
Clemson University
TigerPrints

All Theses Theses

8-2012

Effects of Interaction with an Immersive Virtual
Environment on Near-field Distance Estimates
Bliss Altenhoff
Clemson University, blisswilson1178@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Psychology Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Altenhoff, Bliss, "Effects of Interaction with an Immersive Virtual Environment on Near-field Distance Estimates" (2012). All Theses.
1342.
https://tigerprints.clemson.edu/all_theses/1342

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1342?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


i 

 

 

 

 

 

 

 

EFFECTS OF INTERACTION WITH AN IMMERSIVE VIRTUAL ENVIRONMENT 

ON NEAR-FIELD DISTANCE ESTIMATES  

 

 

A Thesis 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Applied Psychology  

 

 

by 

Bliss Altenhoff 

August 2012 

 

 

Accepted by: 

Dr. Chris Pagano, Committee Chair 

Dr. Sabarish Babu 

Dr. Richard Tyrrell  

  



 ii 

ABSTRACT 

 

 

Distances are regularly underestimated in immersive virtual environments (IVEs) 

(Witmer & Kline, 1998; Loomis & Knapp, 2003). Few experiments, however, have 

examined the ability of calibration to overcome distortions of depth perception in IVEs.  

This experiment is designed to examine the effect of calibration via haptic and visual 

feedback on distance estimates in an IVE.  Participants provided verbal and reaching 

distance estimates during three sessions; a baseline measure without feedback, a 

calibration session with visual and haptic feedback, and finally a post-calibration session 

without feedback.  Feedback was shown to calibrate distance estimates within an IVE. 

Discussion focused on the possibility that costly solutions and research endeavors 

seeking to remedy the compression of distances may become less necessary if users are 

simply given the opportunity to use manual activity to calibrate to the IVE.   
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CHAPTER ONE 

 

INTRODUCTION 

 

 Virtual environments (VE’s) are a common means for providing communication 

(Biocca, 1992), education (Winn et al., 1999), social interaction (Blascovich et al., 2002), 

virtual reality therapy (Hodges, Anderson, Burdea, Hoffman, & Rothbaum, 2001), and 

training for situations that are dangerous, expensive, rare, or remote, such as laparoscopic 

surgery training (Bliss, Tidwell, & Guest, 1997; Darby, 2000; Peters et al., 2008).  A 

main advantage of virtual environments is that they provide a controlled scenario so users 

can repeatedly and safely interact with situations.  Immersive virtual environments 

(IVEs) are an important class of VE’s that may use a head-mounted display (HMD) to 

surround the user with visual information, allowing them to interact with the VE using 

their physical body (Loomis, Blascovich, & Beall, 1999). 

Distance estimates are typically found to be less accurate in virtual environments 

than in real environments.  Based on experiences with rescue robots at the World Trade 

Center during the aftermath of September 11, 2001, Murphy (2004) concluded that one of 

the biggest problems with using teleoperated cameras is the lack of depth perception and 

ability to accurately perceive sizes of elements in the remote environment.  Tittle, 

Roesler, and Woods (2002) have termed these difficulties “the remote perception 

problem.”  Robot operators at the September 11
th

 clean up also had difficulty identifying 

objects and determining whether the robots could pass over obstacles and through 

apertures (Casper & Murphy, 2003). 
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Differences between impassability boundaries using direct line of sight versus 

teleoperation have been quantified using three different sized robots (48.5cm, 39.5 cm, 

and 30.5 cm wide).  Moore, Gomer, Pagano, and Moore (2009) asked participants to 

judge the smallest passable aperture width of each robot based on an ascending or 

descending series of presented apertures, each differing by 3 cm.  As predicted, although 

novice teleoperators tend to overestimate impassability boundaries using direct line of 

sight, they barely underestimate impassability boundaries (they would judge that robots 

could pass through apertures when they actually could not), using teleoperation.  The 

actual average impassability boundary of the three robots was 38 cm, but participants 

judged the mean impassability boundary for direct line of sight to be 42.5 cm and only 

35.5 cm for teleoperation.  Underestimations of the impassability boundary increased 

with robot size in the teleoperation condition.  Thus the subjects often judged as passable 

apertures that were too small for the robot to fit through. 

To improve depth perception during teleoperation, Gomer, Dash, Moore, and 

Pagano (2009) suggest training with familiar objects (e.g. playing cards, compact discs, 

12 oz. soda cans, etc.) and using passive front-to-back camera motions to produce radial 

outflow.  When using passive front-to-back camera motions, participants were presented 

with video that was fed via remote camera that moved with a consistent forward and 

backward sinusoidal velocity profile.  After a training session in which the subjects 

judged the depths to familiar objects and received feedback about their performance, 

subjects were able to judge the distances to uniform white squares which lacked a 
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familiar size.  These viewing conditions demonstrated participants’ abilities to use radial 

outflow to perceive distances in a remote environment.   

Users find it difficult to provide accurate distance estimates while wearing HMDs, 

consistently underestimating distances between themselves and other objects in the IVE 

(Witmer & Kline, 1998; Loomis & Knapp, 2003).  For example, Grechkin, Nguyen, 

Plumert, Cremer, and Kearney (2010) compared real world viewing with and without a 

HMD to virtual world viewing conditions with HMD, augmented reality (AR) with a 

HMD, and a large-screen immersive display (LSID). Distances were similarly 

underestimated in VR, AR, and LSID conditions. Specifically, estimates of egocentric 

distances (0m - 30m) can be underestimated by as much as 50% (Loomis & Knapp, 2003; 

Napieralski et al., 2011; Richardson & Waller, 2005; Thompson et al., 2004; Witmer & 

Kline, 1998).   

Although causes of this compression are not fully understood, one suggested 

solution is to allow users to interact with the environment before making distance 

judgments (Richardson & Waller, 2007).  Interaction with the environment would allow 

the user to experience a training period with visual and/or haptic feedback regarding their 

actions within the IVE.  This solution would be ideal for improving the accuracy of 

distance underestimations because it would not require significant time or money to 

implement.  If closed-loop interaction with an IVE can significantly reduce distance 

estimation errors, then researchers need not be as concerned with alternative, more 

expensive solutions.   
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If distance estimations become more accurate with the closed-loop interaction 

between the user and the IVE, this change is likely caused by a visuomotor recalibration 

(Bingham & Pagano, 1998; Durgin et al., 2005; Mohler, Creem-Regehr, & Thompson., 

2006; Richardson & Waller, 2007, 2008; Rieser, Pick, Ashmead, & Garing, 1995).  For 

example, most people have experienced some sort of recalibration when performing 

regular activities under irregular circumstances, such as a baseball player who must 

decide how hard to throw the ball during a windy game.  People’s ability to use 

perceptual information to coordinate their actions implies that motor and perceptual 

systems are mutually calibrated (Rieser et al., 1995).  Practice and experience allow us to 

adjust existing calibrations that represent conditions we may be most comfortable or 

familiar with to adjust to changes in circumstances.   

When interacting with one’s environment (e.g. walking to a destination), if there 

are inconsistencies between one’s intended actions and the resulting sensory information 

(e.g. the amount of optic flow resulting from one’s walking), actions will likely be 

adapted to reach one’s goals (Rieser et al., 1995; Waller & Richardson, 2008).  When 

provided with closed-loop interaction, visuomotor recalibrations can occur after only 

brief exposures to feedback.  For example, after walking on a treadmill being towed to 

create an optic flow that was either faster or slower than actual walking speed, 

participants were asked to view a target and then walk to it while blindfolded.  Those that 

experienced optic flow faster than would be produced by their walking speed, 

underestimated the distance to the target although they believed the opposite to be true, 
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while those with optic flow slower than their actual walking speed walked past the target 

and also believed the opposite to be true (Rieser et al., 1995).   

Similarly, Bingham and Romack (1999) examined the rate of calibration with 

displacement prisms over a three day period.  Targeted reaches showed an initial increase 

in movement time (MT) and path length when prism goggles were donned, then they 

decreased over successive trials.  And although the rate of decrease in MT remained 

constant, MT for the first trial decreased each day.  Fewer trials were required each day to 

reach a set criterion MT and calibration was near immediate on the third day.  

Bingham and Pagano (1998) also studied effects of feedback on targeted reaches 

performed with monocular and binocular vision.  Participants viewed a floating, 

luminous disk at 50 to 90 percent of their maximum arm reach using a head-mounted 

camera and made targeted reaches with and without feedback.  Without feedback, 

underestimation of distances increased using monocular viewing with restricted field of 

view (FOV).  However, with feedback, this compression in depth due to the restricted 

FOV was calibrated away, although compression due to monocular viewing alone (with 

unrestricted FOV) was not.  Feedback also improved distance compression with 

binocular viewing.  It seems likely that distance estimation can be accurate in different 

viewing conditions (such as an IVE) when provided with feedback, as long as enough 

perceptual information is available.  However, it is possible that feedback-induced 

recalibration may compensate for some distortions (e.g. restricted FOV) but not others 

(e.g. monocular viewing), thus it is important to study the effects of calibration. 
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After one has recalibrated in a new environment, aftereffects are likely to occur 

(Durgin & Pelah, 2004; Durgin, Fox, Lewis, & Walley, 2002, Durgin et al., 2005; Mohler 

et al., 2006; Rieser et al., 1995).  Just as one requires several trials with feedback to 

recalibrate to an IVE, he or she would likely have to recalibrate back to the physical 

world after leaving the IVE.  After a period of recalibration in an IVE that visually 

compresses distances, participants’ distance estimates may be biased toward 

overestimation when immediately returned to the physical world.   

 Previous research has shown that a brief interaction period in an IVE can improve 

egocentric distance estimates within that IVE from approximately 56% of the intended 

distance to 94% using blindfolded and triangulated walking (Richardson & Waller, 

2007).  Because both walking tasks improved equivalently, it is likely that a visuomotor 

recalibration affected distance estimates, rather than a cognitive strategy.  Additionally, 

participants have demonstrated aftereffects of interacting in an IVE once exposed to the 

natural physical environment by overestimating distances by approximately 10%.  

Participants were also shown to have improved distance estimates after interacting with 

an IVE when they were provided with body-based senses such as vestibular, 

proprioceptive, and efferent information, but no improvements were found when 

provided with visual optic flow when body-based information was not available (Waller 

& Richardson, 2008).  Such research demonstrates that exposure to a normal IVE can 

result in visuomotor recalibration that even carries over when first reintroduced to a 

natural physical environment.    
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 Distance estimation in an IVE has been widely studied in action space 

(approximately 0 to 30 meters from the body) using techniques such as imagined timed 

walking (Grechkin et al., 2010), verbal reports (Klein, Swan, Schmidt, Livingston, & 

Staadt, 2009), triangulation by pointing (Loomis & Knapp, 2003), blind-walking 

(Messing & Durgin, 2005; Loomis & Knapp 2003), triangulated walking (Thompson, 

Willemsen, Gooch, Creem-Regehr, Loomis, & Beall, 2004), and throwing an object 

toward the viewed target with the eyes closed (Sahm, Creem-Regehr, Thompson, & 

Willemsen, 2005).  For the proposed experiment, action measures are preferred to verbal 

distance estimates because it has been suggested that action measures and verbal 

judgments reflect two distinct perceptual processes that may be affected differently by the 

context within which they are made and which may react differently to calibration 

(Pagano & Bingham, 1998; Pagano, Grutzmacher & Jenkins, 2001; Pagano & Isenhower, 

2008). 

When directly compared in IVE and real world viewing conditions, both verbal 

and reach estimates show distance compression when made to near-field targets 

(Napieralski et al., 2011).  For the reaches, underestimation was shown to increase as 

target distance increased, while underestimation decreased with increased distance for 

verbal reports.  Compared to the direct, real world viewing condition, viewing in the IVE 

was observed to have larger effects on verbal judgments, but small effects on concurrent 

manual reaches to egocentric distances in personal space.  Overall, the difference 

between reaches and verbal estimates accounted for a large proportion of the variance in 

the participants’ responses, 9.6% in IVE and 22.1% in the real world. Reaches generally 
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tended to be more accurate and more consistent (see also Pagano & Bingham, 1998; 

Pagano et al., 2001; Pagano & Isenhower, 2008).   

Multiple regression analyses on response mode (verbal vs reach) confirmed that 

reaches and verbal reports were different (Napieralski et al., 2011).  Although reaches 

were very similar in the IVE and RW, they were slightly farther in the RW (only 1.8 cm 

farther on average).  As actual target distance increased, so did underestimation in 

participant reaches.  A simple regression predicting the reaches from actual target 

distance indicated that the difference between viewing in RW or IVE accounted for only 

1.2% of the variances in the reaches. However, even though verbal reports were made 

concurrently with reaches, they varied significantly in both the IVE and RW 

environment. Overall, the verbal reports increased at a much higher rate as actual 

distance increased in the virtual world than in the RW (see Figure 1). A simple regression 

predicting the verbal reports from actual target distance indicated that the difference 

between viewing in the RW or IVE accounted for 2.7% of the variance in the verbal 

reports. Multiple regression analyses also revealed that although verbal reports were 

made concurrently with reaches, they varied significantly from reaches and were highly 

variable in both viewing conditions.   
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Figure 1: Physical reaches (top) and verbal estimates (bottom) as a function of the actual 

target distances for IVE and RW viewing (Napieralski et al., 2011) 

 

Overall in the RW viewing condition, as the actual distances increased, the verbal 

reports increased at a higher rate than the reaches (Napieralski et al., 2011). This was a 

very large effect, and indicated by the large difference in intercepts (see Figure 2). A 

simple regression predicting indicated target distance from actual target distance 

indicated that the difference between the reaches and the verbal reports accounted for 

22.1% of the variance in the responses. By restricting the field of view in the real world 
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viewing condition to match that of the IVE, it is likely that this restricted view 

contributed to underestimation in both viewing conditions (Bingham & Pagano, 1998). 

Although both response measures displayed an underestimation of distances in 

both viewing conditions, distances were underestimated more in the IVE than in RW.  

Similar to the RW, in IVE the verbal judgments and reaches were different from each 

other despite being performed within the same trial. And like the RW, as the actual 

distances increased, the verbal reports increased at a higher rate than the reaches.  A 

simple regression predicting indicated target distance from actual target distance 

indicated that the difference between the reaches and the verbal reports accounted for 

9.6% of the variance in the responses. While viewing in the IVE had a small effect on 

reaches, the effect was larger for verbal reports.  
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Figure 2: Interaction between actual target distance and verbal/reach estimates for RW 

(top) and IVE (bottom) (Napieralski et al., 2011) 

 

In sum, the verbal reports were very different from the reaches in both the IVE 

and the RW. The verbal reports, however, were affected by the viewing condition to a 

greater extent than the reaches. The effect of response mode was much greater than the 

effect of viewing condition, with the reaches remaining more consistent between the 

viewing conditions than the verbal reports.  Based on these findings, the next step in our 

research was to investigate the effects of distance estimation training with feedback 

within an IVE to see if this distance compression can be calibrated away.   

Pagano and Isenhower (2008) investigated the accuracy of verbal and reach 

distance estimates by instructing participants to judge distances between 25 and 90 

percent of their maximum arm reach in one condition, and between 50 and 100 percent in 

another, although targets presented to both groups were actually between 50 and 90 

percent.  Participants’ verbal estimates were significantly affected and made based on the 

expected range, while reaches remained accurate and unaffected.  While reaches appear 

to represent absolute metric distances, verbal estimates seem to only represent relative 
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distances and are easily influenced by the expected range of distances.  Therefore, many 

researchers find verbal responses inappropriate for examining absolute distance 

estimates.  Although previous research has demonstrated a visuomotor recalibration of 

egocentric distances in an IVE by utilizing blind and triangulated walking, reaching 

estimates to near space have not been so thoroughly tested.  However, verbal estimates 

are still a popular form of reporting size and distance estimates.  Differences between 

verbal and action measures will also be interesting to compare because it is possible that 

verbal and action measures may be calibrated differently.  

The materials, apparatus, and procedure were very similar to those used in 

Napieralski et al. (2011).  To test for recalibration, a pretest measure in an IVE in which 

participants complete distance estimates without feedback was compared to IVE 

estimates made after visual and haptic feedback.  Thus, participants completed a second 

set of distance estimates in the IVE without feedback.  Here we compared the accuracy of 

the distance estimates in the final posttest session to those of the initial pretest.  It was 

hypothesized that recalibration to the IVE from feedback via manual activity would be 

evidenced by improved distance estimates in the posttest. 
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CHAPTER TWO 

METHODS 

Participants 

15 Clemson University students with normal or corrected-to-normal visual acuity 

and stereo vision participated in the study after providing informed consent.  They 

received credit toward a requirement in their psychology course for participating.   

Materials and Apparatus 

General Setup.  Figure 3 depicts the apparatus that was used.  Participants were 

seated in a wooden chair with their shoulders loosely strapped to the back of a chair to 

allow freedom of movement of the head and arm while restricting motions of the trunk. 

Participants reached with a wooden stylus that is 26.5cm long, and 0.9 cm in diameter 

and weighing 65g, held in their right hand so that it extends approximately 3 cm in front 

and 12 cm behind their closed fist. Each trial began with the back end of the stylus 

inserted in a 0.5 cm groove on top of the launch platform, which was located next to the 

participant’s right hip. 
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Figure 3: Shows our near-field distance estimation apparatus. The target, participant’s 

head, and stylus are tracked in order to record actual and perceived distances of physical 

reach in the IVE 

 

The target consists of a 0.5 cm deep vertical 8.0 cm x 1.2 cm groove extending 

from the center to the base of a 8.0 cm wide x 16 cm tall white rectangle (Figure 4). The 

edges of the target are covered by a 0.5 cm thick black tape, so that the participant can 

distinguish the target from the background of the wall. The target was positioned in front 

of the participant along the optical axis, approximately midway between the participant’s 

midline and right shoulder (Figure 3). Therefore, the target was positioned such that the 

distance from the shoulder to the target will be as close as possible to the distance from 

the eyes to the target. The egocentric distance to the target was adjusted by the 

experimenter using mounts attached to a 200 cm optical rail extending parallel to the 

participant’s optical axis. The target was attached to the optical rail via an adjustable 

hinged stand. The target, stand and stylus are made of wood and the aluminum optical 

rail will be mounted on a wooden base. 



 15 

 

Figure 4: Image on the left shows a screen shot of the virtual target as perceived by 

participants in the IVE, and image on the right shows the real target. 

 

Visual Aspects.  Participants wore a Virtual Research VR 1280 HMD weighing 

880g. The HMD contains two LCOS displays each with a resolution of 1280 x 1024 

pixels for viewing a stereoscopic virtual environment. The field of view of the HMD is 

determined to be 48 degrees horizontal and 36 degrees vertical. The field of view was 

determined by rendering a carefully registered virtual model of a physical object, and 

asking users to repetitively report the relative size of the virtual object against the 

physical counterpart through a forced choice method (see Napieralski et al., 2011). 

The virtual model of the experimental room and apparatus developed by 

Napieralski et al. (2011) was employed in this experiment.  In Napieralski et al. (2011) 

we strove to model and render the virtual setting to be similar to the physical setting. An 

accurate virtual replica of the experiment apparatus and surrounding environment were 

modeled using Blender. The virtual replica of the apparatus and surrounding environment 

included the target, stand, chair, room, tracking system, stylus and a virtual body 

representing the participant. The gender neutral model of a virtual body seated in the 

participant’s chair was meant to provide the participant with an egocentric representation 

of the self whenever the participant glances down (see Figure 5). 
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Figure 5: The left shows a screenshot of the avatar as seen from the participant’s first 

person perspective through the HMD. The right shows the avatar with the virtual 

apparatus in the testing environment. 

 

We have attempted to achieve this level of realism by not only matching the size 

and placement of objects located in the real-world environment exactly, but by matching 

the textures and lighting as well (Napieralski et al., 2011).  The accuracy of the scale and 

size of the virtual objects in the IVE was ensured by careful hand measurements of each 

of the physical objects in the real world room setup.  Many of the textures of the synthetic 

world are simply photographs of the real-world objects.  Great care was taken to match 

the objects exactly, especially those that were involved in the experiment, such as the 

virtual target, as shown in Figure 4.  We also employed state of the art rendering 

techniques such as radiosity and render to texture, to match as close as possible the visual 

quality of the virtual environment and apparatus to the physical experiment setting.  

These efforts were largely undertaken to prevent any adverse effects on perception in the 

virtual world, which can occur in non-photorealistic virtual environments (Phillips et al., 

2009). 
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The computational environment that hosted the distance estimation system 

consists of a Dell Precision workstation with a quad core processor and dual NVIDIA 

Quadro FX 5600 SLI graphics cards. The distance estimation system that rendered the 

IVE in HMD stereo, ran the tracking system, and measured and recorded the perceived 

physical reaches in tracker coordinates was developed in OpenGL and the Simple Virtual 

Environment toolkit (SVE) (Kessler et al., 2000). The distance estimation experiment 

system runs at an application frame rate of 45Hz. 

Tracking of the Physical Reaches.  A 6 degree of freedom Polhemus Liberty 

electromagnetic tracking system tracked the position and orientation of the participant’s 

head, the stylus, and the target (Polhemus/Colchester, VT). Prior to conducting the 

experiment, the Polhemus tracking system was calibrated to minimize any interference 

due to metallic objects in the physical environment, through the creation of a distortion 

map, using a calibration apparatus and proprietary software from the manufacturers of the 

tracking system. This calibration step ensured that the sensor position reported by the 

tracking system was accurate to 0.1cm, and the sensor orientation was accurate to 0.15 

degrees. Measurements of the participant’s physical reach was measured from the 

position of the target face to the origin of the optical rail as reported by the tracking 

system in centimeters (cm) in both conditions. Raw position and orientation values of the 

tracked sensors as well as the measured perceived and actual distances for each trial were 

logged in a text file by the experiment system for each participant.  

To ensure proper registration of the virtual target and stylus with their real 

counterparts, we carefully aligned the virtual object’s coordinate system with that of the 
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tracking sensor’s coordinate system. We also determined the relationship between the 

coordinate system of the tracking sensor on the participant’s head (on top of the HMD) 

and the coordinate system of the HMD’s display screen (computer graphics view plane), 

to ensure proper registration of the virtual environment to the physical environment as 

perceived by the participant. 

Procedure 

Upon arrival, participants completed a standard consent form and demographic 

survey before visual acuity and stereo vision testing.  All participants’ acuity measured 

better than 20/40 and based on the Titmus Fly Stereotest, all were able to perceive stereo 

when viewing an image with a disparity of 3600 sec of arc.  Interpupillary distance of 

each participant was measured manually with a ruler.  Participants were asked to fixate 

on the visual acuity chart while they remain standing 20 feet away so their pupils will be 

parallel to each other, as they would be if set to optical infinity.  After passing the 

necessary vision tests, the participant was loosely strapped in a chair to restrict movement 

of the trunk but to allow free movement of the arm.  The height of the target was adjusted 

so it best matched the participant’s sitting eye height.  Participants’ maximum arm reach 

was then measured by adjusting the target so the participant could place the stylus in the 

groove of the target with their arm fully extended but without moving their shoulders 

forward off the back of the chair. This maximum arm reach distance was used to generate 

the trial distances at which the apparatus was placed during the experiment.  

The participant was also instructed on how to make physical reach estimates, with 

swift, ballistic reaches and verbal reports based on percentage of the participant’s 
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maximum arm reach.  By using a more natural, intrinsic body scaled unit for verbal 

reports rather than an extrinsic scale such as inches or centimeters, unconscious 

transformation from an intrinsic scale will be reduced (Bingham & Stassen, 1994; 

Warren, 1995).  The experimenter then adjusted two knobs on the HMD to adjust the 

distance between the two displays to match the interpupillary distance of the participant 

before placing it on their head.   

Once the HMD was fastened to the head, an IVE training environment was 

presented to help the participant adjust to using the device and the head-coupled motion. 

The environment was a near perfect replica of the real-world environment except that the 

testing apparatus was not seen. Additionally, the training environment included a few 

objects not present in the actual, real world room, such as a television and a poster. The 

participant was asked to take a minute to move their head around in order to view the 

objects in the environment. Then the participant was asked simple questions to ensure 

they had properly adjusted to the head motions and the viewing conditions of the IVE 

(e.g. What is on the television? What time is on the clock?). See figure 6 for screenshots 

of this training environment. After this training phase one of the experimenters pressed a 

keyboard key to initiate the testing environment.  The testing environment consisted of a 

photorealistic virtual representation of the real environment surrounding the participant.  
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Figure 6: The figures left and right show screenshots of the training environment that 

participants viewed in order to gain familiarization with use of the IVE experiment 

apparatus. For instance, the HMD viewing condition and head-coupled motion. 

 

Following Napieralski et al. (2011), each participant began with a baseline session of 

distance estimates with no feedback.  They first completed two practice trials followed by 

30 recorded distance estimates.  For each trial, with the HMD display turned off, the 

target distance was adjusted. The participant then viewed the target and once they 

notified the experimenter that they are ready, the HMD video was turned off via a key 

press. The target was then immediately swung out of the way to prevent any haptic 

feedback during the participant’s reach.  The experimenter at the keyboard then pressed a 

key to record all of the sensor data from the tracking system pertaining to the position of 

the stylus (hand), target face, and head to a log file. To reduce aural cues about the target 

position during adjustment on the optical rail for the next trial, white noise was played in 

the participant’s headphones. This sound also cued to the participants to return their hand 

back on the stylus loading dock in preparation for the next trial. The next trial distance 

was then adjusted with the HMD display turned off. 

Two days after the pretest measure was completed, participants completed 20 

distance estimates in the IVE with visual and haptic feedback, leaving the display on and 
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not swinging the target out of the way during reaches.  Participants then immediately 

provided 30 distance estimates in the IVE without feedback, as in the pretest session, to 

test for aftereffects.   In the pretest and posttest phases without feedback, participants 

were presented with five random permutations of six target distances corresponding to 

50, 58, 67, 75, 82 and 90 percent of the participant’s maximum reach.  For the feedback 

session, participants were presented with five random permutations of four target 

distances corresponding to 50, 58, 67, and 75 percent of the participant’s maximum reach 

for a total of 80 trial distances.  At the end of any session, some participants were asked 

to repeat particular trials if, for instance, they made a slow, calculated reach. 
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RESULTS 

 

The slopes and intercepts of the functions predicting indicated target distance 

from actual target distance for the individual subjects in each session are presented in 

Tables 1 and 2. Multiple regression techniques were used to determine if the slopes and 

intercepts differed between the two viewing sessions and between the two response 

measures. Multiple regression analyses are preferable to ANOVAs because they allow us 

to predict a continuous dependent variable (indicated target distances) from both a 

continuous independent variable (actual target distances) and a categorical variable 

(session) along with the interaction of these two. Also, the slopes and intercepts given by 

regression techniques are more useful than other descriptive statistics such as session 

means and signed error because they describe the function that takes you from the actual 

target distances to the perceived target distances.   
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Table 1 

 

R
2
, Slopes, and Intercepts of Simple Regressions Predicting Reach Estimates from Actual 

Distance (In Arm Length Units) for Each Participant 

 

 Reach Estimates 

 Pre Post 

Subject R
2
 Slope Intercept R

2
 Slope Intercept 

1 0.458 1.38 -45.67 0.617 0.96 -7.234 

2 0.555 1.11 8.56 0.851 1.17 -14.18 

3 0.275 0.59 11.41 0.397 0.524 4.59 

4 0.48 0.37 56.26 0.731 0.773 14.56 

5 0.497 0.74 7.82 0.752 0.689 20.02 

6 0.219 0.37 39.09 0.669 0.418 32.3 

7 0.151 0.33 64.3 0.728 0.79 14.47 

8 0.739 1.26 -17.45 0.809 1.1 -26.54 

9 0.401 0.96 -12.24 0.66 0.98 -19.91 

10 0.37 0.96 -13.11 0.703 1.19 -27.31 

11 0.374 0.97 -6.14 0.709 0.83 1.93 

12 0.38 0.56 41.57 0.658 0.72 21.09 

13 0.336 1.07 -13.25 0.468 0.89 -7.73 

14 0.335 0.32 71.07 0.361 0.67 24.42 

15 0.493 0.79 22.41 0.677 0.89 3.86 

Overall .404 0.79 14.31 .653 0.84 2.29 
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Table 2 

 

R
2
, Slopes, and Intercepts of Simple Regressions Predicting Verbal Estimates from Actual 

Distance (In Arm Length Units) for Each Participant 

 

 Verbal Estimates 

 Pre Post 

Subject R
2
 Slope Intercept R

2
 Slope Intercept 

1 0.604 1.73 -75.68 0.788 1.81 -87.12 

2 0.703 1.39 -41.16 0.926 1.39 -55.53 

3 0.568 1.04 -39.81 0.637 0.36 -15.21 

4 0.495 0.67 -2.73 0.792 0.52 -6.39 

5 0.44 0.56 12.13 0.767 1.05 -10.79 

6 0.749 1.18 -21.51 0.894 1.01 -23.89 

7 0.466 1.55 -63.89 0.776 1.65 -61.07 

8 0.758 1.97 -83.39 0.826 1.68 -66.6 

9 0.436 1.02 -41.33 0.815 1.22 -56.38 

10 0.334 1.24 -34.26 0.75 0.82 -26.61 

11 0.617 0.99 -11.8 0.724 1.03 -9.48 

12 0.688 1.16 -18.57 0.799 1.2 -20.67 

13 0.343 1.04 -19.16 0.641 0.92 -12.63 

14 0.504 0.69 8.96 0.781 0.83 -16.06 

15 0.65 1.14 -32.23 0.714 1.2 -40.24 

Overall .557 1.16 -30.96 .775 1.11 -33.91 

 

Comparing Pretest & Posttest 

Reaches.  Overall, the slopes for the reaches were .79 and .84 for the Pretest and 

Posttest sessions, respectively. The intercepts were 14.31% and 2.29% (in arm length 

units), respectively. Figure 7 depicts the relation between actual target distance and the 

distances reported via reaches for the two sessions. Each point in Figure 7 represents 

average judgments made by an individual subject to a given target distance. A multiple 

regression confirmed that the reaches made in the pretest were different from the reaches 

made in the posttest. To test for differences between the slopes and intercepts of the two 

different viewing sessions, this multiple regression was performed using the actual target 

distances and viewing sessions (coded orthogonally) to predict the reach distances. The 
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multiple regression was first performed with an actual target distance X session 

interaction term, yielding an r
2
 = .336 (n = 896), with a partial F of 380.25 for actual 

target distance (p < .0001). The partial F for session was 3.06 (p = .081) and the 

interaction term .13 (p = .72), with the partial F for viewing session increasing to 52.27 (p 

< .0001) after the removal of the interaction term. 

Put simply, the partial F for actual target distance assesses the degree to which the 

actual target distances predict the variation in the responses after variation due to the 

other terms (viewing session and the interaction) having already been accounted for. 

Thus, the partial F for actual target distance tests for a main effect of actual target 

distance. The partial F for viewing session assesses the degree to which the intercepts for 

the two sessions differ from each other and thus test for a main effect of viewing session. 

The partial F for the interaction term assesses the degree to which the slopes for the two 

sessions differ from each other. Thus, the multiple regression revealed a statistically 

significant main effect for actual target distance, as well as a main effect for viewing 

session (reaches made in the pretest vs. reaches made in the posttest), but did not reveal 

an interaction. Therefore, the slopes of the functions predicting reached distance from 

actual distance did not differ for the two viewing sessions, while their intercepts did. 

Overall, the reaches were 4.25 cm farther in the pretest than in the posttest A simple 

regression predicting the reaches from actual target distance resulted in an r
2
 = 0.297 (n = 

896), indicating that the difference between viewing in the pretest or posttest accounted 

for only 3.9% of the variances in the reaches. A Repeated Measures ANOVA confirmed 

that average reach estimates for each presented distance were different between pretest 
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and posttest F(1) = 14.23, p < .05 (Table 4).  See Figure 8 for individual participant 

regression plots for reaches. 

  When this analysis was conducted for individual participants, the partial F for 

session was p < .05 for 10 out of the 15 participants after the removal of the interaction 

term (see Table 3). A paired t-test shows that the increase in R
2 

values from a mean of 

0.404 (SD = 0.143) in the pretest to a mean of 0.653 (SD = 0.141) for the posttest was 

significant for the reaches, t (14) = -6.692, p < .0001.   
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Table 3 

Values of R
2
, n, and Partial F for Multiple Regression Analyses Predicting Reach 

Distance Estimates From Actual Target Distance (In Arm Length Units), Session (Pretest 

Versus Posttest), and the Target Distance × Session Interaction 

 

   Partial F 

Subject R 
Square 

n Target 
Distance 

Session Interaction 

1 0.512 60 56.03** 2.94* 1.82 

2 0.772 60 125.44** 2.55* 0.1 

3 0.463 60 26.69** 0.18* 0.09 

4 0.79 60 97.81** 24.7** 12.43** 

5 0.632 60 81.5** 1.22* 0.09 

6 0.395 60 30.18** 0.43 0.11 

7 0.681 60 43.31** 16.02** 7.38** 

8 0.816 60 184.42** 0.55* 0.83 

9 0.497 60 54.88** 0.16 0.01 

10 0.54 57 58.92** 0.48 0.65 

11 0.467 60 48.72** 0.2 0.27 

12 0.61 60 58.09** 2.86* 0.89 

13 0.647 59 34.08** 0.05 0.27 

14 0.644 60 27.52** 12.48** 3.58 

15 0.639 60 77.81** 1.96* 0.25 

Overall 0.607 896 67.03 4.45 1.92 

*p < .05 without Interaction term included in the regression analysis 

  **p < .05 with Interaction term included in the regression analysis 
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Table 4 

Average Reach Estimates for Each Distance Presented in Pretest and Posttest 

 

Distance 

Presented 

Pretest  Posttest  

50% 53.21 41.07 

58% 60.71 52.01 

67% 67.92 58.5 

75% 73.3 64.69 

82% 79.36 71.26 

90% 83.78 76.73 

Overall 69.71 60.71 

 

 

Figure 7: Physical reaches as a function of the actual target distances for Pretest and 

Posttest viewing. 
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      Figure 8: Physical reaches as a function of the actual target distances for Pretest and 

Posttest viewing for individual participants. 

Verbal Reports.  The slopes of the functions predicting indicated target distance 

from actual target distance for the verbal judgments were 1.16 and 1.11 for the Pre and 

Post viewing sessions, respectively (see figure 9). The intercepts were -30.96 and -33.91 

(in arm length units), respectively. A multiple regression analysis predicting the verbal 

judgments from actual target distance and session was first performed with an actual 

target distance X session interaction term, yielding an r
2
 = .438 (n = 896), with partial Fs 
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of 648.06 for actual target distance (p< .0001), 0.006 for session (p = .939), and 0.93 for 

the interaction term (p = .336), with the partial F for viewing session increasing to 28.05 

(p < .0001) after the removal of the interaction term. This multiple regression confirmed 

that like the reaches, the verbal judgments changed in intercept but not in slope as a 

function of session. Overall, as the actual distances increased the verbal reports increased 

at the same rate in the pretest and the posttest. A simple regression predicting the verbal 

reports from actual target distance resulted in an r
2
 = .420 (n = 896), indicating that the 

difference between viewing in pretest or posttest accounted for 1.8% of the variance in 

the verbal reports. In sum, the verbal reports were very similar in the pretest compared to 

the posttest. When this analysis was conducted for individual participants, the partial F 

for session was p < .05 for 8 out of the 15 participants after the removal of the interaction 

term (see Table 5). A paired t-test shows that the increase in R
2 

values from a mean of 

0.557 (SD = 0.138) in the pretest to a mean of 0.775 (SD = 0.078) in the posttest was 

significant for the verbal estimates, t (14) = -7.07, p < .0001.  See Figure 10 for 

individual participant regression plots for verbal reports. 

 

 

 

 

 

 

 



 33 

Table 5 

Values of R
2
, n, and Partial F for Multiple Regression Analyses Predicting Verbal 

Distance Estimates From Actual Target Distance (In Arm Length Units), Session (Pretest 

Versus Posttest), and the Target Distance × Session Interaction 

 

   Partial F 

Subject R Square n Target 
Distance 

Session Interaction 

1 0.703 60 125.84** 0.26 0.06 

2 0.84 60 238.05** 1.29* 0.0003 

3 0.792 60 65.53** 3.69* 15.14** 

4 0.746 60 78.55** 0.14* 1.21 

5 0.702 60 99.26** 4.13** 9.46** 

6 0.85 60 227.35** 0.05* 1.37 

7 0.61 60 85.23** 0.01* 0.09 

8 0.785 60 203.55** 0.86 1.3 

9 0.594 60 80.91** 0.7 0.65 

10 0.55 57 37.63** 0.1* 1.58 

11 0.675 60 112.36** 0.03 0.04 

12 0.744 60 158.48** 0.02 0.03 

13 0.448 59 42.95** 0.09 0.14 

14 0.729 60 97.26** 5.36** 0.79 

15 0.686 60 120.08** 0.29 0.06 

Overall 0.697 896 118.2 1.13 2.13 

  *p < .05 without Interaction term included in the regression analysis 

  **p < .05 with Interaction term included in the regression analysis 
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Figure 9: Verbal estimates as a function of the actual target distances for Pretest and 

Posttest viewing. 
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Figure 10: Verbal estimates as a function of the actual target distances for Pretest and 

Posttest viewing for individual participants. 

Accuracy Measures. 

Absolute Error.  As a second measure of distance estimate accuracy, absolute 

error was also examined for each participant by computing the absolute value of 

difference scores (actual distance – estimated distance).  Absolute error (Table 6) for 

reaches decreased from 16.16% of arm length in the pretest to 12.15% in the posttest, 
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showing an improvement after the calibration phase of 4.01% of the arm length. In sum, 

the reaches improved after the feedback phase, t(14) = 2.212, p = 044.  Absolute error for 

verbal estimates actually increased from 22.85% of arm length in the pretest to 27.22% in 

the posttest, showing verbal estimates worsened after the calibration phase by 4.37% of 

the arm length.  However, this change in absolute error was not significant, t(14) = -

1.682, p = .115. This reduction of verbal estimate accuracy is also reflected in the 

intercept change from -30.96 to -33.91 after the calibration phase.   

Table 6 

 

Absolute Error (Absolute Value of Actual Distance – Estimated Distance) for Each 

Participant in Percentage of Arm Length 

 

Subject Pretest  

Reaches 

Posttest 

Reaches 

Pretest Verbal 

Estimates 

Posttest Verbal 

Estimates 

1 23.65 12.24 28.05 33.2 

2 16.73 6.02 15.56 29.01 

3 19.91 29.51 37.18 60.86 

4 10.87 5.84 26.97 39.58 

5 13.38 5.47 19.31 9.13 

6 11.61 9.37 11.02 22.98 

7 16.22 6.12 30.06 20.57 

8 8.84 19.64 22.47 21.37 

9 20.19 21.21 41.12 40.28 

10 20.27 15.07 25.56 39.69 

11 16.09 10.63 14.97 9.47 

12 11.86 6.22 11.33 9.49 

13 18.36 16.63 21.52 18.06 

14 24.16 10.49 14.32 27.73 

15 10.33 7.74 23.28 26.84 

Overall 16.16 12.15 22.85 27.22 
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 Total Variability.  However, comparing total variability among reaches rather 

than absolute error reveals somewhat different results.  According to Schmidt (1988), 

absolute error (which measures overall accuracy without regard to direction) is the most 

commonly used accuracy measure, although total variability is often considered to be the 

best measure of overall accuracy in responses because it combines both constant error (a 

measure of signed average error) and variable error (a measure of inconsistency in 

responses by comparing each response to a respective participant’s average reach 

response to a specific distance).  Total variability can be computed by setting the square 

of constant error plus the square of variable error equal to the square of total variability, 

where zero represents perfect performance.  However, a Repeated Measures ANOVA 

revealed that although the overall total variability was less in the posttest (18.53) than the 

pretest (21.5), this difference was not significant F(1) = 4.52, p = .052 (Table 7). 
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Table 7 

 

Total Variability (√(∑(Reach Estimate – Actual Distance)
2
 / number of trials)) for Each 

Participant in Percentage of Arm Length  

 

Subject Pretest Total 

Variability  

Posttest Total 

Variability 

1 32.65 19.83 

2 24.73 18.17 

3 23.63 31.58 

4 11.91 12.57 

5 17.58 11.05 

6 12.80 10.31 

7 18.57 13.55 

8 20.05 25.87 

9 26.54 26.92 

10 26.00 24.22 

11 23.92 16.94 

12 15.86 12.13 

13 25.63 23.38 

14 25.35 15.77 

15 17.36 15.61 

Overall 21.5 18.53 

 

Comparing Reaches and Verbal Reports 

Pretest. Next the verbal reports to the reaches made within each of the two 

sessions were compared (see Figure 11). In the pretest the slopes of the functions 

predicting indicated target distance from actual target distance were 1.16 and .79 for the 

verbal reports and the reaches, respectively. The intercepts were -30.96 and 14.31 (in arm 

length units), respectively. A multiple regression predicting the judgments from actual 

target distance and response mode (verbal or reach) was first performed with an actual 

target distance X session interaction term, yielding an r
2
 = .428 (n = 892), with partial Fs 
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of 429.11 for actual target distance (p < .0001), 46.27 for session (p < .0001), and 16.74 

for the interaction term (p < .0001). See Table 8 for partial Fs for individual participants.  

This multiple regression confirmed that in the pretest the verbal judgments were very 

different from the reaches that were made within the same trial and which were thus 

directed at the same target distance.  Overall, as the actual distances increased the verbal 

reports increased at a higher rate than the reaches and this was accompanied by a large 

intercept difference. A simple regression predicting indicated target distance from actual 

target distance resulted in an r
2
 = 0.276 (n = 892), indicating that the difference between 

the reaches and the verbal reports accounted for 15.2% of the variance in the responses. 

In sum, in the pretest the verbal reports and the reaches were different. 
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Table 8 

Values of R
2
, n, and Partial F for Multiple Regression Analyses Predicting Indicated 

Target Distance from Actual Target Distance (In Arm Length Units), Response Measure 

(Verbal Versus Reach), and the Target Distance × Response Measure Interaction during 

Pretest 

 

   Partial F 

Subject R Square n Target 
Distance 

Response 
Type 

Interaction 

1 .514 60 64.32** 1.13 0.8 

2 .767 60 96.96** 7.62** 1.26 

3 .589 60 42.65** 7.49** 3.21 

4 .884 60 49.82** 28.98** 4.26** 

5 .524 60 49.63** 0.11* 0.98 

6 .617 60 70.56** 19.67** 19.4** 

7 .671 60 5.42** 24.61** 12.39** 

8 .775 60 161.95** 13.68** 7.92** 

9 .559 60 40.32** 1.77* 0.04 

10 .347 54 26.08** 0.45 0.42 

11 .473 60 49.38** 0.08 0.01 

12 .677 60 73.7** 16.22** 8.93** 

13 .359 58 27.69** 0.04 0.008 

14 .853 60 42.58** 32.88** 5.93** 

15 .766 60 77.7** 12.76** 2.61 

Overall .625 892 58.58 11.17 4.23 

*p < .05 without Interaction term included in the regression analysis 

  **p < .05 with Interaction term included in the regression analysis 
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Figure 11: Verbal and reach estimates as a function of the actual target distances for 

Pretest viewing. 

Posttest. Verbal reports were also compared to the simultaneous reaches made 

within the posttest (see Figure 12). The slopes of the functions predicting indicated target 

distance from actual target distance were 1.11 and 0.84 for the verbal reports and the 

reaches, respectively. The intercepts were -33.91 and 2.29 (in arm length units), 

respectively. A multiple regression predicting the judgments from actual target distance 

and response mode (verbal or reach) was performed with an actual target distance X 

session interaction term, yielding an r
2
 = .508 (n = 900), with partial Fs of 626.60 for 

actual target distance (p < .0001), 46.62 for session (p < .0001), and 12.79 for the 

interaction term (p < .0001). See Table 9 for partial Fs for individual participants.  This 

multiple regression confirmed that in posttest the verbal judgments and reaches were 
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different from each other despite being performed within the same trial. Overall, as the 

actual distances increased, the verbal reports increased at a higher rate than the reaches 

and this was accompanied by a large intercept difference.  A simple regression predicting 

indicated target distance from actual target distance resulted in an r
2
 = 0.344 (n = 900), 

indicating that the difference between the reaches and the verbal reports accounted for 

16.4% of the variance in the responses. In sum, the differences between the response 

modes (verbal and reach) within each session were greater than the differences between 

sessions (pretest and posttest) within each response mode. 
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Table 9 

Values of R
2
, n, and Partial F for Multiple Regression Analyses Predicting Indicated 

Target Distance from Actual Target Distance (In Arm Length Units), Response Measure 

(Verbal Versus Reach), and the Target Distance × Response Measure Interaction during 

Posttest 

 

   Partial F 

Subject R Square N Target 
Distance 

Response 
Type 

Interaction 

1 .786 60 147.62** 24.79** 13.86** 

2 .927 60 465.39** 25.57** 3.67 

3 .863 60 44.78** 4.19** 1.48 

4 .942 60 161.29** 8.42** 6.08** 

5 .773 60 172.19** 11.16** 7.41** 

6 .898 60 275.19** 30.97** 47.55** 

7 .793 60 163.64** 30.81** 20.33** 

8 .821 60 245.8** 10.06** 10.74** 

9 .804 60 163.1** 8.24** 1.94 

10 .822 60 137.69** 0.003* 4.67** 

11 .720 60 140.9** 1.05 1.64 

12 .777 60 162.92** 16.02** 9.96** 

13 .547 60 66.68** 0.1 0.02 

14 .774 60 63.46** 9.4** 0.69 

15 .789 60 128.05** 11.76** 2.86 

Overall .802 900 169.25 12.84 8.86 

*p < .05 without Interaction term included in the regression analysis 

  **p < .05 with Interaction term included in the regression analysis 
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Figure 12: Verbal and reach estimates as a function of the actual target distances for 

Posttest viewing. 

Comparing Posttest and Real World Viewing 

Reaches. Because the methods and apparatus used to collect distance estimates in 

Napieralski et al. (2011) were identical to those used in this experiment, distance 

estimates in the posttest were compared to the real world viewing condition of the 

previous study.  Because distance estimates made in the real world condition were not 

perfect, resulting in a regression with an intercept of -29.55 and slope of 1.03 for verbal 

reports and intercept of 1.74 and slope of .77 for reaches, it should not be assumed that 

distance estimates made in an IVE with current technologies, would be any more accurate 

than viewing in the RW.  If distance estimates made in an IVE after visual and haptic 

feedback recalibrate to that of RW viewing, estimates would be very similar between the 
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two viewing conditions.  The slopes of the functions predicting indicated target distance 

from actual target distance for the reach estimates were 0.77 and 0.84 for the RW and 

Posttest viewing conditions, respectively (Figure 13).  The intercepts were 1.74 and 2.29 

(in arm length units), respectively. A multiple regression predicting the reach estimates 

from actual target distance and condition was first performed with an actual target 

distance X session interaction term, yielding an r
2
 = .412 (n = 779), with partial Fs of 

496.22 for actual target distance (p< .0001), 0.29 for viewing condition (p = .59), and 

0.003 for the interaction term (p = .956), with the partial F for viewing condition 

increasing to 5.2 (p = .016) after the removal of the interaction term. This multiple 

regression confirmed that the reaches differed in intercept but not in slope as a function 

of changes in the viewing conditions. Overall, as the actual distances increased the 

reaches increased at the same rate in the RW and the posttest. A simple regression 

predicting the verbal reports from actual target distance resulted in an r
2
 = .407 (n = 779), 

indicating that the difference between viewing in RW without feedback and in the 

posttest after receiving feedback accounted for only 0.5% of the variance in the reaches. 

In sum, the reaches were very similar in the RW compared to the posttest. 
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Figure 13: Physical reaches as a function of the actual target distances for Pretest IVE, 

Posttest IVE, and Real World viewing. 

In sum, in both the pretest and the posttest the verbal reports were different from 

the reaches. Also, the differences between the verbal reports and the reaches made within 

each session were greater than the differences between the reaches made in the pretest 

and posttest. The verbal reports, however, were affected by the session to a greater extent 

than the reaches. Thus the effect of response mode was much greater than the effect of 

session, with the reaches remaining more consistent between the sessions than the verbal 

reports. 

 

 



 49 

DISCUSSION 

We investigated the effects of visual and haptic feedback on egocentric distance 

perception in an IVE using pretest, calibration, and posttest viewing sessions.  Within 

each session and for each trial, both manual reaches and verbal reports were given by 

participants to indicate perceived distance.  Our findings show that participants’ reach 

estimates improved after the calibration session, becoming more similar to distance 

estimates made by participants in a real world viewing condition.  For both reaches and 

verbal reports, estimates were farther in the pretest than the posttest.  Consistent with 

previous research (Napieralski et al., 2011; Pagano & Bingham, 1998; Pagano et al. 

2001; Pagano & Isenhower, 2008), we also found that verbal reports and reach estimates 

of egocentric differences differed.  Specifically, verbal reaches were underestimated more 

in both pretest and posttest for nearer distances than farther distances.  In general the 

reaches tended to be more accurate and more consistent.  In sum, compared to the pretest, 

viewing in the posttest had a large effect on manual reaches to egocentric distances in 

personal space and the effect of response mode (verbal vs. reach) was much greater than 

the effect of session. 

 Similar to previous research (Bingham & Pagano, 1998; Bingham & Romack, 

1999; Richardson & Waller, 2005; Richardson & Waller, 2007; Waller & Richardson, 

2008), our study showed that distance estimates improved after a period of interaction 

with the environment, with reaches improving from pretest to posttest (as revealed by the 

change in intercept in Table 1 and change in difference scores in Table 5).  However, 

unlike previous research that demonstrates underestimations in VR compared to RW 
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(Witmer and Kline 1998; Loomis and Knapp 2003; Grechkin et al., 2010), our 

participants overestimated more in the RW, with participants reaching farther in the 

pretest than the posttest and farther in the posttest than RW.  For example, Richardson 

and Waller (2007) demonstrated that a brief interaction period in an IVE improved 

egocentric distance estimates within that IVE from approximately 56% of the intended 

distance to 94% using blindfolded and triangulated walking.  The only noticeable 

differences between our studies which could be responsible for these different findings 

include the methods used of making distance estimates and the distances presented to 

participants.  In Richardson and Waller’s study (2007), the closest distance presented to 

these participants was at 75 cm, whereas a participant in our study with an arm length of 

35 cm (average arm length across the 15 participants), would not see the target at a 

distance farther than 31.5 cm.  FOV differed by 2
ᵒ
 horizontally and number of interaction 

trials were only two fewer compared to the current study.   

Regarding verbal reports overall, as the actual distances increased estimates 

increased at a higher rate than the reaches. Verbal reports were very similar between the 

pretest and posttest, but were less accurate, although they were given concurrent to 

reaches.  These findings are similar to previous research (Pagano & Bingham, 1998; 

Pagano et al., 2001; Pagano & Isenhower, 2008) showing that verbal estimates appear to 

be less accurate and more variable than reaches.  Verbal estimates are less stable than 

reaching or pointing, with errors changing dramatically between experimental sessions 

(such as pretest and posttest) and between participants within a single condition. For 

example, in a distance estimate study that also used concurrent verbal reports and 
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physical reaches, reach estimates remained stable, while the slopes of the functions 

predicting verbal judgments from actual target distances increased when a 6 second delay 

occurred between the target presentation and the responses, and it increased again with a 

delay of 12 seconds (Pagano, Grutzmacher, & Jenkins, 2001). Because verbal reports can 

be at least twice as variable as reaching or pointing, they are also considered to be less 

reliable (Foley, 1977; Pagano & Bingham, 1998; Pagano & Isenhower, 2008; Pagano et 

al., 2001). Similar to our study, Pagano and Bingham (1998) found that although reaches 

became more accurate after feedback, verbal judgments did not become more accurate 

and remained twice as variable as the reaches. Pagano and Isenhower (2008) investigated 

this further when they manipulated participants’ expectations of the possible target 

distances.  Participants’ verbal estimates were significantly affected and made based on 

the expected range, while reaches remained accurate and unaffected.  While reaches 

appear to represent absolute metric distances, verbal estimates seem to only represent 

relative distances and are easily influenced by the expected range of distances.  

Therefore, many researchers find verbal responses inappropriate for examining absolute 

distance estimates.    

There is debate whether a single perceived depth is produced, which generates 

separate output functions for different response modes (Brunswick, 1956; Foley, 1977, 

1985; Gogel 1993; Philbeck & Loomis 1997), or whether neurologically distinct visual 

systems underlie different responses such as “cognitive” verbal estimates (perception-for-

cognition) versus motor reach estimates (perception-for-action) (Bridgeman, Kirch, & 

Sperling, 1981; Milner & Goodale, 1995, 2008).  Although verbal reports in our 
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experiment were made in arm length units, with 100 corresponding to maximum reach, 

they still remained distinct from the reaches, supporting the theory of two distinct visual 

systems.  Perception-for-cognition may be a different perceptual process than perception-

for-action, with observers attuning to different information depending on what type of 

responses they will make.  A virtual environment must support the responses that will be 

executed within it by supporting both perception-for-cognition and perception-for-action 

and each of the calibration processes. 

Future work will examine the effects of perturbation of the virtually presented 

target by comparing estimates made when participants are given accurate feedback 

regarding distance estimates and a systematic perturbation of the target.  For example 

participants will be presented with visual feedback that is biased to show the hand at a 

fixed percentage closer to or farther from its actual location during the reach.  We will 

also examine the effects of visual feedback alone compared to haptic feedback alone, as 

well as examine the carryover effects of calibration in an IVE to a RW viewing 

environment. 

Our work is one of the first studies to investigate calibration of egocentric 

distance estimation in IVEs in the near field.  It is also one of few studies that use both 

verbal responses and physical reaches in an IVE for each trial.  The implications of this 

research for VR application developers and consumers could be significant.  Although 

designers of complex systems may be using research supporting compression of depth 

perception in IVEs compared to RW viewing to enhance performance by automatically 

accounting for such systematic underestimations, these efforts could be less necessary if 
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users of IVEs instead produce more accurate distance estimates after calibration via 

manual activity.  For example, if a user is simply given an opportunity to practice 

operating in the IVE before performing actual tasks, visual and/or haptic feedback could 

calibrate their visuomotor system to the new environment.  Future research will examine 

differences between visual and haptic feedback to see if one is more effective at 

calibrating distance estimates compared to the other. 
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