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ABSTRACT 

 The charging kinetics of Electric Double Layer Capacitors (EDLC) were studied 

using a continuum model based on the Poisson-Nernst-Planck (PNP) Equations, with the 

additional modeling of the bulk fluid motion in the electrolyte using the Navier-Stokes 

Equations. The results demonstrate that the addition of bulk flow modeling yields a faster 

charging rate and higher charging current due to the additional convective component of 

the current resulting from the bulk fluid motion. A parametric study was conducted to 

determine the effect of various physical parameters of the EDLC system on the charging 

kinetics. Decreased fluid viscosity results in a faster charging rate as the fluid velocities 

and, therefore, the convective current, becomes larger. Reduced ion mobility enhances 

the flow modeling effect by reducing the remaining non-convective components of the 

current, thus causing the convective current to represent a greater portion of the total 

current, but the penalty is lower overall current and correspondingly slower charging. 

Increased wall slip enhances the convective current by reducing friction at the walls and 

increasing the flow velocities. Widening the electrode pore bores increases charging rate 

by providing a greater cross-sectional area for the ion current to pass. Deepening the 

electrode pores slows the charging by requiring more ions to enter the pore in order to 

reach the steady-state charged condition.  
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CHAPTER 1 

INTRODUCTION 

 
 The Electric Double Layer (EDL) phenomenon is surprisingly widespread in 

occurrence, yet it is little known outside the academic and industry research communities. 

Essentially, the EDL is a layer of charge separation that occurs at a solid-liquid interface 

when sufficient free charge carriers (e.g., ions or free electrons) are present. The only 

requirements for formation of an EDL are sufficient free charge carriers and an electric 

potential to initiate the charge separation. The electric potential may be an externally-

applied voltage, as seen in a capacitor or other electrochemical cell, or it may occur 

naturally as a result of inherent chemical potential differences in the ion species and the 

electrode material. 

 In a typical application where the EDL arises, a fluid medium containing mobile 

charge carriers is bounded by a solid surface. The fluid medium can be an electrolyte 

solution of positively-charged and negatively-charged ions dissolved in a solvent such as 

water. Alternatively, the fluid medium can be an ionic liquid. When an electric field is 

imposed across the fluid medium, the positively-charged ions migrate in the direction of 

lower electric potential, and vice versa. The electric field and resulting potential 

difference may arise naturally due to chemical interactions between the solid material and 

the fluid medium. For example, metal oxides often acquire a negative charge when 

immersed in water due to the dissociation of protons from hydroxyl groups on the oxide 
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surface (OH → O– + H+) [9]. Alternatively, an electric field can be created within the 

fluid medium by applying a potential difference between the solid surface (electrode) and 

a counterelectrode, as would be done in charging a capacitor or operating an 

electromechanical device using electro-osmotic flow. In either case, the potential and 

resulting accumulation of charge on the solid surface causes counterions to be attracted to 

the fluid region adjacent to the solid surface, thereby screening the surface charge and 

tending to neutralize the electric field. The resulting charge on the solid surface, 

combined with the adjacent layer of opposite charge in the fluid medium, is referred to as 

the “electric double layer.”  

 The EDL sees applications in various electromechanical devices, including 

supercapacitors and electro-osmotic flow (EOF) devices. Perhaps the most widespread 

application, and the primary one of interest to the present investigation, is the 

supercapacitor. Also referred to as the Electric Double Layer Capacitor (EDLC), this 

capacitor is so named because it makes use of the EDL to accumulate charge in densities 

several orders of magnitude greater than ordinary parallel-plate and electrolytic 

capacitors, thereby providing greater energy density and much greater power 

density.[20][36]  

The EDLC typically consists of two electrodes separated by a fluid medium 

containing mobile positive and negative ions. When an external potential is applied 

between the electrodes, a charge separation is induced by the electric field inside the fluid 

medium, with positive ions migrating to the region adjacent to the ground-potential 

electrode, and negative ions migrating to the region adjacent to the positive-potential 
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electrode. This results in an electric double layer forming at each electrode/electrolyte 

interface, where charge is stored.[20] In order to maximize the charge density within the 

electric double layer and accompanying surface charge density on the electrode surfaces, 

the electrodes are typically fabricated with numerous nanoscale pores into which the 

electrolyte can flow, resulting in a manifold increase in electrode/electrolyte interface 

surface area.[20][36] The porous electrodes are commonly made of activated carbon, 

which provides favorable pore dimensions and ages relatively slowly during use.[6][20]  

One relatively simple technique for forming electrodes with larger pores in the 100 nm 

range involves depositing a thin film of carbon black on the current collector [24], while 

carbon nanocages or carbon nanotubes can be used to obtain pores in the nanometer 

range.[13][22][44] 

 To better understand the role of the EDL in the operation of these devices, and to 

realize significant improvement in the performance of such devices, it is important to 

create accurate models of the EDL’s formation and evolution. Particularly, we are 

interested in the kinetics of the charging and discharging of the EDL, which can be 

ascertained by studying metrics such as electric potential, charge density, and current 

density. 

 Prior efforts to model the EDL have generally fallen into two groups: continuum 

models, and molecular dynamics (MD) simulations. The continuum modeling approach 

has been performed using the Nernst-Planck equation to model the ion migration due to 

the electric field and diffusion, coupled with Poisson’s equation to relate electric potential 

to charge density (Gauss’s Law of electrostatics in differential form). In this thesis, the 
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PNP analysis will be carried a step further to include modeling of the bulk fluid motion 

using the Navier-Stokes equations. As will be seen, inclusion of the bulk flow model 

results in a more complete simulation of the charging kinetics that produces a discernible 

difference in the charging rate of the EDL. 

 Chapter 2 of this thesis will provide an overview of the relevant literature 

developing the theory of the electric double layer. Chapter 3 will describe the 

methodology used in the present investigation. Chapter 4 will present the data and results 

obtained, and Chapter 5 will offer conclusions drawn from this work.  
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CHAPTER 2 

 

BACKGROUND AND THEORY OF THE ELECTRIC DOUBLE LAYER 

 

2.1 Physical Descriptions of the EDL 

 The first attempt to provide a sound theoretical basis for the EDL was made by 

Helmholtz, who viewed the counterions as binding directly to the charged solid surface, 

forming a single layer of counterions that neutralize the charge on the solid surface. In 

this model, the single layer of counterions (referred to as the “Helmholtz layer”) 

completely balances and neutralizes the charge on the solid surface, leaving no electric 

field remaining in the liquid medium.[9] Thus, the remaining positive and negative ions 

within the bulk liquid outside the Helmholtz layer are uniformly distributed. 

 The Helmholtz model of the EDL was refined and improved upon by Gouy and 

Chapman in the second decade of the twentieth century. Guoy and Chapman added to the 

model by accounting for the random thermal motion of the ions, which causes ionic 

transport by diffusion throughout the fluid medium [9]. The effect on a concentrated 

region of ions, such as the Helmholtz layer, is to spread the region out into an extended 

region of charge. Accordingly, the Helmholtz layer becomes spread out into a diffuse 

region of smoothly-decreasing counterion concentration extending out into the bulk fluid. 

This new model is sometimes referred to as the “diffuse” model of the EDL or the 
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“diffuse EDL.” Figure 2.1 illustrates the counterion concentration profiles under the 

Helmholtz and Gouy-Chapman models of the EDL. 

 

 

Figure 2.1: The Helmholtz and Gouy-Chapman models of the EDL 

 

 Under the diffuse theory of the EDL, the equilibrium distribution of counterions 

and, therefore, the electric potential in the EDL can be modeled using a Poisson-

Boltzmann model. Gauss’s law of electrostatics, which is a form of Poisson’s equation, 

expresses the electric potential as a function of charge density: 

∇!! = − !!
!!!

 

where !! is the charge density at the point in question, ! is the permittivity of the 

medium, and !! is the permittivity of a vacuum. To apply this law to the EDL, we invoke 

Boltzmann statistics, which holds that the ion distribution (specified as a concentration) 

of a species i is determined by the work needed to overcome the potential at the point in 

question: 

-
-
-
-
-
-
-
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!! = !!! ∙ !!!!/!!! 

where !!! is the bulk concentration far away from the electrode, !! is the work required to 

bring an ion of species i from zero potential to the point in question, and T is the 

temperature [9]. This work !! is simply the ion charge multiplied by the potential: 

!! = !!!" 

Considering the case of two ion species, both monovalent with one having 

positive charge and the other having negative charge, the local charge density is given by 

[9]: 

!! = ! !! − !! = !!! !
!"
!!! − !!

!"
!!!  

Substituting this expression for charge density into Poisson’s equation, we have 

∇!! =
!!!
!!!

!
!"
!!! − !!

!"
!!!  

This is the Poisson-Boltzmann equation, and it provides the steady state electric potential 

throughout the domain for a given set of electric potential boundary conditions and initial 

ion concentrations.[38] 

The potential distribution for the EDL, as given by the Poisson-Boltzmann 

equation, is shown in Figure 2.2(a), and the ion concentrations in the EDL are shown in 

Figure 2.2(b).[11] 

Recent research has suggested the presence of non-electrostatic effects originating 

in the so-called Yukawa pair potential on ion distribution in the EDL, but these effects 

were not modeled in the present study.[7] 
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Figure 2.2(a): Electric Potential Function for Electric Double Layer 

 

 

 

Figure 2.2(b): Ion Concentrations in the Electric Double Layer 
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The potential curve seen in Figure 2.2(a) is closely approximated by an 

exponential decay function of the form ! = !!!!!", which provides a first-order 

approximation to the Poisson-Boltzmann equation and is valid for relatively low 

potentials [9]. The decay constant, k, provides a measure of the size of the EDL. The 

Debye length is defined [9] as 

!! = !!! =
2!!!!
!!!!!!

 

The Debye length gives a characteristic length by which the size of the EDL can be 

quantified. At a distance of !! from the electrode surface, the electric potential is 1/e as 

great as the potential on the electrode, using a hypothetical point infinitely far removed 

from the electrode as the reference “zero” point. 

 As a measure of the EDL’s size, the Debye length plays a critical role in 

indicating how much charge can be stored within the EDL. In fact, at low electric 

potential the capacitance of the EDL is: 

! =
!!!!
!!

 

where A is the surface area of the electrode [9][20]. This formula has exactly the same 

form as the familiar formula for the capacitance of a parallel plate capacitor: 

! =
!!!!
!  

where d is the distance between the plates. Thus, the EDL behaves as a plate capacitor, 

with the diffuse layer of ions forming one of the “plates” on/in which charge of one 

polarity is stored. 
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 The diffuse theory of the EDL was further refined by Stern, who reintroduced the 

Helmholtz notion of a single layer of ions adjacent to the solid surface. In Stern’s theory, 

the EDL is viewed as comprising two parts: a single layer of ions that are directly 

adsorbed to the solid surface and are immobile, and a diffuse, outer layer of mobile ions 

extending out into the fluid bulk [9].  Unlike Helmholtz’s model, in which the single 

layer of ions was equal and opposite in charge to the solid surface charge and therefore 

neutralized the latter, Stern’s layer of charge is typically only a fraction of the magnitude 

of the charge on the solid surface, leaving an electric field extending into the fluid bulk, 

where it attracts additional counterions to form the diffuse portion of the EDL.[38] This 

duplex structure of the EDL under Stern’s model is shown in Figure 2.3. 

The specific adsorption of a layer of immobile ions to the solid surface results in a 

thin gap between the Stern layer of ions and the solid surface, the size of the gap being 

determined by the material properties of the ions, the solvent, and the solid. No ions can 

move closer to the solid surface than the Stern layer and occupy this gap. 

 

Figure 2.3: The Stern Layer 

-
-
-
-
-
-
-
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More will be said about the Stern layer and the thin gap in a later discussion of the 

simulation techniques used in the present investigation.  

 

 2.2 The PNP Model 

 Using the Gouy-Chapman diffuse model of the EDL as our descriptive guide, we 

wish to develop a mathematical treatment for the movement of ions over time. This will 

allow the charging kinetics of the EDL to be analyzed as the potential source is applied 

and the ions migrate to reach the equilibrium condition that characterizes the fully-

charged EDL. 

 The general model for ionic transport in an electric field employs the Nernst-

Planck equation: 

!! = −!!∇!! −
!!!
!"
!!!!∇! + !!! 

This differential equation relates ion molar flux for species i to its concentration, the 

electric potential, and the fluid velocity at any point within the domain. In this equation, 

we have the following definitions: 

!!   is the molar flux 
!! is the diffusion coefficient 
!! is the concentration 
!! is the charge (in units of e) of ion species i.  
F is Faraday’s constant (! = !!!),  
R is the gas constant (! = !!!!) 
T is the temperature 
! is the fluid velocity 
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The diffusion coefficient, Di, for the ion species i is related to its mobility !! by the 

Einstein relation: 

!! =
!!!!!
!!

 

The Nernst-Planck equation consists of three terms representing the three fundamental 

transport phenomena that carry ions around within the domain. The first term, −!!∇!!, is 

the diffusion term, which gives the ion flux due to thermal diffusion. The second term, 

−!!!
!"!!!!∇!, is the migration term, which gives the ion flux due to the electric field. The 

third term, !!!, is the convection term, which gives the ion flux due to transport by bulk 

fluid motion. 

 In applying the Nernst-Planck equation to an ionic solution or liquid, the electric 

potential ϕ will be determined by the charge density throughout the domain. 

Mathematically, this can be expressed using Poisson’s Equation, as previously discussed: 

∇!! = − !!
!!!

 

where !! is the charge density at the point in question, ! is the permittivity of the 

medium, and !! is the permittivity of a vacuum. By combining this equation and the 

Nernst Planck equation, we have a model that allows us to determine ion flux using the 

known distribution of ions. This is known as the Poisson-Nernst-Planck (PNP) model, 

and it can be applied to model the evolution of ion distribution over time as ions are 

transported in response to the electric field, diffusion, and fluid motion. 
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2.3 Navier-Stokes Equations 

 At this point, a quick review of the above discussion will reveal that there is one 

parameter in the Nernst-Planck equation that has not yet been adequately specified: the 

fluid velocity, !. In order to evaluate this term in the equation, we need a model for the 

fluid velocity throughout the flow field. That information is provided by the general 

equations of fluid motion, the Navier-Stokes equations. 

!
!!!
!" + !!!

!!!
!!!

= −
!"
!!!

+ !
!!!!
!!!!!!

+ !!! 

This equation is stated here in tensor form using index notation, and it represents three 

equations, one for each spatial dimension. The last term, !!!, is the body force term, and 

it represents forces whose action is distributed throughout an arbitrarily small element of 

volume within the fluid domain. In the current problem, the force exerted by the electric 

field on the ions contained within an element of fluid volume is modeled using this body 

force term. 

 As will be discussed below, the present investigation employs the Navier-Stokes 

equations to improve upon the standard PNP model by supplying the fluid flow solution 

needed to evaluate the fluid velocity that appears in the convective term of the Nernst-

Planck ion transport equation. Research has not revealed any prior attempts to include 

this bulk fluid flow in the continuum modeling of the EDL. Accordingly, as discussed 

more fully below, the results of the present investigation show that inclusion of the bulk 

fluid motion does indeed have a discernible impact on the charging kinetics of the EDL.  
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 The modeling and simulation of present investigation was performed using 

COMSOL Multiphysics version 4.1. The Nernst-Planck equation for ion transport was 

implemented using the Transport of Diluted Species physics module, which solves the 

Nernst-Planck equation without imposing an electroneutrality constraint at every point in 

the domain. Poisson’s equation was implemented using the Electrostatics module, and the 

Navier-Stokes fluid flow modeling was implemented using the Laminar Flow module. 

 The primary goal of this investigation is to perform a parametric study of the PNP 

continuum simulation model with Navier-Stokes fluid flow modeling in order to ascertain 

the impact of the bulk fluid motion on the charging kinetics. For this parametric study, 

various parameters were studied, including ion mobility, solvent viscosity, solvent 

density, fluid boundary slip length, and electrode nanopore size. The charging kinetics 

were quantified using surface charge density on the electrode and electric current flowing 

through the electrode nanopore. 

 
3.1 Model Geometry  

 The geometry used in the present modeling and simulations is shown in Figure 

3.1. This geometry is intended to represent a device that stores electrical energy in the 

EDL, such as a supercapacitor. It consists of two electrodes separated by a channel region  
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Figure 3.1: The model geometry 

 

that is filled with an electrolyte solution containing equal numbers of positive and 

negative ions. When a potential difference is applied across the electrodes, ion transport 

within the electrolyte causes an EDL to form at each electrode/electrolyte interface as 

charge is transported and accumulates in those regions. Each of the two electrodes 

contains a nanopore bored into the electrode, into which electrolyte and ions can flow, 

thereby increasing the surface area of the interface and thus the amount of charge that can 

be accumulated in the EDL.[12] The nanopore used here represents a narrow slit whose 

breadth in the z-direction (into the page in these figures) is much greater than any of the 

other dimensions shown. This enables the problem to be modeled using a 2D geometry as 

shown here, with all numerical quantities being taken on a per-unit-breadth basis. 

 As can be seen from Figure 3.1, the 2D geometry of the present model also 

exhibits axial symmetry along a horizontal axis coinciding with the centerline of the 

electrode pores and the intervening channel. This symmetry allows the problem to be 

modeled using a domain consisting of half this area. 
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3.2(a): Subdomains of the problem geometry 

 
 

 
3.2(b): Electrodes 

 
 

 
3.2(c): Stern Layer: thin low-permittivity gap 

 
 

 
3.2(d): domain accessible to positive ions 

 
 

 
3.2(e): domain accessible to negative ions 

 
 

Figure 3.2: Geometry implementation in COMSOL 
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 Figure 3.2 shows the problem geometry as implemented in COMSOL, where only 

the top half of the physical geometry of Figure 3.1 is used. The governing equations will 

be modeled and solved in this domain, with a symmetry condition being imposed along 

the entire bottom boundary of this half-geometry. This will accurately model the 

dynamics of the physical system, which is symmetrical in this manner. 

 Several additional refinements to the problem geometry were made in order to 

more accurately model the physical conditions that occur in the present problem. Figure 

3.2(a) shows that the geometry has been partitioned into several subdomains. In Figure 

3.2(b), the highlighted rectangles represent the solid electrodes, and the remainder of the 

domain area (not highlighted) represents the pore and channel regions occupied by 

electrolyte. 

Figure 3.2(c) shows a thin gap highlighted adjacent to each electrode surface. This 

gap represents the Stern Layer, which is a thin low-permittivity gap between the solid 

electrode surface and the first layer of ions that are specifically adsorbed to the solid 

surface. Solvated ions are not free to enter this region. The Stern Layer typically has a 

relative electric permittivity (!! = !/!!) between 6 and 32 for water as solvent, because 

water molecules in this this region are not free to rotate into the electric field [1][9]. For 

all simulations in the present study, a value of !!=7.8 was used. The thickness of the gap 

represented by the Stern Layer in an aqueous electrolyte solution may be on the order of 

several Ångstroms, depending on the ion species and the potential difference [9]. For the 

present study, a value of Ls=0.4 nm was used, which is appropriate for sodium and 

chloride ions in water with applied potentials no greater than 1 V [3][11]. 
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 An additional refinement to the model provides different boundaries for the 

mobile positive and negative ions. This accounts for the typically larger size of negative 

ions compared with positive ions, which means that the negative ions cannot be located 

as close to the solid surface of the electrode.[4][15][35]  For example, various numerical 

simulations and X-ray diffraction studies have given a radius for the Na+ ion of 0.95 Å to 

1.02 Å, and a radius for the Clˉ ion of 1.81 Å to 1.98 Å, depending on the simulation and 

modeling method used [3][29].  Accordingly, the model allows for this fact that the Na+ 

ions may be present approximately 1 Å closer to the electrode surface than the Clˉ ions. 

Figure 3.2(d) shows the highlighted domain accessible to the positive ions, which is 

essentially the entire pore-and-channel region, except for the aforementioned Stern Layer 

gap. Figure 3.2(e) shows the domain accessible to the negative ions. The 0.25 nm gap 

between the two domains is out-of-bounds to the negative ions. 

 These different domains for the positive and negative ions were implemented in 

COMSOL by using two different Transport of Diluted Species modules, one that operates 

on the positive ions, and one that operates on the negative ions. An additional effect of 

the EDL on electrical resistance to ion current caused by the tendency of a conductive 

current to balance the streaming ion current has been recently reported [18] but was not 

modeled in the present study. 
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3.2 Physics Modules 

3.2.1 Ion Transport (Transport of Diluted Species) 

 As discussed above, the ion transport was modeled using the Nernst-Planck 

equation, as implemented by the Transport of Diluted Species physics module in 

COMSOL. Two separate copies of this physics module were used, one handling the 

positive ions, and one handling the negative ions. This allowed for the imposition of 

different boundaries, as shown in Figs. 3.2(d) and (e).  

The boundary condition imposed on the Transport of Diluted Species physics was 

a no-flux condition on the Stern Layer boundary, as well as the ends of the pores and the 

channel top edge. These conditions are shown in Figure 3.3 for the positive and negative 

ion domains. These conditions model the “blocking” nature of the electrodes, as well as 

provide a closed fluid domain by preventing ions from escaping the ends of the pores or 

the top of the channel. 

The symmetry condition, which is imposed along the entire bottom edge of the 

geometry for all the physics modules, is mathematically identical to the no-flux 

condition, providing that the gradient of the ion concentration flux in a direction normal 

to the boundary is zero, allowing no ion movement across the boundary. 

Recall the Nernst-Planck equation: 

!! = −!!∇!! −
!!!
!"
!!!!∇! + !!! 

To compute values of the ion concentrations, c+ and c- , and the associated ion flux, !!,! , 

the physics module must be supplied with values of the electric potential, !, and the fluid 

velocity, !. In the present model, this information is provided by coupling to the other 
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physics modules: the Electrostatics module (Gauss’s Law) solves for ! at each point in 

the domain, and the Laminar Flow module solves for !. 

The initial concentration was set at 2 M (2000 mol/m3) for the negative ions in all 

simulations. The initial concentration of the positive ions was calculated to provide equal 

numbers of positive and negative ions. Because the domain occupied by the positive ions 

is larger in volume, this means that the positive ion initial concentration was set lower 

than 2 M by a factor equal to the ratio of the areas of the two ion domains. These areas 

were determined by surface integration of the domains in COMSOL during a test run 

prior to the data collection simulations. 

 

 

 
3.3(a): Positive ion no-flux boundary 

 
 

 

3.3(b): Negative ion no-flux boundary 
 
 

Figure 3.3: Boundary condition (no-flux) on the Nernst-Planck equation for the 
positive and negative ion species  



21 
 

3.2.2 Gauss’s Law (Poisson’s Equation) 

 For the implementation of Gauss’s Law in COMSOL, the Electrostatics physics 

module was selected. The Electrostatics module is applied over the entire geometry of the 

problem because the electric potential within the electrolyte domain is determined by the 

conditions imposed on the other regions, from the point of potential application on the 

electrodes to the Stern Layer gap. These differing conditions governing the shape of the 

potential field are applied in much the same manner as boundary conditions, as discussed 

below. 

The Electrostatics module requires that the spatial charge density be specified, in 

order for the module to solve for the electric potential. Within the pore and channel 

domains, which are accessible to the ions (positive or negative) as shown in Figure 3.2(d) 

above, the spatial charge density is specified in terms of the ion concentrations 

(c+ and c-): 

!! = !! − !! ∙ ! 

 As these are the dependent variables supplied by the Transport of Diluted Species 

module, they provide the model coupling between the Nernst-Planck equation and 

Poisson’s equation. Additionally, the dielectric constant (or relative permittivity) must be 

specified. In COMSOL, this is done using a Charge Conservation condition for each 

domain. For water as solvent at standard temperature (25 °C) and pressure (1 atm), the 

dielectric constant is 78.41, and this value was used for all simulations in the present 

study. Accordingly, a Charge Conservation condition was applied to the electrolyte 

domains with a relative permittivity of 78.41. 
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 For the gap representing the Stern Layer, highlighted in Figure 3.2(c) above, there 

are no ions present, and hence no charge carriers. Thus, the spatial charge density !! is 

zero. A separate Charge Conservation condition was defined for this domain, and the 

dielectric constant for these regions was taken to be 7.8 for all simulations in the present 

study. 

 The domain representing the solid electrodes, highlighted in Figure 3.2(b) above, 

is modeled as a perfect conductor allowing charge to move freely across it, from the 

surface bounded by the electrolyte bath and Stern Layer to the distal edges, where the 

electrode would be connected to an external charge/discharge circuit. Accordingly, a 

spatial charge density of zero was used, along with a very high (104) dielectric constant. 

 The remaining boundary conditions implemented using the Electrostatics module 

are the applied electric potentials on the electrodes, which initiate the EDL charging 

process. These conditions will be discussed below with reference to the simulation 

procedures for this study. 

 

3.2.3 Bulk Fluid Flow (Navier-Stokes equations) 

 For the modeling of the bulk fluid flow in COMSOL, the Laminar Flow physics 

module was selected. Examination of the Reynolds number for the flows seen in the 

simulations confirms that the flow may be treated as laminar. Typical maximum fluid 

velocities observed were around 2 m/s. The solvent viscosity was studied in the 

parametric study, and a value equal to one-tenth the viscosity of water (8.9 x 10-4 Pa·s) 

was used for many of the simulations; the physical support for such a value has support in 
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other studies, as discussed below. Taking the characteristic length dimension for the 

geometry as ~ 1 nm, these values give a Reynolds Number as follows: 

!"! =
!"#
! =

(1000)(2)(1x10!!    )
(8.9x10!!)(0.1) = 0.0225 

This Reynolds Number on the order of 10-2 is quite low indeed and is well within the 

laminar flow regime, and therefore is Stokes Flow. 

 The Laminar Flow module is coupled to the other physics modules in this model 

in two ways. First, as discussed above, it provides the fluid velocity data used by the 

Transport of Diluted Species module to solve for the ion concentrations. Second, the 

Laminar Flow module takes the ion concentration data as inputs and uses it to determine 

the body force (or volume force) that drives the fluid flow. 

 The physical model implemented by the Laminar Flow module in this problem 

works as follows: a parcel of fluid is pulled along as the ions within that parcel are 

subject to the electric force. Thus, the body force on the fluid is specified as follows:  

!! = !! − !! ∙ ! ∙ (−∇!) 

 Another important condition that must be defined for the Laminar Flow module is 

the wall boundary condition, i.e., how the fluid motion behaves at the boundary with the 

solid electrode and channel wall surface. In addition to the familiar no-slip condition, 

various slip conditions were investigated in this study, as discussed below. 

 For all simulations in the present study, an initial fluid velocity of zero was used. 
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The Laminar Flow module also requires inputs of fluid density and viscosity. 

These values were varied as part of the parametric study; the values used and the results 

of such variation will be discussed fully below. 

 

3.3 Simulation Procedure 
 
 The primary methodology used in the present investigation was to conduct a 

parametric study, varying different physical parameters that govern the model and 

examining the effects of different values of the parameters on the EDL charging rate and 

fluid motion. To this end, the simulations were conducted in groups, each group 

consisting of three or four simulations. Each group studied variation of one parameter, 

with the remaining parameters being held constant. In this manner, the effects of 

variation in that particular parameter could be ascertained. Each group typically included 

one or more simulations in which the Navier-Stokes fluid flow module was turned off, in 

order to obtain a PNP simulation without fluid flow modeling. This allowed comparison 

of the full simulation (PNP plus bulk blow modeling) with the standard no-flow PNP 

simulation in order to determine the manner and extent to which the addition of bulk flow 

modeling impacts the results. 

 

 3.3.1 General Simulation Overview 

  The simulation profile was designed to include two distinct phases. In Phase 1 of 

each simulation, no electric potential was applied across the electrodes; the ions and fluid 

were just allowed to move throughout their domain and reach an equilibrium condition. 
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This was necessary because the non-uniformities in the ion distribution caused by the 

different-size domains for positive and negative ions (as shown in Figure 3.2(d) and (e)) 

created an electric field in the vicinity of this domain gap along the electrode surface. The 

ions were allowed to redistribute themselves in order to reach an equilibrium condition 

that canceled out this electric field. Phase 1 typically lasted approximately 1 ns in the 

simulations; in some simulations it was 950 ps and in others it was 1025 ps, which values 

were chosen by experiment in order to allow COMSOL to converge to a solution and 

eliminate instabilities in the solver. Plots of the variables in Figure 3.4 show that the 

equilibrium condition was reached well in advance of this end of Phase 1. 

 In Phase 2 of the simulations, the electric potential was applied across the 

electrodes, and ions and fluid were allowed to move throughout their domain and reach a 

new equilibrium condition in which the EDLs were charged. A total simulation duration 

(Phase 1 plus Phase 2) of 3 ns was uniformly used in all simulations. This provided a 

duration for Phase 2 of between 1.925 ns and 2.05 ns. Plots of the variables in Figure 3.4 

show that the EDL charged equilibrium condition was reached well in advance of the 3 

ns endpoint of the simulations. 

 The implementation in COMSOL of the applied potential function, in which the 

applied potential was ramped up over a short period, is discussed in Appendix A. 
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Figure 3.4: Fluid velocity (x-component) and current (x-component) as a function 
of time, showing equilibrium condition prior to 1 ns, and a second equilibrium 
condition in the latter part of Phase 2 leading up to the end of the simulation, 
indicating that the EDL has been fully charged   
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 3.3.2 Geometry Parameters 

 The standard geometry used in the simulations is shown below in Figure 3.5 with 

definitions and control values for the various measurements or size parameters indicated. 

These values were used for all simulations in which the geometry was held constant and 

variations of other parameters were being studied. For simulations in which the values of 

geometric parameter values were studied, these were varied as discussed below in the 

Data and Results chapter. 

 

 
 
 
 
parameter description value 
pore depth distance from pore opening to closed end of pore 3 nm 
pore bore vertical distance across pore, from top to bottom, through 

which ions (positive or negative) can move (does not 
include the Stern Layer gap); only half the total pore bore 
appears in the COMSOL geometry due to the symmetry 

1.5 nm 

channel width horizontal distance across channel 6 nm 
channel height vertical distance across channel, from top to bottom; only 

half the total channel height appears in the COMSOL 
geometry due to the symmetry 

4 nm 

Ls size of Stern Layer (thin low-permittivity gap between ion 
domain and electrode surface) 

0.4 nm 

Lion gap between edge of positive ion domain and edge of 
negative ion domain; amount by which positive ions can 
move closer to electrode surface than negative ions 

0.25 nm 

 
Figure 3.5: Standard control geometry with parameter definitions 

and values indicated 

Ls 
Lion 

channel width 

!"#$  !"#$
2   

!ℎ!""#$  ℎ!"#ℎ!
2   

pore depth 
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 3.3.3 Solvent Viscosity 

For the solvent viscosity, the standard control value used was one-tenth that of water, or 

1/10 of 8.9 x10-4 Pa·s. Values on this order are justified on several physical grounds. 

Recent research indicates that fluids behave as if their viscosity has been reduced by 50% 

to 90% when subject to a strong shearing motion within a tightly-confined channel 

[10][21][41]. The shearing effect can be seen in Figure 3.5, which shows the x-

component of the fluid velocity along a cross-section of the electrode pore. 

 

Figure 3.6: Fluid velocity (x-component) across the pore cross-section showing 
strong shearing effect 

 

In the particular simulation from which this data were taken, the pore bore was 1.5 nm; 

Figure 3.6 plots the velocity along the upper half of the pore used in the COMSOL 
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geometry implementation, extending from the axis of symmetry up to the edge of the 

electrode, hence the 0.75 nm domain of the curve. By reflecting this velocity distribution 

over the axis of symmetry to account for the fluid motion in the bottom half of the pore, a 

wavelike curve is obtained which can be considered to have a wavelength equal to the 

pore bore (1.5 nm in this example). When this wavelength is on the order of the fluid’s 

viscosity kernel (a measure of the range over which the viscosity is determined by 

nonlocal effects), the fluid’s constitutive relation becomes nonlocal, violating one of the 

assumptions used in the formulation of the Navier-Stokes Equations [41]. Similar results 

have been shown for the viscosity of an ionic liquid [21][45]. One solution to this 

anomaly is to substitute a lower value for the fluid’s viscosity, which will allow the 

Navier-Stokes Equations to be used to give an accurate qualitative description of the flow 

[41][42]. This approach shows agrees well with results obtained from molecular 

dynamics simulations in this regime.[8]  

 The reduced viscosity value also closely approximates the viscosity 

characteristics of acetonitrile (ACN), a widely used organic solvent in electrochemical 

systems [17]. 

 

3.3.4 Ion Mobility 
 
For the ion mobilities, the standard control value used was one-third of the 

mobility in aqueous solution of the sodium (Na+) ion, or 1/3 of 7.877x10-13 s·mol/kg. As 

with the solvent viscosity discussed above, the electrokinetic mobility of ions has been 
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demonstrated to decrease from the reported, bulk-solution values when the ions are 

moving within tightly confined nanochannels [5][34]. 

For all simulations, the positive and negative ions were given identical mobilities. 

For simulations in which another parameter was being studied, the control value used for 

the ion mobility was 1/3 of 7.877x10-13 s·mol/kg. In one set of simulations, different 

values for the ion mobility were investigated and shown to have a significant effect on 

the charging kinetics, particularly on the contribution made by the convective current due 

to bulk fluid motion. These effects will be discussed fully in the Data and Results chapter 

below. 

A word is in order regarding the units of mobility used in COMSOL. In 

electrochemistry, the ion mobility is defined as the ratio of a particle’s terminal drift 

velocity to the electric field strength [5]. Therefore, mobility is usually given in the 

following units: 

! !
! !

=
!!

! ∙ ! 

If we break down Volts into its basic units, this becomes: 

!!

! ∙ ! =
!!

!
! ∙ !

=
! ∙!!

!" ∙!!
!! ∙ !

=
! ∙ !
!"  

COMSOL automatically includes Faraday’s Constant F, which is C/mol, in each term of 

the Nernst-Planck Equation. Thus, the mobilities provided to COMSOL must be given in 

units that have been divided by F to compensate for this factor already being included in 
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the equation that COMSOL is solving. This means that, instead of  !∙!
!"

, COMSOL takes 

mobility in units of  !∙!"#
!"

. 

 
3.3.5 Wall Slip Condition 
 
 The fluid boundary condition at the walls is of considerable interest in the 

problem being investigated here due to the nanoscale dimensions. Unlike ordinary, 

macroscopic flows, where the ubiquitous no-slip condition is nearly always employed, 

nanoscale flows have been shown to behave as if the fluid is slipping over the solid wall 

surface to some extent [25][31][32]. In particular, at nanoscales water and other solvents 

have been observed to exhibit dewetting from solid surfaces, resulting in substantial fluid 

slip velocity at the interface.[19][30][37] 

 In the present investigation, the Slip Velocity option was selected in the 

COMSOL fluid wall boundary condition, and the magnitude of the slip was specified as a 

slip length.  The slip length is the depth at which the fluid velocity would reach zero if 

the actual velocity profile were projected, to a linear approximation using its rate of 

change at the wall, across the wall boundary [32]. The slip length β can be expressed 

mathematically as follows:  

!!"#! = −!
!"
!" |!!! 

Slip lengths between 30 nm and 80 nm have been found to be realistic models of 

the fluid slip in nanochannels similar to the electrode pore of the present simulation [14]. 

Accordingly, the standard control value used for the slip length was 30 nm. Other slip 
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length values were also investigated, and their effects on the fluid motion and EDL 

charging are discussed below. 

 
3.4 Postprocessing 
 
 3.4.1 Generation of data tables and graphs 

 Certain simulation results, such as ion concentration, electric potential, and 

velocity profiles along various segments of the geometry, were generated and plotted 

directly in COMSOL using the Line Graph and Surface Plot functions. Other data types, 

such as charge densities and current densities, were tabulated in COMSOL using the 

Point Evaluation and Table Plot functions to evaluate a given functional expression at 

each point in time. For all simulations, a time step of 0.5 ps was used. The tabular data 

were then saved as text files and imported into Matlab, where plots were generated that 

allowed comparison of data sets from different simulations to show the effects of 

parameter variation on the charging performance indicators being analyzed.  

 

 3.4.2 Electrode surface charge density 

 One of the most important indications of EDL charging performance in these 

simulations is the charge density on the electrodes, which provides a direct measure of 

the amount of charge that has been accumulated in the charging process. Thus, it is 

instructive to examine how this charge density evolves with time as the EDL charges, and 

to compare the charging curves from simulations with different values for one of the 

parameters being studied. 
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 The electrode surface charge density was computed by integrating the spatial 

charge density in the EDL over a domain adjacent to the electrode surface of interest.  

For the analysis in the present study, the surface charge densities were assessed using the 

electrode pore surface, starting 1.5 nm from the mouth of the pore and extending to the 

closed end of the pore. This surface, and the adjacent electrolyte volume over which the 

charge density integration was performed (domain regions 1 and 2), are highlighted in 

Figure 3.7. 

 

 

 
 

Figure 3.7: Integration of electrolyte spatial charge density to compute electrode 
surface charge density on adjacent electrode surface 

 

 

Because the geometry model incorporates the axial symmetry condition and thus models 

half the pore volume, the integrated spatial charge density will be equal to (and have the 

opposite polarity of) the charge on half the pore surface, or the entire upper bounding 

surface that appears in Figure 3.7. Therefore, the surface charge density (per unit of depth 

in the z-direction) is given by: 

!! =
!! − !! ∙ !

(!"#$  !"#$ℎ − 1.5  nm)!"!
 

1.5 nm 
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The electrode pore surface charge density !! was computed for each time step and 

plotted as a function of time for each simulation. The charge density curves were 

compared for different simulations to reveal the effect of variations in simulation 

parameters on the EDL charging rate. 

 

 3.4.3 Charging current and current density 

To calculate the current density at a point within the electrolyte, we recall the Nernst-

Planck Equation: 

!! = !!!!!!! − !!!!∇!! ∙ ! 

where the ion velocity !! is given by 

!! = ! + (−∇!)!!!!! 

These two relations, taken together, provide the current density !! for species i at a point. 

In the model of interest in the present study, there are two species present: the positive 

ions, which have a charge of +e, and the negative ions, which have a charge of –e.  

Therefore, we can express the positive ion current density as 

!! = !!!!!!(−∇!)− !!!∇!! + !!!! 

and the negative ion current density as 

!! = !!!!!!(−∇!)− !!!∇!! + !!!! 

Combining these two current densities using the principle of superposition, and making 

use of our condition that both ion species have the same mobility and diffusion 

coefficients (!! = !!  and  !! = !!),  we obtain the expression for the total current 

density: 
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!!"! = (!! + !!)!!!(−∇!)− !"(∇!! − ∇!!)+ (!! − !!)!! 

This expression reveals the three sources of ion motion under the model being studied: 

the first term represents ion migration due to the electric field, the second term represents 

diffusion, and the third term (the convective term) represents ion transport due to bulk 

fluid motion. Thus, we can calculate the current density due to convection using the 

convective term only: 

!!"#$ = (!! − !!)!! 

The difference  !!"! − !!"#$   gives the current density due to ion migration and diffusion. 

These are the two transport phenomena that are modeled using a standard PNP model and 

which have been studied extensively in prior simulations of EDL charging kinetics. 

Therefore, one primary goal of the present investigation is to compare the current and 

current densities given by the standard PNP model (migration and diffusion) to those 

realized when the convective term is added, thus revealing the degree of impact made by 

the addition of the convective transport to the model.  

 In this study, the current density in the x-direction was evaluated as a function of 

position along a cross-section of the pore. The cross-section used for these evaluations 

(line segments 10 and 12) is shown in Figure 3.8. 
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Figure 3.8: Electrode pore cross-section used to evaluate current density 

 

The current densities were evaluated in the x-direction, taking the x-components of the 

above formulas: 

!!,!"! = (!! + !!)!!!(−
∂!
∂!)− !"(

∂!!
∂! −

∂!!
∂! )+ (!! − !!)!!! 

!!,!"#$ = (!! − !!)!!! 

 

The current density !! was plotted as a function of position on the cross-section at various 

times during the charging process to give snapshots of the charging kinetics. These 

current evaluations will be discussed more fully below in the Data and Results chapter.   

 The current (per unit depth in the z-direction) across the cross-section shown in 

Figure 3.8 was computed by integrating the current density !! along the line: 

!! = !!!"
!

 

The current was plotted as a function of time to reveal how the current flowing into the 

pore evolves over time as the EDL charges. These charging current curves were 

compared for different simulations to investigate the effect of different simulation 

parameter values on the charging current. 

1.5 nm 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

4.1 Illustration of the fluid and ion dynamics in the pore and channel system  

 To give the reader a feel for the problem, and to enhance understanding of the 

results and comparisons that follow, we first present a set of simulation results showing 

how the ion concentrations, electric potential, and fluid velocity evolve with time as the 

simulation progresses. For this demonstration, all the standard control values for the 

parameters were used: 1/10 viscosity, 30 nm slip length, 1/3 mobility, 1.5 nm pore bore, 

and 3 nm pore depth. 

 To illustrate the evolution of electric potential, the potential was plotted along the 

axis of symmetry extending across the centerline of the pore/channel geometry from the 

negative pore, through the channel, to the positive pore, as shown in Figure 4.1. Figure 

4.2 shows the potential along this axis plotted at various times during the charging 

process.  

 
 

 
 

Figure 4.1: Axis of symmetry along which electric potential was plotted   
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Figure 4.2: Electric Potential along axis of symmetry 

  

equilibrium t=50 ps 

t=300 ps t=500 ps 

t=1 ns t=2 ns 
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As we can see, at equilibrium before charging begins, the potential starts off 

slightly negative along the entire axis. This is caused by the fact that there is an equal 

number of positive and negative ions in the overall fluid domain, and there is a portion of 

the domain adjacent to the electrode surfaces (see Figures 3.2(d) and (e)) that is 

accessible only to positive ions. Some positive ions will migrate into this region, leaving 

a slight excess of negative charge in the remainder of the fluid domain. The equilibrium 

potential is slightly higher (but still negative) inside the pores, where the symmetry axis 

along which the plots of Figure 4.2 were made is closer to the accumulation of positive 

charge near the electrode surfaces.  

As the applied potential is turned on across the electrodes, a potential difference 

rapidly develops along the axis of symmetry as shown in the second plot of Figure 4.2, 

which was taken 50 ps after the start of charging. In these early stages of the charging, 

the potential difference is nearly the full 1 V potential that is applied across the 

electrodes. As the charging continues, counterions accumulate adjacent to each electrode 

as the EDL develops, screening off the charge on the electrode itself and reducing the 

potential difference within the bulk electrolyte. Thus, 500 ps into the charging, the 

potential difference between the left and right ends of the symmetry axis is only 0.1 V, 

and by 1 ns it is less than 0.02 V. The majority of the 1 V potential difference between 

the two electrodes occurs in the Stern Layer low-permittivity gaps immediately 

surrounding the electrode surface and which are inaccessible to ions. 

A different view of this same evolution process is seen in Figure 4.3, which plots 

the concentrations of both ion species at various times throughout the charging process. 
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These concentration plots were made along the same axis of symmetry as the potential 

plots just discussed, and the label c3 represents the positive ion concentration, while the 

label c4 represents the negative ion concentration.  

At equilibrium, negative ion concentration is slightly higher than positive ion 

concentration inside the pores, and this is due to some of the positive ions migrating into 

the narrow region along the electrode surface, further away from the line of symmetry 

where these plots were made. Out in the channel, away from the electrodes, both ion 

species have equal concentrations. 

As the electric potential is applied across the electrodes and the EDLs begin to 

develop, the difference between c3 (positive ion concentration) and c4 (negative ion 

concentration) grows, as revealed by the scale on the vertical axis of the plots. Negative 

ion concentration spikes at the right end, which is inside the positive electrode pore. At 

the left side of the plots (inside the negative electrode pore), negative ion concentration 

falls, as expected. The positive ion concentration, however, does not show a concomitant 

spike on this side; this is because the dense concentration of positive ions forming the 

EDL is located in the thin domain gap accessible only to positive ions adjacent to the 

electrode surface, above the axis of symmetry. 

 Figure 4.4 shows an arrow plot of the fluid velocity throughout the pore-and-

channel fluid domain at 1 ns, revealing the strong shearing effect discussed above in 

Chapter 3. Figure 4.5 shows how the magnitude of the fluid velocities varies as the ions 

reach equilibrium in the first 1 ns and then charge the EDL between 1 ns and 3 ns. This  
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Figure 4.3: Ion concentrations along axis of symmetry 

  

equilibrium t=100 ps 

t=150 ps t=250 ps 

t=2 ns 
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plot of velocity as a function of time was made at the point as indicated, which is located 

along the axis of symmetry inside the negative electrode pore.  

 

Figure 4.4: Fluid velocity field throughout the channel/pore domain at t=1 

 

 

 
 

 
Figure 4.5: Fluid velocity (x-component) across the pore cross-section   
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4.2 Demonstration of the convective charging current effect 

Consider the first two simulations that follow. This set used all the standard 

control values as stated above for the parameters: 

 sim #1 sim #2 

solvent viscosity 1/10 no flow 

wall slip length 30 nm no flow 

ion mobility 1/3 1/3 

pore bore 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 

 

For simulation #1, which included the flow modeling, the solvent viscosity was 1/10 that 

of water, and the ion mobility in each simulation was 1/3 of the standard mobility of the 

sodium (Na+) ion, or 1/3 of 7.877x10-13 s·mol/kg. 

The only difference between these two simulations was that the first simulation 

included the Navier-Stokes bulk fluid flow modeling, while the second one did not. This 

comparison thus provides a good starting point from which to evaluate the effect of flow 

modeling on the EDL charging process.  

To facilitate comparison, we plot the electrode charge density curves as a function 

of time throughout the EDL charging process for these two simulations. These curved are 

shown in Figure 4.6. In this plot, time t=0 is the start of the charging process, the moment 

when the electric potential is applied across the electrodes. The ion distribution in the 

electrolyte solution was allowed to reach equilibrium prior to the start of charging, as 
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discussed in Chapter 3, but this part of the simulation is not shown in the figures 

presented in this chapter. 

In Figure 4.6, we see that charge accumulates in the EDL slightly faster in the 

simulation with flow modeling as compared to the simulation without flow modeling. 

 

Figure 4.6: Comparison of electrode charge density curve for simulations with 
and without flow simulation using standard control parameter values 

 
 

One useful way to quantify the difference in charging times is to measure how 

much time each simulation requires to reach a specified percentage of the steady-state, 

fully-charged level. In the case shown in Figure 4.6, the simulation including flow 

modeling reached 90% of the steady-state charge density (0.08 C/m2) in 598 ps, 

compared to 706 ps without flow simulation. This represents a 15 percent shorter time 

required to achieve this charge level when the charging is aided by the convective 

current. 



45 
 

Another useful way of quantifying the difference in charging times is to compute 

a time constant for each simulation. The time constant is based on the fact that the charge 

accumulates according to a decaying exponential function of time: 

! ! = !! 1− !!
!
!  

where is the steady-state, equilibrium charge level. By rearranging this equation and 

taking the natural logarithm of both sides, we obtain  

!" 1− !
!!

= −
!
! 

This quantity is linear in time, and the slope is the negative reciprocal of the time 

constant, τ. For the two simulations discussed in this subsection, the charging factor plots, 

along with linear curve fits and time constants, are shown in Figure 4.7. 

  

Figure 4.7: Log plot of charging factor revealing time constants   

τ=327 ps 

τ=268 ps 
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 The more rapid accumulation of charge in the simulation with flow modeling 

suggests that levels are higher in that simulation. This is indeed revealed in the plot 

charging current in the electrode pore, shown in Figure 4.8. Here, we see that the current 

 

Figure 4.8: Comparison of charging current curve for simulations with and without 
flow simulation using standard control parameter values 

 

in the simulation with flow modeling (solid line) is appreciably greater than the current in 

the simulation without flow simulation (dotted line), and the convection term (dashed 

line) appears to account for most of the difference. This presents evidence that bulk fluid 

motion in the electrolyte solution will carry ions with it at such a rate as to increase the 

total charging current and, in turn, speed up the EDL charging process. 
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4.3 Effect of varying the solvent viscosity 

In the next series of simulations, the solvent viscosity was varied while keeping 

all other simulation parameters unchanged. 

 

 sim #1 sim #2 sim #3 sim #4 

solvent viscosity 1/10 1/3 actual- 
water 

no flow 

wall slip length 30 nm 30 nm 30 nm no flow 

ion mobility 1/3 1/3 1/3 1/3 

pore bore 1.5 nm 1.5 nm 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 3 nm 3 nm 

 

Here, we have three simulations that were run with different solvent viscosity values, and 

one simulation that was run with no flow modeling, making solvent viscosity irrelevant in 

that one. The solvent viscosity values are specified relative to the standard viscosity of 

water. 

For this set of four simulations, we once again plot the electrode surface charge 

density as a function of time throughout the charging process and superimpose the curves 

to facilitate comparison of the charging rates. This comparison is shown in Figure 4.9. 
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Figure 4.9: Comparison of electrode charge density curves for simulations with 
different solvent viscosities 

 
 
This figure shows the critical impact of solvent viscosity on the convective charging 

effect. With a solvent having a viscosity equal to the actual viscosity of water, the EDL 

charging curve is practically indistinguishable from that of the no-flow simulation. This 

congruence suggests that the charging current due to convection is minuscule at this 

viscosity level. When solvent viscosity is reduced to 1/3 of water’s viscosity, the gap is 

small but noticeable. At 1/10 of water’s viscosity, the EDL charges noticeably faster than 

in the no-flow case; this is the same data set that was presented in the first set of 

simulations above. 
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 This effect of solvent viscosity on the EDL charging rate, and its apparent origin 

in the convective current, can be verified by examining the convective component of the 

charging current in the different simulations. 

 

Figure 4.10: Comparison of convective component of the pore current for 
simulations with different solvent viscosities 

 

The convective current curves, shown in Figure 4.10, show that the magnitude of the 

convective component of the charging current within the electrode pore is much smaller 

for the 1/3 viscosity simulation compared to the 1/10 viscosity simulation. The peak 

convective current for the 1/10 viscosity case is 0.0953 A, compared to 0.0312 A for the 

1/3 viscosity case, representing a factor of slightly greater than 3. The convective current 

in the simulation with actual viscosity of water peaks 0.0108 A, nearly 9 times less than 

in the 1/10 viscosity case. The origin of this effect can be verified by examining the bulk 
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fluid velocities along the same cross-section of the electrode pore where the current 

measurements were taken. 

 

 
 
Figure 4.11: Comparison of fluid velocity profile along pore cross-section at 

       t=50 ps for simulations with different solvent viscosities 
 

 The velocity profiles shown in Figure 4.11 were taken at 50 ps after the start of 

charging, and all three simulations in this group show their peak current near this time 

(by reference to the convective current curves in Figure 4.4). At this time, the maximum 

velocity in the 1/10 viscosity case is 2.82 m/s, compared to 0.87 m/s for the 1/3 viscosity 

case, representing a factor of 3.2. The velocity in the simulation with actual viscosity of 
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water reaches a maximum of 0.29 m/s, nearly 10 times less than in the 1/10 viscosity 

case. 

From these comparisons, we can conclude that the magnitude of the velocities 

seen in the bulk fluid flow field is a primary factor that determines the amount of electric 

current due to ion advection. Because viscosity has a direct impact on the velocities in a 

flow field, it is directly correlated with the convective current seen in the EDL charging 

process. 

 

 4.4 Effect of varying the wall slip length 

In the next series of simulations, the wall slip length was varied while keeping all 

other simulation parameters unchanged. 

 

 sim #1 sim #2 sim #3 sim #4 

solvent viscosity 1/10 1/10 1/10 no flow 

wall slip length 0 30 nm 50 nm no flow 

ion mobility 1/3 1/3 1/3 1/3 

pore bore 1.5 nm 1.5 nm 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 3 nm 3 nm 

 

Here, we have three simulations that were run with different wall slip length values, and 

one simulation that was run with no flow modeling, making the fluid slip irrelevant in 
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that one. The fluid material properties, such as solvent viscosity, were identical in all four 

simulations in this group.  

For this set of four simulations, we once again plot the electrode surface charge 

density as a function of time throughout the charging process and superimpose the curves 

to facilitate comparison of the charging rates. This comparison is shown in Figure 4.12. 

Figure 4.12: Comparison of electrode charge density curves for simulations with 
different wall slip lengths 

 

In Figure 4.12, the curves for the 30 nm and 50 nm slip lengths are indistinguishable. 

This is expected because the lower wall friction levels accompanying the higher slip 
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lengths are negligibly small when compared to the unchanging friction within the fluid 

itself due to the strong shear seen in the velocity profile (Figure 3.6). Once the wall 

friction becomes sufficiently small, any further reduction is indistinguishable from the 

friction within the fluid, which dominates. 

An additional explanation for the invariance between the 30 nm and 50 nm slip 

length cases is seen by observing that the slip length is many times greater than the pore 

bore (1.5 nm), which means that the velocity at this distance away from the hypothetical 

“wall” represented by the slip length is essentially unchanging, as seen by the velocity 

curves being nearly perpendicular to the wall. At this range of slip lengths, further 

increase in the slip length will not result is discernible change the fluid velocities. The 0 

nm slip length case represents the standard no-slip boundary condition, and Figure 4.12 

reveals that this condition appreciably slows the EDL charging compared to the 

simulations with large slip lengths. 

 We can confirm this hypothesis by examining the velocity profiles along the pore 

cross-section at a particular time, such as t=50 ps, as shown in Figure 4.13. The velocity 

profiles for the 30 nm and 50 nm slip lengths are indistinguishable, as posited above. The 

profile for the 0 nm slip length case looks quite different, exhibiting a drastic drop in 

velocities in the top region of the pore, which is closest to the electrode surface. This is 

expected and required in order to satisfy the no-slip condition, which requires that the 

fluid velocity fall to zero at the wall. This significantly reduces the average fluid velocity 

within the pore and accounts for the slower charging of the EDL in this simulation.[27] 

 



54 
 

 
 

 
Figure 4.13: Comparison of fluid velocity profile along pore cross-section at 

t=50 ps for simulations with different slip lengths 
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 Further confirmation of the slip length effect on charging rate is provided by the 

electric current in the pore, which is plotted in Figure 4.14. As expected, the current 

curves for the 30 nm and 50 nm slip length simulations are indistinguishable. 

 

 

 
 

 
Figure 4.14: Comparison of charging current curve for simulations  

with different slip lengths 
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 4.5 Effect of varying the ion mobility 

In the next series of simulations, the ion mobility was varied while keeping all 

other simulation parameters unchanged. Six simulations were performed in this set to 

allow each of three ion mobility values (1/3, 1/2, and actual mobility of the Na+ ion) to be 

investigated both with and without bulk flow simulation. 

 sim #1 sim #2 sim #3 sim #4 sim #5 sim #6 

solvent viscosity 1/10 no flow 1/10 no flow 1/10 no flow 

wall slip length 30 nm no flow 30 nm no flow 30 nm no flow 

ion mobility 1/3 1/3 1/2 1/2 actual-
Na+ 

actual-
Na+ 

pore bore 1.5 nm 1.5 nm 1.5 nm 1.5 nm 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 3 nm 3 nm 3 nm 3 nm 

 

 The electrode charge density curves for these simulations are shown in Figure 

4.15. Figure 4.15(a) compares the curves for the three simulations performed with bulk 

flow modeling, and Figure 4.15(b) compares the curves for the three simulations 

performed without bulk flow modeling. Within each group, the use of greater ion 

mobility results in faster accumulation of charge in the EDL, as expected. Using the same 

metric developed above, the simulations with bulk flow modeling took 598 ps, 429 ps, 

and 243 ps to reach 90 percent of the steady state charge density value using ion 

mobilities of 1/3, 1/2, and actual mobility of the Na+ ion, respectively. For the 

simulations without bulk flow modeling, the times required to reach 90 percent of the 

steady state charge value were 706 ps, 487 ps, and 261 ps, respectively. 
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(a) with bulk flow modeling 

 
 

 
(b) without bulk flow modeling 

 
Figure 4.15: Comparison of electrode charge density curves for simulations 

with different ion mobilities   
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 These charging times suggest another informative comparison: for each given 

value of ion mobility, comparing the charge density curve with bulk flow modeling to 

that without bulk flow modeling. These comparisons are illustrated in Figure 4.16(a)-(c).  

 

 

 
(a) 1/3 mobility 

 
 
 

Figure 4.16: Comparison of electrode charge density curves for simulations 
with different ion mobilities 
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(b) 1/2 mobility 

 
 

 
 

(c) actual Na+ mobility 
 

Figure 4.16 (cont’d.): Comparison of electrode charge density curves for 
simulations with different ion mobilities 
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The comparisons illustrated in Figure 4.16 show that, for each given ion mobility value, 

the simulation with bulk fluid flow exhibits faster charging of the EDL. This is the same 

result seen earlier; Figure 4.16(a), which shows the simulation with ion mobility of 1/3 

the sodium ion’s actual mobility, was made from the same data set as the first two 

simulations discussed in section 4.2 above. Figure 4.16 expands on this feature by 

showing that it remains true for other ion mobilities: bulk fluid motion enhances EDL 

charging. 

 Figure 4.16 also shows another feature of this disparity in the charge density 

curves. The gap between the curves representing charging with and without bulk fluid 

motion becomes narrower as ion mobility increases. In other words, the advantage 

conferred by bulk fluid motion is most pronounced when ion mobility is low, and the 

advantage gets smaller as ion mobility increases. This observation suggests that the 

charging current can be viewed as having two components: one component that is 

governed by ion mobility, and another component that is governed by bulk fluid motion. 

 This can be confirmed by examining the three current plots shown in Figure 

4.17(a)-(c). Figure 4.17(a) shows the total current across the electrode pore cross-section 

as a function of time for the three different ion mobilities. We see that the current in the 

1/2 mobility simulation peaks at 57 percent of the current seen in the actual Na+ mobility 

simulation, and the current in the 1/3 mobility simulation peaks at 42 percent of the 

current seen in the actual Na+ mobility simulation. Figure 4.17(b) shows the current due 

to convection (bulk fluid motion) only in the three simulations. These convective currents 

peak at nearly the same level, regardless of the ion mobility. In contrast, the diffusion and 
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migration current, shown in Figure 4.17(c), exhibits the same trend seen in the total 

current (Figure 4.17(a)), being directly dependent on the ion mobility value. At the higher 

diffusion/migration current levels seen in the high-mobility simulations, the 0.1 A 

convection current represents a lower portion of the total current, hence the narrower gap 

between the total current in the flow and no-flow simulations for the higher ion 

mobilities. The consistently higher magnitudes of diffusion and migration currents as 

compared to convection currents are consistent with observations in prior studies.[2] 

 
 
 
 

 
 
 
 

Figure 4.17: Comparison of charging current curves for simulations 
with bulk flow modeling and different ion mobilities 
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(b) convection current 

 
 

 
 

(c) diffusion and migration current 
 
Figure 4.17 (cont’d): Comparison of convection and diffusion/migration charging 

currents for simulations with bulk flow modeling and different ion mobilities 
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 4.6 Effect of varying the pore bore size 

In the next series of simulations, the pore bore was varied. Six simulations were 

performed in this set to allow each of three pore bore sizes (1.25 nm, 1.5 nm, and 1.75 

nm) to be investigated both with and without bulk flow simulation. The values of the 

other, nonvaried parameters are the same standard control values stated above. 

 

 sim #1 sim #2 sim #3 sim #4 sim #5 sim #6 

solvent viscosity 1/10 no flow 1/10 no flow 1/10 no flow 

wall slip length 30 nm no flow 30 nm no flow 30 nm no flow 

ion mobility 1/3 1/3 1/3 1/3 1/3 1/3 

pore bore 1.25 nm 1.25 nm 1.5 nm 1.5 nm 1.75 nm 1.75 nm 

pore depth 3 nm 3 nm 3 nm 3 nm 3 nm 3 nm 

 

 
 
The electrode charge density curves for these simulations are shown in Figure 4.18. 
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(a) with bulk flow modeling 

 

(b) without bulk flow modeling 

Figure 4.18: Comparison of electrode charge density curves for simulations 
with different pore bore sizes 
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In both comparisons of Figure 4.18, the charging rate is directly related to pore bore size, 

with the smaller 1.25 pore charging slower than the standard 1.5 nm pore, and the larger 

1.75 nm pore charging faster than the standard 1.5 nm pore. This effect is seen with and 

without bulk flow simulation, which suggests that the larger pore bore boosts charging 

rate primarily by increasing the diffusion and migration current, which is common to both 

sets of simulations (flow and no flow) rather than by increasing the convective current, 

which is present only in the simulations with flow modeling. 

 We can verify this conjecture by examining the diffusion/migration current and 

the convective current separately. Figure 4.19(a) shows the diffusion/migration current 

curves for the different pore bore sizes modeled with flow simulation, and Figure 4.19(b) 

shows the convective current in these simulations. While the plots reveal that larger pore 

bore increases both diffusion/migration current and convective current, the effect is much 

larger for the diffusion/migration current. The diffusion/migration current peaks at 0.235 

A in the 1.25 nm pore, as compared to 0.313 A in the 1.75 nm pore, representing an 

increase of 33 percent. By contrast, the convective current peaks at 0.0889 A in the 1.25 

nm pore, as compared to 0.1013 A in the 1.75 nm pore, representing an increase of 12.8 

percent. 

 The dominance of diffusion/migration current, and the relatively minor 

importance of convective currents in the pore bore comparison, is further confirmed by 

examining the fluid velocities inside the pore. In all three pores, the fluid velocity on the 

centerline of the pore peaks at nearly the same value, 2.15 m/s, as expected given the 

small observed differences in the convective current.  
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(a) diffusion/migration current 

 
 

 
(b) convective current 

Figure 4.19: Comparison diffusion/migration current versus convective current 
with different pore bore sizes 
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4.7 Effect of varying the pore depth 

In the next series of simulations, the pore depth was varied while keeping all other 

simulation parameters, including the pore bore and all other aspects of the geometry, 

unchanged. Pore depths of 3 nm and 5 nm were investigated, each with and without bulk 

flow simulation. 

 

 sim #1 sim #2 sim #3 sim #4 

solvent viscosity 1/10 no flow 1/10 no flow 

wall slip length 30 nm no flow 30 nm no flow 

ion mobility 1/3 1/3 1/3 1/3 

pore bore 1.5 nm 1.5 nm 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 5 nm 5 nm 

 

 

The charge density curves comparing the two pore depths are shown in Figure 4.20. We 

see that EDL charging rate appears to be inversely related to pore depth, with the smaller 

pore charging faster. Interestingly, this relation holds regardless of whether bulk fluid 

flow is included in the model. The fact that a smaller pore charges faster than a larger 

pore when there is no bulk fluid motion suggests that different fluid velocities in the 

different-sized pores cannot explain this observed phenomenon. 
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Figure 4.20: Comparison of electrode charge density curves for simulations 
with different pore depths 

 
 
 
 
 

 Figure 4.21 shows the charging current curves for these simulations, with current 

measured across the pore cross-section, as before. This comparison of charging current 

reveals a most unexpected result: the smaller pore exhibits lower current levels even 

while charging faster (as revealed by the Figure 4.20 charge density curves). This 

apparent paradox is explained by the fact that less charge is required to reach the steady 

state charge density level for the smaller pore. Fewer counterions must enter the pore and 

accumulate in the EDL in order for a fully-charged condition to be reached, and fewer 

ions means less current crossing the cross-section of the pore where the data were taken 
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for Figure 4.21. For the deeper pore, by contrast, more ions are required to fill the larger 

volume, and they must travel further to reach the deeper extent of the pore as the EDL is 

built up. We would therefore expect to find fluid velocities to be uniformly greater across 

the deeper pore, notwithstanding the lower current levels seen in that case. This is indeed 

confirmed in the velocity profiles taken across the pore at different times during the 

charging process, as shown in Figure 4.22. 

 

 

 
 
 

Figure 4.21: Comparison of charging current curves for simulations 
with different pore depths  

 
  



70 
 

 
 

 

 
Figure 4.22: Comparison of velocity profiles across pores of different depths 
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4.8 Effect of varying the solvent density 

In the next series of simulations, the solvent density was varied while keeping all 

other simulation parameters unchanged. Density values of 1/10, 1/3, and actual density of 

water were used. 

 

 sim #1 sim #2 sim #3 sim #4 

solvent density actual - 
water 

1/3 1/10 no flow 

solvent viscosity 1/10 1/10 1/10 no flow 

wall slip length 30 nm 30 nm 30 nm no flow 

ion mobility 1/3 1/3 1/3 1/3 

pore bore 1.5 nm 1.5 nm 1.5 nm 1.5 nm 

pore depth 3 nm 3 nm 3 nm 3 nm 

 

Figure 4.23 shows the electrode charge density curves for this set of simulations, and 

Figure 4.24 shows the fluid velocity profiles across the pore cross-section at different 

times for the simulations with bulk flow modeling. 
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Figure 4.23: Comparison of electrode charge density curves for simulations with 
different solvent densities  

 
 
 

These plots reveal no difference in the charging rate for the three simulations with 

different solvent densities, and nearly imperceptible differences in the velocity profiles. 

These results are consistent with the low-Reynolds number nature of the flow in these 

simulations. As discussed above in Chapter 3, the Reynolds number for these flows is 

approximately 0.0225. At this magnitude, even a change of fluid density (and hence 

Reynolds number) by a factor of 10 leaves the Reynolds number very small, thus 

rendering inertial effects inconsequential for these flows. Therefore, fluid density does 

not have a measureable impact on the fluid flow or charging kinetics in these nanoscale 

flows.  
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Figure 4.24: Comparison of velocity profiles with different solvent densities  
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CHAPTER 5 

 

CONCLUSIONS 

 The investigation presented in this thesis was designed to simulate the charging of 

the EDL using a continuum model based on the PNP equations, with the addition of bulk 

fluid flow modeling using the Navier-Stokes Equations. The electrochemical devices in 

which EDLs form necessarily contain a fluid (whether aqueous or ionic liquid) medium 

carrying the ions that constitute the EDL; therefore, it is reasonable to suspect that the 

motion of this fluid would affect the EDL charging kinetics. As this fluid flow modeling 

has not previously been performed in EDL charging simulations, the present investigation 

was intended to fill this gap and enhance understanding of the charging kinetics in the 

entire EDL/electrolyte system. 

 The present investigation consists of a parametric study to investigate the 

different physical parameters of the EDLC apparatus to determine the effect of each 

parameter on the EDL charging kinetics. At the outset, it was observed that the addition 

of Navier-Stokes bulk flow modeling to the PNP model does indeed increase the 

charging current flowing into the electrode pores, thus causing charge to accumulate in 

the EDL faster than observed without the flow modeling. Because a bulk fluid medium is 

inherent in all EDL devices, this result suggests that the flow modeling could provide 
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more accurate and realistic data analyzing the performance and design of electrochemical 

devices. 

 The parametric study established that fluid viscosity has a direct impact on the 

EDL charging rate, with lower-viscosity fluids allowing higher velocities to be attained, 

which results in a greater convective component to the charging current. This result 

confirms that low-viscosity solvents, such as the widely-used acetronile (ACN), provide 

performance benefits in electrochemical devices. 

 Different ion electrokinetic mobilities were studied, and it was found that the 

addition of flow modeling has a more pronounced effect on the EDL charging rate for 

lower-mobility ions. Lower-mobility ions produce smaller diffusion and migration 

currents, which makes the convective current larger as a percentage of total current. 

Nevertheless, lower ion mobility significantly reduce the total charging current and hence 

lengthen EDL charging times, making them unattractive for most electrochemical 

devices. 

 Greater wall slip was found to enhance the convective current and, therefore, the 

total charging current. This result suggests that efforts to choose materials and precise 

machining and manufacturing processes to minimize wall friction can improve device 

performance. 

 Electrode pore size was found to have perhaps the most significant impact on 

EDL charging rate. Shallower pores were found to charge significantly faster than deep 

pores. This result can be understood in terms of EDL structure and pore geometry; with 

shallow pores requiring fewer ions to reach the full steady-state charge density. 



76 
 

Increasing the pore width (or bore) results in a corresponding increase in the charging 

rate which, in this case, is caused by increased diffusion and migration current across the 

greater pore cross-sectional area. 

 We have seen that the fundamental parameters governing the EDLC apparatus 

provide a useful testing ground for evaluating the effect of bulk flow modeling on the 

EDL charging kinetics. Variation of different parameters can produce faster charging 

rates, usually accompanied by higher charging currents, with the relative size of the flow-

based convective current contribution depending on which parameters are varied. These 

results illustrate the important role of fluid flow in EDL devices and suggest factors to be 

considered in the design and analysis of such devices when bulk fluid flow is included in 

the model.  
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APPENDIX A 
 

IMPLEMENTATION OF THE APPLIED POTENTIAL FUNCTION IN COMSOL 
 

 
As mentioned above in Chapter 3, the applied electric potential across the 

electrodes was varied in order to create controlled conditions to permit accurate 

assessment of the charge and fluid velocity data. Each simulation began with zero applied 

potential in order to allow the ions in the electrolyte solution to reach an equilibrium 

distribution. This Phase 1 typically lasted around 1 ns. The applied potential was then 

increased linearly to 1V over a time of 50 ps in order to eliminate discontinuities in the 

variables and instabilities in the COMSOL solver. The potential was then held at 1 V for 

the remainder of the simulation to allow the EDL to reach its steady-state charged 

condition. 

 The potential function described here was implemented in COMSOL by defining 

parameters to specify the time marks where the potential was changed. As an example, 

the parameter mark1 could be used to specify the time when the linear ramp-up to 1V 

began, and the parameter mark2 could be used to specify the time when the potential is to 

reach 1 V. Then the function to specify the applied potential throughout the time of the 

simulation was coded as follows: 

 

V = 0 + (mark1<=t)*(t<mark2)* Vfinal /(mark2 – mark1)*(t – mark1) + (mark2 <= t)* Vfinal 

 

The first term, 0, just ensures that COMSOL starts at 0 V. The second term provides the 

linear increase in potential, where the rate of change is the difference in potential (Vfinal – 
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0) over the time interval for the change (mark2 – mark1). The linear increase with time 

over this interval is accomplished by the factor (t – mark1). The factors  (mark1<=t) and 

(t<mark2) are conditional Boolean expressions (which have the value 0 or 1, depending 

on whether the conditional statement is true) that operate to make this linear increase 

happen only when the time variable t is between mark1 and mark2 (making both 

conditional statements true and thus having the value 1). The third term in the expression 

holds the potential at Vfinal at all times after than mark2; this is the constant potential 

maintained after the linear ramp-up for the remainder of the simulation. 

 The potential function generated by this COMSOL expression is plotted in Figure 

A.1 below. 

 

Figure A.1: Applied Potential Function  
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