, are separated into attachment and interior parts. By definition, the attachment
part contains the wave function DOFs on interface edges which are shared by different
components. The interior part contains the wave function DOFs associated with the interior
nodes of the component. Note that, in the implementation of this categorization of the DOFs, the
global boundary type takes precedence over the attachment type. For example, if a node is both
on the global boundary and an interface edge, it is treated as a global boundary node. The
attachment and interior DOFs are denoted by subscripts “a” and “i”, respectively. With respect to

the attachment and interior DOFs, Eq. (2-16) can be partitioned as

(b;i q);la Mlai Mgﬁa lp]a 0

The attachment DOFs are then fixed such that i = 0 and thus the following equation is

obtained from Eq. (2-17):
(@}, — EM) )} = 0 (2-18)

From Eq. (2-18), the eigenpairs (E/, lp’i) can be computed for a component j. In CMS, a small set

of eigenpairs are retained corresponding to the lowest energies from Eg. (2-18) and assembled
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into a component modal matrix ﬁi Our implementation uses both the maximum number of
eigenpairs possible and the option of a set value. The option of having the maximum number of
retained eigenpairs is included for implementation verification. In device simulations, however,
it is not necessary to include all eigenpairs but rather a small set with respect to the total number

of interior DOFs to achieve sufficient accuracy. The component modal matrix is given by

Di=[w, W, . W] (2-19)

where k is the number of retained eigenvectors/wave functions. Note that the number k is much
less than the number of total interior nodes present in a given component. Subsequently, a
constraint modal matrix is obtained by applying E/ = 0 in the component and enforcing a unit

wave function along the attachment DOFs in Eq. (2-17), i.e.

j j
[ ii q)ia

j j

ai (I)aa

where each column of the identity matrix I, is used to enforce wave function with unit

-t

magnitude at the corresponding attachment DOF while the wave functions of the other
attachment node DOF is fixed to zero. RL is the resulting boundary reaction at the attachment

DOFs. As such, the expression for the constraint modal matrix X’; associated with the interior

DOFs can be obtained by
X = —(@)) o], (2:21)

Once the matrices ﬁ{ Xi are obtained, the component wave functions can then be calculated by
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0, I )

arx1

W = "”i] - [ﬁi Xil [Zi ] (2-22)
j
a‘nx1 nxr

where n is the total component DOFs, and r is the sum of the retained components and

attachments DOFs. I,and 0, are the identity and zero matrices associated with the

j
: . Z | . . .
corresponding attachment node, respectively. The vector l ‘]l is the generalized coordinate

a

vector. Eq. (2-22) can be written in short form as
P = Tz (2-23)

where T/ is referred to as the transformation matrix of component j. Eq. (2-23) shows that the
wave functions of component j can be approximated as a linear combination of the column
vectors of T) with the elements of vector zJ as the coefficients. In other words, the column
vectors of TJ serve as the basis vectors of component j. Furthermore, since k<< interior DOFs,
r<<n. This reduction of modes enables CMS to greatly reduce the computational cost of
calculating both component and global wave functions. On the other hand, this reduction of
modes introduces an approximation error as well. The solution is only an approximation since
only k eigenpairs are retained. The solution is exact only when the number of retained eigenpairs

is equal to the total number of interior DOFs. Substituting Eq. (2-23) into Eq. (2-18), we obtain
(@) —EM)Tiz) =0 (2-24)
Multiplying by the transpose of TJ to both side of Eq. (2-24) gives
(Ti)T(q,j — EIM)Tiz = 0 (2-25)
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Eq. (2-25) can be written in short form as
(@ —EM)Z =0 (2-26)
where
$ = (Ti)Tq)iTl' Mi = (Ti)TMjTi (2-27)

are the reduced matrices for component j. Subsequently, the matrices are assembled into a global

modal system via the standard finite element assembly process to find the solution of Z:
(® —EM)z2=0 (2-28)

where ® and M represent the global matrices assembled from of ® and MJ, respectively. The

global wave functions can be recovered by
Y =Tz (2-29)
where T represents the global assembled transformation matrix of the assembled T/ matrices.

The fixed-interface CMS approach has several advantages. First of all, the approach has a
relatively simple procedure for computing the basis vectors used in the transformation matrix.
Additionally, the approach has a straightforward implementation of coupling of components to
form the global modal system. Finally, the approach produces high accuracy in the computation

of the low eigenvalues and the corresponding eigenvectors.
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Table 2-1: Comparison of eigenenergies obtained from the CMS and direct approaches

Direct Esin (eV)

CMS Esin (eV)

Direct Ecos (eV)

CMS Ecos (eV)

0.157682733371887

0.157927834442041

0.157330723099336

0.157544761897325

0.160599364355327

0.161060945206333

0.159276642767386

0.159597734177530

0.165480343803728

0.166291738177092

0.162751702463985

0.163244187447445

0.172355688262674

0.173481584085488

0.167949927883989

0.168706046009338

0.181267665576055

0.183140937278616

0.175013186427522

0.176407598345969
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(a) (b)

Figure 3-6: Density solutions for the Neumann boundary case: (a) direct approach and (b) CMS
approach. 60 by 60 mesh domain.

(@) (b)

Figure 3-7: Potential energy solutions for the Neumann boundary case (a) direct approach (b)
CMS approach. 60 by 60 mesh domain.
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Figure 3-8: Relative error of the eigenvalues obtained from the CMS approach compared with the
results obtained from the direct method on a 80 by 80 mesh with Neumann boundary conditions.

The second device simulated in this section is an all-around MOSFET as shown in Figure
3-9. The core of the MOSFET is n-type doped Si with a doping density of 10'® cm™® The
dielectric layer surrounding the Si core is SiO, with a thickness of 10 A. In order to obtain a
more accurate result of the electron density in the MOSFET, effective mass anisotropicity of Si
is accounted for in the simulation by treating the three orthogonal ladders of Si separately. That
is, the Schrddinger equation must be solved for each ladder. The electron effective masses are
taken to be 0.19m, and 0.91m, for Si in the transverse and longitudinal directions for each
ladder, respectively. The electron effective mass for SiO, is assumed to isotropic and is set as

0.5m,. The heterojunction step potential between Si and SiO; is taken to be 3.34 eV. The relative
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dielectric constants are set to be 11.9 and 3.9 for Si and SiO,, respectively As in the quantum
well case, it is found that the lowest 10 eigenpairs are sufficient for an accurate solution. A
Dirichlet potential boundary condition of 0.5V was applied to the boundary (gate). For the CMS
approach, the domain is further discretized into 4 by 4 components, with 9 component eigenpairs
retained in each component. The domain mesh is varied between 40 by 40 elements to 200 by
200 elements for the direct and CMS approaches. Figures 3-10 and 3-11 show the electron
density and potential energy profile in the all-around MOSFET for the gate voltage of 0.5V. The
results obtained from the direct and CMS approaches are almost identical. The positive gate
voltage attracts the electrons in the doped Si towards the SiO2 dielectric layer. The corner effect
of the MOSFET is significant. The CPU time comparison is shown in Figure 3-12. It is evident
that the computational cost comparison for the all-around MOSFET is very similar to that for the
quantum well simulation. When the mesh size is small (small DOFs) the computational cost
reduction of the CMS approach is not significant due to the extra matrix calculations associated
with the method. The advantage of the CMS approach becomes obvious when the mesh size
increases. For this reason, the CMS approach is suitable for simulation of large systems. The
relative error of the eigenenergies of the 3 ladders is shown in Figure 3-13. It is shown in the
figure that the first and third ladders have the same error. This is due to the fact that the x-y plane
is a symmetric plane of the ladders. The error of the second ladder, although different from that
of the other two ladders, is in the same order. All results for relative error show a general trend
that as the order of eigenvalues increases, the relative error between the direct and CMS results
will increase. This is on par with expectations that in general, higher order eigenvalues tend to
display more error. However, this error can always be reduced when more component modes are

retained in each component.
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Figure 3-9: Computational domain of an all-around MOSFET.
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Figure 3-10: Electron density solutions for the all-around MOSFET: (a) direct approach (b)
CMS approach. 60 by 60 mesh domain.
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Figure 3-11: Potential energy solutions for the all-around MOSFET: (a) direct approach (b) CMS
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Figure 3-13: Relative error of eigenvalues of the 3 ladders for an 80 by 80 mesh. Legend
indicates the relative effective masses in (X,y,z) directions for silicon.
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