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Abstract

An identifying code in a graph is a dominating set that also has the property that the closed

neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum

cardinality of an identifying code in a graph G is denoted γID(G). We consider identifying codes of

the direct product Kn × Km. In particular, we answer a question of Klavžar and show the exact

value of γID(Kn×Km). It was recently shown by Gravier, Moncel and Semri that for the Cartesian

product of two same-sized cliques γID(Kn�Kn) = b 3n2 c. Letting m ≥ n ≥ 2 be any integers, we

show that γID(Kn�Km) = max{2m − n,m + bn/2c}. Furthermore, we improve upon the bounds

for γID(G�Km) and explore the specific case when G is the Cartesian product of multiple cliques.

Given two disjoint copies of a graph G, denoted G1 and G2, and a permutation π of V (G),

the permutation graph πG is constructed by joining u ∈ V (G1) to π(u) ∈ V (G2) for all u ∈ V (G1).

The graph G is said to be a universal fixer if the domination number of πG is equal to the domination

number of G for all π of V (G). In 1999 it was conjectured that the only universal fixers are the

edgeless graphs. We prove the conjecture.
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Chapter 1

Introduction

Identifying codes and domination have several applications. For example, suppose we want

to install motion sensors for a security system in a particular building. In order to guarantee that

an intruder is detected no matter which room he enters, we would need to install the sensors in such

a way so that each room either contains a sensor or shares a doorway with a room that contains

a sensor. Additionally, we may want to require that our security system gives us the specific room

that the intruder has entered. In either scenario, minimizing the cost of these sensors is important.

Therefore, if we consider the graph G that represents the layout of our building, in the first scenario

we seek a dominating set of G, and in the second scenario we seek an identifying code of G. The

focus of this thesis is in the area of domination and identifying codes in graph products.

This thesis is organized as follows. In Section 1.1, we give some standard definitions and

terminology. In Chapter 2, we give background information for the particular graph products that

we study, as well as previous results regarding identifying codes. Chapter 3 is dedicated to identifying

codes in the direct product of graphs and Chapter 4 focuses on identifying codes in the Cartesian

product of graphs. Chapter 5 focuses on the domination number of a constructed graph which is

not necessarily a graph product, but similar to the Cartesian product.

1.1 Definitions

A simple, undirected graph G consists of a finite non-empty set of vertices V (G) and a finite

set of edges E(G) which are unordered pairs (u, v) of distinct vertices of G, commonly written uv.
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If uv ∈ E(G), we say that u is adjacent to v. We say |V (G)| is the order of G.

Given a vertex x ∈ V (G), we let N(x) denote the open neighborhood of x, that is, the set of

vertices adjacent to x. If x has no neighbors, then we say x is isolated. The closed neighborhood of

x is N [x] = N(x)∪{x}. For S ⊆ V (G), the open neighborhood of S is N(S) = ∪v∈SN(v). Similarly,

the closed neighborhood of S is N [S] = N(S)∪S. Given a graph G and x ∈ V (G), the degree of x is

defined to be deg(x) = |N(x)|. The maximum degree of G is defined to be ∆(G) = maxv∈V (G) deg(v).

If for some constant r ∈ N, deg(v) = r for all v ∈ V (G), we say that G is r-regular. A complete graph

of order n, denoted Kn, is such that every pair of vertices is adjacent. Thus, Kn is (n− 1)-regular.

We will denote the graph consisting of n isolated vertices as Kn.

The path Pn is the graph whose vertices are v1, v2, . . . , vn and E(Pn) = {vivi+1 | 1 ≤ i ≤

n− 1}. The length of a path is the number of edges in the path. The cycle Cn is the graph whose

vertices are v1, v2, . . . , vn and E(Cn) = E(Pn) ∪ {v1vn}. The distance between two vertices u and

v, denoted dG(u, v), is the length of a shortest path between u and v.

Given a graph G, a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If a

subgraph H of G is such that for every pair of vertices u, v ∈ V (H) it is the case that uv ∈ E(H)

if and only if uv ∈ E(G), then H is an induced subgraph of G. A clique is a complete subgraph of a

given graph.

Let G and H be any two graphs. We say that G and H are isomorphic, and write G ∼= H,

if there exists a bijection φ : V (G)→ V (H) where xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(H) for all

x, y ∈ V (G). Such a map φ is an isomorphism. An automorphism of G is an isomorphism from G

to itself. We do not normally distinguish between isomorphic graphs. Thus, it is standard to write

G = H rather than G ∼= H. We say that G is symmetric if given any two pairs of adjacent vertices

u1v1 and u2v2, there is an automorphism φ : V (G)→ V (G) such that φ(u1) = u2 and φ(v1) = v2.

When analyzing an algorithm, we will use the following notation. Suppose f(x) and g(x)

are two functions defined on some subset of R. We write f(x) = O(g(x)) if and only if there exists

constants N and C such that |f(x)| ≤ C|g(x)| for all x > N . We write f(x) = Θ(g(x)) if and only if

f(x) = O(g(x)) and g(x) = O(f(x)). Additionally, we write f(x) = o(g(x)) if and only if for every

C > 0 there exists a real number N such that for all x > N we have |f(x)| < C|g(x)|.
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Chapter 2

Background

2.1 Cartesian Product

Given two graphs G and H, the Cartesian product of G and H, denoted G�H, is defined to

be the graph with vertex set V (G)× V (H), in which two vertices (x1, y1) and (x2, y2) are adjacent

if x1 = x2 and y1y2 ∈ E(H), or x1x2 ∈ E(G) and y1 = y2. Figure 2.1 depicts the Cartesian product

of P3 and K3.

y3

y2

y1

x1 x2 x3

Figure 2.1: P3�K3

Given the Cartesian product G�H, we refer to G as the first factor and to H as the second

factor. In each illustration of a Cartesian product, we represent the first factor horizontally and the

second factor vertically.
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2.1.1 Applications

The hypercube, or n-cube, is defined to be the graph Qn whose vertex set consists of all

vectors (v1, . . . , vn) ∈ {0, 1}n, in which two vertices are adjacent if and only if they differ in precisely

one coordinate. Figure 2.2 illustrates Q3, which is isomorphic to K2�K2�K2.

Figure 2.2: Q3

This particular class of Cartesian products is by far the most widely used in terms of graph

products. Notably, the hypercube has been an attractive model for the interconnection network

of multicomputer systems due to the fact that the diameter of Qn is n, which is relatively small

considering Qn contains 2n vertices. This translates to quick routing time of messages through the

network. Moreover, the n-cube is regular and symmetric, which allows for efficiency of algorithm

implementation, in that local algorithms work globally.

The grid graphs, or graphs of the form Pm�Pn, are another class of Cartesian products

that have been investigated for decades. Consider the process of Very-Large-Scale integration, or

VLSI, which creates integrated circuits by combining thousands of transistors into a single chip. The

microprocessor is one example of a VLSI device. Grid graphs model the constraint that within a

VLSI layout, wires can only run horizontally and vertically. Thus, routing problems on grid graphs

have important applications [30].

In chemical graph theory, the primary goal is to represent a molecule as a graph, and

then use graph properties to determine the behavior of the corresponding molecule. Benzenoid

graphs represent benzenoid hydrocarbons, which are important components of gasoline, yet have

carcinogenic properties. Considering water and soil contamination of this molecule continue to rise,

information derived from graph theoretical properties is well received in the chemical community.

In 1996, Chepoi [8] showed that benzenoid graphs can be isometrically embedded into the Cartesian

product of three trees. This in turn gave rise to a linear time algorithm for computing the Wiener

4



index [9], or the sum of the distances between all pairs of vertices, for these benzenoid graphs.

2.1.2 Algebraic Structure

Let Γ represent the set of all finite, simple graphs, and ∪ represent the disjoint union

operation for graphs. We first show that Γ with the operations ∪ and � forms a familiar algebraic

structure. The results included in this section are given in the Handbook of Product Graphs [23,

pg. 53-54]. We take the time to prove these results as some of the details have been omitted in [23].

Recall that a monoid is a set S, together with a binary operation ·, where each of the

following is satisfied.

(a) For all a, b ∈ S, a · b ∈ S. (closure)

(b) For all a, b, c ∈ S, (a · b) · c = a · (b · c). (associativity)

(c) There exists an element e ∈ S, such that for every a ∈ S, e · a = a · e = a.

In terms of Γ and the graph operation ∪, it is almost immediate that (Γ,∪) is a monoid.

Certainly the disjoint union of two simple, finite graphs is itself a simple, finite graph. Moreover,

for any G,H, and K in Γ,

(G ∪H) ∪K = G ∪H ∪K = G ∪ (H ∪K) .

Finally, note that the identity element in this case is the empty graph, O. Thus, (Γ,∪) is a monoid.

We next show that Γ is a monoid with respect to the graph operation � .

Proposition 1. [23] The set of all simple, finite graphs is a monoid under the graph operation

Cartesian product.

Proof. Closure is immediate from the definition of Cartesian product. Let G,H, and K be graphs

in Γ. We wish to show that (G�H)�K = G�(H�K). Define

φ : V (G�H)× V (K)→ V (G)× V (H�K)

φ(((x, y), z)) = (x, (y, z))

for all x ∈ V (G), y ∈ V (H), and z ∈ V (K). Suppose that ((x1, y1), z1) is adjacent to ((x2, y2), z2)

5



in (G�H)�K, where xi ∈ V (G), yi ∈ V (H), and zi ∈ V (K) for i ∈ {1, 2}. It follows that either

(x1, y1) = (x2, y2) and z1z2 ∈ E(K) or (x1, y1)(x2, y2) ∈ E(G�H) and z1 = z2.

1. Suppose that (x1, y1) = (x2, y2) and z1z2 ∈ E(K). Thus, x1 = x2, y1 = y2, and (y1, z1)

is adjacent to (y2, z2) in H�K since z1z2 ∈ E(K). Furthermore, since x1 = x2, we know

(x1, (y1, z1)) is adjacent to (x2, (y2, z2)) in G�(H�K).

2. Suppose z1 = z2 and (x1, y1)(x2, y2) ∈ E(G�H). This implies that either x1 = x2 and

y1y2 ∈ E(H), or x1x2 ∈ E(G) and y1 = y2. So assume that x1 = x2 and y1y2 ∈ E(H). It

follows that (y1, z1)(y2, z2) ∈ E(H�K) since z1 = z2 and y1y2 ∈ E(H). Thus, (x1, (y1, z1)) is

adjacent to (x2, (y2, z2)) in G�(H�K). A similar argument shows the same conclusion when

x1x2 ∈ E(G) and y1 = y2.

Thus,

((x1, y1), z1)((x2, y2), z2) ∈ E((G�H)�K)

implies

(x1, (y1, z1))(x2, (y2, z2)) ∈ E(G�(H�K)),

and we have shown that φ is a homomorphism. Clearly, φ is onto. We next show that φ is injective.

Suppose that φ(((x1, y1), z1)) = φ(((x2, y2), z2)) for some xi ∈ V (G), yi ∈ V (H), zi ∈ V (K), i ∈

{1, 2}. It follows that (x1, (y1, z1)) = (x2, (y2, z2)) if and only if x1 = x2, y1 = y2, and z1 = z2.

Thus, ((x1, y1), z1) = ((x2, y2), z2) and φ is a bijection. So φ−1 exists and the reverse of the above

argument shows that φ−1 is also a homomorphism. Therefore, associativity holds for any G,H, and

K in Γ under � .

Finally, notice that K1, the graph consisting of a single vertex, is the identity element for Γ

under � . So (Γ, �) is, indeed, a monoid.

Recall that a semiring is a set R together with two binary operations, + and ·, that satisfies

the following.

(a) (R,+) is a commutative monoid,

(b) (R, ·) is a monoid,

(c) a · (b+ c) = a · b+ a · c for every a, b, c ∈ R,

6



(d) The additive identity 0 annihilates R. That is, for every a ∈ R, a · 0 = 0.

In the context of Γ with the graph operations ∪ and � , we next show that (Γ,∪, �) is a semiring.

Proposition 2. [23] The set of all simple, finite graphs forms a semiring under the graph operations

disjoint union and Cartesian product.

Proof. We have already shown that (Γ,∪) and (Γ, �) are monoids. Furthermore, given graphs G

and H, G ∪H = H ∪ G. Thus, (Γ,∪) is a commutative monoid. Next, notice that for any G ∈ Γ,

V (G�O) = ∅. Thus, G�O = O.

Finally, let G,H, and K be graphs in Γ and define

ψ : V (G�(H ∪K))→ V ((G�H) ∪ (G�K))

φ((x, y)) = (x, y)

for all x ∈ V (G) and y ∈ V (H ∪K). Suppose for some x1, x2 ∈ V (G) and y1, y2 ∈ V (H ∪K) that

(x1, y1) is adjacent to (x2, y2) in G�(H ∪K). This implies that x1 = x2 and y1y2 ∈ E(H ∪K) or

x1x2 ∈ E(G) and y1 = y2.

1. Suppose that x1 = x2 and y1y2 ∈ E(H ∪ K). It follows that either y1 and y2 are both

vertices of H or both vertices of K. Assume first that y1, y2 ∈ V (H), and y1y2 ∈ E(H).

Thus, (x1, y1), (x2, y2) ∈ V (G�H) and (x1, y1)(x2, y2) ∈ E(G�H). On the other hand, if

y1, y2 ∈ V (K), then (x1, y1)(x2, y2) ∈ E(G�K).

2. Suppose that x1x2 ∈ E(G) and y1 = y2, which implies that y1 ∈ V (H) or y1 ∈ V (K).

If y1 ∈ V (H), then (x1, y1)(x2, y2) ∈ E(G�H). On the other hand, if y1 ∈ V (K), then

(x1, y1)(x,y2) ∈ E(G�K).

Thus, ψ is a homomorphism. It is clear that ψ is a bijection so ψ−1 exists. Moreover, the reverse

argument shows that ψ−1 is a homomorphism as well. Therefore, G�(H ∪K) = (G�H)∪ (G�K),

and we conclude that (Γ,∪, �) is a semiring.

There are several important implications of Proposition 2. First note that since (Γ, �) is a

monoid, associativity allows us to drop the parantheses when taking the product of at least three

graphs. That is, we may use the notation G�H�K to denote (G�H)�K and G�(H�K), since

these two graphs are isomorphic. Furthermore, notice that if we define f : V (G�H)→ V (H�G) as

7



f((x1, y1)) = (y1, x1), then f is an isomorphism. This implies that (Γ, �) is a commutative monoid.

In Chapter 4, we consider graphs of the form Kn�Km where 2 ≤ n ≤ m. Thus, the fact that

commutativity holds with respect to the Cartesian product guarantees that we have considered all

graphs of the form Kn�Km for n,m ∈ N≥2. Finally, the fact that the Cartesian product satisfies

G�(H∪K) = (G�H)∪(G�K) allows us to consider the Cartesian product of disconnected graphs.

2.2 Direct Product

Given two graphs G and H, the direct product G ×H is the graph whose vertex set is the

Cartesian product V (G)× V (H) and whose edge set is

E(G×H) = {(x1, y1)(x2, y2) | x1x2 ∈ E(G) and y1y2 ∈ E(H)}.

Figure 2.3 depicts the direct product of K2 and K3. Other names for the direct product that have

appeared in the literature are tensor product, Kronecker product, cardinal product, relational product,

cross product, conjunction, weak direct product, Cartesian product, or categorical product.

y3

y2

y1

x1 x2

Figure 2.3: K2 ×K3

2.2.1 Algebraic Structure

Let Γ0 represent the set of all finite graphs, which may or may not be simple. Similar to the

Cartesian product, (Γ0,∪) is clearly a monoid with identity element O. We now show that (Γ0,×)

is a monoid and (Γ0,∪,×) is a semiring. As in Section 2.1.2, the results that follow are stated in

[23, pg. 55-56], and we provide the details that have been omitted in [23].
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Proposition 3. [23] The set of all finite graphs is a monoid under the graph operation direct product.

Proof. Let G, H, and K be graphs in Γ0. Since G and H are finite, G × H is also finite. Thus,

closure is satisfied. We next show that (G×H)×K = G× (H ×K). Define

φ : V ((G×H)×K)→ V (G× (H ×K))

φ(((x, y), z)) = (x, (y, z))

for all x ∈ V (G), y ∈ V (H), and z ∈ V (K). Suppose that ((x1, y1), z1) is adjacent to ((x2, y2), z2)

in (G × H) × K, where xi ∈ V (G), yi ∈ V (H), and zi ∈ V (K) for i ∈ {1, 2}. It follows that

(x1, y1)(x2, y2) ∈ E(G×H) and z1z2 ∈ E(K), which implies that x1x2 ∈ E(G), y1y2 ∈ E(H), and

z1z2 ∈ E(K). Thus, (y1, z1) is adjacent to (y2, z2) in H × K, so that (x1, (y1, z1))(x2, (y2, z2)) ∈

E(G× (H ×K)). Since the choice of ((x1, y1), z1) and ((x2, y2), z2) was arbitrary, φ is a homomor-

phism. We next show that φ is injective. Suppose that φ(((x1, y1), z1)) = φ(((x2, y2), z2)) for some

xi ∈ V (G), yi ∈ V (H), zi ∈ V (K), i ∈ {1, 2}. It follows that (x1, (y1, z1)) = (x2, (y2, z2)) if and only

if x1 = x2, y1 = y2, and z1 = z2. Thus, ((x1, y1), z1) = ((x2, y2), z2) and φ is a bijection. So φ−1

exists and the reverse of the argument above shows that φ−1 is also a homomorphism. It follows

that associativity holds for any G,H, and K in Γ0 under ×. Finally, notice that Ks
1 , the graph

consisting of a single loop, is the identity element for Γ0 under ×. Thus, (Γ0,×) is a monoid.

Proposition 4. [23] The set of all finite graphs forms a semiring under the graph operations disjoint

union and direct product.

Proof. We have already seen that (Γ0,∪) and (Γ0,×) are monoids. Furthermore, G ∪H = H ∪ G

implies that (Γ0,∪) is a commutative monoid. Next, note that for any graph G ∈ Γ0, V (G×O) = ∅.

Thus, G×O = O.

Finally, let G,H, and K be in Γ0. We need to show that G× (H ∪K) = (G×H)∪ (G×K).

Define

φ : V (G× (H ∪K))→ V ((G×H) ∪ (G×K))

φ((x, y)) = (x, y)

for all x ∈ V (G) and y ∈ V (H ∪ K). Suppose (x1, y1)(x2, y2) ∈ E(G × (H ∪ K)), where xi ∈
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V (G) and yi ∈ V (H ∪ K) for i ∈ {1, 2}. By definition of the direct product, x1x2 ∈ E(G) and

y1y2 ∈ E(H ∪ K). This implies that either y1y2 ∈ E(H) or y1y2 ∈ E(K). If y1y2 ∈ E(H), then

(x1, y1)(x2, y2) ∈ E(G × H). Otherwise, (x1, y1)(x2, y2) ∈ E(G × K). So φ is a homomorphism.

Clearly, φ is a bijection so φ−1 exists. The reverse of the above argument shows that φ−1 is a

homomorphism. It follows that (Γ0,∪,×) is a semiring.

As in Section 2.1.2, the fact that associativity holds with respect to the direct product allows

us to write G×H×K to denote (G×H)×K and G× (H×K) as these two graphs are isomorphic.

Moreover, if we define f : V (G×H)→ V (H×G) as f((x1, y1)) = (y1, x1), then f is an isomorphism.

This implies that (Γ0,×) is a commutative monoid. Thus, when we consider graphs of the form

Kn × Km where 3 ≤ n ≤ m in Chapter 3, commutativity guarantees that we have considered all

graphs of the form Kn ×Km where n,m ∈ N≥3.

2.3 Generalized Prisms

Given a graph G and any permutation π of V (G), the prism of G with respect to π is

the graph πG obtained by taking two disjoint copies of G, denoted G1 and G2, and joining every

u ∈ V (G1) with π(u) ∈ V (G2). That is, the edges between G1 and G2 form a perfect matching in

πG.

If π is the identity 1G, then πG = G�K2. The graph G�K2 is often referred to as the

prism of G. The study of domination in the prism of a graph was initiated by Hartnell and Rall in

[24]. In general, πG is not a graph product and appears to have no algebraic structure. In Chapter

5, we resolve a conjecture regarding this particular type of graph.

2.4 Identifying Codes

Given a graph G and a vertex v ∈ V (G), we define the ball of radius r centered at v to be

Br(v) = { u ∈ V (G) | dG(u, v) ≤ r }. A set C ⊆ V (G) is an r-identifying code of G if

(i) for every u ∈ V (G), Br(u) ∩ C 6= ∅, and

(ii) for every pair of distinct vertices u, v in G, Br(u) ∩ C 6= Br(v) ∩ C.
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The first to study identifying codes were Karpovsky, Chakrabarty and Levitin [28] who used them

to analyze fault-detection problems in multiprocessor systems. For the purpose of this dissertation,

we let r = 1 and refer to a 1-identifying code as simply an identifying code. Thus, condition (i)

becomes N [u] ∩ C 6= ∅ and condition (ii) becomes N [u] ∩ C 6= N [v] ∩ C.

Identifying codes can be restated in the context of another familiar graph parameter. Given

a graph G, a set of vertices D ⊆ V (G) is a dominating set if V (G) = N [D]. That is, D is a

dominating set of G if every vertex v ∈ V (G) −D is adjacent to a vertex w ∈ D. The domination

number, denoted γ(G), is the minimum cardinality of a dominating set of G. So we can restate the

definition of an identifying code as follows: a subset C ⊆ V (G) is an identifying code of G if C is a

dominating set and for every pair of distinct vertices u, v in G, N [u] ∩ C 6= N [v] ∩ C.

Given an identifying code, or ID code, C, we call the vertices of C codewords. A pair of

vertices u, v ∈ V (G) are separated by x ∈ C if x belongs to exactly one of the closed neighborhoods

N [u] or N [v]. Given a set C ⊆ V (G), we say C separates V (G) if for every pair of vertices

u, v ∈ V (G), there exists a codeword c ∈ C such that c separates u and v. Therefore, a dominating

set C in G is an identifying code if C separates V (G). The black vertices of Figure 2.4 illustrate a

minimum identifying code.

Figure 2.4: Example of a minimum identifying code

Although all graphs possess a dominating set, not all graphs possess an identifying code.

For example consider the graph K3. For any two distinct vertices u, v ∈ V (K3), N [u] = N [v].

Therefore, no subset of V (K3) separates V (K3). Given a graph G, we refer to two distinct vertices

u, v ∈ V (G) such that N [u] = N [v] as twins, and we say G is twin-free if it contains no such pair.

Thus, a graph G admits an identifying code if and only if G is twin-free.
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As with dominating sets, we focus on the minimum cardinality of an identifying code, which

we denote by γID(G). Since any identifying code is also a dominating set, we know γ(G) ≤ γID(G).

Notice that constructing an identifying code in G is enough to give an upper bound for γID(G).

However, establishing a lower bound for γID(G) can be significantly harder. That is, proving a

dominating set C ⊆ V (G) that separates V (G) is of minimum cardinality can be significantly

harder. The majority of Chapters 3 and 4 is dedicated to proving that a proposed upper bound for

γID(Kn × Km) or γID(Kn�Km) for any m,n ∈ N is also a lower bound, thereby giving an exact

value. In the remainder of this section, we survey the literature for known lower bounds for γID(G)

given any graph G.

2.4.1 Lower Bounds

A general lower bound for the size of an identifying code of a twin-free graph was first given

in the original paper by Karpovsky, Chakrabarty and Levitin [28].

Theorem 5. [28, Theorem 1, pg. 599] If G is a twin-free graph on n vertices, then

γID(G) ≥ dlog2(n+ 1)e.

The bound given in Theorem 5 is tight, and all graphs achieving this bound are characterized

in [35]. Karpovsky et al. [28] also gave a general lower bound of γID(G) based on the maximum

degree of G. Foucaud [15] later improved this to the lower bound given below.

Theorem 6. [15, Theorem 2.1, pg. 25] If G is a twin-free, connected graph on n vertices, then

γID(G) ≥ 2n

∆(G) + 2
.

Identifying codes have been studied in certain families of graphs, including trees [3], paths [2,

7, 27], and cycles [2, 19, 40, 7, 27]. An excellent, detailed list of references on identifying codes can

be found on Antoine Lobstein’s webpage [33]. In terms of graph products, a few of the more

recent results have been in the study of hypercubes [4, 25, 26, 29, 34], the Cartesian product of

cliques [18, 20], and the lexicographic product of two graphs [14]. Additionally, there has been a

considerable amount of research on identifying codes in infinite grids. Of the infinite grid graphs

that have been studied, the two that bear the closest resemblance to our Kn ×Km and Kn�Km
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for m,n ∈ N are the infinite square grid and the infinite king grid defined below where Z2 = Z× Z.

1. The infinite square grid Gs has V (Gs) = Z2 in which two vertices are adjacent if their Euclidean

distance is 1.

2. The infinite king graph Gk has V (Gk) = Z2 in which two vertices are adjacent if their Euclidean

distance is 1 or
√

2.

In the context of an infinite graph, bounding the size of an identifying code loses all meaning.

If we let Rn = {(x, y) ∈ Z2 | |x| ≤ n, |y| ≤ n }, then the density of an identifying code C is defined

as

D = lim sup
n→∞

|C ∩Rn|
|Rn|

.

This definition of density is analogous to computing the ratio of code words to the number of vertices

in the graph.

Cohen et al. [11] show that the density of any identifying code in the king grid is at least

2
9 . Ben-Haim et al. [1] prove that the minimum density of an identifying code in the square grid is

7
20 . However, the fact that our graphs are neither a king grid graph or a square grid graph, nor are

they infinite means much of this work will not be of any use in later chapters.

In 2008, Gravier et al. [20] considered identifying codes in the Cartesian product of two

same-sized cliques.

Theorem 7. [20, Theorem 1, pg. 2] If C is a minimum identifying code of Kn�Kn, then |C| =⌊
3n
2

⌋
.

Theorem 7 is the primary motivation behind the work found in Chapters 3 and 4. In Chapter

3, we consider the problem posed by Klavžar at the Bordeaux Workshop on Identifying Codes in

2011 [32] to compute γID(Kn × Km). In Chapter 4, we go back to the original result in [20] and

generalize Theorem 7 to include the Cartesian product of two cliques of any size.

Of course, one should also consider the lower bounds for other relevant graph parameters

before continuing. El-Zaher and Pareek [12] observed that γ(G�H) is at least the minimum of

the orders of G and H. Assuming n ≤ m, it follows easily that γ(Kn�Km) = n. Showing that

γ(Kn × Km) = 3 is also relatively easy. When we apply the lower bound given in Theorem 6 to

Kn × Km, we get γID(Kn × Km) ≥ 2mn
mn−m−n+3 . Combining the lower bounds for γID(Kn × Km)
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from Theorem 6 and from γID(Kn ×Km) ≥ γ(Kn ×Km), we get

γID(Kn ×Km) ≥ max

{⌈
2mn

(m− 1)(n− 1) + 2

⌉
, 3

}
= 3 for 3 ≤ n ≤ m.

We show in Chapter 3 that this lower bound is not sharp. In particular, we prove that

γID(Kn ×Km) is the closest integer to 2
3 (m+ n) for 6 ≤ n ≤ m.

On the other hand, when we apply the lower bound of Theorem 6 to Kn�Km, we get

γID(Kn�Km) ≥ 2mn
m+n . Since

2mn

m+ n
≥ 2n2

2n
= n,

and m ≥ n, the lower bound given in Theorem 6 is equal to γ(Kn�Km) only when m = n and is

better when m > n. We show in Chapter 4 that

γID(Kn�Km) =


m+ bn/2c if m ≤ 3n/2

2m− n if m ≥ 3n/2.

There is another variation of domination that is closely related to identifying codes. A set

C ⊆ V (G) is said to be a locating-dominating set of G if C is a dominating set and C separates

every pair of distinct vertices in V (G) − C. Figure 2.5 illustrates a locating-dominating set. The

size of a minimum locating-dominating set of a graph G is denoted γL(G). Since an identifying code

of a graph G is necessarily a locating-dominating set, then we have γID(G) ≥ γL(G).

(a) locating-dominating set in C5 (b) ID code in C5

Figure 2.5: Examples of locating-dominating sets and ID codes in C5

In [38], Slater proved that for any d-regular graph G on n vertices, γL(G) ≥ 2n
d+3 . This bound

is indeed tight, but does not give us any further information about γID(Kn×Km) or γID(Kn�Km).
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Chapter 3

Identifying codes of the direct

product of two cliques

3.1 Introduction

This chapter is an expanded version of [37], where we focus on the cardinality of a minimum

identifying code for the direct product of two nontrivial cliques. As all proofs are provided, we do

not give specific references to this paper in this chapter.

For a positive integer n we write [n] to denote the set {1, 2, . . . , n}, and [n] will be the vertex

set of the complete graph Kn. In the direct product Kn ×Km we refer to a column as the set of

all vertices having the same first coordinate. A row is the set of all vertices with the same second

coordinate. In particular, for i ∈ [n], the ith column is Ci = {(i, j) | j ∈ [m]}. Similarly, for j ∈ [m]

the jth row is the set Rj = {(i, j) | i ∈ [n]}. Using this terminology we see that two vertices of

Kn × Km are adjacent precisely when they belong to different rows and to different columns. In

each figure, rows will be horizontal and columns vertical. For ease of reference in this chapter we

refer to Kn as the first factor of Kn ×Km and Km as the second factor. The two product graphs

Kn ×Km and Km ×Kn are clearly isomorphic under a natural map. Throughout the remainder of

this work we always have the smaller factor first.

Let G = Kn ×Km, and suppose that C is a code in G. The column span of C is the set of

all columns of G that have a nonempty intersection with C. The number of columns in the column
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span of C is denoted by cs(C). Similarly, the set of all rows of G that contain at least one member

of C is the row span of C; its size is denoted rs(C). For a vertex v = (i, j) of G we say that v is

column-isolated in C if C ∩Ci = {v}. Similarly, if C ∩Rj = {v} then we say that v is row-isolated in

C. If v is both column-isolated and row-isolated in C, we simply say v is isolated in C. When there

is no chance of confusion and the set C is clear from the context we shorten these to column-isolated,

row-isolated and isolated, respectively.

3.2 Main Results

We give statements of the main results here, and the proofs will be given in subsequent

subsections.

Note that K2×K2 has vertices with identical closed neighborhoods and so has no ID code.

Theorem 8. For any positive integer m ≥ 5, γID(K2 ×Km) = m − 1. In addition, if 3 ≤ m ≤ 4,

γID(K2 ×Km) = m.

For 3 ≤ n ≤ 5 and n ≤ m ≤ 2n−1 the values of γID(Kn×Km) were computed by computer

program and are given in the following table.

n\m 3 4 5 6 7 8 9
3 4 4 5
4 5 6 7 7
5 6 7 8 9 9

Table 3.1: γID(Kn ×Km) for small n and m

The remaining cases are handled based on the order of the second factor relative to the

first factor. Theorem 9 presents this number if both cliques have order at least 3 and one clique is

sufficiently large compared to the other; its proof is given in Section 3.4.

Theorem 9. For positive integers n and m where n ≥ 3 and m ≥ 2n,

γID(Kn ×Km) = m− 1 .

In all other cases (that is, for 6 ≤ n ≤ m ≤ 2n − 1), the minimum cardinality of an ID

code for Kn ×Km is one of the values b2(n+m)/3c or d2(n+m)/3e. The number γID(Kn ×Km)
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depends on the congruence of n+m modulo 3. It turns out there are only two general cases instead

of three, but one of them has an exception to the easily stated formula. The exact values are given

in the following results whose proofs are given in Section 3.4.

Theorem 10. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n − 1. If n + m ≡ 0

(mod 3) or n+m ≡ 2 (mod 3), then

γID(Kn ×Km) =

⌊
2m+ 2n

3

⌋
.

Theorem 11. For a positive integer n ≥ 6,

γID(Kn ×K2n−5) = 2n− 4 .

Theorem 12. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n− 2 and m 6= 2n− 5. If

n+m ≡ 1 (mod 3), then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.

3.3 Preliminary Properties

In this section we prove a number of results that will be useful in verifying the minimum

size of ID codes in the direct product of two complete graphs. It will be helpful in what follows to

remember that a vertex is adjacent to (i, j) in Kn×Km precisely when its first coordinate is different

from i and its second coordinate is different from j. Also, recall that we are assuming throughout

that n ≤ m.

Lemma 13. If C is an identifying code of Kn ×Km, then cs(C) ≥ n − 1 and rs(C) ≥ m − 1. In

particular, |C| ≥ m− 1.

Proof. Suppose that for some r 6= s, C ∩ Rr = ∅ = C ∩ Rs. For any fixed i ∈ [n], C ∩ N [(i, r)] =

C \Ci = C∩N [(i, s)]. Since this violates C being an ID code, Kn×Km has at most one row disjoint

from C. A similar argument shows that Kn ×Km has no more than one column disjoint from C.

Consequently, |C| ≥ m− 1.

By considering N [x], the following result is obvious but useful. We omit its proof.
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Lemma 14. If C ⊆ V (Kn×Km) and x = (i, r) ∈ C, then C separates x from any y ∈ (Rr∪Ci)\{x}.

Lemma 14 addresses separating two vertices that belong to the same row or to the same

column. The next result concerns vertices that are not in a common row or common column, that

is, two vertices at opposite “corners” of a two-row and two-column configuration in Kn ×Km.

Lemma 15. (4-Corners Property) Suppose C is a dominating set of Kn×Km. For each (i, r), (j, s) ∈

Kn ×Km with i 6= j, r 6= s, C separates (i, r) and (j, s) if and only if

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s}.

Proof. Suppose that i 6= j and r 6= s, and let Ci, Cj and Rr, Rs be the corresponding columns and

rows of Kn ×Km. Write x = (i, r), y = (j, s), w = (i, s) and z = (j, r), and define

A = C \ (C ∩ (Ci ∪ Cj ∪Rr ∪Rs))

B = [C ∩ (Ci ∪ Cj ∪Rr ∪Rs)] \ {x, y, w, z}.

Observe that

C ∩N [x] = A ∪ (C ∩ {x, y}) ∪ (C ∩ ((Rs ∪ Cj) \ {x, y, w, z}))

C ∩N [y] = A ∪ (C ∩ {x, y}) ∪ (C ∩ ((Rr ∪ Ci) \ {x, y, w, z})).

Therefore, C separates x and y if and only if at least one of the two disjoint sets C ∩ ((Rs ∪ Cj) \

{x, y, w, z}) or C ∩ ((Rr ∪ Ci) \ {x, y, w, z}) is non-empty. Since B is the union of these 2 sets, it

follows that C separates x and y if and only if B 6= ∅, or equivalently if and only if

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s} .

We will say that a dominating set D of Kn×Km has the 4-corners property with respect to columns

Ci, Cj and rows Rr, Rs if

D ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s} .
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Hence, if a dominating set D of Kn ×Km is an ID code, then D has the 4-corners property with

respect to every pair of columns and every pair of rows. Each of the next three results follows

immediately from this fact.

Corollary 16. If C is an identifying code of Kn × Km, then C has no more than one isolated

codeword.

Corollary 17. Let C be an identifying code of Kn × Km. If cs(C) = n − 1, then there does not

exist a column Cj such that C ∩Cj = {u, v} where both u and v are row-isolated. Similarly, there is

no row Rr containing exactly two codewords each of which is column-isolated if rs(C) = m− 1.

Corollary 18. If C is an identifying code of Kn×Km such that cs(C) = n− 1 and rs(C) = m− 1,

then C has no isolated codeword.

The next two results will be used to construct ID codes, thereby providing an upper bound

for γID(Kn ×Km). Which one is used will depend on the congruence of n+m modulo 3.

Proposition 19. If C ⊆ V (Kn ×Km) satisfies the following conditions, then C is an identifying

code of Kn ×Km.

(1) There exist 1 ≤ n1 < n2 < n3 ≤ n and 1 ≤ m1 < m2 < m3 ≤ m such that

(n1,m1), (n2,m2), (n3,m3) ∈ C;

(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or column-

isolated; and

(3) rs(C) = m and cs(C) = n.

Proof. Assume C is as specified. For ease of reference we denote the graph Kn×Km by G through-

out this proof. By the first assumption above it follows immediately that C dominates G since

{(n1,m1), (n2,m2), (n3,m3)} does.

We need only to show that C separates every pair x, y of distinct vertices. First assume

that x and y are in the same column. If x or y belongs to C, then Lemma 14 shows that C separates

them. If neither is in C, then by our assumption that rs(C) = m and cs(C) = n we can choose a

vertex z ∈ C from the same row as x. This vertex z separates x and y. Similarly, C separates any

two vertices belonging to a common row.
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Now, assume x = (i, r) and y = (j, s) where 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ m. Any

v = (k, t) ∈ C that is not isolated in C is row-isolated or column-isolated but not both, and it

follows that either |C ∩ Ck| ≥ 2 or |C ∩Rt| ≥ 2.

(a) Suppose x ∈ C but is not isolated in C. As above, either |C ∩Ci| ≥ 2 or |C ∩Rr| ≥ 2. Assume

without loss of generality that |C ∩ Ci| ≥ 2. It follows that either (i, s) ∈ C or there exists

1 ≤ t ≤ m where t 6∈ {r, s} and (i, t) ∈ C. In the first case where we have (i, s) ∈ C, it

follows that (i, s) is row-isolated, and thus y 6∈ C. However, each column of G is in the column

span of C so there exists 1 ≤ p ≤ m where p 6∈ {r, s} and (j, p) ∈ C since (i, r) and (i, s) are

row-isolated. Thus, (j, p) ∈ C ∩N [x] but (j, p) 6∈ C ∩N [y]. Hence, C separates x and y. On

the other hand, if there exists 1 ≤ t ≤ m where t 6∈ {r, s} and (i, t) ∈ C, then (i, t) ∈ C ∩N [y]

but (i, t) 6∈ C ∩N [x]. Again, this implies that C separates x and y. If we had instead assumed

that |C ∩ Rr| ≥ 2, that is we had assumed x is column-isolated and not row-isolated, then a

similar argument shows that C separates x and y.

(b) Suppose x ∈ C and is isolated in C. Since x is both row-isolated and column-isolated, C =

C∩N [x]. First assume that y 6∈ C. Since Cj is in the column span of C, there exists 1 ≤ t ≤ m

with t 6∈ {r, s} such that (j, t) ∈ C, and (j, t) separates x and y. On the other hand, if y ∈ C,

then either |C ∩ Cj | ≥ 2 or |C ∩Rs| ≥ 2 since y is not isolated. In either case, C ∩N [y] 6= C,

and therefore C separates x and y.

(c) Suppose x, y ∈ V (G) \ C. If we assume that C does not separate x and y, then because each

row of G is in the row span of C and each column of G is in the column span of C, it follows

that

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) = {(i, s), (j, r)} .

Thus, by definition, both (i, s) and (j, r) are isolated in C, contradicting the second assumption.

Hence, C separates x and y.

Therefore, C separates every pair of distinct vertices, and thus C is an ID code of Kn ×Km.

Proposition 20. If C ⊆ V (Kn ×Km) satisfies the following conditions, then C is an identifying

code of Kn ×Km.

(1) There exist 1 ≤ n1 < n2 < n3 ≤ n and 1 ≤ m1 < m2 < m3 ≤ m such that

(n1,m1), (n2,m2), (n3,m3) ∈ C;
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(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or column-

isolated;

(3) rs(C) = m− 1 and cs(C) = n; and

(4) If Rr has the property that every v ∈ C ∩ Rr is column-isolated but not row-isolated, then

|C ∩Rr| ≥ 3.

Proof. As in the proof of Proposition 19 we see that C dominates G = Kn ×Km.

We show that C separates every pair x, y of distinct vertices in G. Let Rr be the row not

in the row span of C. Notice that G \ Rr
∼= Kn × Km−1 and that C satisfies the hypotheses of

Proposition 19 when considered as a subset of V (G) \Rr. Thus, C separates x, y if neither is in Rr,

and so we may assume that x ∈ Rr, say x = (i, r).

(a) First assume that y = (j, r) with i 6= j. Since cs(C) = n, there exists 1 ≤ s ≤ m such that

r 6= s and (i, s) ∈ C. This vertex (i, s) separates x and y. Next, assume that y = (i, t) for

some 1 ≤ t ≤ m with t 6= r. If y ∈ C, then y separates x and y. However, if y 6∈ C, then since

each row of G other than Rr is in the row span of C, there exists 1 ≤ j ≤ n with i 6= j such

that (j, t) ∈ C. It follows that (j, t) separates x and y.

(b) Next, assume that y = (j, s) where i 6= j and r 6= s. If we assume that C does not separate

x and y, then C does not satisfy the 4-Corners Property with respect to columns Ci, Cj and

rows Rr, Rs. In addition, since Rr is not in the row span of C,

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) ⊆ {(i, s), (j, s)} .

Since both Ci and Cj are in the column span of C, it follows that C ∩ (Ci ∪ Cj ∪Rr ∪Rs) =

{(i, s), (j, s)}. This means that Rs contains exactly two members of C and they are both

column-isolated, contradicting one of the assumptions. Hence, this case cannot occur either,

and it follows that C separates x and y.

Therefore, C is an ID code of Kn ×Km.
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3.4 Proofs of Main Results

In this section we prove all of our main results of this chapter. The general strategy will

be to construct an ID code of the claimed optimal size (by employing Propositions 19 and 20) and

prove the given direct product has no smaller ID code.

We treat the smallest case first.

Theorem 21. For any positive integer m ≥ 5, γID(K2 ×Km) = m− 1. In addition, if 3 ≤ m ≤ 4,

γID(K2 ×Km) = m.

Proof. If C is any ID code of K2 ×K3, then by Lemma 13 it follows that rs(C) ≥ 2. No subset of

two elements in different rows dominates K2 ×K3, and so γID(K2 ×K3) ≥ 3. It is easy to check

that {(1, 1), (1, 2), (1, 3)} is an ID code. A similar argument shows that γID(K2 ×K4) = 4.

If m ≥ 5, it follows from Lemma 13 that γID(K2 ×Km) ≥ m − 1, and it is easily checked

that {(1, 1), (1, 2)} ∪ {(2, r) | 3 ≤ r ≤ m− 1} is an ID code.

Now we turn our attention to the case when the first factor has order at least 3 and the

second factor is sufficiently larger than the first.

Theorem 22. For positive integers n and m where n ≥ 3 and m ≥ 2n,

γID(Kn ×Km) = m− 1 .

Proof. Consider the set

D = {(i, 2i− 1), (i, 2i) | i ∈ [n− 1]} ∪ {(n, j) | 2n− 1 ≤ j ≤ m− 1}.

Notice that each v in D is row-isolated but not column-isolated, rs(D) = m − 1 and cs(D) = n.

Furthermore, (1, 1), (2, 3) and (3, 5) are in D. Thus, Proposition 20 guarantees that D is an ID code,

and Lemma 13 gives the desired result.

We now focus on direct products of the form Kn ×Km where 6 ≤ n ≤ m ≤ 2n− 1 and prove that

in all cases

⌊
2m+ 2n

3

⌋
≤ γID(Kn ×Km) ≤

⌈
2m+ 2n

3

⌉
. (3.1)

22



For the remainder of this chapter, when considering any ID code C of G = Kn × Km we

define

AC = {v ∈ C | v is row-isolated in C}

and

BC = {v ∈ C | v is column-isolated in C} .

Let |AC | = x, and let p denote the number of columns Ci of G such that |C∩Ci| ≥ 2 and C∩Ci ⊆ AC .

Similarly, let |BC | = y, and let q represent the number of rows Rr of G such that |C ∩Rr| ≥ 2 and

C ∩Rr ⊆ BC . Notice that C contains at most one isolated codeword, in which case |AC ∩BC | = 1.

Otherwise, AC ∩BC = ∅. Moreover, we always have |C| ≥ |AC ∪BC | ≥ x+ y − 1.

The approach we take in the proof of Theorem 23, Theorem 24 and Theorem 25 will be to

show that any code of cardinality smaller than the claimed value will violate some consequence of

the 4-Corners Property. Which consequence will depend on the particular cardinalities of the row

span and column span.

Theorem 23. If n and m are positive integers such that 6 ≤ n ≤ m ≤ 2n − 1 and n + m ≡ 0

(mod 3) or n+m ≡ 2 (mod 3), then

γID(Kn ×Km) =

⌊
2m+ 2n

3

⌋
.

Proof. Suppose C is an ID code of G = Kn ×Km such that |C| ≤
⌊
2n+2m

3

⌋
− 1. We consider four

cases based on the possible values of cs(C) and rs(C).

1. Suppose cs(C) = n and rs(C) = m.

Since cs(C) = n and |BC | = y, there are n − y columns that each contain at least two

codewords. Thus, |C \ BC | ≥ 2(n − y), which implies 2m+2n
3 − 1 ≥ |C| ≥ 2n − y. It follows

that y ≥ 4n−2m
3 + 1. Similarly, we get x ≥ 4m−2n

3 + 1. Together these imply that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n

3
+ 1 .

This is clearly a contradiction, and hence no such C exists with cs(C) = n and rs(C) = m.

2. Suppose cs(C) = n− 1 and rs(C) = m.

Note that since each codeword in BC is column-isolated and cs(C) = n − 1, there exist at
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least two codewords in each of the remaining n − 1 − y columns disjoint from the column

span of BC . However, Corollary 17 guarantees that |C ∩ Cj | ≥ 3 for any column Cj for

which |C ∩ Cj | ≥ 2 and C ∩ Cj ⊆ AC . Since p represents the number of such columns,

|C \BC | ≥ 2(n− 1− y − p) + 3p = 2n− 2− 2y + p. Consequently, |C| ≥ 2n− 2− y + p, and

it follows that y ≥ 4n−2m
3 − 1 + p.

Similarly, since |AC | = x and rs(C) = m, |C \ AC | ≥ 2(m − x), which implies |C| ≥ 2m − x.

From Case 1 we see that this gives x ≥ 4m−2n
3 + 1. Moreover, |C| ≥ x+ y − 1 so that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n

3
+ p− 1 .

Hence, p = 0, and we have equality in the above so that

⌊
2m+ 2n

3

⌋
− 1 = |C| = x+ y − 1.

It follows that C = AC ∪ BC . If there exists v ∈ C \ BC , say v ∈ Ci, then Ci contains an

additional codeword that is also row-isolated. Hence, p is at least 1. However, this contradicts

p = 0 since each codeword is either row-isolated or column-isolated. Consequently, m =

rs(C) ≤ |C| = |BC | ≤ n− 1 ≤ m− 1. This contradiction shows that this case cannot occur.

3. Suppose cs(C) = n and rs(C) = m− 1.

If we interchange the roles of rows and columns in Case 2, then we are led to q = 0 and

⌊
2m+ 2n

3

⌋
− 1 = |C| = x+ y − 1 .

Thus, C = AC ∪BC . On the other hand, since cs(C) = n it follows as in Case 1 that

y ≥ 4n− 2m

3
+ 1 ≥ 4n− 2(2n− 1)

3
+ 1 =

5

3
.

Since y is an integer, we see that C has at least two column-isolated codewords. One of

these, say v, is isolated since |C| = x + y − 1. Let w be a column-isolated codeword with

w 6= v, and assume that w ∈ Rj . Since w is not isolated but is column-isolated, Rj contains

24



another codeword besides w. All codewords in Rj are therefore in BC , and thus q ≥ 1. This

contradiction shows that this case cannot occur.

4. Suppose that cs(C) = n− 1 and rs(C) = m− 1.

From Case 2 and Case 3, we see that

y ≥ 4n− 2m

3
− 1 + p and x ≥ 4m− 2n

3
− 1 + q .

Since cs(C) = n− 1 and rs(C) = m− 1, it follows from Corollary 18 that C does not contain

an isolated vertex. It follows that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n

3
− 2 + p+ q .

Hence, p+ q ≤ 1.

Suppose p = 1. Consequently, we have equality throughout the above inequality, and thus

C = AC ∪BC . Suppose there exists v ∈ BC , say v ∈ Rr. Since q = 0 and there are no isolated

codewords, it follows that C contains another codeword u in Rr that is not column-isolated.

But u 6∈ AC ∪ BC , which is a contradiction. Therefore, C = AC . Since p = 1 we are led to

conclude that cs(C) = 1, which is another contradiction.

To show that q = 1 is not possible we simply interchange the roles of AC and BC in the above.

Finally, suppose p = 0 = q. Since p = 0, any column that contains a row-isolated codeword

would also have to contain a codeword that is not row-isolated. Since there can exist at most

one of these to guarantee |C| ≤
⌊
2m+2n

3

⌋
− 1, there is a column Ci such that AC ⊆ Ci, and

for some r, (i, r) ∈ C \ (AC ∪ BC). Similarly, since q = 0, if there exists a row containing

a column-isolated codeword, then that row contains a codeword that is not column-isolated.

Since |C \ (AC ∪ BC)| ≤ 1, such a codeword must be (i, r). This implies that 2m+2n
3 − 1 ≥

|C| ≥ m− 1 + n− 2, and this implies that n+m ≤ 6, contradicting our assumption.

Therefore, every ID code of Kn ×Km has cardinality at least b 2m+2n
3 c.

An application of Proposition 19 shows that the following sets are ID codes of cardinality

b 2m+2n
3 c and finishes the proof. See Figure 3.1 for several specific instances of these constructions.
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If n+m ≡ 0 (mod 3), let

D1 = {(i, 2i− 1), (i, 2i)|1 ≤ i ≤ a} ∪ {(a+ 2j − 1, 2a+ j), (a+ 2j, 2a+ j)|1 ≤ j ≤ b} ,

where a = 2m−n
3 and b = 2n−m

3 . For n + m ≡ 2 (mod 3) but m 6= 2n − 1, let a = 2m−n−1
3 ,

b = 2n−m−1
3 , and

D2 = {(i, 2i− 1), (i, 2i)
∣∣1 ≤ i ≤ a} ∪ {(a+ 2j − 1, 2a+ j), (a+ 2j, 2a+ j)

∣∣1 ≤ j ≤ b} ∪ {(n,m)} .

Finally, if m = 2n− 1, let

D3 = {(i, 2i− 1), (i, 2i)|i ∈ [n− 1]} ∪ {(n, 2n− 1)}.

The following figure illustrates ID codes of optimal order for several of the cases of Theo-

rem 23. The vertices of the direct products in the figure are represented, but the edges are omitted

for clarity. Recall that columns are vertical and rows are horizontal. Solid vertices indicate the

members of an optimal ID code in each case.

(a) K6 ×K6

(b) K6 ×K8

Figure 3.1: Examples of ID codes when n+m ≡ 0, 2 (mod 3)

For a fixed n ≥ 6, the lone exception to the formula d 2m+2n
3 e for γID(Kn × Km) where

n ≤ m ≤ 2n − 2 and n + m congruent to 1 modulo 3 is the instance m = 2n − 5. We now prove

Theorem 24, which shows the correct value is b 2(2n−5)+2n
3 c. We restate it here for convenience.
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Theorem 24. For a positive integer n ≥ 6,

γID(Kn ×K2n−5) = 2n− 4 .

Proof. Assume there exists an ID code C for Kn×K2n−5 such that |C| ≤ 2n−5. Since rs(C) ≥ 2n−6,

we consider the following two cases.

1. Suppose that rs(C) = 2n− 6.

Since each codeword in AC is row-isolated and rs(C) = 2n−6, there exist at least two codewords

in each of the remaining 2n−6−x rows disjoint from the row span of AC . However, Corollary 17

guarantees that |C∩Rr| ≥ 3 for any row Rr where C∩Rr ⊆ BC . Since q represents the number

of these rows, |C\AC | ≥ 2(2n−6−x−q)+3q, which implies |C| ≥ 4n−12−x+q. Consequently,

2n− 5 ≥ 4n− 12− x+ q, which implies x ≥ 2n− 7 + q.

Similarly, since cs(C) ≥ n− 1 and each codeword in BC is column-isolated, there are at least

n−1−y columns disjoint from the column span of BC that each contain at least two codewords.

Thus, |C \BC | ≥ 2(n−1−y), which implies that |C| ≥ 2n−2−y. Therefore, y ≥ 3. It follows

that

2n− 5 ≥ |C| ≥ x+ y − 1 ≥ 2n− 5 + q.

Thus, q = 0. Moreover, we have equality in the above, and therefore C = AC ∪ BC . On

the other hand, y ≥ 3 and only one of these column-isolated codewords can be isolated.

Consequently, q ≥ 1 since each codeword of C is either row-isolated or column-isolated, which

is a contradiction.

2. Suppose rs(C) = 2n− 5.

Using a similar argument as in Case 1, we have |C \ AC | ≥ 2(2n − 5 − x), which implies

|C| ≥ 4n− 10− x. This implies 2n− 5 ≥ |C| ≥ x ≥ 2n− 5. Therefore, it follows that C = AC ,

and thus cs(C) = cs(AC) ≤ 2n−6
2 + 1 = n− 2, contradicting Lemma 13.

Therefore, no such identifying code C exists with |C| ≤ 2n− 5. It follows that γID(G) ≥ 2n− 4.

An application of Proposition 20 shows that the set

D = {(i, 2i− 1), (i, 2i)
∣∣1 ≤ i ≤ n− 4} ∪ {(n− 3, 2n− 7), (n− 2, 2n− 7), (n− 1, 2n− 7), (n, 2n− 6)}
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is an ID code of Kn ×K2n−5 of cardinality 2n− 4.

Theorem 25. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n− 2 and m 6= 2n− 5. If

n+m ≡ 1 (mod 3), then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.

Proof. Notice that d 2m+2n
3 e = 2m+2n+1

3 . Assume that there exists an ID code C for Kn ×Km such

that |C| ≤ 2n+2m+1
3 − 1. We again consider four cases based on the possible values of cs(C) and

rs(C).

1. Suppose cs(C) = n and rs(C) = m.

Using reasoning similar to that in Case 1 of the proof of Theorem 23, we have |C \ BC | ≥

2(n− y). This implies that |C| ≥ 2n− y, and hence

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ 2n− y .

It follows that y ≥ 4n−2m+2
3 . Similarly, we have that x ≥ 4m−2n+2

3 . On the other hand, we

know |C| ≥ x+ y − 1. Consequently, 2m+2n+1
3 − 1 ≥ x+ y − 1 ≥ 2m+2n+1

3 , which is clearly a

contradiction.

2. Suppose cs(C) = n− 1 and rs(C) = m.

Since |BC | = y and cs(C) = n− 1, there exist at least two codewords in each of the remaining

n − 1 − y columns that are disjoint from the column span of BC . However, Corollary 17

guarantees |C ∩ Cj | ≥ 3 for any such column Cj where C ∩ Cj ⊆ AC . Since p represents the

number of these columns, |C \ BC | ≥ 2(n− 1− y − p) + 3p = 2n− 2− 2y + p. As a result it

follows that y ≥ 4n−2m−4
3 + p.

Similarly, since rs(C) = m and x = |AC | we get |C\AC | ≥ 2(m−x), which implies |C| ≥ 2m−x.

As in Case 1 it follows that x ≥ 4m−2n+2
3 . This yields

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ p− 2 .

Thus, p ≤ 1. Assume first that p = 1. This yields equality in the above, and thus C = AC∪BC ,

y = 4n−2m−1
3 and x = 4m−2n+2

3 . Furthermore, C contains an isolated codeword, call it v. Since

p = 1, there exists a column Ci such that AC \ {v} = C ∩ Ci. It follows that cs(AC) = 2. On
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the other hand, cs(C) = n − 1 so BC \ {v} spans the remaining n − 3 columns. Therefore,

n− 3 = 4n−2m−1
3 − 1, which contradicts the assumption that n ≤ m.

Therefore, we conclude that p = 0. First assume that C contains no isolated codeword. This

implies

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
+ p− 1 .

Since p = 0 we get equality throughout the above, and hence C = AC ∪BC . As in the proof of

Case 2 of Theorem 23 we arrive at a contradiction. Therefore, C contains an isolated codeword,

say v. Because p = 0, any column that contains a row-isolated codeword other than v would

also have to contain a codeword that is not row-isolated. Furthermore, the fact that p = 0,

together with

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ p− 2 ,

implies that there exists at most one such codeword that is neither row-isolated nor column-

isolated. Note that x ≥ 4m−2n+2
3 ≥ 5. Therefore, the row-isolated vertices other than v are

contained in precisely one column, say Ci. Hence, AC \ {v} ⊆ C ∩Ci. We let (i, r) denote the

codeword that is neither row-isolated nor column-isolated. This means C = AC ∪BC ∪{(i, r)}

and so y = 4n−2m−4
3 . It follows that cs(AC) = 2. On the other hand, cs(C) = n−1 so BC \{v}

spans the remaining n−3 columns. Therefore, n−3 = 4n−2m−4
3 −1, which implies 2m = n+2,

again contradicting the assumption that n ≤ m.

3. Suppose cs(C) = n and rs(C) = m− 1.

Since |AC | = x and rs(C) = m − 1, there exist at least 2 codewords in each of the remaining

m−1−x rows disjoint from the row span of AC . However, Corollary 17 guarantees |C∩Rr| ≥ 3

for any such row Rr where C ∩ Rr ⊆ BC . Since q represents the number of these rows,

|C \ AC | ≥ 2(m − 1 − x − q) + 3q = 2m − 2 − 2x + q. This implies that x ≥ 4m−2n−4
3 + q.

Similarly, since cs(C) = n and |BC | = y we get |C \BC | ≥ 2(n−y), which implies |C| ≥ 2n−y.

As in Case 1 it follows that y ≥ 4n−2m+2
3 . Consequently,

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ q − 2.
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Thus, q ≤ 1. Assume first that q = 1. This gives equality in the above, and thus C = AC∪BC ,

y = 4n−2m+2
3 and x = 4m−2n−1

3 . Furthermore, C contains an isolated codeword, call it v. Since

q = 1, there exists a row Rr such that BC\{v} = C∩Rr. Thus, rs(BC) = 2. On the other hand,

rs(C) = m− 1 so AC \ {v} spans the remaining m− 3 rows. Therefore, m− 3 = 4m−2n−1
3 − 1,

which contradicts the assumption that m 6= 2n− 5.

Therefore, q = 0. First assume C contains no isolated codeword. Consequently, C = AC ∪BC

and since q = 0, it follows that C = AC . Since cs(C) = n and no isolated codeword exists, it

follows that |C| ≥ 2n. Therefore, 2m+2n+1
3 − 1 ≥ 2n, which implies m ≥ 2n + 1. Because of

this contradiction we conclude that C contains an isolated codeword, say v.

Because q = 0, any row that contains a column-isolated codeword other than v would also

have to contain a codeword that is not column-isolated.

Furthermore, the fact that q = 0, together with

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ q − 2 ,

implies that there exists at most one such codeword that is neither row-isolated nor column-

isolated. Note that y ≥ 4n−2m+2
3 ≥ 2. Therefore, the column-isolated vertices other than v are

contained in precisely one row, say Rr, and hence BC \ {v} ⊆ C ∩Rr. We let (i, r) denote the

codeword that is neither row-isolated nor column-isolated. This means C = AC ∪BC ∪{(i, r)}

and so x = 4m−2n−4
3 . It follows that rs(BC) = 2. On the other hand, rs(C) = m − 1 so

AC \ {v} spans the remaining m − 3 rows. Therefore, m − 3 = 4m−2n−4
3 − 1, which implies

m = 2n − 2. However, in this specific case x = 2n − 4 and y = 2. Since AC ∩ BC = {v}, it

follows that

n = cs(C) ≤ |AC \ {v}|
2

+ |BC | =
2n− 4− 1

2
+ 2 = n− 1

2
,

which is a contradiction.

4. Suppose that cs(C) = n− 1 and rs(C) = m− 1.

From Case 2 and Case 3, we see that

y ≥ 4n− 2m− 4

3
+ p and x ≥ 4m− 2n− 4

3
+ q.
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Since cs(C) = n− 1 and rs(C) = m− 1, it follows from Corollary 18 that C does not contain

an isolated codeword. Thus,

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
− 3 + p+ q.

Hence, p+ q ≤ 2.

(i) Suppose that p = 0. For each column Ci where AC ∩ Ci 6= ∅, there will exist another

codeword in Ci that is not row-isolated. To guarantee that 2m+2n+1
3 −1 ≥ |C|, C contains

at most two such codewords. Therefore, cs(AC) ≤ 2. If cs(AC) = 2, then y = 4n−2m−4
3 ,

and it follows that

n− 1 = cs(C) = cs(AC) + cs(BC) = 2 +
4n− 2m− 4

3
.

This contradicts the assumption that m ≥ n, and thus cs(AC) < 2. On the other hand,

x ≥ 4m−2n−4
3 + q ≥ 8

3 . Hence, C contains precisely one codeword, say v, that is neither

row-isolated nor column-isolated. This implies that cs(AC) = 1, and if we let Ci represent

the column containing these row-isolated vertices, then v ∈ Ci and cs(AC ∪ {v}) = 1.

Since

n− 1 = cs(C) = cs(AC ∪ {v}) + cs(BC) = 1 + cs(BC) ,

we know cs(BC) = n−2. Therefore, y = n−2 since each vertex of BC is column-isolated.

On the other hand, to guarantee 2m+2n+1
3 − 1 ≥ |C|, it is the case that y ≤ 4n−2m−4

3 + 1.

Consequently, n− 2 ≤ 4n−2m−4
3 + 1, which again implies that m < n. This contradiction

shows that p 6= 0.

(ii) Suppose that q = 0. For each row Rr where BC∩Rr 6= ∅, there will exist another codeword

in Rr that is not column-isolated. Since p 6= 0, C contains at most one such codeword and

it follows that rs(BC) ≤ 1. On the other hand, y ≥ 4n−2m−4
3 + p ≥ p ≥ 1. This implies

rs(BC) = 1, and C contains precisely one codeword, say v, that is neither row-isolated

nor column-isolated. Since v is in the same row as the vertices of BC , rs(BC ∪ {v}) = 1.

This implies

m− 1 = rs(C) = rs(AC) + rs(BC ∪ {v}) = rs(AC) + 1 ,
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and consequently m − 2 = rs(AC). Therefore, x = m − 2 since each vertex of AC is

row-isolated. On the other hand, since v is not column-isolated and p = 1, it follows that

cs(AC ∪ {v}) = 2. Therefore,

n− 1 = cs(C) = cs(AC ∪ {v}) + cs(BC) = 2 + cs(BC) ,

which implies y = cs(BC) = n− 3. Combining these facts we get

|C| = |AC ∪BC ∪ {v}| = x+ y + 1 = m+ n− 4 .

However, 2m+2n+1
3 − 1 ≥ |C| = m + n − 4, which implies m + n ≤ 10. This contradicts

our assumption that n ≥ 6.

(iii) Since p = 1 and q = 1, then x ≥ 4m−2n−4
3 + 1 and y ≥ 4n−2m−4

3 + 1. It follows that

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
− 1.

Thus, C = AC ∪ BC . On the other hand, cs(AC) = 1 since p = 1. Therefore, BC spans

the remaining n − 2 columns since cs(C) = n − 1. Hence, n − 2 = 4n−2m−4
3 + 1, which

contradicts m ≥ n.

Therefore, every ID code of Kn ×Km has cardinality at least d 2m+2n
3 e.

We now present ID codes to show that this lower bound is realized. Figure 3.2 contains

examples of minimum cardinality ID codes for some cases covered in Theorem 25. As in Figure 3.1

the code consists of the solid vertices.

If m 6= 2n− 2, let

D1 = {(1, 1)}∪{(i, 2i), (i, 2i+1)
∣∣ 1 ≤ i ≤ a}∪{(a+2j−1, 2a+j+1), (a+2j, 2a+j+1)

∣∣1 ≤ j ≤ b} ,
where a = 2m−n−2

3 and b = 2n−m+1
3 . It is straightforward to check that D1 satisfies the properties

of Proposition 19 and is therefore an ID code of Kn ×Km.
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(a) K8 ×K8

(b) K6 ×K10

Figure 3.2: Several ID codes when n+m ≡ 1 (mod 3),m 6= 2n− 5

If m = 2n− 2, let

D2 = {(1, 1)} ∪ {(i, 2i), (i, 2i+ 1)
∣∣ 1 ≤ i ≤ n− 2} ∪ {(n− 1, 2n− 2), (n, 2n− 2)} .

Again, one can verify that D2 satisfies all properties of Proposition 19 and is therefore an ID code

of Kn ×K2n−2.

Therefore, if m 6= 2n− 5 but n+m ≡ 1 (mod 3) and 6 ≤ n ≤ m ≤ 2n− 2, then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.
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Chapter 4

ID Codes in Cartesian Products of

Cliques

4.1 Introduction

In this chapter, we determine the minimum size of an identifying code in the Cartesian

product of two general cliques. We then provide upper and lower bounds in regards to the Cartesian

product of three or more cliques. For example, we show that the minimum size of an identifying

code of the product of three cliques of size m is approximately m2, and that the minimum size of an

identifying code when one clique is much larger than the others is related to the total domination

number of the product of the smaller cliques. This chapter is an expanded version of [18]. As all

proofs are provided, we do not give specific references to this paper in this chapter.

4.2 Two Cliques

The result for equal cliques was proved by Gravier et al.:

Theorem 26. [20, Theorem 1, pg. 2] For m ≥ 1, γID(Km�Km) = b3m/2c.

This result was also reproved in Foucaud et al. [16, Proposition 10], since as we will exploit,

the graph Km�Km is the line graph of Km,m. We present here the exact result for the Cartesian

product of two general cliques.
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Theorem 27. For 2 ≤ n ≤ m, we have

γID(Kn�Km) =

 m+ bn/2c if m ≤ 3n/2,

2m− n if m ≥ 3n/2.

We prove this theorem in the next two subsections. We will use {1, . . . ,m} for the vertex

set of the clique/complete graph Km.

4.2.1 Lower bound

We will need the edge analogue of ID codes. An edge-ID code of G is a set D of edges such

that for each edge e ∈ E(G), the subset of edges of D incident with e is nonempty and distinct. A

set of edges D is edge-dominating if every edge in G is either in D or incident with an element in D.

We will use the fact that Kn�Km is the line graph of Kn,m by considering edge-ID codes

for Kn,m. Let the partite sets of Kn,m be X = {x1, . . . , xm} and Y = {y1, . . . , yn}.

Lemma 28. If an edge-dominating set D of Kn,m is an edge-ID code, then

(1) in the spanning subgraph H with edge-set D, |NH(S)| ≥ 2 for any set S of two vertices in the

same partite set;

(2) any set T of two vertices of each partite set is incident with at least three edges of D.

Proof. (1) Suppose S = {x1, x2} has |NH(S)| ≤ 1. Say NH(S) ⊆ {y1}. Then D does not separate

edges x1y1 and x2y1, a contradiction.

(2) Suppose T = {x1, x2, y1, y2} is incident with only two edges of D. Then by property

(1), these two edges form a matching in T . However, then the two edges of T not in D are not

separated.

Lemma 29. For integers 2 ≤ n ≤ m, an edge-ID code D of Kn,m satisfies

|D| ≥ max
{

2m− n,m+
⌊n

2

⌋}
.

Proof. The result is trivial if m = 2; so assume m > 2. Let D be a minimum edge-ID code of Kn,m.

Suppose some vertex of X is disjoint from D, say x1. By property (1), each xj for 2 ≤ j ≤ m

is incident to at least two edges in D. It follows that |D| ≥ 2m− 2 ≥ max{2m− n,m+ bn/2c}, as
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required. So we may assume every vertex of X is incident with an edge of D. For each i ∈ {1, . . . ,m},

choose an edge ei ∈ D incident to xi ∈ X, and let T = {e1, . . . , em}.

Consider any yi ∈ Y . By property (1) applied to each pair of vertices in NT (yi), it fol-

lows that at most one vertex in NT (yi) is not incident with an edge of D − T . Thus |D − T | ≥∑n
i=1(dT (yi)− 1) = m− n, and so |D| ≥ 2m− n.

It remains to show that |D| ≥ m+ bn/2c. Define

Y1 = { y ∈ Y | y is incident to exactly 1 edge in T }, and

Y2 = { y ∈ Y | y is incident to at least 2 edges in T }.

Let |Y1| = n1 and |Y2| = n2. There are two cases:

• Suppose some vertex of Y is disjoint from D, say y1. By property (1) applied to the set {yi, y1}

for each yi ∈ Y − Y2 − y1, we can conclude D contains at least 2(n − n1 − n2 − 1) + n1 =

2n − n1 − 2n2 − 2 edges disjoint from T . By property (1) applied to one pair of vertices in

NT (yi) for each yi ∈ Y2, it is also true that D contains at least n2 edges disjoint from T . It

follows that:

|D| ≥ |T |+
⌈

(2n− n1 − 2n2 − 2) + n2
2

⌉
= m+

⌈
2n− n1 − n2 − 2

2

⌉
≥ m+

⌊n
2

⌋
.

• Suppose every vertex of Y is incident with D. By property (2) applied to {yi, yj}∪NT ({yi, yj})

for each yi, yj ∈ Y1, it follows that at most one vertex of Y1 is not incident with an edge in

D − T . At the same time, every vertex in Y − Y1 − Y2 is incident with an edge of D − T .

Therefore, D contains at least (n1− 1) + (n−n1−n2) = n−n2− 1 edges disjoint from T . As

above, D contains at least n2 edges disjoint from T . It follows that

|D| ≥ |T |+
⌈

(n− n2 − 1) + n2
2

⌉
= m+

⌊n
2

⌋
.

In any case, an edge-ID code D of Kn,m satisfies |D| ≥ max{2m− n,m+ bn/2c}.
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4.2.2 Construction

We now construct ID codes to show the lower bound is also the upper bound. Let G =

Kn�Km with m ≥ n. Gravier et al. [20] constructed ID codes for the case n = m. Based on their

construction, we define the following sets

A = { (i, i) | 1 ≤ i ≤ n },

B = { (i, n+ i) | 1 ≤ i ≤ m− n },

C = { (n− i+ 1, i) | 1 ≤ i ≤ bn/2c }, and

X = { (1, i), (2, i) | d(3n+ 1)/2e ≤ i ≤ m }.

(Note that X = ∅ if m ≤ 3n/2.) Further, define D = A ∪B ∪C ∪X. Note that |D| = n+m− n+

bn/2c+m− d(3n+ 1)/2e+ 1 = 2m− n if m > 3n/2, and that |D| = m+ bn/2c otherwise.

For example, here is the picture for n = 9 and m = 12.

A
A

A
A

A
A

A
A

A
B

B
B

C
C

C
C

Notice that each column and each row of G intersects D, and therefore D dominates G. So

let u = (i, j) and v = (x, y) be distinct vertices of G. We need to show that D separates these two

vertices.

Start by considering the set A and assume that A does not separate u and v (that is,

N [u] ∩A = N [v] ∩A), since otherwise we are done. There are two cases.

If N [u] and N [v] contain two vertices of A, then it must be that i = y and x = j. But then

it is easily seen that u and v are separated by C.

So assume N [u] and N [v] contain exactly one vertex of A. Then it must be that i = x, and

that j, y ∈ {i} ∪ {n+ 1, . . . ,m}. If j = i, then C separates u and v; so we may assume y, j > n.

If j, y ≤ 3n/2, then u and v are separated by B. On the other hand, if one or both j, y is

greater than 3n/2, then the two vertices are separated by X. Thus D is an ID code, as required.
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This concludes the proof of Theorem 27.

4.3 Equal Cliques

We now consider ID codes for the product of multiple copies of equal-sized cliques.

The hypercube is the Cartesian product of K2’s and there has been considerable research

on ID codes in hypercubes. Between the original paper by Karpovsky et al. [28], Exoo et al. [13] and

Blass et al. [5], the minimum size of an ID code for the d-dimensional hypercube Qd is now known

for small value of d. These values are given in the table below:

d 3 4 5 6 7

γID(Qd) 4 7 10 19 32

Between them, it is also shown that γID of the d-dimensional hypercube is asymptotically (2+o(1))×

2d/(d+ 2). (Note that Kim and Kim [31] consider what graph theory calls the Cartesian product of

cycles, not hypercubes.)

We start with a simple construction.

Theorem 30. Let d ≥ 3 and let G be the Cartesian product of d copies of Km. Then

γID(G) ≤ md−1.

Proof. Define D as the set of vertices in G whose coordinates sum to 0 modulo m. That is, D is the

set of all (x1, x2, . . . , xd) with 1 ≤ xi ≤ m for each i ∈ {1, . . . ,m} and
∑m

i=1 xi is a multiple of m.

Note that |D| = md−1, since we can freely specify the first d − 1 coordinates. (In coding theory D

is called a parity code.)

We claim that D is an independent set. Consider any two vertices v1 and v2 in D. If

they were adjacent, then v1 and v2 would have d − 1 coordinates in common. However, any d − 1

coordinates determine the last one. Therefore, D is an independent set.

We claim that D is an ID code. If vertex v is in D, then N [v] ∩ D = {v}. On the other

hand, if u ∈ V (G) −D, then u is adjacent to exactly d vertices in D, each of which agrees with u

in exactly d− 1 coordinates. It follows that D certainly separates any two vertices in D, as well as

any pair of vertices u ∈ V (G)−D and v ∈ D.
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Thus, we need only to consider pairs of vertices in V (G) − D. We claim that N [u] ∩ D

uniquely determines u for u ∈ V (G)−D. Indeed, we can determine u by simply taking the majority

vote in each coordinate.

In general, the best lower bound we know is the bound from the original paper by Karpovsky

et al. [28]. Namely, they showed that γID(G) ≥ 2n/(r + 2) for an r-regular graph G of order n.

Theorem 31. [28, Theorem 1, pg. 599] Let G be the Cartesian product of d copies of Km. Then

γID(G) ≥ 2md

dm− d+ 2
.

Together with Theorem 30, this shows that for the Cartesian product of d copies of Km,

γID is Θ(md−1). We know almost nothing about the actual values. We can, however, improve the

lower bound for three cliques, which we consider next.

4.4 Lower Bound For Three Equal Cliques

We will need some concepts from domination. We say that a set D open-dominates vertex

x if N(x) ∩D 6= ∅. We say that set D is a total dominating set if it open-dominates every vertex of

G. The minimum cardinality of a total dominating set is denoted γt(G).

Consider the graph G�Km and let D be a subset of the vertices. We will use the notation

Gi to denote the ith copy of G (that is, all vertices of the form (?, i)), and Di to be the subset

of D in Gi. We let Xi denote all vertices in Gi that do not have a neighbor in Di. (That is, Xi

is the vertices of Gi that are not open-dominated by Di.) Finally, let X̂i be the subset of V (G)

corresponding to Xi (i.e., the projection of Xi onto G).

Lemma 32. Let D be an ID code of G�Km and let Xi be defined as above. Then the X̂i are

disjoint.

Proof. Suppose that the X̂i are not disjoint. Say v ∈ X̂i ∩ X̂j . That is, (v, i) ∈ Xi and (v, j) ∈

Xj . Then these two vertices are not separated by D, since the intersection of each of their closed

neighborhoods with D is precisely the set of vertices of D in the vth copy of Km. The result

follows.

From this lemma we obtain a lower bound for the product of three cliques:

39



Theorem 33. γID(Km�Km�Km) ≥ m2 − o(m2).

Proof. Let G = Km�Km and let D be an ID code of G�Km. Define Di and Xi as in Lemma 32.

From that lemma we have that
∑m

i=1 |Xi| ≤ m2.

On the other hand, if |Di| < m then there are at least m− |Di| rows and columns in Gi not

containing a vertex of Di, and so |Xi| ≥ (m− |Di|)2. It follows that |Di| ≥ m−
√
|Xi|. Hence

|D| =
m∑
i=1

|Di| ≥ m2 −
m∑
i=1

√
|Xi|.

To bound |D| from below, we need to maximize z =
∑m

i=1

√
|Xi|, subject to the constraint∑m

i=1 |Xi| ≤ m2. Using the fact that
∑m

i=1

√
|Xi| is concave, the method of Lagrange for nonlinear

programs shows that the optimal value is z∗ = m
√
m. Thus, |D| ≥ m2 −m

√
m.

For m = 2 we know from [28] that γID(K2�K2�K2) = γID(Q3) = 4. When m = 3, an

exhaustive search by computer shows that γID(K3�K3�K3) = 9. We conjecture that this pattern

continues.

Conjecture 34. For all m ≥ 1, γID(Km�Km�Km) = m2.

4.5 Unequal Cliques

We will need another concept from domination. A set D doubly dominates vertex x if

|N [x] ∩D| ≥ 2. We start with a partial converse to Lemma 32.

Lemma 35. Let D be a subset of the vertices of G�Km, and Xi defined as in Lemma 32. If every

vertex is doubly dominated from within its copy of Km, and the projections X̂i are disjoint, then D

is an ID code.

Proof. The idea is that its neighbors in the copy of Km determine which copy of Km a vertex is in,

and its neighbors (or lack thereof) in Gi determine which Gi it is in.

To be precise, let (u, i) and (v, j) be two vertices in G�Km. If u 6= v, then by the hypothesis

(u, i) is dominated by at least two vertices of D within its copy of Km, say (u, k) and (u, `) (where

possibly k, ` ∈ {i, j}). Since (v, j) is adjacent to at most one of these vertices, D separates (u, i) and

(v, j).
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So assume that u = v. By the hypothesis, it cannot be that both (u, i) ∈ Xi and (u, j) ∈ Xj .

So say (u, i) /∈ Xi; that is, (u, i) is dominated by some (w, i) in D; this vertex separates (u, i) from

(u, j). Thus D is an ID code.

We can use Lemmas 32 and 35 to give approximate results for the minimum size of an ID

code for the product of cliques where one clique is very large.

Theorem 36. For any isolate-free graph G of order n, and integer m ≥ 3,

mγt(G)− n ≤ γID(G�Km) ≤ mγt(G) + 2n− 3γt(G).

Proof. To prove the upper bound, construct set D as follows. Take all the vertices in two copies of

G, and take a minimum total dominating set in each of the remaining copies of G except one. Then

in the terminology of Lemma 35, each vertex is doubly dominated in its copy of Km, and each Xi

is empty except one, so D is an ID code.

To prove the lower bound, let D be an ID code and let Di be the intersection of D with the

ith copy Gi of G. Since we can form a total dominating set of Gi by adding to Di one neighbor of

each vertex in Xi, it follows that |Di| ≥ γt(G)− |Xi|.

On the other hand, it follows from Lemma 32 that
∑m

i=1 |Xi| ≤ n. Thus,

|D| =
m∑
i=1

|Di| ≥ mγt(G)−
m∑
i=1

|Xi| ≥ mγt(G)− n,

as required.

Corollary 37. For any fixed isolate-free graph G of order n, γID(G�Km) = mγt(G)±O(n).

For us, one obvious example is the case where G is the product of equal cliques. The values

of γt(G) do not appear to be known in general for three cliques or more. If one of the cliques is

sufficiently large, then it is easy to determine the total domination number of the product of cliques.

Indeed, we conclude with the following exact result.

Theorem 38. Let H be an isolate-free connected graph of order n. If m > 2` and ` > 2n, then

γID(H�K`�Km) = n(m− 1).
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Proof. Let G = H�K` and F = G�Km. Define imod ` to be the unique integer s in the range 1

to ` such that i− s is a multiple of `. Let D be the set of vertices of F given by

D = { (v, imod `, i) | v ∈ V (H), 1 ≤ i ≤ m− 1 }.

Note that |D| = n(m− 1).

We claim that D satisfies the hypotheses of Lemma 35. To see this, consider any vertex

(v, j, i) in F . Since m > 2`, there are at least two values 1 ≤ i1, i2 ≤ m − 1 such that i1 mod ` =

i2 mod ` = j. Thus (v, j, i) is doubly dominated within its copy of Km. Furthermore, assume i 6= m.

Then the vertex (v, imod `, i) is in D. So if j 6= imod `, the vertex (v, j, i) has a neighbor in D in

its Gi. On the other hand, if j = imod `, then the vertex (v, j, i) has some neighbor (w, j, i) in D,

since H is isolate-free. It follows that all the Xi except Xm are empty, and so the projections X̂i

are disjoint. Thus by Lemma 35, the set D is an ID code.

To prove the lower bound, we use Lemma 32. Let D be a minimum set of vertices of F such

that the X̂i are disjoint. We can assume that we take no more than n vertices from each copy Gi,

since taking n vertices is enough to ensure that Xi is empty.

Consider any Gi and let Ai(v) be the copy of K` whose vertices are of the form (v, ?, i).

Assume that Ai(v) does not contain a vertex of D. Then since Gi contains at most n vertices of D,

it follows that at least ` − n vertices of Ai(v) are in Xi. Since ` > 2n, this means that more than

half of Ai(v) is in Xi.

Since the X̂i are disjoint, it follows that for every v, at most one of the Ai(v) does not

contain a vertex of D. That is, at least mn − n of the Ai(v) do contain a vertex of D, and so

|D| ≥ mn− n.

We suspect that the conclusion of the above theorem is true for a much wider range of

clique-sizes.
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Chapter 5

Edgeless graphs are the only

universal fixers

5.1 Introduction

This chapter is an expanded version of [39]. As all proofs are provided, we do not give

specific references to this paper in this chapter. Recall from Chapter 2, given a graph G and any

permutation π of V (G), the prism of G with respect to π is the graph πG obtained by taking two

disjoint copies of G, denoted G1 and G2, and joining every u ∈ V (G1) with π(u) ∈ V (G2). That

is, the edges between G1 and G2 form a perfect matching in πG. For any subset A ⊆ V (G), we let

π(A) = ∪v∈Aπ(v).

If π is the identity 1G, then πG ∼= G�K2, the Cartesian product of G and K2. The graph

G�K2 is often referred to as the prism of G, and the domination number of this graph has been

studied by Hartnell and Rall in [24].

One can easily verify that γ(G) ≤ γ(πG) ≤ 2γ(G) for all π of V (G). If γ(πG) = γ(G) for

some permutation π of V (G), then we say G is a π-fixer. If G is a 1G-fixer, then G is said to be a

prism fixer. Moreover, if γ(πG) = γ(G) for all π, then we say G is a universal fixer.

In 1999, Gu [21] conjectured that a graph G of order n is a universal fixer if and only if

G = Kn. Clearly if G = Kn, then for any π of V (G) we have γ(πG) = n = γ(G). It is the other

direction, the question of whether the edgeless graphs are the only universal fixers, that is far more
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interesting and is the focus of this chapter. Over the past decade, it has been shown that a few

classes of graphs do not contain any universal fixers. In particular, given a nontrivial connected

graph G, Gibson [17] showed that there exists some π such that γ(G) 6= γ(πG) if G is bipartite.

Cockayne, Gibson, and Mynhardt [10] later proved this to be true when G is claw-free. Mynhardt

and Xu [36] also showed if G satisfies γ(G) ≤ 3, then G is not a universal fixer. Other partial results

can be found in [6, 22]. The purpose of this chapter is to prove Gu’s conjecture, which we state as

the following theorem.

Theorem 39. A graph G of order n is a universal fixer if and only if G = Kn.

Although the following observation is stated throughout the literature, we give a short proof

here for the sake of completeness.

Observation 40. Let G be a disconnected graph that contains at least one edge. If G is a universal

fixer, then every component of G is a universal fixer.

Proof. Let G be a disconnected graph containing at least one edge, and let C1, · · · , Ck represent

the components of G where k ≥ 2. Suppose, for some j ∈ {1, · · · , k}, that Cj is not a universal

fixer. There exists a permutation πj : V (Cj) → V (Cj) such that γ(πjCj) > γ(Cj). Now define

π : V (G)→ V (G) by

π(x) =


x if x ∈ V (G)\V (Cj)

πj(x) if x ∈ V (Cj).

Note that πG is a disconnected graph which can be written as the disjoint union

⋃
i 6=j

Ci�K2

 ∪ πjCj .

Thus,

γ(πG) = γ

⋃
i 6=j

Ci�K2

+ γ(πjCj)

>
∑
i6=j

γ (Ci�K2) + γ(Cj)

≥ γ(G).

Therefore, if there exists a permutation π of a component Cj of G such that Cj is not a π-fixer, then
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G is not a universal fixer. The result follows.

Observation 40 allows us to consider only nontrivial connected graphs. Therefore, we focus

on proving the following theorem.

Theorem 41. If a connected graph G is a universal fixer, then G = K1.

5.2 Known Results

In order to study π-fixers, we will make use of the following results. A γ-set of G is a

dominating set of G of cardinality γ(G). The following results were shown by Hartnell and Rall [24],

where some statements are in a slightly different form.

Lemma 42. [24, Theorem 4, pg. 395] Let G be a connected graph of order n ≥ 2 and π a permutation

of V (G). Then γ(πG) = γ(G) if and only if G has a γ-set D such that

(a) D admits a partition D = D1 ∪D2 where D1 dominates V (G)\D2;

(b) π(D) is a γ-set of G and π(D2) dominates V (G)\π(D1).

Note that if a graph G is a universal fixer, then G is also a prism fixer. So applying Lemma

42 to the permutation 1G, we get the following type of γ-set.

Definition 43. A γ-set D of G is said to be symmetric if D admits a partition D = D1 ∪D2 where

1. D1 dominates V (G)\D2, and

2. D2 dominates V (G)\D1.

We write D = [D1, D2] to emphasize properties 1 and 2 of this partition of D.

Lemma 44. [24, Proposition 6, pg. 398] If D = [D1, D2] is a symmetric γ-set of G, then

(a) D is independent.

(b) G has minimum degree at least 2.

(c) D1 and D2 are maximal 2-packings of G.

(d) For i ∈ {1, 2},
∑

x∈Di
deg x = |V (G)| − γ(G).
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Theorem 45. [36, Theorem 4] The conditions below are equivalent for any nontrivial, connected

graph G.

(a) G is a prism fixer.

(b) G has a symmetric γ-set.

(c) G has an independent γ-set D that admits a partition D = [D1, D2] such that each vertex in

V (G)\D is adjacent to exactly one vertex in Di for i ∈ {1, 2}, and each vertex in D is adjacent

to at least two vertices in V (G)\D.

We shall add to this terminology that if a symmetric γ-set D = [D1, D2] exists such that

|D1| = |D2|, then D is an even symmetric γ-set.

5.3 Proof of Theorem 41

The proof of Theorem 41 is broken into three cases depending on the type of symmetric

γ-sets a graph possesses. The following property will be useful in each of these cases.

Property 46. Let A = [A1, A2] and B = [B1, B2] be symmetric γ-sets of G such that |A1| ≤ |A2|

and |B1| ≤ |B2|.

(a) If |A1| < |B1|, then A2 ∩B1 6= ∅.

(b) If |B1| = |A1| < |A2|, then A2 ∩B2 6= ∅.

Proof. (a) By assumption, |B1\A1| > 0 and A1 dominates V (G)\A2. If A2 ∩ B1 = ∅, then by

the pigeonhole principle there exists v ∈ A1 such that v dominates at least two vertices in B1.

This contradicts the fact that B1 is a 2-packing. Therefore, A2 ∩B1 6= ∅.

(b) Since |B2| = |A2| > |A1|, replacing B1 with B2 in the above argument gives the desired result.

We call the reader’s attention to the fact that any universal fixer is inherently a prism fixer.

Therefore, in each of the following proofs, we show that for every nontrivial connected prism fixer

G there exists a permutation α such that γ(αG) > γ(G). Furthermore, the results of Mynhardt and

Xu [36] allow us to consider only connected graphs with domination number at least 4.
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To prove the next three theorems, we introduce the following notation. Let G be a graph

and let π be a permutation of V (G). For each vertex v ∈ V (G), we let v1 represent the copy of

v in G1 and v2 represent the copy of v in G2; conversely, for i = 1, 2, if vi ∈ V (Gi), let v be the

corresponding vertex of G. If A ⊆ V (G), we define Ai = {vi : v ∈ A} for i = 1, 2. Conversely, if

Ai ∈ V (Gi), then A = {v ∈ V (G) : vi ∈ Ai}, i = 1, 2. If B is a set of vertices in the graph πG, we

write B = X1∪Y 2, for some symbols X and Y , where X1 = B∩V (G1) and Y 2 = B∩V (G2). Thus

we navigate between G and πG: the absence of superscripts indicates vertices or sets of vertices

in G, and the superscript i ∈ {1, 2} indicates the corresponding vertices or sets of vertices in the

subgraph Gi of πG.

Theorem 47. Let G be a nontrivial connected prism fixer with γ(G) ≥ 4. If G has a symmetric

γ-set that intersects every even symmetric γ-set of G nontrivially, then G is not a universal fixer.

Proof. Let D = [D1, D2] be a symmetric γ-set of G that intersects every even symmetric γ-set of

G nontrivially. By Lemma 44(c), D1 and D2 are 2-packings. Assume without loss of generality

that |D1| ≥ |D2| and let D1 = {x1, . . . , xk}. Since D1 is nonempty and a 2-packing, there exists a

vertex u ∈ N(x1) such that u /∈
⋃k

i=2N(xi). Define the permutation α of V (G) by α(xi) = xi+1,

i = 1, . . . , k−1, α(xk) = u, α(u) = x1, and α(v) = v for v ∈ V (G)\(D1∪{u}). Figure 5.1 illustrates

αG with this particular permutation.

x1k

x1k−1

x11

...

...

G1 G2

u1

x2k

V (G1)\(D1
1 ∪ {u1})

...

x22

x21

u2

...

D1
1 ∪ {u1}

Figure 5.1: αG where D is a symmetric γ-set that nontrivially intersects every even symmetric γ-set
of G
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Suppose γ(αG) = γ(G) and let Q1 ∪R2 be a γ-set of αG. Let S1 consist of the vertices of

G1 that are not dominated by Q1. Then S1 is dominated by R2, that is, for each s1 ∈ S1, α(s) ∈ R

and thus α(S) ⊆ R. Suppose r2 ∈ R2 is adjacent to a1 ∈ V (G1) − S1. Then α−1(r) = a and

Q1 dominates a1; hence each vertex of G1 is dominated by a vertex in Q1 or a vertex in R2\{r2},

implying (Q ∪ α−1(R))\{a} is a dominating set of G of cardinality less than γ(αG) = γ(G), which

is impossible. Hence the neighbor in G1 of each vertex in R2, as determined by α, belongs to S1,

that is α−1(R) ⊆ S. It follows that α(S) = R. Similarly, if T 2 consists of the vertices of G2 that are

not dominated by R2, then α(Q) = T . Furthermore, S and T are 2-packings, otherwise G would

also have a dominating set of cardinality less than γ(G). We consider four cases.

Case 1 Assume that S ∩ (D1 ∪ {u}) = ∅ and Q ∩ (D1 ∪ {u}) = ∅. By definition of α, α(v) = v for

each v ∈ S ∪ Q. Since α(S) = R, R = S. Similarly, Q = T . Since Q1 dominates V (G1)\S1

and R2 dominates V (G2)\T 2, it follows that T dominates V (G)\S and S dominates V (G)\T .

Hence [S, T ] is a symmetric γ-set of G, where we may assume without loss of generality that

|S| ≤ |T |.

If |S| = γ(G)/2, then [S, T ] is an even symmetric γ-set of G. By the choice of D, D∩(S∪T ) 6= ∅.

Since α(v) = v for each v ∈ S ∪ Q = S ∪ T , we know that D ∩ (S ∪ T ) ⊆ D. Hence, by the

assumptions of Case 1, D ∩ (S ∪ T ) ⊆ D2. Without loss of generality, assume there exists

y ∈ D2 ∩ T . By Lemma 44(a), y does not dominate any vertex in D1. Now each vertex in

D1 is either dominated by a vertex in T or is contained in S. But S ∩D1 = ∅ and y does not

dominate any vertex in D1. Hence T\{y} dominates D1. But |T | = γ(G)/2, so by the choice

of D1, |T\{y}| < γ(G)/2 ≤ |D1|. Therefore D1 is not a 2-packing, contradicting Lemma 44(c).

Hence assume |S| < γ(G)/2. Letting S represent A1 and D1 represent B1 in Property 46(a),

and recalling that |D1| ≥ γ(G)/2, we see that T ∩D1 6= ∅. But then Q ∩D1 6= ∅, contrary to

the assumption of Case 1. Hence Case 1 cannot occur.

Case 2 Assume that u ∈ Q ∪ S. First suppose that u ∈ Q. Then α(u) = x1 ∈ T . Since ux1 ∈ E(G)

and T is a 2-packing, u 6∈ T . Hence u ∈ N(R) by definition of T . Let v be a vertex in R

adjacent to u. Since x1 is the only vertex of D1 adjacent to u, α(v) = v. Since α(S) = R, it

follows that v ∈ S. But now uv joins u ∈ Q to v ∈ S, contrary to the definition of S.

Hence we may assume that u ∈ S. Then α(u) = x1 ∈ R. Since ux1 ∈ E(G) and S is a

2-packing, x1 6∈ S. Hence x1 ∈ N(Q) by definition of S. Let v be a vertex in Q adjacent to
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x1. As above, α(v) = v, and since α(Q) = T , v ∈ T . Therefore there exists an edge between

R and T , contrary to the definition of T .

Case 3 Assume for some j ∈ {2, . . . , k− 1} that xj ∈ Q∪S. Suppose we can show that x1, u ∈ Q∩R.

Since α(Q) = T and u ∈ Q, it fill follow that α(u) = x1 ∈ T , contrary to the fact that

R ∩ T = ∅. Hence this is what we do next.

Since xj ∈ Q ∪ S, α(xj) = xj+1 ∈ R ∪ T . Suppose there exists a vertex v ∈ R such that

vxj ∈ E(G). By the choice of u, v 6= u. Since D1 is independent, v 6∈ D1. Therefore

v ∈ V (G)\(D1∪{x}) and so α(v) = v, which implies that v ∈ S. Since S is a 2-packing, xj 6∈ S,

and since no vertex in Q dominates a vertex in S, xj 6∈ Q, contrary to the assumption of Case

3. Hence no such vertex v exists and thus, by definition of R and T , xj ∈ R ∪ T . Therefore

α−1(xj) = xj−1 ∈ Q∪S. A similar argument shows that xj+1 is not adjacent to any vertex in

Q and so xj+1 ∈ Q∪S. We can now apply the same argument inductively to xj+1 ∈ Q∪S and

xj−1 ∈ Q∪S until we arrive at the conclusion that {x1, x2, . . . , xk} ⊆ (Q∪S)∩ (R∪T ). Then

α−1(x1) = u ∈ (Q∪S) and α(xk) = u ∈ (R∪T ). Since x1 and u are adjacent, the definitions of

Q and S imply that x1 and u are both in Q or both in S; but since S is a 2-packing, x1, u ∈ Q.

Similarly, x1, u ∈ R and thus x1, u ∈ Q ∩R, as required.

Case 4 Assume that either x1 or xk is in Q ∪ S. Applying similar arguments as in Case 3 yields the

same contradiction. Therefore, this case cannot occur either.

Thus, no such dominating set Q1 ∪R2 exists for αG and the result follows.

If a nontrivial connected prism fixer G with γ(G) ≥ 4 has at most one even symmetric γ-set,

then the premise of Theorem 47 is true and we immediately obtain the following corollary.

Corollary 48. Let G be a nontrivial connected prism fixer with γ(G) ≥ 4. If G contains at most

one even symmetric γ-set, then G is not a universal fixer.

Theorem 47 also implies that if a nontrivial connected universal fixer G with γ(G) ≥ 4

exists, then for each even symmetric γ-set D of G, there exists another even symmetric γ-set E of

G such that D ∩ E = ∅. We now consider graphs that contain at least two pairwise disjoint even

symmetric γ-sets. Note that in this case γ(G) is an even integer.
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Theorem 49. Let G be a nontrivial connected prism fixer with γ(G) = 2k where k ≥ 2. If G

contains at least two disjoint even symmetric γ-sets, then G is not a universal fixer.

Proof. Let D1, . . . , Dm be a maximal set of pairwise disjoint even symmetric γ-sets. Since Di is

symmetric, for each 1 ≤ i ≤ m we can write Di = [Xi, Yi] such that Xi dominates V (G)\Yi and Yi

dominates V (G)\Xi. We let X =
⋃

iXi.

We know that each Xi is a 2-packing of size k. Thus, we can index the vertices of Xi as

xi,1, xi,2, . . . , xi,k such that xi+1,j is adjacent to xi,j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ k.

In order to define our permutation of V (G), we first assign an additional index to Xm, since

we will map Xm to X1. Note that we have already indexed Xm such that xm,j ∈ N(xm−1,j) for

j = 1, . . . , k, and this index will be used to map Xm−1 to Xm. Now for 1 ≤ j ≤ k, define aj such

that xm,aj
∈ N(x1,j), and this index will be used to map Xm to X1. We may define the following

permutation of V (G):

α(v) =



xi+1,j if v = xi,j for 1 ≤ j ≤ k and 1 ≤ i ≤ m− 1

x1,j+1 if v = xm,aj
for 1 ≤ j ≤ k − 1

x1,1 if v = xm,ak

v otherwise.

Notice in Figure 5.2 that when we consider the indices of Xm as xm,aj
∈ N(x1,j), we can

write the vertices of X1 and Xm as a cyclic permutation

β = (xm,a1
, x1,2, xm,a2

, x1,3, . . . , xm,ak
, x1,1),

where for each 1 ≤ j ≤ k:

(1) β(x1,j) = xm,aj
; i.e. xm,aj

is adjacent to the vertex immediately preceding it in β, and

(2) β(xm,aj
) = α(xm,aj

) = x1,j+1; i.e. α maps xm,aj
to the vertex immediately following it in β.

Furthermore, by the definitions of α and aj , 1 ≤ j ≤ k, β cannot be written as a product of subcycles

that exhibit the same properties.

Suppose γ(αG) = 2k and let Q1 ∪R2 be a γ-set of αG. Define S1 and T 2 as in Theorem 47

with all the associated properties.
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x13,2

x11,1

x12,1

x13,1

x11,4

x12,4

x13,4

x11,2

x12,2

x13,3

x11,3

x12,3

G1 G2

x23,2

x21,1

x22,1

x23,1

x21,4

x22,4

x23,4

x21,2

x22,2

x23,3

x21,3

x22,3

Note that α(v) = v for all other vertices of G not depicted

- X1

- X2

- X3

Figure 5.2: Specific case when m = 3 and k = 4
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We first claim that Q ∩X 6= ∅. To see this, suppose neither S nor Q contains a vertex of

X. By definition of α, T = α(Q) = Q and R = α(S) = S. Thus Q and R are disjoint 2-packings

and [Q,R] is a symmetric γ-set of G.

By the symmetry of αG we need only to consider two cases. If |Q| = k = |R|, then [Q,R]

is an even symmetric γ-set. By the choice of D1, . . . , Dm, Di ∩ (Q ∪ R) 6= ∅ for some 1 ≤ i ≤ m.

Because α(Q∪R) = Q∪R, the definition of α implies that Di ∩ (Q∪R) ⊆ Yi. Assume without loss

of generality that yi,j ∈ Q for some 1 ≤ j ≤ k. Then each vertex of Xi is dominated by a vertex

of Q\{yi,j} or is contained in S. But by the assumption, S ∩X = ∅, hence Q\{yi,j} dominates Xi.

Since |Q\{yi,j}| = k − 1 < |Xi|, this contradicts Xi being a 2-packing. Therefore either Q ∩X 6= ∅,

and we are done, or S ∩X 6= ∅. In the latter case, we interchange the labels G1 and G2 and obtain

Q ∩X 6= ∅.

On the other hand, if |Q| < k, then S ∩ Xi 6= ∅ for each 1 ≤ i ≤ m, since each Xi is a

2-packing and every vertex of G is either dominated by Q or is contained in S. This implies for each

1 ≤ i ≤ m that R ∩Xi 6= ∅ by definition of α. As before, simply relabel G1 and G2 so that |Q| ≥ k

and obtain Q ∩X 6= ∅.

We next claim that T ∩ X1 6= ∅. From above, we may assume |Q| ≥ k. If |Q| > k, then

|R| < k. This implies that T ∩ X1 6= ∅, since X1 is a 2-packing and every vertex of G is either

dominated by R or is contained in T . So assume that |Q| = k, and let xi,a ∈ Q for some 1 ≤ i ≤ m

and 1 ≤ a ≤ k. If i = m, then by definition of α we have T ∩X1 6= ∅. So assume i 6= m. Since Yi is

a 2-packing and no vertex of Yi is adjacent to a vertex of Xi, there exist at least |Q∩Di| vertices in

S ∩ Yi. Moreover, since each vertex of Yi is mapped to itself under α, we know there exist at least

|Q ∩Di| vertices in R ∩ Yi as well. This, together with the fact that |Q| = k = |R|, gives

|R\Yi| ≤ k − |Q ∩Di|

≤ k − 1.

Therefore, since Xi is a 2-packing and each vertex of G is either dominated by R or is contained in

T , T ∩Xi 6= ∅. So assume xi,b ∈ T for some 1 ≤ b ≤ k. If i = 1 or if m = 2, then we are done with

the proof of this claim. So assume m > 2 and i 6∈ {1,m}. By definition of α, xi−1,b ∈ Q. Applying

the above argument inductively, eventually we have T ∩X1 6= ∅. Let r = |T ∩X1| > 0.

We next claim that r < k. To see this, suppose that r = k. Then X1 ⊆ T . Because X1
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dominates V (G)\Y1, R ⊆ Y1. If R ⊂ Y1, then T contains X1 and some vertex y1,j ∈ Y1. Since

Y1 dominates V (G)\X1, some x1,i and y1,j have a common neighbor in V (G)\D1, contrary to T

being a 2-packing. Therefore R = Y1 and so T = X1. Then Q = α−1(T ) = α−1(X1) = Xm and

S = α−1(R) = Y1. By the choice of the Di, D1 ∩ Dm = ∅. Hence Xm = Q dominates Y1 = S,

contradicting the fact that, by definition, S = V (G)\N [Q]. Thus, we may conclude that r < k.

Let x1,b1 , x1,b2 , . . . , x1,br be the vertices of T ∩X1. There exist exactly r vertices in Q∩Xm;

call them xm,c1 , xm,c2 , . . . , xm,cr . We claim for some x1,bj ∈ T ∩ X1 that x1,bj 6∈ N(Q ∩ Xm). So

assume not; that is, assume {x1,b1 , x1,b2 , . . . , x1,br} ⊂ N(Q ∩ Xm). This implies there exists some

relabeling of the bj ’s and cj ’s such that xm,cj ∈ N(x1,bj ) and α(xm,cj ) = x1,bj+1 for bj ∈ {1, . . . , k−1}

and α(xm,cj ) = x11 if cj = ak where ak is the index first given to xm to define α. Consequently,

there exists some subcycle of β consisting of the vertices x1,b1 , x1,b2 , . . . , x1,br , xm,c1 , xm,c2 , . . . , xm,cr

such that for each 1 ≤ j ≤ r:

(1) xm,cj is adjacent to the vertex immediately preceding it within its subcycle; and

(2) xm,cj is mapped under α to the vertex immediately following it within its subcycle.

However, this contradicts the construction of α unless r = k, which we know to be false.

Thus, for some x1,bj ∈ T ∩ X1, x1,bj ∈ S or x1,bj ∈ N [Q\Xm]. If x1,bj ∈ S, then by definition

Q1

x1m,c1 x1m,c2 x1m,c3

x1i,d

x11,b2

T 2

x21,b1 x21,b2 x21,b3

x2i+1,d

x2i,d

Figure 5.3: Specific case when |T ∩X1| = 3

of α, x2,bj ∈ R. Since x1,bj ∈ N(x2,bj ), this implies there exists an edge between R and T . This

contradiction shows x1,bj ∈ N [Q\Xm]. So assume v ∈ Q where x1,bj ∈ N [v]. If α(v) = v, then v

and x1,bj are both in T , which contradicts T being a 2-packing. On the other hand, if α(v) 6= v,

then v = xi,d for some i 6= m and 1 ≤ d ≤ k.

Case 1 Assume that i = 1. Since Xi is a 2-packing, it follows that v = x1,bj ∈ Q. Thus, x2,bj ∈ T

by definition of α. But x1,bj was assumed to be in T , so this violates T being a 2-packing.

53



Therefore, this case cannot occur.

Case 2 Assume that i 6∈ {1,m}. Immediately this implies that m > 2. Furthermore, α(xi,d) = xi+1,d,

and we have xi,d ∈ N(x1,bj ) ∩N(xi+1,d), which contradicts T being a 2-packing, as shown in

Figure 5.3. Thus, this case cannot occur either.

Having considered all cases, we have shown such a dominating set Q1 ∪R2 of αG does not exist of

order 2k. Hence, the result follows.

We now use the results of this section to prove Theorem 41.

Proof of Theorem 41. Assume that G is a connected universal fixer of order n ≥ 2. By Mynhardt

and Xu [36], we may assume that γ(G) ≥ 4. Since G is a universal fixer, G is a prism fixer.

Theorem 47 implies that for every even symmetric γ-set D of G, there exists an even symmetric

γ-set D′ of G such that D ∩ D′ = ∅. However, this contradicts Theorem 49, which states that G

cannot contain a pair of disjoint even symmetric γ-sets. Therefore, no such connected universal fixer

of order at least 2 exists. That is, if G is a connected universal fixer, then G = K1.

In conclusion, we know that any component of a universal fixer must be an isolated vertex.

It follows that edgeless graphs are the only universal fixers.
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