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          (a) Full ambulances at opened STs       (b) One ambulance busy for both district A and B 

                                                                                   

 
                                                                       (c)  Relocated one ambulance to replace higher 

call volume area for both district A and B 

Figure 5.1: The combination of the districting and relocation strategies  

 

 

5.4 Tabu Search Heuristic and Nested-Compliance Table Policy for EMS Systems 

In this section, we describe the algorithm of the nested-compliance table 

embedded into a tabu search heuristic for the districting and relocation problem. The tabu 

search is an iterative method to search for near optimal solutions where the objective 

function is to maximize the expected coverage throughout each solution. We classify 
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solutions into two categories: districting and nested-compliance table solutions. The 

efficiency of the algorithm to search for better nested-compliance table solutions depends 

on the districting solutions. In districting algorithm, the algorithm consists of two loops 

for improving two solutions: station solution and demand zone solution in which the loop 

of demand solution is contained inside the loop of station solution. The tabu search 

heuristic is a powerful tool for this nested problem structure while genetic algorithm 

requires generating large number of chromosomes for station solution and generating 

large number of chromosomes for demand zone solution that are contained inside of each 

chromosome for station solution resulting in longer computational running time.  Figure 

5.2 shows the flow process of our algorithm to search the solutions of districting and 

relocation problem. The procedure approach is described as follows: 

 Generating the initial districting solutions consists of two solutions: stations for each 

district and demand zones for each district given number of districts and number of 

ambulances for each district. 

 Generating the optimal nested-compliance table for each district, we use an 

optimization model of the nested-compliance table formulation to locate ambulances 

to stations for each state for each district given number of ambulances for each 

district. 

 Developing solution of the demand zone solutions for each district, we consider the 

tabu search heuristic whereas the algorithm incorporates the method to determine the 

optimal nested-compliance table solution inside. 
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 Developing solution of the station solutions for each district, we also consider the 

tabu search heuristic whereas the searching demand zone solutions and optimal 

nested-compliance table solutions are embedded into this algorithm.  

 

5.4.1 The Application of a Nested-Compliance Table Model 

 

The nested-compliance table is a particular table in which shows the number of 

busy ambulances associated with where exact ambulances are located to. The dynamic 

relocation deals with the real-time movement of one ambulance to new location. We 

describe the EMS systems as the two-dimensional state spaces. The first state variable 

V(t) denoted the status of number of ambulances busy at time t. The second state variable 

C(t) indicated the status of systems in compliance, C(t) = 1 or out of compliance, C(t) = 0 

at time t. The in compliance states mean all available ambulances are ready at their home 

stations to respond to call arrival, whereas out of compliance states mean one ambulances 

is not ready at its home station to respond to call arrival. It is during traveling to new 

home station. Suppose we have Kj ambulances in district j, there are particular 

combinations 2Kj-1 possible states to system where the (Kj, 1) does not existing because 

of no any ambulance available at station. The assumptions of the nested-compliance table 

model for EMS systems are: 

 The service area is partitioned into districts. Each district consists of demand zones 

which each district operates independent. Each demand zone i calls arrive according to 

a Poisson process. The λ is total call arrival rate and λi is call arrival rate of demand 

zone i. The calls require the dispatch of the closest ambulance within their district.  
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 There are K ambulances that are divided into Kj ambulances for each district. In 

general, the server has distinct mean service time depends on its home station, demand 

zone required service and the decision of a new home station which dispatched 

ambulance traveling back to. 

 Relocated an ambulance for each district occurs when the number of busy ambulances 

changes; call arrival and call completed service. The one ambulance has to move to the 

new home station in the new system state. We described the event of relocation in 

Section 4.3. 

 We determine the approximation steady-state probability πv,c(j) for district j based on 

our previous work in Sections 4.4. The assess of steady-state probability, we need to 

approximate some parameters; the average rate μv,0(j) of call arrival for district j when 

in state (v, 0), the average rate of call completion  μ1(j) for district j, and the average 

travel time between stations γ(j) for district j. The approximations of parameters of 

transition rates are described in Section 4.4.1 

In application of nested-compliance table formulation we have two decision 

variables. We formulated the nested-compliance table model as integer programming 

model based on our previous work in Section 4.5. The maximum expected coverage is 

determine individually for each district. The details of the objective function and 

constraints are described in Section 4.5.  
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 ( )mv jx  = 1 if an ambulance is located to station m in district j when system being in 

state v  

 = 0 otherwise 

( )iiv d jy    = 1 if demand zone i assigned to district j is covered when the system in district 

j is in state v if all vehicles are at their assigned locations 

   = 0 otherwise 

Objective function for each district j:  

Maximize  
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Table 5.1 The parameters of the nested-compliance table model and the tabu search 

heuristic 
Notation  Description 

n number of demand zones 

J number of districts 

Mj number of ambulance stations in district j 

Mi(di=j) set of locations in district j that can respond to calls at demand zone i within the specific time 

where demand zone i assigned to district j 

M number of ambulance stations in the EMS system 

λi  call arrival rate from demand zone i, such that  

di indicate the district of demand zone i 

J number of districts 

Kj number of paramedic units at district j 

K number of paramedic units  

i   indicator of demand zone as i = 1, 2,…, n 

j   indicator of district as j = 1, 2,…, J 

λ arrival rate 

λi(di = j) arrival rate of call zone i assigned to district j 

πv,0(j) the steady-state probability  that the system in district j is out of compliance when in state v 

(number of available servers is kj-v) 

πv,1(j) the steady-state probability that the system in district j is in compliance when in state v 

(number of available servers is K-v) 

 

5.4.2 Tabu Search Approach for Districting and Relocation Problem  

In this section, we describe the tabu search algorithm which is developed for the 

districting and relocation problem. The iterative procedure is used to search the 

maximum expected coverage throughout two searching and an optimization steps: 

determining the optimal nested-compliance table solution, searching the demand zone 

solution and searching the station solution. We keep results of the maximum expected 

coverage given by the optimal nested-compliance table solution to the loop of searching 

the demand zone solution. We also keep in memory the maximum expected coverage 

given by both the optimal nested-compliance table and demand zone solution to the loop 

of searching the station solution. We start with descriptions of the components of the tabu 

search heuristic for the station solution (main algorithm), the demand zone solution 
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(algorithm A) and the optimization model of the nested-compliance solution (algorithm 

B). Figure 5.2 shows the process flow of the nested-compliance table embedded into the 

tabu search heuristic.  

 

5.4.2.1 The Objective Function by Using the Nested-Compliance Table with 

Relocation Model  

An application of the nested-compliance table with relocation in Section 4.5, 

Chapter 4 is applied to obtain the objective function (fitness). The objective function is to 

maximize the expected coverage throughout all districts. The v is state of system which 

indicates number of busy servers, for each district. The parameter πv,1(j) is the steady-state 

probability of district j  that the system is in compliance when in state v. The parameter 

πv,0(j) is the steady-state probability of district j  that the system is out of compliance when 

in state v. The λ is total arrival rate. The λi(di=j) is the call arrival rate from demand zone i 

assigned to district j. The variable yiv(di=j) is 1, if demand zone i is in district j and covered 

in state v and otherwise is zero. We use the same notation following notations in Section 

4.5, Chapter 4. Table 5.1 shows notations of our algorithm. We consider the constraints 

following equation (4.19) – (4.20) to provide the feasible solutions.  The objective 

function is calculated by 
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Figure 5.2: The process flow of the nested-compliance table embedded into the tabu 

search heuristic algorithm 
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5.4.2.2 Generating an Initial Districting Solution  

The initial districting solution is generated by using a heuristic algorithm. The 

districting solutions found throughout the heuristic algorithm consist of three sequential 

steps.  

(a) We first start with a number of districts equal to two. Starting with first district, 

we first select the station at a corner of map to assign to the set of the first district. 

We then gradually select a station by selecting its closest adjacent units. We 

consider an upper bound of relocation time between current assigned station and 

the next station assigned into the same district. The district is completed when no 

adjacent station- is near-by within the upper bound of the relocation time. If no 

any station is located in the current district for which travel time from the current 

assigned station to them is within the upper bound of relocation time, we then 

start to consider the next district and so on. We then update the number of districts 

when all districts are completed and remaining stations cannot assign to  any 

district 

(b) We consider demand zones to assign to each district. We determine the demand 

zones for each district using the maximum number of covered stations for each 

demand zone. Suppose we consider demand zone i. If more than one district has 

number of stations which can cover demand zone- i equally, we use the closest 

stations.  The demand zone i will be allocated to the same district as its closest 

station.  
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(c) The number of ambulances is assigned to each district based on call volumes. We 

consider some possible solutions by increasing and decreasing number of 

ambulances. 

Algorithm Initial ST solutions 

begin  

 initialize number of district equal to two 

 for each district j 

 select the station at the corner of the map to assign to the first district (district j) 

 gradually select an adjacent station within relocation time which is the closest station  

 if no adjacent station is in relocation time, update number of districts 

 until all stations are assigned to district 

 if all districts are completed and remaining stations cannot assign to any district, update the – 

  number of district = number of district + 1 

 repeat for loop again 

end 

Algorithm Initial demand zone solutions 

begin 

 for each demand zone i 

for each district, count the number of stations which cover the demand zone i (respond to 

demand zone i within a given pre-specified RTT)  

select the district which contains the maximum number of stations which can respond to 

demand zone i within the given RTT, Suppose it is district j 

assign demand zone i to district j 

 if more than one district are selected, choose the closest station (Suppose the closest is in 

district k). We assign demand zone i to district k 

 until all demand zones are assigned to district 

end 

 

5.4.2.3 Solution representation 

The permutation representation is used to present our solutions. The 

representation shows three solutions in which there are relationships among three 

decisions: station solution, demand zone solution and nested-compliance table solution. 

Since the nested-compliance table solution depends on the station solution by considering 

the open stations of each district, which allows for assigned ambulances available to them 

for each state. While the demand zone solution provides the call arrival rates to calculate 
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the steady state probabilities of each district, we use this information to create the optimal 

nested-compliance table solution for each district. Figure 5.3 shows the instance of 

problem size n = 14, m = 9, and J = 3. The two servers are assigned to district A. The 

station solution is represented by station s2, s3 and s8 which are assigned to district A. 

The demand zone solution is represented by demand zone z1, z2, z4, z6 and z11 which 

are assigned to district A. The compliance table solution is represented by the ambulances 

available at station s2 and s8, when the system of district A is in state v = 0, and at station 

s8 where system of district A is in state v = 1. 

 

C A A C C B B A B

A A B A B A B

S1 S2 S3 S4 S5 S6 S7 S8 S9Station

District

B B B A C C C

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14Zone

District

District A: # of server = 2

1 0 1

S1 S2 S3 S4 S5 S6 S7 S8 S9State v

0

1 0 0 1

Station solution

Demand zone 

solution

Compliance 

table solution

 
Figure 5.3: Permuted representation of the district and relocation problem 

5.4.2.4 Improving process 

We consider the improving procedure which the best neighborhood solution as a 

candidate solution to compare with the current solution. If the candidate solution is better, 

the candidate solution will be the best so far solution and the candidate solution will be 

the current solution also. If the candidate solution is lower than the current solution, the 

candidate solution will be the current solution but the best so far solution does not 
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change.  In this section, we discuss the “neighborhood” solutions for each decision 

individually: the station solution, the demand zone solution and the optimal nested-

compliance table solution. 

5.4.2.4.1 Neighborhood of Main Algorithm 

We consider the neighborhood solutions of a station solution.  In Figure 5.4 we 

show the current solution and one of the neighborhood solutions. Each station (box) 

contains the letter that indicates its specified district. The neighborhood solution is to 

swap a pair of adjacent stations under a constraint. We consider the constraint of 

relocation time. The relocation time between a pair of swapping stations with other 

stations in the same district after swapped is less than the upper bound of relocation time. 

We consider all possible solutions in the neighborhood of the current solution. For 

example suppose we have four stations in Figure 5.4. The current solution {s3, s4} = {A, 

C} is swapped to {s3, s4} = {C, A} where relocation time between s1-s3 and s2-s4 are 

less than the upper bound of relocation time. 

5.4.2.4.2 Neighborhood of Algorithm A (demand zone assignment) 

We consider the neighborhood solutions of a demand zone solution.  Figure 5.4 

shows an example of a neighborhood solution of the demand zone solution. We start by 

randomly selecting a district for the swapping procedure. We examine a demand zone at 

a boundary area of the chosen district to swap with the demand zone of its adjacent 

district. Suppose we search the demand zone at the boundary area of the chosen district, 



 142 

which we consider the demand zone: z2 (district A) which its adjacent demand zone: z3 

(district B) indicates in different district. Thus, we consider {z2, z3} = {A, B} to swap to 

{z2, z3} = {B, A}. We examine all the solutions in the neighborhood of the current 

solution with restrictions above. 

5.4.2.4.3 Algorithm B (compliance table assignment) 

We consider the optimal solution of a nested-compliance table solution.  The 

optimal solution is determined by using the formulation in Section 4.1. We determine the 

optimal nested-compliance table for each district. The overall expected coverage of 

current solution is composition of the expected coverage for each district.  

C A A C

A A B A B A B

S1 S2 S3 S4Station

District

z1 z2 z3 z4 z5 z6 z7Zone

District

Station solution

Demand zone 

solution

C A C A

S1 S2 S3 S4

A B A A B A B

z1 z2 z3 z4 z5 z6 z7

Figure 5.4: Permuted representation of swapping in the district and relocation problems 

 

In improving solution, we use a tabu lists to record the old solutions in the lists. 

We considered separate tabu lists for station solution, demand zone solution and 

compliance table solution. Each tabu list consists of pairs of swapped solutions. Islam 

and Eksioglu (1997) recommended that the tabu list size was too small, the algorithm 

might be cycling and too large, good solutions might be skipped. They suggested that the 

appropriate size of a tabu list was five – ten recorded solutions to provid the better 

solution. We choose seven pairs of recorded solutions. For other parameters of traditional 

tabu search algorithms, previous work suggested that the stopping rules the solution. In 
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of the realized expected coverage and the expected response time were not consistently a 

large improvement over the AMEXCLP solutions.  We believe this is resulting from the 

districting solutions which provided imbalance load solutions and using the nested-

compliance table model based on the binary coverage, that is, it is the nature of the 

heuristics algorithm which may not find the optimal solution. In Figure 5.6 presents in a 

different way the same results shown in Table 5.3. The graph shows an increasing 

function relationship between the number of ambulances and the realized expected 

coverage, which is related to decreasing busy probability of ambulances as the number of 

ambulance increases. These results showed decreasing the improvement of our algorithm 

over AMEXCLP when number of ambulances increased. The observations implied that 

decreasing busy probability of ambulances provided decreased benefit of our algorithm. 

When a call arrives to EMS systems with low busy probabilities, the dispatch center is 

likely to have available ambulances to respond to the call. Thus the relocation of 

ambulances will provide only a small benefit for these EMS systems. However, when 

EMS systems have small number of ambulances, the relocation of ambulances to 

potential high demand areas will provide higher benefit for EMS systems. 

Table 5.3: Comparison of the districting and relocation model (tabu search heuristic) to 

non-districting and non-relocation model (AMEXCLP) under varied number of the 

ambulances 

Total # of 

Servers 

Districting and Relocation Based 

on Tabu Search Heuristic 

AMEXCLP- Non Districting and 

Non Relocation 

% Improved Simu. RespT Simu. RespT 

5 0.92 4.10 0.85 5.47 7.84 

6 0.88 4.88 0.87 5.04 1.16 

7 0.92 3.96 0.89 4.77 3.76 

8 0.91 4.30 0.93 3.99 -1.78 

9 0.94 3.57 0.93 3.88 0.93 

10 0.94 3.71 0.94 4.02 0.23 

     

2.02 
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Figure 5.6: Comparison of the districting and relocation model versus the non-districting 

and non-relocation model (AMEXCLP)  

 

 
 

5.6 Conclusions and Future Research 
 

In this paper, we extend the nested-compliance table model to consider a 

combination of districting and relocation problem. We assumed that each district operates 

independently and in which each district operates under relocation. No ambulances are 

allowed across area boundaries. We developed the algorithm of the nested-compliance 

table model embedded into the tabu search heuristic for districting and relocation 

problem. The algorithm requires the optimization model of the nested-compliance table 

model throughout the searching method. The tabu search heuristic is used to search the 

solutions of districting problem; station solutions and demand zone solutions whereas 

each districting solution provides input parameters to determine the optimal nested-

compliance table solution for each district.  The results showed that optimization 
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embedded into the tabu search heuristic yields outcomes better than the AMEXCLP 

model policies for the realized expected coverage measure. The computational study 

showed that the realized expected coverage depends on number of ambulances and call 

arrival rate. When number of ambulances is smaller or call arrival rate is higher, our 

algorithm provides better outcome. We showed that there are higher benefits of combined 

districting and relocation problem when there are higher busy probabilities of ambulances 

in EMS systems. However, some results showed only a slight improvement of our 

algorithm compared to the AMEXCLP. We noted that implementing our algorithm in 

practice should consider the balancing load among districts which will provide more 

benefit.  

In future research, we will develop the multiple-objectives for combination of 

districting and relocation problem. By partitioning the whole service area into small sub-

areas, the algorithm results in unfairness among sub-areas. The fairness objective could 

be considered into the model. The contribution of this model will be helpful for realistic 

EMS systems. 
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CHAPTER SIX 

 

CONCLUSION AND DISCUSSION 

 

 

6.1 Conclusion 

The goal of Emergency Medical service (EMS) systems is to provide quick pre-

hospital care and transportation to patients, which in turn affects lives saved. The rapid 

response is important in reducing mortality rates of emergency patients. The purpose of 

this research is to improve the performance of EMS systems in terms of the expected 

survival probability and the expected coverage measures that are related to response time. 

We proposed two strategies to improve the efficiency of EMS systems: multiple unit 

dispatch and relocation strategies. Our primary focus is to consider models taking into 

account more realistic conditions; that is, we lift assumptions that are commonly made in 

the analysis of EMS systems. Multiple unit dispatching models are developed and 

analyzed to maximize outcomes based on dynamic conditions of real on-scene accidents. 

In another focus, we consider the relocation models that are implemented in real-world 

systems using the nested-compliance table policy.  We used the real-world data collected 

from Hanover Fire and EMS department in Hanover County, Virginia, to evaluate the 

performance of our models. 

First, we developed a discrete event simulation model for multiple unit 

dispatching and multiple call priorities. Emergency calls are classified into three types. 

We consider two types of medical units: ALS and BLS medical units. A decision must be 

made regarding how ambulances will be dispatched to respond to calls depending on call 
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priorities in order to maximize the expected survival probability.  We consider the 

situation based on conditions at the scene of the accident. We used the closest dispatching 

policy for priority2 calls. Numerical results showed that the closest dispatching policy of 

double dispatching is optimal for prority1 calls, whereas the optimal dispatching policy 

for prirority3 calls is not the closest dispatching policy. A heuristic is developed to 

determine the near optimal policy for priority3 calls in large-scale problems. The 

proposed heuristic is to provide an ordered preference list for priority3 calls. We 

developed the heuristic by following the balanced call volume among servers. The results 

showed the efficiency of the heuristic was better than the closest dispatching policy.  

We extend the model of multiple unit dispatching to consider fairness between 

call priorities. We consider the fairness in patient waiting time until the first response 

between pririty1 and 2 calls. We assumed that priority2 calls can be upgraded to priority1 

calls based on information on-scene. We developed the optimization model based on 

simulation. The objective was to maximize the expected survival probability. The results 

showed that the optimal dispatching policy is better than the closest dispatching policy, 

where the imposed restriction on the deviation of waiting time until the first response 

between prority1 and 2 calls was set at 5 and 6 minutes.  

Second, we formulated the nested-compliance table model under relocation as an 

integer programming model. The objective was to maximize the expected coverage based 

on binary coverage. We modified the Markov chain model with relocation based on 

Alanis et al. [5]. We approximated the transition rates by relaxing the assumption 
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proposed by Alanis et al. [5]. Our approximation of transition rates is independent of the 

exact nested-compliance table. We approximated the transition rates by using the covered 

arrival intensity to weigh potential stations. The benefit of our approximation is to 

calculate these parameters as input for the integer programming model.  We validated our 

formulation by using a simulation. The results showed that the percent error of the 

expected coverage is 2% - 3%. We verified the efficiency of the nested-compliance table 

model by comparing our results with the AMEXCLP solutions. The results showed that 

the nested-compliance table solutions are better than AMEXCLP solutions by2% - 3% 

based on using real-world data. 

Previous work with the nested-compliance table model considers binary coverage 

as the objective function, which may produce results that are different from the realized 

expected coverage. The results of the relocation model suggested that imposing an upper 

bound on relocation time can improve the performance of the system under relocation. 

Thus, we consider the whole service area that is partitioned into small sub-areas. We 

extend the nested-compliance table model to consider a districting problem.  Each sub-

area operates independently under its own nested-compliance table policy. We developed 

the nested-compliance table policy and embedded it into a tabu search heuristic. The 

objective was to maximize the realized expected coverage. We used an iterative method 

to search for near-optimal solutions to the districting problem, including station solutions 

and demand zone solutions. Each districting solution is used as input parameter for the 

nested-compliance table model. We determined the optimal nested-compliance table 

solution for each districting solution.  We compared our solution to the AMEXCLP 
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solutions. The results showed that our tabu search heuristic yields outcomes better than 

AMEXCLP solutions in terms of the realized expected coverage.  

 

6.2 Managerial Insights 

The purpose of this research is to develop strategies to improve the performance 

of EMS systems by attempting to take into account the realistic conditions in EMS 

systems that are often ignored in the literature. The goal is to deliver medical units to 

patients in rapid response time.  Several studies discussed the effect of delayed response 

time to survival probability of patients such as car crashes and cardiac arrest patients. The 

EMS administrators and providers continuously improve the performance of EMS system 

by focusing on decreasing the response time. The new strategies to dispatch rapid 

medical units to patients consider multiple unit dispatching and relocation strategies in 

practice. Suppose a cardiac arrest call arrives to EMS systems, we dispatch the closest 

two units to respond to the call. The direct effect is to increase survival probability of this 

patient.   

The multiple unit dispatching policy we proposed can be used to implement in 

real-world EMS problems. Our assumption considers the realistic on-scene conditions of 

EMS systems, in which situation on-scene can be changed based on information.   In 

term of improvement of performance measures, we found that implementing our multiple 

unit dispatching policy provides an additional 29 lives saved per 10,000 calls (3 ALS 

units 3 BLS units) and 49 lives saved per 10,000 calls (1 ALS unit 3 BLS units) in 
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comparison to a traditional policy (always send closest medical units). Our dispatching 

policy results in higher probability that the closest ambulance is available for life-

threatening calls.  In addition, our dispatching policy is easily implemented in EMS 

systems. The dispatch centers have only the ranked preference lists of dispatching 

medical units for each call priority.   Suppose dispatch centers know where exact stations 

of available ambulances are located to, they can dispatch the particular medical units 

according to the ranked preference list of arrival call priorities.  

Our combination of districting and relocation policy is possible to implement in 

practice by using the computer-aided dispatch (CAD) system and global positioning 

system (GPS).  We proposed the specified nested-compliance policy for each district. 

Each district operates following its own nested-compliance table. The nested-compliance 

table is a particular table that indicates the exact stations for each state for each district of 

EMS systems. This table shows the assigned ambulance stations related to number of 

busy ambulances. In practice, the dispatchers have their own nested-compliance table 

lists and monitors that can track of status of all ambulance in systems and their current 

stations. When the number of ambulances of EMS systems changes, the dispatcher looks 

at the monitor and relocates ambulances to new stations in the new system state. No extra 

training course is required for using our nested-compliance table policy. In terms of 

outcomes, our districting and relocation policy provides better solutions than non-

districting and non-relocation policy based on AMEXCLP model at 3.26% with 7 

ambulances.  
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In terms of the costs associated with implementation of our policies, the EMS 

administrators do not need to invest in installing any system or training course for using 

our multiple-unit dispatching policy.  Considering districting and relocation policy, the 

current practice of EMS systems already use the CAD systems. There is only investment 

for installing GPS to keep track of every ambulance; though since we only require the 

location of ambulances after service is complete, this can be achieved via radio. Thus we 

recommend that our multiple unit dispatching and combination of districting and 

relocation policies will provide high benefit to EMS systems.  
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Appendix A 

Additional Model and Results of Chapter 2 

 

A.1 Flow process chart of Section 2.3 
 

 

Call 

Arrival

Classified 

Level

Priority 1

Priority 2

Priority 3

Choices

Closest ALS 

available,

 selecting BLS 

available

ALS arrives 

on the scene 

first

BLS arrives 

on the scene 

first

Need ALS care,
ALS provide 

initial care, 

waiting BLS

Need both ALS 
&BLS care, ALS 

provide initial care,
waiting BLS

Selected BLS 

available

BLS get back to 

original station

ALS transport
ALS serves 

patients
ALS get back to 

original station

Both ALS & BLS 
serve patients

ALS get back to 

original station

ALS determines,
Need ALS care

BLS provides 

initial care, 

waiting ALS BLS get back to 

original station

ALS 

transport

ALS serves 
patients

ALS get back 

to original 

station

ALS determines,
Need both ALS 

&BLS care

ALS get back to 

original station

BLS 

transport

BLS serves 
patients

BLS get back to 

original station
BLS arrives 

on the scene

Both 
ALS & BLS 
available?

Yes

No

ALS 
available?

Selected BLS 

available

BLS serves 
patients,

waiting ALS

BLS arrives 

on the scene

Selected ALS 

available

ALS arrives on 

the scene

Yes

No

Closest BLS 

available

BLS arrives 

on the scene

BLS 

transport

BLS serves 
patients

BLS get back to 

original station

BLS get back to 

original station

Both ALS & BLS 
serve patients BLS get back to 

original station

ALS determines,
Need ALS care

BLS get back to 

original station

ALS 

transport

ALS serves 
patients

ALS get back 

to original 

station

ALS determines,
Need both ALS 

&BLS care

ALS get back to 

original stationBoth ALS & 
BLS serve 
patients

BLS get back to 

original station

ALS transport
ALS serves 

patients

ALS get back to 

original station

Figure A.1: The EMS system process 
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Call Arrival

Assign Call Priority & Call zone

Priority 1

Let j = {1,2,..,J} be preference list 

of ALS for zone i according to 

dispatch rule for priority1

jth choice Idle?

j = j +1

j > J

Let k = {1,2,..,K} be preference 

list of BLS for zone i according 

to dispatch rule for priority1

Let k = {1,2,..,K} be preference list of 

BLS for zone i according to dispatch rule 

for priority1

kth choice Idle?

Assign jth ALS & 

kth BLS to dispatch 

k = k +1

k > K

Assign only jth 

ALS to dispatch 
Set jth ALS & kth BLS are 

available, set status both are 1

Set jth ALS is busy. Set 

status is 2 jth ALS arrives to 

the scene first

Record response 

time of  jth ALS

Record response 

time of kth BLS

ALS-Downgrade?

BLS-Upgrade?

Waiting for the 

kth BLS

Waiting for the kth 

BLS

Waiting for 

the jth ALS
Waiting for the jth 

ALS

the kth BLS 

arrives?

the jth ALS 

serves 

patients

the kth BLS 

get back to 

original 

station

the jth ALS 

get back to 

original 

station

Set jth ALS 

is Idle

Set kth 

BLS is 

Idle

the kth BLS 

arrives?

the kth BLS 

serves patients

the  jth ALS 

transport 

to hospital 

& get back 

to original 

station

the kth BLS 

get back to 

original 

station

Set kth BLS 

is Idle

Set  jth ALS 

is Idle

the jth ALS 

arrives?

the jth ALS 

serves patients

the kth BLS 

get back to 

original 

station

the jth ALS 

get back to 

original 

station

Set jth ALS is 

Idle
Set kth BLS 

is Idle

the jth ALS arrives?

the kth BLS 

serves patients

the kth 

BLS get 

back to 

original 

station

Set kth BLS 

is Idle

Set  jth ALS 

is Idle

YES

YES

NO

NO

kth choice Idle?

Assign  kth BLS to dispatch and add 

queue for next ALS available (j)

k = k +1

k > K

Send to another 

system

Set kth BLS are busy

Set status is 4.

The kth BLS  arrives, 

Record response time of kth BLS

The jth ALS arrives, 

Record response time 

of jth ALS 

the jth ALS serves 

patients

the jth ALS get back 

to original station

Set jth ALS is 

Idle

the kth BLS serves 

patients

the kth BLS 

get back to 

original 

station

Set kth BLS 

is Idle

NO YES

YES

NO

YES

YES NO

NO

NO

YES

NO

YES
YESNO

NO

NO

NO

NO
YES

YES
YES YES

Call zone i

Waiting for the ALS (j) & Set 

ALS (j) is busy

the ALS(j) 

transport to 

hospital and get 

back to original 

station

Set ALS(j)  is 

Idle

the ALS (j) 

arrives

the  jth ALS 

transport to 

hospital & 

get back to 

original 

station

 

Figure A.2: Simulation flow chart of EMS systems 
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A.2 Swapping Procedure of Section 5 
 

We improve our solution by swapping the arrangement of the ordered preference list for priority3 

calls given that we have a fixed closest policy for priority1 and priority2 calls. 

Let   ai31, ai32,… , ai3K ϵ Ai    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 ci31, ci32,… , ci3K ϵ Ci    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 di31,di32,… , di3K ϵ Di    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 ru ϵ R    be the rank of BLS matrix (1 x K) that call volumes are sorted from Max to Min 

  k = ru    preferred as BLS: k is sorted as u
th
 in the matrix of rank of call volumes. 

    

Procedure Main { 

       Prohibit List ϵ  {ᶲ}  

      B = Big M; 

 for   k ϵ K  Do { 

      copy Ai to Ci       

   if  (k != rK) then { 

   vdev = υBLS:k - υBLS: rK 

   call Procedure swapping(k, rK, Ci ) 

  } 

  Loop to calculate busy probability {   

      calculate busy probability using  Step I 

  } 

  calculate the call volume using equation 15 

  calculate mean absolute deviation using equation 16 and 17 

  if   ( B B  ) then { 

   B B ; 

   copy Ci to Ai       

  } 

  }  

} 

Procedure swapping (k, rk, Ci ) { 
 B BigM   

 sum = 0; 

 For i ϵ N Do { 

   posk = position of server k in preference list of priority3 for call zone i 

   posrK = position of server rK in preference list of priority3 for call zone i 

 if (posk < posrK) then { 

   calculate the approximated  increasing of call volume for server  rK (denoted as vol) 

   if (posk = w && posrK = z) 

    vol=
1 2

( )
im w z

g g
 

   

if ( , , )Ki k r Prohibit List 

 sum = sum + vol 

 if   (sum <  vdev)  then           

  swap positions of ordered preference list between (k, rK) of call zone i 



 160 

      ex. (...,k ,..., rK ,...)  swap to  (...,rK ,..., k ,...)  

   

copy new swapping to Di  

 }  } 

 calculate the busy probability using step2 

 calculate the call volume using step3 

 calculate the mean absolute deviation( ''B ) using step 4 

 if   ( B B  ) then { 

   ''B B  ; 

   copy Di to Ci       

 } 

 if (no call zone i can be swapped)            

  For i ϵ N Do { 

   posk = position of server k in preference list of priority 3 forcall zone i 

   posrK = position of server rK in preference list of priority 3 forcall zone i 

  if (posk < posrK) then { 

if ( , , )Ki k r Prohibit List  

  swap positions of ordered preference list between (k, rK) of call zone i 

      ex. (...,k ,..., rK ,...)  swap to  (...,rK ,..., k ,...)   

  copy new swapping to Di 

 

   calculate the busy probability using step2 

   calculate the call volume using step3 

   calculate the mean absolute deviation( B  ) using step 4 

    } 

  if   ( B B  ) then { 

   ''B B  ; 

   copy Di to Ci       

  } 

 }   

}           
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A.3 Input Data of Section 6 
 

Response Times, Transportation Times and Proportion of call zones: Lognormal Distribution 

Demand 
Zone 

Call 
proportion Station 1 Station 2 Station 3 Station 4 

zone1 0.226034 (16.77,12.47) (15.43,11.47) (13.38,9.95) (8.03,5.97) 

zone2 0.019513 (32.14,23.89) (32.14,23.89) (19.87,14.77) (32.14,23.89) 

zone3 0.060281 (23.72,17.64) (9.92,7.38) (13.42,9.97) (18.84,14.01) 

zone4 0.043914 (26.26,19.52) (32.14,23.89) (26.07,19.38) (15.39,11.44) 

zone5 0.02657 (16.89,12.56) (24.56,18.26) (17.16,12.76) (28.44,21.14) 

zone6 0.09327 (10.07,7.48) (16.32,12.13) (32.14,23.89) (15.59,11.59) 

zone7 0.326744 (25.03,18.61) (9.85,7.32) (14.18,10.54) (15.04,11.18) 

zone8 0.065128 (18.82,13.99) (32.14,23.89) (13.74,10.21) (25.79,19.17) 

zone9 0.007525 (32.14,23.89) (32.14,23.89 (27.34,20.32) (20.9,15.53) 

zone10 0.077626 (12.6,9.36)  (19.62,14.59) (14.63,10.87) (12.7,9.44) 

zone11 0.029886 (22.98,17.08)  (18.28,13.59) (19.77,14.70) (19.69,14.63) 

zone12 0.023509 (32.14,23.89) (18.63,13.85) (32.14,23.89) (19.72,14.66) 

 

 

Service times and Proportion of Priority1, 2 and 3 calls: Exponential Distribution 
 

Demand 

Zone 

Proportion of 

Priority1 

calls 

Proportion 

of Priority2 

calls 

Proportion of 

Priority3 

calls 

Service times 

Priority1  Priority2,3 

zone1 0.394 0.098 0.508 67.07 60.24 

zone2 0.452 0.113 0.435 100.32 90.29 

zone3 0.394 0.098 0.508 62.44 55.86 

zone4 0.425 0.106 0.469 66.90 59.42 

zone5 0.409 0.102 0.489 65.25 57.76 

zone6 0.404 0.101 0.495 56.32 49.78 

zone7 0.443 0.111 0.446 54.18 48.36 

zone8 0.438 0.109 0.453 84.42 75.5 

zone9 0.417 0.104 0.479 104.31 92.93 

zone10 0.442 0.111 0.447 58.27 51.82 

zone11 0.434 0.109 0.457 81.38 72.32 

zone12 0.446 0.112 0.442 59.60 52.49 
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A.4 Results of Section 6 

Comparison of performance of closest policy and heuristic policy                                                                                                                                                  
3 ALS 3 BLS 12 Zones 

ALS1: Station 4, ALS2: Station 1 and ALS6: Station 4   BLS3: Station 4, BLS4: Station 1 and BLS5: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

Prob 

Survival 

% 

Imp. 

# of 

the 

imp. of 

lives 

saved  

/10,00

0 calls 

   

ALS1 

:St4 

ALS2 

:St1 

ALS3 

:St3 

BLS4 

: St 4 

BLS5 : 

St1 

BLS6: 

St1  

  

  

1 

 Closest 14.426 3.095 6.244 23.866 12.601 3.123 13.196 21.3385 0.1629   

0.25 Heuristic 14.418 3.178 6.171 16.159 13.762 11.372 13.764 4.7899 0.1656 1.657 27 

2 

 Closest 33.291 14.775 22.837 43.809 35.008 21.377 33.398 24.0423 0.1468   

0.50 Heuristic 33.070 14.919 22.088 33.285 31.402 36.985 33.890 6.1885 0.1507 2.657 39 

3 

 Closest 57.157 40.372 49.713 64.755 62.512 51.873 59.713 15.6815 0.1278   

0.75 Heuristic 55.962 39.028 48.152 57.720 60.973 58.605 59.100 3.7473 0.1316 2.973 38 

4 

 Closest 75.573 64.116 72.760 81.182 81.396 76.434 79.671 6.4729 0.1141   

1.00 Heuristic 75.222 64.093 72.406 77.431 81.101 80.589 79.707 4.5529 0.1163 1.928 22 

5 

 Closest 84.890 76.004 83.859 88.946 90.008 87.316 88.757 2.8823 0.1050   

1.25 Heuristic 84.580 76.115 83.661 87.225 90.070 89.081 88.792 3.1342 0.1069 1.810 19 

 

 2 ALS 3 BLS 12 Zones 

ALS1: Station 4 and ALS2: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival 

% 

Imp. 

# of 

the 

imp. of 

lives 

saved  

/10,00

0 calls 

   

ALS1 

:St4 

ALS2 

:St1 ALS3  

BLS4 

: St 4 

BLS5 : 

St1 

BLS6: 

St1  

  

  

1 

 Closest 26.931 16.378 N/A 30.512 22.589 12.760 21.954 18.3876 0.1494   

0.25 Heuristic 26.263 16.299 N/A 23.783 23.418 19.366 22.189 5.6459 0.1519 1.673 25 

2 

 Closest 67.365 60.347 N/A 69.235 65.956 58.293 64.494 12.4033 0.1275   

0.50 Heuristic 67.490 59.504 N/A 63.693 64.032 65.339 64.355 1.9677 0.1307 2.510 32 

3 

 Closest 86.742 83.833 N/A 87.912 86.718 83.091 85.907 5.6315 0.1162   

0.75 Heuristic 85.753 82.718 N/A 84.994 85.984 84.395 85.125 1.7198 0.1188 2.238 26 

4 

 Closest 92.738 91.311 N/A 93.392 93.271 91.106 92.590 2.9681 0.1086   

1.00 Heuristic 92.546 91.064 N/A 92.160 92.956 92.503 92.540 0.8331 0.1106 1.842 20 

5 

 Closest 95.031 94.756 N/A 96.007 95.955 94.764 95.575 1.6233 0.1034   

1.25 Heuristic 95.417 94.834 N/A 95.468 96.101 95.478 95.682 0.8380 0.1049 1.451 15 

2 ALS 3 BLS 12 Zones    

ALS1: Station 4 and ALS2: Station 3 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St4 

ALS2 

:St3 ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 25.435 16.914 N/A 30.649 22.429 12.272 21.783 19.0231 0.1570   

0.25 Heuristic 25.967 17.424 N/A 24.491 23.549 20.124 22.721 5.1956 0.1589 1.210 19 

2 

 Closest 67.604 62.086 N/A 70.644 67.231 59.498 65.791 12.5863 0.1347   

0.50 Heuristic 67.950 62.404 N/A 65.697 66.291 67.171 66.386 1.5689 0.1382 2.598 35 

3 

 Closest 85.974 84.695 N/A 88.273 87.139 83.535 86.316 5.5612 0.1239   

0.75 Heuristic 85.763 84.093 N/A 85.972 86.999 85.280 86.083 1.8309 0.1257 1.453 18 

4 

 Closest 92.766 91.843 N/A 93.847 93.542 91.586 92.991 2.8111 0.1151   

1.00 Heuristic 92.318 91.912 N/A 92.715 93.411 93.086 93.070 0.7117 0.1180 2.520 29 

5 

 Closest 95.105 95.160 N/A 96.315 96.156 95.055 95.842 1.5743 0.1098   

1.25 Heuristic 95.087 95.050 N/A 95.690 96.204 95.605 95.833 0.7417 0.1109 1.002 11 
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2 ALS 3 BLS 12 Zones    

ALS1: Station 3 and ALS2: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St3 

ALS2 

:St1 ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 27.923 15.408 N/A 30.769 22.017 12.348 21.712 18.7269 0.1303   

0.25 Heuristic 27.797 15.208 N/A 23.796 23.044 19.337 22.059 5.4439 0.1340 2.840 37 

2 

 Closest 67.346 60.687 N/A 69.874 66.125 57.869 64.623 13.5071 0.1114   

0.50 Heuristic 66.737 59.242 N/A 63.477 63.774 64.389 63.880 1.0173 0.1163 4.399 49 

3 

 Closest 85.296 82.720 N/A 86.907 85.847 81.593 84.782 6.3778 0.1014   

0.75 Heuristic 84.964 82.425 N/A 84.623 85.796 83.659 84.692 2.2065 0.1047 3.254 33 

4 

 Closest 92.057 91.143 N/A 93.264 92.810 90.761 92.279 3.0342 0.0948   

1.00 Heuristic 91.967 90.856 N/A 91.810 92.732 91.918 92.153 1.1574 0.0982 3.586 34 

5 

 Closest 94.644 94.460 N/A 95.699 95.656 94.283 95.213 1.8590 0.0903   

1.25 Heuristic 94.692 94.589 N/A 95.234 95.762 94.988 95.328 0.8683 0.0924 2.326 21 

1 ALS 3 BLS 12 Zones 

ALS1: Station 4    

  

  

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St4 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 69.275 N/A N/A 70.302 66.066 61.373 65.914 9.0810 0.1357   

0.25 Heuristic 67.841 N/A N/A 65.875 64.920 62.982 64.592 3.2207 0.1395 2.800 38 

2 

 Closest 91.567 N/A N/A 91.715 90.276 87.687 89.892 4.4105 0.1180   

0.50 Heuristic 91.379 N/A N/A 90.065 89.449 89.848 89.787 0.6764 0.1208 2.373 28 

3 

 Closest 96.304 N/A N/A 96.231 95.604 94.144 95.326 2.3650 0.1065   

0.75 Heuristic 96.260 N/A N/A 95.498 95.475 94.970 95.314 0.6887 0.1104 3.662 39 

4 

 Closest 98.002 N/A N/A 97.890 97.540 96.647 97.359 1.4245 0.1013   

1.00 Heuristic 97.830 N/A N/A 97.224 97.270 97.086 97.193 0.2144 0.1050 3.653 37 

5 

 Closest 98.625 N/A N/A 98.491 98.268 97.634 98.131 0.9933 0.0958   

1.25 Heuristic 98.577 N/A N/A 98.166 98.195 97.913 98.091 0.3570 0.0992 3.549 34 

1 ALS 3 BLS 12 Zones 

ALS1: Station 1         

 

  

   

ALS1 

:St1 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

 

   

1 

 Closest 61.254 N/A N/A 62.072 56.415 50.273 56.253 11.9599 0.1098   

0.25 Heuristic 60.813 N/A N/A 57.838 56.421 53.975 56.078 4.2067 0.1134 3.279 36 

2 

 Closest 89.427 N/A N/A 89.180 87.246 83.808 86.744 5.8728 0.0957   

0.50 Heuristic 89.183 N/A N/A 87.081 86.205 86.585 86.623 0.9145 0.1011 5.643 54 

3 

 Closest 95.404 N/A N/A 95.053 94.148 92.188 93.796 3.2167 0.0877   

0.75 Heuristic 95.014 N/A N/A 93.689 93.588 92.825 93.367 1.0841 0.0922 5.131 45 

4 

 Closest 97.437 N/A N/A 97.090 96.598 95.370 96.353 1.9659 0.0818   

1.00 Heuristic 97.276 N/A N/A 96.248 96.267 95.969 96.161 0.3840 0.0887 8.435 69 

5 

 Closest 98.305 N/A N/A 97.945 97.625 96.774 97.448 1.3489 0.0794   

1.25 Heuristic 98.205 N/A N/A 97.472 97.485 97.052 97.336 0.5693 0.0833 4.912 39 

1 ALS 3 BLS 12 Zones  ALS1: Station 3        

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1: 

St3 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 64.919 N/A N/A 65.869 60.854 55.387 60.704 10.6329 0.1185   

0.25 Heuristic 65.274 N/A N/A 62.838 61.604 59.477 61.306 3.6579 0.1216 2.616 31 

2 

 Closest 90.411 N/A N/A 90.368 88.621 85.579 88.189 5.2199 0.1037   

0.50 Heuristic 89.947 N/A N/A 88.210 87.444 87.819 87.824 0.7702 0.1077 3.857 40 

3 

 Closest 95.902 N/A N/A 95.711 94.947 93.240 94.633 2.7849 0.0932   

0.75 Heuristic 95.524 N/A N/A 94.469 94.434 93.767 94.223 0.9125 0.0972 4.292 40 

4 

 Closest 97.507 N/A N/A 97.249 96.800 95.620 96.557 1.8726 0.0881   

1.00 Heuristic 97.639 N/A N/A 96.854 96.866 96.633 96.784 0.3032 0.0923 4.767 42 

5 

 Closest 98.423 N/A N/A 98.179 97.908 97.133 97.740 1.2143 0.0850   

1.25 Heuristic 98.371 N/A N/A 97.821 97.842 97.478 97.714 0.4722 0.0879 3.412 29 
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