Essays on Service Strategies: Evidence from Banking and Healthcare Industries

Sriram Venkataraman
Clemson University, sriram.ven@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Management Sciences and Quantitative Methods Commons

Recommended Citation
https://tigerprints.clemson.edu/all_dissertations/1188

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
ESSAYS ON SERVICE STRATEGIES: EVIDENCE FROM BANKING AND HEALTHCARE INDUSTRIES

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Management

by
Sriram Venkataraman
August 2013

Accepted by:
Dr. Aleda V. Roth, Committee Co-Chair
Dr. Lawrence D. Fredendall, Committee Co-Chair
Dr. Shouqiang Wang
Dr. Paul W. Wilson
Dr. Daniel P. Miller
Abstract

The primary objective of this dissertation is to provide insights for service providers in general, and retail bankers and hospital administrators in particular, that will help them improve their operational efficiency and effectiveness. In doing so, this dissertation consists of three essays that develop multiple service operations strategies, that identifies key elements affecting efficiency and effectiveness in two key critical industries: banking and healthcare. We contribute to service operations strategy research and practice by incorporating multi-disciplinary theories and approaches from marketing, economics, and quality management. Although operations researchers and practitioners alike realize the importance of productivity and effectiveness, they are largely unaware of more advanced techniques to achieve this goal. This dissertation fills, in part, this gap and leads one to understand research agendas in service strategy. In particular, this dissertation applies new theories and methods illustrating how bankers can improve efficiency. Moreover, it describes how hospital administrators can better understand the ‘hidden’ costs of quality failures that associated with hospital readmission as well as the impact of the recent Medicare penalty plan on hospitals and patient welfare. We employ different methods (frontier efficiency estimation, econometrics, structural estimation, and principal-agent models) to critically analyze banking and healthcare industries.

The first essay deals with banking industry; the second and third essays are
inter-related topics dealing with healthcare services. The first essay integrates diffusion theory from marketing literature and path dependency theory from economics into service operations management to estimate and compare efficiency of banks operating in the U.S. and in India. We develop and empirically test two hypotheses based on diffusion theory and path dependency theory. The hypotheses are tested using data from banks operating in the U.S. and India and estimate efficiency using free disposal hull (FDH) estimator instead of the widely used data envelopment analysis (DEA) estimator. We note that the DEA estimator imposes convexity of production frontier whereas FDH estimator does not. Our empirical analysis, rejected the assumption of convexity of production frontier; and we are the first in the operations management literature to employ these empirics to test assumptions that are typically held to be true, but not validated, when employing DEA analyses.

The second essay develops a theory-based econometric model to investigate the effect of readmission rate on marginal cost incurred by a hospital. We use secondary data derived from multiple sources, including Center for Medicare and Medicaid Services. We apply an inversion method and structural estimation procedure developed in the empirical Industrial Organization and econometrics literature to estimate marginal cost of a hospital associated with readmissions using data on all Arizona hospitals. This essay also demonstrates the effect of the recent Medicare penalty on average readmission rate of all hospitals in the state of Arizona by using counterfactual analysis with and without stochastic shocks in hospitals’ investment to reduce readmission rates. The revised price charged by acute care hospitals after the elimination of critical access hospitals is also estimated as another counterfactual analysis. These analyses are very timely since patient protection and affordable care act (PPACA) was enacted recently, which penalizes hospitals with readmission rates higher than threshold readmission rates set by the government. Thus, in addition to
research and practice, this essay offers strong policy insights.

The third essay formulates an analytical model to evaluate the potential impact of PPACA on hospitals (providers), the government, and patients. We build a model of “readmission” with uncertainty for hospitals and use the principal-agent framework to study the interaction between the government (principal) and the hospital (agent). The hospital can make effort to reduce the readmission rate (hidden action). The hospital side is modeled using queueing with feedback results. Finally, we evaluate the impact of hospital’s efforts on the government’s expense and patient welfare.
Dedication

This dissertation is dedicated to my parents.
Acknowledgments

I would not have completed my pursuit of Doctor of Philosophy degree without the help of many people. I would like to take this opportunity to thank all of them. I express deep gratitude to my dissertation co-chair, Dr. Aleda Roth for her constant support, guidance and encouragement which helped me strive high levels of excellence. Her enthusiasm for research is very infectious. I also would like to thank my dissertation co-chair, Dr. Larry Fredendall for his immense help and support over the past four years and for providing me an opportunity to be part of the healthcare research project. I am extremely grateful to Dr. Paul Wilson for his patience in answering all my questions, his help on the first essay of this dissertation and in teaching the econometrics courses. I would like to thank Dr. Shouqiang Wang for his constant support and help during my research especially for the third essay of this dissertation. I would also like to thank Dr. Daniel Miller for all his help on the second essay of this dissertation and for teaching the Advanced Industrial Organization class.

I would like to thank the other faculty members of Supply Chain and Operations group: Dr. V. Sridharan, Dr. Janis Miller, Dr. Yann Ferrand and Dr. Gülru Özkan for their support throughout my Ph.D. program. I express my gratitude to my colleagues Jason Riley, Kevin Craig, Enrico Secchi, David Hall, Tracy Johnson-Hall, Jill Davis and Qiong Chen for their inspiration. Thanks also go to my friends Judhajit Roy, Shyam Panyam, Durlove Mohanty, Mandar Hazare and Rajat Aggarwal.
for their help during my stay in Clemson. Finally, I would like thank my parents and my brother. This dissertation would not have been possible without their constant support and inspiration.
Table of Contents

Title Page ... i
Abstract ... ii
Dedication ... v
Acknowledgments ... vi
List of Tables .. x
List of Figures .. xi
Introduction ... 1

Essay 1: Efficiency Analysis of U.S. and Indian Banks: Theory and Evidence ... 6
 1.1 Introduction ... 7
 1.2 Literature Review .. 9
 1.3 Hypotheses .. 12
 1.4 Research Approach ... 15
 1.5 Results ... 23
 1.6 Conclusions and Limitations 29

Essay 2. Effect of Readmission Rates on Marginal Cost in Hospital Services: An Econometric Analysis 32
 2.1 Introduction ... 33
 2.2 Literature and Hypothesis Development 39
 2.3 Data ... 44
 2.4 Econometric Model and Estimation Procedure 46
 2.5 Results and Discussion .. 52
 2.6 Conclusions ... 69

List of Tables

1.1 Descriptive Statistics of Variables \((N = 6535)\) .. 16
1.2 Descriptive Statistics of FDH Estimates .. 24
1.3 Descriptive Statistics of FDH Estimates of Indian Banks 25
2.1 Descriptive Statistics ... 45
2.2 Non-Nested Model: OLS Estimates \([DV: \log(s_j) - \log(s_0)]\) 52
2.3 Non-Nested Model: IV Estimates \([DV: \log(s_j) - \log(s_0)]\) 53
2.4 Summary Statistics of Non-Nested Model ... 54
2.5 Nested Model: OLS Estimates \([DV: \log(s_j) - \log(s_0)]\) 54
2.6 Nested Model: IV Estimates \([DV: \log(s_j) - \log(s_0)]\) 55
2.7 Summary Statistics of Nested Model ... 56
2.8 Nested Model: Supply Side Estimates \([DV: \text{Marginal Cost}]\).......... 56
2.9 Nested Model (Not for Profit): Supply Side Estimates \([DV: \text{Marginal Cost}]\) ... 57
3.1 Notation Table ... 83
3.2 Numerical Values .. 86
List of Figures

0.1 Overview of the Dissertation .. 2
2.1 Illustrative Example of Payment Scheme for Penalized and Unpenal-
ized Hospitals .. 35
2.2 Influence of Quadratic Cost Coefficient on Number of Hospitals Re-
ducing Readmissions ... 62
2.3 Steady-State Behavior of Hospitals in Market 1 63
2.4 Steady-State Behavior of Hospitals in Market 2 64
2.5 Steady-State Behavior of Hospitals in Market 3 65
2.6 Steady-State Behavior of Hospitals in Market 1 with Stochastic Shock 66
2.7 Steady-State Behavior of Hospitals in Market 2 with Stochastic Shock 67
2.8 Steady-State Behavior of Hospitals in Market 3 with Stochastic Shock 68
3.1 Profit for Two Hospitals ... 76
3.2 Timeline ... 82
3.3 Queueing with Feedback ... 84
3.4 Effect of Threshold Readmission Rate and Payment Factor on Optimal
Readmission Rate ... 87
3.5 Effect of Threshold Readmission Rate and Payment Factor on Optimal
Patient Cost ... 88
Introduction

This dissertation aims to find key elements that affect operational efficiency and effectiveness in two critical service industries: banking and healthcare. In particular, this dissertation identifies key antecedents of efficiency in banking and cost drivers which are associated with hospital readmissions that affect effectiveness in the healthcare industry.

This dissertation is comprised of three essays. Essay 1 deals with the banking industry while essays 2 and 3 deal with the hospital sector. The three essays collectively advance service operations strategy theory, practice, and policies, as depicted
Essay 1 compares and contrasts the efficiency of banks operating in India and in the U.S. It also compares the efficiency of banks operating within India. Diffusion theory from marketing and path dependence theory from economics are used to develop two hypotheses explaining, in part, the efficiency of banks operating in India and in the U.S.; subsequently, comparing the efficiency of state-owned (public), domestic private and foreign banks operating within India respectively. Foreign banks have proliferated in India since the early 1990s. Arguably, foreign banks from western countries would have brought with them more advanced communications and process technologies. Also, it is likely that the rampant outsourcing of information and communication technology to India since the 1990s may have also positively impacted the diffusion process. In turn, we posit that the Indian public and domestic private
banks would have been indirectly helped in improving their efficiency through this diffusion of technology. Moreover, linking diffusion theory with the knowledge-base view (KBV) of resources (Grant 1996), the level technological diffusion across Indian banks–public, domestic private, and foreign–may differ due to variability in human capital resources. This situation may broadly be viewed as a natural experiment regarding the role of skilled people in the diffusion of banking services. Our personal interviews with the managers of public, domestic private and foreign banks in India, indicated that public banks generally hired “better” employees (e.g., with higher test scores) than domestic private and foreign banks. The public banks also gained an advantage due to the policies of the Indian government that restricted the operations of domestic private and foreign banks within the country (e.g., restriction on number of branches). Using KBV theory of firm and path dependence theory, we posit that public banks will have higher efficiency than domestic private and foreign banks in India. In fact, KBV and path dependence theory are congruent. Public banks would have gained higher knowledge due to the policies prior to 1990 that restricted the operation of domestic private and foreign banks. While data envelopment analyses (DEA) dominates the classical efficiency analyses of banks in operations management, it presumes convexity of the production frontier. For the first time in the operations management literature, we apply an empirical test statistic developed by Kneip et al. (2013a); we reject the convexity assumption. Consequently, we apply a free disposal hull (FDH) estimator to estimate all the efficiency measures. Further, the two hypotheses are empirically tested using equality of means test (Kneip et al. 2013a)-a test that we introduce into the extant operations management literature. Contrasted with prior research (Sathye 2003) as a benchmark, we find that the Indian banks appear to have caught up generally with the U.S. banks in terms of efficient banking. However, attesting the importance of human capital in services, public banks in India still are
more efficient than domestic private or foreign banks owing to the path dependence of economic policies in place until 1990.

Essay 2 investigates the effect of readmissions on marginal cost of hospitals, defined as the cost of treating one patient per episode. Hospitals, on one hand, may consider readmission as a source of added revenue. On the other hand, from a strategic operations management perspective, readmissions should be considered as “rework” or quality failure, which should act to increase costs. Applying quality management theory, we evaluate the effect of readmissions on hospitals’ marginal costs. Using quality management theory from an operations strategy viewpoint, we posit that hospitals with high readmission rates will have higher marginal costs. Counter to conventional wisdom, we find empirically that the operations strategy perspective dominates the revenue view. Our research, resolves the debate in part, as readmission rate increases by 1 percent, the marginal cost incurred by a hospital increases by 7.2 percent, controlling for average length of stay and ownership type of the hospital. Important for integrating operations strategy theory with policy, Essay 2 also estimates the impact of recent plan of Medicare (i.e., Patient Protection and Affordable Care Act (PPACA), which will penalize hospitals with high readmission rates) on the average readmission rate of the hospitals using a counterfactual study. We find that if the variance of initial readmission rates of the hospitals is less, then the average readmission rate reduces more as the penalty kicks in versus the case where the variance of initial readmission rates is relatively higher. We also assess, empirically, arguments that some critical access hospitals will go out of business with the government policy. We find that the average price charged by acute care hospitals does not increase after critical access hospitals are eliminated from the market. The reason is this: Critical access hospitals had little market share in the first place; and hence, they were price-takers. This essay provides an amplitude of insights to advance further service
operations strategy and quality research in hospitals, to offer cost-based incentives for hospitals to reduce readmissions; and to support policy makers in light of the new readmission government penalty plans.

Essay 3 analyzes the impact of the PPACA, which aims to penalize hospitals with high readmission rates. Specifically, we consider the government’s expenditures, hospital’s readmission rate, and patient welfare using a principal-agent model. The government (payer) is modeled as the principal and hospital (provider) is modeled as the agent. The agent’s problem is to find the optimal readmission rate by maximizing its expected profit given the threshold readmission rate (hospitals with realized readmission rate greater than threshold readmission rate will be penalized) and the payment factor (Medicare will reimburse only a fraction for penalized hospitals). We analytically find the following: when the price to cost ratio of a treatment is low, then the optimal readmission rate is zero, but when the ratio is high, then their optimal readmission rate is greater than zero, but notably, less than the threshold readmission rate set by the government. The principal’s problem is to find the optimal threshold readmission rate and the payment factor by maximizing a weighted average of hospital’s profit, patient welfare and minimizing its cost, given the hospital’s optimal response. We find that as the threshold readmission rate and the payment factor increase, the optimal readmission rate increases there by decreasing patient welfare. This result implies that patient welfare will be adversely affected if the government gets its policy wrong. Thus, by considering operations strategy factors, Essay 3 provides timely insights for future research and practice. In particular for policy makers, hospital administrators, and patients, it provides a deeper understanding about the impact of the penalization plan.
Essay 1.
Efficiency Analysis of U.S. and Indian Banks: Theory and Evidence

Abstract

This essay investigates operational efficiency in U.S. and Indian banks using methods new to the extant service operations management (SOM) literature. In particular, we integrate diffusion theory from marketing literature and path dependency theory from economics into service operations strategy to develop and empirically test two hypotheses. First, we test the assumption of convexity of the production frontier. Such convexity is a necessary condition for applying traditional data envelopment analyses (DEA); however, this assumption has yet to be evaluated in SOM banking applications of DEA. After rejecting the convexity assumption, we estimate efficiency using the free disposal hull (FDH) estimator instead of the ubiquitous (DEA) estimator. We then test the equality of means of U.S. and Indian banks and state-owned (public), domestic private, and foreign banks in India. Supporting diffusion theory, we find this: Indian banks, on average, have caught up to U.S. banks in terms of efficiency, when
contrasted with prior related research (Sathye 2003) that we have used as a benchmark. Moreover, among the Indian banks there exists a significant difference between the efficiency of state-owned (public), domestic private, and foreign banks. The state-owned Indian banks may have higher levels of human capital, which influences their heightened relative efficiency. While our results support convention wisdom in SOM of the importance of human capital, this study is the first to develop its theoretical linkage with diffusion theory.

1.1 Introduction

We examine differences in the operational efficiency of U.S. and Indian banks. We also evaluate the differences in operational efficiency among public (state-owned), domestic private, and foreign banks operating in India. In this research, operational inefficiency implies that firms are producing less than the efficient level of output from the resources employed. Fitzsimmons and Fitzsimmons (2008) explain the changes in the service sector over the last two decades. One of the prominent examples used throughout their book is that of banking services. Banking services have undergone many significant changes over the past two decades primarily due to the massive improvement in the banking technology and increase in the use of electronic media by customers to carry out most of the banking transactions (Huete and Roth 1988, Boyer, Hallowell, and Roth 2002). Although most of the changes in the banking sector have been global, there are still differences in the policy frameworks, regulations, and other parameters in this sector among different countries. We estimate and contrast technical efficiency of banks operating in the U.S. and in India at a broad, strategic level, assuming policy and regulation differences as well as variation arising due to the difference in the level of technology use by customers for banking transactions.
across the two countries and other country factors.

In addition, we introduce a new approach to SOM. To gauge operational efficiency, we build upon Data Envelopment Analyses (DEA) estimation. In services, Fitzsimmons and Fitzsimmons (2008) review the DEA efficiency of service units that are referred to as “Decision Making Units” (DMUs). DEA was first developed by Farrell (1957) and was later popularized by Charnes, Cooper, and Rhodes (1978) and Banker, Charnes, and Cooper (1984). Almost all the previous work on banking estimate efficiency of banks by DEA estimator. However, DEA estimator imposes convexity of the production frontier, which has not yet been evaluated in SOM or banking studies. In this essay, we first empirically assess the convexity of production frontier using the test statistic developed by Kneip, Simar, and Wilson (2013b). Next, we compare the efficiency estimates between Indian and the U.S. banks using the procedure developed by Kneip et al. (2013b). In this study, we reject the assumption of convexity of the production frontier. Under the null of convex production frontier, both DEA and FDH estimators are consistent estimators. However when the production frontier is non-convex, only the FDH estimator is a consistent estimator, as explained later in Section 1.4.2.

This paper makes three main contributions. First, it integrates diffusion theory from marketing and path dependence theory from economics with service operations strategy and develops two hypotheses grounded in these two theories, respectively. There is a large body of literature employing diffusion theory and path dependence theory in the banking industry. We do a thorough review of the relevant literature and note the key additions this paper brings to fill the literature gap in Section 3. Using prior related research as a benchmark of efficiency (Sathye 2003), we find support for the diffusion in operational efficiency over time to Indian banks. Moreover, from a broad-scale, strategic view, we find some evidence that the quality of human
capital enhances efficiency, when contrasting Indian bank types. This result leads to speculation this for future research. Quality people, having the requisite absorptive capacity (Cohen and Levinthal 1990, Zahra and George 2002), may have produced the qualitative differences in efficiency in the diffusion process for Indian banks. Second, we estimate efficiency of banks operating in U.S. and in India using data from 2008-2009 and test empirically the two hypotheses developed using the procedure developed by Kneip et al. (2013b). Third, unlike prior research in SOM and banking, as indicated above, we test the assumption of convexity of the production frontier. Contrary to the assumption of convexity in the past operations management and banking literature that estimate technical efficiency of banks, we reject the assumption of convexity; hence, estimate efficiency of banks using FDH estimator. Therefore, we contribute to future SOM research and practice substantively and methodologically.

The rest of the paper is organized as follows. Section 1.2 is a literature review discussing banking in India, with emphasis on change in banking scenarios in India post-liberalization and about the service operations literature, with emphasis on service efficiency models developed in the past. We develop our two hypotheses grounded in diffusion theory and path dependency theory respectively in Section 1.3, wherein we also discuss the main differences between this paper and the past literature using diffusion and path dependence theory in banking. Data and Methodology are described in detail in Section 1.4 and Section 1.5 covers results and discussion. We conclude in Section 1.6 with discussion of results, limitations, and future research.

1.2 Literature Review

The Indian banking system has changed significantly after the liberalization period of the early 1990s, when India underwent key changes in economic policies at
both macro and micro levels. Although changes in economic policies in India had a great impact on the industries in India and also the Indian banking system, its Indian capital markets are still developing. Usually, it is expected that the private sector units would perform better than the corresponding public sector units; however, contrary to conventional wisdom, Sarkar, Sarkar, and Bhaumik (1998) argue that in the case of India, there is not a significant difference between the public and private sector banking organizations. They write “Institutional conditions in such a country in general defy the basic foundation of the property rights argument of private enterprise superiority, namely, the strong link between the markets for takeovers, i.e., the market for corporate control, and the efficiency of private enterprise. This is in contrast to the situation in developed countries where, by some accounts, overt managerialist behavior in private enterprises is highly risky as takeover markets are active and largely complete” (Sarkar et al. 1998).

The previous research related to the Indian banking industry characterizes the banks operating in India into three main categories: public banks, private banks, and foreign banks (Sathye 2003). These banks have evolved over the years in the Indian banking scenario. Public sector banks have long been in existence, the key player being “State Bank of India”, which is also the largest bank in India. These banks were helped by nationalization by the Indian government in the 1950s. Most of the private banks were nationalized in late 1960s; nationalized banks started to have more presence in the rural India, and thus, the banking industry expanded. Some of the foreign banks and non-nationalized banks were allowed to compete with the nationalized public and private sector banks but with very high restrictions. These restrictions enabled the public sector banks to dominate the Indian banking scenario for several years till the liberalization measures were brought in early 1990s (Sathye 2003).
There have been many papers that estimate efficiency of banks in the U.S. with different inputs and outputs (see Berger and Humphrey 1997 for a detailed survey). In contrast, academic SOM papers dealing with the Indian banking sector are few. Bhattacharyya, Lovell, and Sahay (1997) were among the first to estimate efficiency of public, domestic private and foreign banks operating within India. Using operating expense and interest expense as inputs and deposits, loans, and investments as outputs, they found that public banks had relatively higher average efficiency than domestic private and foreign banks over a period of six years. Mukherjee, Nath, and Pal (2002) estimated efficiency of public, domestic private and foreign banks in India using data from 1996-1999 and net worth, borrowings, operating expenses, number of employees, and number of branches as inputs and deposits, net profits, loans, non-interest Income, and interest spread as outputs. In contrast to Bhattacharyya et al. (1997), these authors found that the domestic private banks were on average the most efficient, followed by public banks. Foreign banks were the least efficient. Sathye (2003) estimated the efficiency of banks operating in India using data from 1997-1998 and two different sets of inputs and outputs. First, he used interest expenses and non-interest expenses as inputs and interest income and non-interest income as outputs. Second, he used deposits and number of employees as inputs and net loans and non-interest income as outputs. He found that the banks operating in India had lower efficiency than their counterparts in the west. We use the Sathye’s (2003) as a benchmark to evaluate, strategically, diffusion in Indian efficiency in this research. Although these papers compared means, none of these papers did a formal hypothesis test of means comparing the average efficiency of different groups. This paper fills in this literature gap.

Services are different from manufacturing because they are not tangible, and hence, it is very difficult to measure satisfaction of customers in this case. However,
one of the pre-requisites to improve performance is to improve service quality (Roth and Jackson 1995). Service efficiency and effectiveness have long been researched in operations management, economics, organization, strategy, and finance literature. One of the most important criteria for a service organization is to be technically efficient and then improve its service quality, which is one of the elements of the service management triad proposed by Roth and Jackson (1995). Many service organizations have, in the past, tried to improve their efficiency to better serve their customers. Although service quality cannot be measured analytically, many organizations tend to improve their service quality by being efficient (Heskett, Jr., and Hart 1990). There have been many empirical studies in operations management that estimate efficiency of various services (e.g., banks, hospitals, etc.). Organizational effectiveness is another important area for a service organization (Lewin and Minton 1986); however, we were not able to study service effectiveness in this essay. Rather, we use both structural and infrastructural variables (see Roth and Menor 2003) to estimate operational efficiency. Specifically, as will be discussed in Section 1.4.1, we use deposits, loans, and investments (structural elements), and labor (infrastructural element).

1.3 Hypotheses

Diffusion theory suggests several hypotheses that might be tested. There is much research on the application of diffusion theory in banking. Horsky and Simon (1983) were among the first to develop a model for optimal advertising to launch a new product in the market based on diffusion theory. The authors empirically tested their model in telephonic banking scenario. They successfully showed that advertising should be higher at the introduction of the new product and it should gradually decrease as the sales of the new product increases. Pennings and Hariant...
(1992) studied the introduction of video banking services by the U.S. banks. The authors successfully explored the effects of information technology capabilities on the introduction of video banking services. Akhavein, Frame, and White (2001) examined the diffusion of “credit scoring for small business lending” and found out that the large banks and banks operating in New York are farther ahead in adopting this scheme than other banks in the U.S. This finding is consistent with other papers in Operations and Economics literature that posit “economies of scale for technology adoption” (Akhavein et al. 2001). A more recent paper by Gerrard, Cunningham, and Devlin (2006) qualitatively determined the causes of customers not using internet banking with diffusion theory. The main factors identified were: fear of risk, lack of knowledge, inaccessibility, and human risk. Consistent with the literature, we expect that most people in rural India do not use internet banking or other banking devices, such as automated teller machines (ATMs). For this reason, we used labor as one of the inputs in our analysis since most people in rural India will still prefer to visit the banks personally.

Rogers (1962) classified all the adopters of an innovation into five categories: innovators, early adopters, early majority, late majority, and laggards. Bass (1969) re-classified the five divisions of Rogers (1962) into two divisions: innovators and imitators. Arguably, most of the innovations in the banking sector have taken place in Western Europe and the U.S. Hence, in this context, we can reasonably assume that U.S. banks are the innovators and the Indian banks are imitators. Moreover, since the 1990s there has been a substantial amount of information technology and call center outsourcing to India. Since most of the significant developments in Indian banking industry have been underway from 1990, we expect that the Indian banks would have caught up to the U.S. banks in terms of efficient banking using Sathye
(2003) as the benchmark. Formally, we state our first hypothesis as follows:

Hypothesis 1: The expected efficiency of Indian banks and the expected efficiency of U.S. banks will be equal.

Economic path dependence theory also offers several hypotheses that may be tested empirically; however, it has rarely been used in SOM. Economic path dependence refers to such economic activities that have a long-lasting impact on a society. This theory could be applied to Indian banks for this reason. Although the economic reforms started in 1990s, policies from the prior periods will have a long-lasting effect. This carryover would mean that the public banks will tend to inherit some competitive advantage in terms of market reach over foreign or domestic private banks. So, even after about 20 years of liberalization and deregulation of banking industry in India, we expect public banks to be more efficient than domestic private and foreign banks in India. This view was corroborated with interviews of managers of various banks in India. In fact, the managers reported there may be qualitative differences in the quality of employees among the different bank types in India. Specifically, public banks hired their employees by holding a very stringent interview process, which included a competitive test. In contrast, domestic private banks and foreign banks hired through an interview process without the competitive tests. Knowledge-based view (KBV) of the firm argues that knowledge is the most important resource of a firm since it cannot be imitated (Grant 1996). So, companies with better knowledge resources (i.e., human capital) and a base of heterogeneous knowledge capabilities will have sustained competitive advantage. For these reasons, we propose that public banks in India will have higher average efficiency than domestic private and foreign banks. Formally we state our second hypothesis as follows:

Hypothesis 2a: Expected efficiency of public banks (state-owned) will be higher than
the expected efficiency of domestic private banks in India.

Hypothesis 2b: Expected efficiency of public banks (state-owned) will be higher than the expected efficiency of foreign banks in India.

1.4 Research Approach

1.4.1 Data

Data on U.S. banks come from Federal Deposit Insurance Corporation (FDIC) Call reports in the Chicago Federal Reserve website for 2008 and 2009 and data on Indian banks come from Indian Banks’ Association (IBA) website. As described in Section 1.2, we combine the data set of U.S. banks and Indian banks. Two inputs (Deposits and Labor) and two outputs (Investments and Loans) are used in our model, as they were the only commonly measured variables available between the two countries. The mean values of deposits, labor, investments, and loans of 2008 and 2009 are used in our analysis. Conversion rate as of September 30, 2008 from the International Monetary Fund’s website is used to convert Rupees to Dollars. After deleting the banks for which there are no data for either 2008 or 2009, there were 7,237 U.S. banks and 75 Indian banks, for a total of 7,312 banks in our data set. We then deleted 69 banks that had zero deposits and 151 banks that had zero investments since these are not regular commercial banks. Out of these, 17 banks had both zero deposits and zero investments. After deleting these banks, 7,034 U.S. banks and 75 Indian banks remained in our data set.

Two main methods have been proposed in the econometrics and statistics literature to detect outliers in the case of non-parametric efficiency estimators. The first method was proposed by Andrews and Pregibon (1978) to detect outliers in the
case of one output model without the use of ordinary least squares (OLS) residuals. Wilson (1993) extended this to multiple outputs model. Second method was proposed by Simar (2003). The author used the order-m statistic developed by Cazals et al. (2002) to detect outliers. We use both methods to detect outliers in our data set. Both Wilson (2003) and Simar (2003) prescribe using multiple methods to detect outliers while estimating efficiencies since non-parametric efficiency estimators are highly sensitive to outliers. After deleting 552 outliers detected by the Wilson (1993) and Simar (2003) methods, and the 22 banks that had zero loans, we have 6472 U.S. banks and 63 Indian banks. Table 1.1 shows descriptive statistics of all the four variables for the final data set.

Table 1.1: Descriptive Statistics of Variables \((N = 6535)\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposits ($ millions)</td>
<td>329</td>
<td>1,050</td>
<td>5.56</td>
<td>25,800</td>
</tr>
<tr>
<td>Number of Employees</td>
<td>156.45</td>
<td>1162.21</td>
<td>10</td>
<td>37,080</td>
</tr>
<tr>
<td>Loans ($ thousands)</td>
<td>283,000</td>
<td>817,000</td>
<td>7.50</td>
<td>18,200,000</td>
</tr>
<tr>
<td>Investments ($ thousands)</td>
<td>83,900</td>
<td>332,000</td>
<td>0.50</td>
<td>8,180,000</td>
</tr>
</tbody>
</table>

1.4.2 Methodology

We use the methodology developed by Kneip et al. (2013a) and Kneip et al. (2013b) to test convexity of production frontier and to test the hypotheses developed in Section 1.3. Let \(\mathbf{x} \in \mathbb{R}_+^p \) be an input vector, \(\mathbf{y} \in \mathbb{R}_+^q \) be an output vector, and

\[
\Psi = \{(\mathbf{x}, \mathbf{y}) | \mathbf{x} \text{ can produce } \mathbf{y}\} \tag{1.1}
\]
be the set of all feasible combinations of \(x \) and \(y \). Further, let

\[
\Psi^\partial = \{ (x, y) \in \Psi \mid (\gamma x, \gamma^{-1} y) \notin \Psi \text{ for any } \gamma < 1 \}
\]

(1.2)

be the boundary of \(\Psi \). Let

\[
F(\Psi) = \bigcup_{(x, y) \in \Psi} \{ (\tilde{x}, \tilde{y}) \in \mathbb{R}^{p+q}_+ \mid \tilde{y} \leq y, \tilde{x} \geq x \}
\]

(1.3)

be the free disposal hull of \(\Psi \). Let \(C(\Psi) \) be the convex hull of \(F(\Psi) \), and \(V(\Psi) \) be the conical hull of \(F(\Psi) \).

Three assumptions are necessary for our analysis. First, \(\Psi \) is compact. Second, both inputs and outputs are strongly disposable; i.e., for \(\tilde{x} \geq x, \tilde{y} \leq y \), if \((x, y) \in \Psi \) then \((\tilde{x}, \tilde{y}) \in \Psi \) and \((x, \tilde{y}) \in \Psi \). Third, all production requires use of some inputs; i.e., \((x, y) \notin \Psi \) if \(x = 0, y \geq 0 \), and not all elements of \(y = 0 \). These three assumptions are standard in efficiency estimation literature (e.g., Sathye 2003).

The Farrell input efficiency score for any given point \((x, y) \) is

\[
\theta(x, y) = \inf \{ \theta \mid (\theta x, y) \in \Psi \}; 0 < \theta < 1.
\]

(1.4)

We consider a sample \(\chi_n = \{(x_i, y_i), \ i = 1, 2, \ldots, n\} \) which is observed. \(\hat{\Psi}_{FDH}(\chi_n), \hat{\Psi}_{VRS}(\chi_n), \) and \(\hat{\Psi}_{CRS}(\chi_n) \) are used to estimate \(\Psi \) and \(\hat{\theta}_{FDH}(x, y), \hat{\theta}_{VRS}(x, y), \) and \(\hat{\theta}_{CRS}(x, y) \) are used to estimate \(\theta(x, y) \). The six estimators are defined below.

Deprins et al. (1984) proposed using the FDH of the sample observations given by

\[
\hat{\Psi}_{FDH}(\chi_n) = \bigcup_{(x_i, y_i) \in \chi_n} \{ (x, y) \in \mathbb{R}^{p+q}_+ \mid y \leq y_i, x \geq x_i \}
\]

(1.5)
to estimate Ψ.

For variable returns to scale of Ψ^∂, a consistent estimator of Ψ is

$$\hat{\Psi}_{VRS}(\chi_n) = \left\{ (x, y) \in \mathbb{R}^{p+q}_+ \mid y \leq n \sum_{i=1}^{n} \alpha_i y_i, x \geq n \sum_{i=1}^{n} \alpha_i x_i, \sum_{i=1}^{n} \alpha_i = 1, \alpha_i \geq 0 \forall i \right\},$$

(1.6)

and for constant returns to scale of Ψ^∂, a consistent estimator of Ψ, $\hat{\Psi}_{CRS}(\chi_n)$, is obtained after dropping the constraint $\sum_{i=1}^{n} \alpha_i = 1$ in Equation (1.6). Note that $\hat{\Psi}_{FDH}(\chi_n)$ is also a consistent estimator when Ψ^∂ has variable returns to scale or constant returns to scale and $\hat{\Psi}_{VRS}(\chi_n)$ is also a consistent estimator when Ψ^∂ has constant returns to scale. However, both $\hat{\Psi}_{VRS}(\chi_n)$ and $\hat{\Psi}_{CRS}(\chi_n)$ are inconsistent when the production frontier is not convex.

The FDH estimator of Debreu-Farrell input efficiency is

$$\theta_{FDH}(x, y) = \min_{i \in I(y)} \left(\max_{j=1,\ldots,p} \left(\frac{x^j_i}{x^j} \right) \right),$$

(1.7)

where $I(y) = \{ i \mid y_i \geq y, i = 1, \ldots, n \}$ and x^j_i and x^j are the jth elements of x_i and x, respectively.

For variable returns to scale of Ψ^∂, DEA estimator of Debreu-Farrell input efficiency is

$$\hat{\theta}_{VRS}(x, y) = \min_{\theta, \alpha_1, \ldots, \alpha_n} \left\{ \theta > 0 \mid y \leq n \sum_{i=1}^{n} \alpha_i y_i, \theta x \geq n \sum_{i=1}^{n} \alpha_i x_i, \sum_{i=1}^{n} \alpha_i = 1, \alpha_i \geq 0 \forall i \right\},$$

(1.8)

and for constant returns to scale of Ψ^∂, DEA estimator of Debreu-Farrell input efficiency, $\hat{\theta}_{CRS}(x, y)$ is obtained after dropping the constraint $\sum_{i=1}^{n} \alpha_i = 1$ in Equation (1.8).
1.4.2.1 Testing the Convexity of the Production Set

We use the approach developed in Kneip et al. (2013a) to test convexity of the production set Ψ. It might look straightforward to develop a test statistic based on the difference of the sample means

$$\hat{\mu}_{VRS,n} = n^{-1} \sum_{(X_i, Y_i) \in \chi_n} \hat{\theta}_{VRS}(X_i, Y_i | \chi_n)$$

(1.9)

and

$$\hat{\mu}_{FDH,n} = n^{-1} \sum_{(X_i, Y_i) \in \chi_n} \hat{\theta}_{FDH}(X_i, Y_i | \chi_n)$$

(1.10)

constructed using the full sample χ_n. However, Kneip et al. (2013b) showed that $n^a (\hat{\mu}_{VRS,n} - \hat{\mu}_{FDH,n})$ for any value of $a \leq \frac{1}{2}$ converges to a degenerate distribution under the null hypothesis of convex production set. So, the pooled data of U.S. and Indian banks is divided randomly into two mutually exclusive and collectively exhaustive samples χ_{1,n_1} and χ_{2,n_2}, such that $n_1^{2/(p+q+1)} = n_2^{1/(p+q)}$, and $n_2 = n - n_1$.

Let

$$\hat{\mu}_{VRS,n_1} = n_1^{-1} \sum_{(X_i, Y_i) \in \chi_{1,n_1}} \hat{\theta}_{VRS}(X_i, Y_i | \chi_{1,n_1})$$

(1.11)

and

$$\hat{\mu}_{FDH,n_2} = n_2^{-1} \sum_{(X_i, Y_i) \in \chi_{2,n_2}} \hat{\theta}_{FDH}(X_i, Y_i | \chi_{2,n_2}).$$

(1.12)

Further, let

$$\hat{\sigma}_{VRS,n_1}^2 = n_1^{-1} \sum_{(X_i, Y_i) \in \chi_{1,n_1}} \left[\hat{\theta}_{VRS}(X_i, Y_i | \chi_{1,n_1}) - \hat{\mu}_{VRS,n_1} \right]^2$$

(1.13)
and
\[
\hat{\sigma}_{FDH,n_2}^2 = n_2^{-1} \sum_{(X_i,Y_i) \in \chi_{2,n_2}} \left[\hat{\theta}_{FDH}(X_i,Y_i | \chi_{2,n_2}) - \hat{\mu}_{FDH,n_2} \right]^2. \tag{1.14}
\]
be the variance of VRS and FDH efficiency estimates respectively.

Since the efficiency estimates are biased by construction and the bias goes away asymptotically at a slow rate, Kneip et al. (2013b) developed a bias-corrected estimate. To construct bias corrections, each of the two subsamples \(\chi_{l,n_1}, l \in \{1,2\}\) is divided randomly into two mutually exclusive and collectively exhaustive parts \(\chi_{l,m_1,1}\) and \(\chi_{l,m_1,2}\). For each part \(j \in \{1,2\}\) of \(\chi_{1,n_1}\), let
\[
\hat{\mu}_{VRS,m_1,j} = m_1^{-1} \sum_{(X_i,Y_i) \in \chi_{1,m_1,j}} \hat{\theta}_{VRS}(X_i,Y_i | \chi_{1,m_1,j}^j), \tag{1.15}
\]
and for each part \(j \in \{1,2\}\) of \(\chi_{2,n_2}\),
\[
\hat{\mu}_{FDH,m_2,j} = m_2^{-1} \sum_{(X_i,Y_i) \in \chi_{2,m_2,j}} \hat{\theta}_{FDH}(X_i,Y_i | \chi_{2,m_2,j}^j) \tag{1.16}
\]
be the corresponding mean efficiency estimates. We then compute
\[
\hat{\mu}_{VRS,n_1}^{(*)} = 0.5 \left(\hat{\mu}_{VRS,m_1,1}^{(1)} + \hat{\mu}_{VRS,m_1,2}^{(2)} \right), \tag{1.17}
\]
and
\[
\hat{\mu}_{FDH,n_2}^{(*)} = 0.5 \left(\hat{\mu}_{FDH,m_2,1}^{(1)} + \hat{\mu}_{FDH,m_2,2}^{(2)} \right). \tag{1.18}
\]
The necessary bias corrections are given by (Kneip et al. 2013a)
\[
\hat{B}_{VRS,n_1} = (2^{n_1} - 1)^{-1} \left(\hat{\mu}_{VRS,n_1}^{(*)} - \hat{\mu}_{VRS,n_1} \right), \tag{1.19}
\]
and
\[\hat{B}_{FDH,\kappa_2,n_2} = (2^{\kappa_2} - 1)^{-1} \left(\hat{\mu}_{FDH,n_2}^{(s)} - \hat{\mu}_{FDH,n_2} \right), \] (1.20)
where \(\kappa_1 = 2/(p+q+1) \) is the convergence rate of VRS estimator, and \(\kappa_2 = 1/(p+q) \) is the convergence rate of FDH estimator.

Since \(p + q = 4 > 3 \) in our data, the sample means need to be computed by using subsets of \(\chi_{1,n_1} \) and \(\chi_{2,n_2} \). For \(l \in \{1, 2\} \), let \(\kappa = \kappa_2 = 1/(p+q) \), \(n_{l,\kappa} = \lfloor n_l^{2\kappa} \rfloor \), and \(\chi_{l,n_l,\kappa}^* \) be a random subset of \(n_{l,\kappa} \) input-output pairs from \(\chi_{l,n_l} \). Then,

\[\hat{\mu}_{VRS,n_1,\kappa} = n_{1,\kappa}^{-1} \sum_{(X_i,Y_i) \in \chi_{1,n_1}^*} \hat{\theta}_{VRS}(X_i, Y_i|\chi_{1,n_1}) \] (1.21)

and

\[\hat{\mu}_{FDH,n_2,\kappa} = n_{2,\kappa}^{-1} \sum_{(X_i,Y_i) \in \chi_{2,n_2}^*} \hat{\theta}_{FDH}(X_i, Y_i|\chi_{2,n_2}). \] (1.22)

Finally, the test statistic is

\[\hat{\tau}_n = \frac{(\hat{\mu}_{VRS,n_1,\kappa} - \hat{\mu}_{FDH,n_2,\kappa}) - (\hat{B}_{VRS,\kappa_1,n_1} - \hat{B}_{FDH,\kappa_2,n_2})}{\sqrt{\frac{\hat{\sigma}^2_{VRS,n_1}}{n_{1,\kappa}} + \frac{\hat{\sigma}^2_{FDH,n_2}}{n_{2,\kappa}}}}. \] (1.23)

Kneip et al. (2013a) showed that the above test statistic converges in distribution to a standard normal distribution provided \((p+q) > 3\), which is the case in our study.

1.4.2.2 Testing Equality of Means

We use the approach developed by Kneip et al. (2013a) to test the null hypothesis \(H_0 : \mu_{1,\theta} = \mu_{2,\theta} \) against the alternative \(H_1 : \mu_{1,\theta} \neq \mu_{2,\theta} \), where \(\mu_{1,\theta} \) is the mean efficiency of one group and \(\mu_{2,\theta} \) is the mean efficiency of the second group. Let \(\chi_{1,n_1} \) be the sample of first group and \(\chi_{2,n_2} \) be the sample of second group. Then the
independent estimators of $\mu_{1,\theta}$ and $\mu_{2,\theta}$ are

$$\hat{\mu}_{1,n_1} = n_1^{-1} \sum_{(X_i, Y_i) \in \chi_1, n_1} \hat{\theta}(X_i, Y_i|X_1, n_1)$$

and

$$\hat{\mu}_{2,n_2} = n_2^{-1} \sum_{(X_i, Y_i) \in \chi_2, n_2} \hat{\theta}(X_i, Y_i|X_2, n_2)$$

respectively.

Similar to the process followed in testing convexity of the production set, divide each of the two groups into two mutually exclusive and collectively exhaustive subgroups, such that $m_{l,1} = \lfloor n_l/2 \rfloor$ and $m_{l,2} = n_l - m_{l,1}$ for $l = 1, 2$. Then

$$\hat{\mu}_{l,m_{l,j}}^{(j)} = (m_{l,j})^{-1} \sum_{(X_i, Y_i) \in \chi^{(j)}_{1,m_{l,j}}} \hat{\theta}(X_i, Y_i|\chi^{(j)}_{1,m_{l,j}}),$$

are the mean efficiency estimates of each of the subgroups for $l = 1, 2, j \in \{1, 2\}$. Let

$$\hat{\mu}_{l,n_1}^{(s)} = 0.5 \left(\hat{\mu}_{l,m_{l,1}}^{(1)} + \hat{\mu}_{l,m_{l,2}}^{(2)} \right).$$

Then, the bias correction for each of the two groups is given by

$$\hat{B}_{l,\kappa,n_1} = (2\kappa - 1)^{-1} \left(\hat{\mu}_{l,n_1}^{(s)} - \hat{\mu}_{l,n_1} \right)$$

where $\kappa = 1/(p + q), l = 1, 2$ based on the convergence rate of FDH estimator. The standard deviation of efficiency estimates of each of the two groups is

$$\hat{\sigma}_{l,\theta,n_1}^2 = n_l^{-1} \sum_{i=1}^{n_l} \left[\hat{\theta}(X_{li}, Y_{li}|\chi_1) - \hat{\mu}_{l,n_1} \right]^2$$

22
for $l = 1, 2$.

Since $p + q = 4 > 3$ in our data, the sample means are computed by using subsets of χ_{1,n_1} and χ_{2,n_2} (Kneip et al. 2013b). For $l \in \{1, 2\}$, $n_{l,\kappa} = \lfloor n_{l}^{2\kappa} \rfloor$, and $\chi_{l,n_{l,\kappa}}^\ast$ be a random subset of $n_{l,\kappa}$ input-output pairs from χ_{l,n_l}. Then

$$
\hat{\mu}_{l,n_l,\kappa} = n_{l,n_l,\kappa}^{-1} \sum_{(X_{l,i}, Y_{l,i}) \in \chi_{l,n_l,\kappa}^\ast} \hat{\theta}(X_{l,i}, Y_{l,i} | \chi_{l,n_l})
$$

are the mean efficiency estimates for each of the subsets for $l \in \{1, 2\}$. Finally, the test statistic is given by

$$
\hat{\tau}_{n_1, n_2} = (\hat{\mu}_{1,n_1,\kappa} - \hat{\mu}_{2,n_2,\kappa}) - (\hat{B}_{1,\kappa,n_1} - \hat{B}_{2,\kappa,n_2})
\sqrt{\frac{\hat{\sigma}_{1,\theta,n_1}^2}{n_{1,\kappa}} + \frac{\hat{\sigma}_{2,\theta,n_2}^2}{n_{2,\kappa}}}.
$$

Kneip et al. (2013a) showed that the above test statistic converges in distribution to a standard normal distribution provided $(p + q) > 3$.

1.5 Results

1.5.1 Results of Convexity Test

For our data, we divided the full sample into two parts as explained in Section 1.4.2.1. The sample size of the first part is $n_1 = 237$, and the sample size of the second part is $n_2 = 6298$. The size of the subset sample of the first part is $n_{1,\kappa} = \lfloor 237^{2^{0.25}} \rfloor = 15$, and the size of the subset sample of the second part is $n_{1,\kappa} = \lfloor 6298^{2^{0.25}} \rfloor = 79$. VRS estimator was used to estimate efficiency of banks in the first part, and FDH estimator was used to estimate efficiency of banks in the second part of the sample. The mean efficiency of the first part is $\hat{\mu}_{VRS,n_1} = 0.686$, and the mean efficiency
of the second part is \(\hat{\mu}_{FDH,n_2} = 0.812 \). The mean efficiency of the subset of the first part is \(\hat{\mu}_{VRS,n_1,\kappa} = 0.663 \), and the mean efficiency of the subset of the second part is \(\hat{\mu}_{FDH,n_2,\kappa} = 0.801 \). Standard deviation of the efficiency estimates of the first part is \(\hat{\sigma}^2_{VRS,n_1} = 0.027 \), and standard deviation of the efficiency estimates of the second part is \(\hat{\sigma}^2_{FDH,n_2} = 0.026 \). Finally, the mean efficiency estimates of the first and second subsamples of the first sample are \(\hat{\mu}^{(1)}_{VRS,m_1,1} = 0.702 \) and \(\hat{\mu}^{(2)}_{VRS,m_1,2} = 0.851 \) respectively. The mean efficiency estimates of the first and second subsamples of the second sample are \(\hat{\mu}^{(1)}_{FDH,m_2,1} = 0.851 \) and \(\hat{\mu}^{(2)}_{FDH,m_2,2} = 0.870 \) respectively. The test statistic \(\hat{\tau}_n \) is computed using Equation 1.23 and the resulting value is \(-3.653\). Then \(p \)-value is computed as

\[
\hat{p} = \Phi(\hat{\tau}_n) = \Phi(-3.653) = 0.000129. \tag{1.32}
\]

Since \(\hat{p} \) is less than 0.01, we reject the null hypothesis of convexity against the alternative of non-convexity. Hence we estimate the efficiency of all banks using FDH estimator. Table 1.2 shows the descriptive statistics of the efficiency of 6,472 U.S. banks and 63 Indian banks. The average efficiency of U.S. banks is 0.805 and the average efficiency of Indian banks is 0.877 using the pooled data of U.S. and Indian banks.

<table>
<thead>
<tr>
<th>Banks</th>
<th>Sample Size</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>6472</td>
<td>0.805</td>
<td>0.161</td>
<td>0.142</td>
<td>1</td>
</tr>
<tr>
<td>Indian</td>
<td>63</td>
<td>0.877</td>
<td>0.200</td>
<td>0.198</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1.3 shows the descriptive statistics of the efficiency of 23 public Indian banks, 16 domestic private Indian banks and 24 foreign banks operating in India.
The average efficiency of public banks is 0.970, domestic private banks is 0.747, and foreign banks is 0.874 using the pooled data of U.S. and Indian banks.

Table 1.3: Descriptive Statistics of FDH Estimates of Indian Banks

<table>
<thead>
<tr>
<th>Banks</th>
<th>Sample Size</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>23</td>
<td>0.970</td>
<td>0.062</td>
<td>0.734</td>
<td>1</td>
</tr>
<tr>
<td>Domestic Private</td>
<td>16</td>
<td>0.747</td>
<td>0.232</td>
<td>0.247</td>
<td>1</td>
</tr>
<tr>
<td>Foreign</td>
<td>24</td>
<td>0.874</td>
<td>0.220</td>
<td>0.198</td>
<td>1</td>
</tr>
</tbody>
</table>

1.5.2 Results of Equality of Means Test

For Hypothesis 1, we empirically test the null hypothesis $H_0 : \mu_{1,\theta} = \mu_{2,\theta}$ versus the alternative $H_1 : \mu_{1,\theta} \neq \mu_{2,\theta}$, where $\mu_{1,\theta}$ is the average efficiency of U.S. banks and $\mu_{2,\theta}$ is the average efficiency of Indian banks. The number of U.S. banks in our data is $n_1 = 6472$, and the sample size of Indian banks is $n_2 = 63$. The corresponding sample size of subset of observations of U.S. and Indian banks are $n_{1,\kappa} = \lfloor 6472(2\times 0.25) \rfloor = 80$, and $n_{2,\kappa} = \lfloor 63^{2\times 0.25} \rfloor = 7$ respectively. The mean FDH efficiency estimates of full sample of U.S. and Indian banks are $\hat{\mu}_{1,n_1} = 0.845$, and $\hat{\mu}_{2,n_2} = 0.919$ respectively and the mean FDH efficiency estimates of subset of observations of U.S. and Indian banks are $\hat{\mu}_{1,n_{1,\kappa}} = 0.834$, and $\hat{\mu}_{2,n_{2,\kappa}} = 0.938$ respectively. The standard deviations of efficiency estimates of U.S. and Indian banks are $\hat{\sigma}^2_{1,\theta,n_1} = 0.014$ and $\hat{\sigma}^2_{2,n_2} = 0.032$ respectively. Finally, the mean efficiency estimates of the two subsamples of U.S. banks are $\hat{\mu}^{(1)}_{1,m_{1,1}} = 0.868$ and $\hat{\mu}^{(2)}_{1,m_{1,2}} = 0.894$. Similarly, the mean efficiency estimates of the two subsamples of Indian banks are $\hat{\mu}^{(1)}_{2,m_{2,1}} = 0.936$ and $\hat{\mu}^{(2)}_{2,m_{2,2}} = 0.989$. The test statistic $\hat{\tau}_n$ is computed using Equation 1.31 and the resulting value is -0.9875.

25
Then, p-value is computed as

\[\hat{p} = 2 \left(1 - \Phi(|\hat{\tau}_{n_1,n_2}|)\right) = 2 \left(1 - \Phi(|-0.9875|)\right) = 0.3234. \quad (1.33) \]

Since \(\hat{p} \) is greater than 0.1, we fail to reject \(H_0 \) that mean efficiency of U.S. banks and Indian banks are equal.

Next, we test the null hypothesis \(H_0 : \mu_{1,\theta} = \mu_{2,\theta} \) versus the alternative \(H_1 : \mu_{1,\theta} > \mu_{2,\theta} \), where \(\mu_{1,\theta} \) is the expected efficiency of public Indian banks and \(\mu_{2,\theta} \) is the expected efficiency of domestic private Indian banks. The number of public Indian banks in our data is \(n_1 = 23 \), and the sample size of domestic private banks in India is \(n_2 = 16 \). The sample size of subset of public and domestic private banks are \(n_{1,\kappa} = \lfloor 23(2^{0.25}) \rfloor = 4 \) and \(n_{2,\kappa} = \lfloor 16(2^{0.25}) \rfloor = 4 \) respectively. The mean efficiency estimates of public and domestic private banks are \(\hat{\mu}_{1,n_1} = 1 \) and \(\hat{\mu}_{2,n_2} = 0.989 \) respectively, and the mean efficiency estimates of subset of public and domestic private banks are \(\hat{\mu}_{1,n_1,\kappa} = 1 \) and \(\hat{\mu}_{2,n_2,\kappa} = 0.983 \) respectively. The standard deviations of efficiency estimates of public and domestic private banks in India are \(\hat{\sigma}_{1,\theta,n_1}^2 = 0 \) and \(\hat{\sigma}_{2,n_2}^2 = 0.000493 \) respectively. The mean efficiency estimates of two subsamples of public banks are \(\hat{\mu}_{1,m_1,1}^{(1)} = 1 \) and \(\hat{\mu}_{1,m_1,2}^{(2)} = 1 \), and the mean efficiency estimates of two subsamples of domestic private banks are \(\hat{\mu}_{2,m_2,1}^{(1)} = 0.993 \) and \(\hat{\mu}_{2,m_2,2}^{(2)} = 1 \). The test statistic computed using Equation 1.31 is \(\hat{\tau}_n = 4.8138 \). Since this is a one-tailed test, the p-value is given by

\[\hat{p} = 1 - \Phi(\hat{\tau}_{n_1,n_2}) = 1 - \Phi(4.8138) = 0.000001. \quad (1.34) \]

Since \(\hat{p} \) is less than 0.01, we reject \(H_0 \) that mean efficiency of public banks and domestic private banks in India are equal. So, public Indian banks have significantly
higher expected efficiency than domestic private Indian banks even after 20 years of liberalization. We test for stochastic dominance of true distribution of efficiency estimates of public banks over true distribution of efficiency estimates of domestic private banks using Kolmogorov Smirnov test. Note that rejection of $H_0 : \mu_1,\theta = \mu_2,\theta$ versus the alternative $H_1 : \mu_1,\theta > \mu_2,\theta$ is a necessary but not sufficient condition for stochastic dominance. We use ks.test function in R to test stochastic dominance. We reject the null hypothesis that the true distribution function of efficiency estimates of public banks is equal to the true distribution function of efficiency estimates of domestic private banks with a p-value of 0.000014. This implies that the true distribution function of public banks’ efficiency estimates stochastically dominates the true distribution function of domestic private banks’ efficiency estimates in India.

Finally, we test the null hypothesis $H_0 : \mu_1,\theta = \mu_2,\theta$ versus the alternative $H_1 : \mu_1,\theta > \mu_2,\theta$, where μ_1,θ is the expected efficiency of public Indian banks and μ_2,θ is the expected efficiency of foreign banks operating in India. The number of public Indian banks in our data is $n_1 = 23$, and the number of foreign banks in India is $n_2 = 24$. The sample size of subset of public and foreign banks in India are $n_{1,\kappa} = \lfloor 23^{(2*0.25)} \rfloor = 4$ and $n_{2,\kappa} = \lfloor 24^{(2*0.25)} \rfloor = 4$ respectively. The mean efficiency estimates of public and foreign banks in India are $\hat{\mu}_{1,n_1} = 1$ and $\hat{\mu}_{2,n_2} = 0.889$ respectively, and the mean efficiency estimates of subset of public and foreign banks are $\hat{\mu}_{1,n_1,\kappa} = 1$ and $\hat{\mu}_{2,n_2,\kappa} = 0.799$ respectively. The standard deviations of efficiency estimates of public and foreign banks in India are $\hat{\sigma}^2_{1,\theta,n_1} = 0$ and $\hat{\sigma}^2_{2,n_2} = 0.0459$ respectively. Finally, the mean efficiency estimates of the two subsamples of public banks are $\hat{\mu}^{(1)}_{1,m_1,1} = 1$ and $\hat{\mu}^{(2)}_{1,m_1,2} = 1$, and the mean efficiency estimates of the two subsamples of foreign banks in India are $\hat{\mu}^{(1)}_{2,m_2,1} = 0.996$ and $\hat{\mu}^{(2)}_{2,m_2,2} = 0.920$. The computed test statistic is
\[\hat{\tau}_n = 5.2383, \text{ and the p-value of the test is} \]
\[\hat{p} = 1 - \Phi(\hat{\tau}_{n_1, n_2}) = 1 - \Phi(5.2383) = 0. \]

(1.35)

Since \(\hat{p} \) is less than 0.01, we reject \(H_0 \) that mean efficiency of public banks and foreign banks in India are equal. So, public Indian banks have significantly higher expected efficiency than foreign banks also. Next, we test for stochastic dominance of true distribution of efficiency estimates of public banks over empirical distribution of efficiency estimates of foreign banks operating in India. We reject the null hypothesis that true distribution function of efficiency estimates of public banks is equal to the true distribution function of efficiency estimates of foreign banks with a p-value of 0.007195. This implies that the true distribution function of efficiency estimates of public banks stochastically dominates the true distribution function of efficiency estimates of foreign banks operating in India.

1.5.3 Discussion

From the analysis above, we can see that our Hypothesis 1 is supported. This shows that Indian banks have indeed caught up to banks in the U.S. in terms of efficient banking. Our empirical results provide tentative evidence that diffusion theory holds in the Indian banking sector, relative to the benchmark study (Sathye 2003). Although we offer some plausible evidence at a strategic level for the diffusion model, more future research in this direction is warranted. We note that the sample size of banks in India is much smaller than their U.S. counterparts.

Our Hypothesis 2a and Hypothesis 2b are also supported. These results support the path dependence argument. The de-regulation policies developed by the Indian government over the last two decades have not yet had full effect; indeed, do-
mestic private and foreign banks lag their public counterparts in terms of operational efficiency. There appear to be two options for domestic private and foreign banks to catch up. From a service operations perspective, they should actively seek to attract the most competitive advantage, creating the requisite knowledge capital. Alternatively, the Indian government may need to do more de-regulation so that the domestic private and foreign banks can completely match or exceed the public banks, which is common-place in many market-driven, developed nations. Not only is our finding explained by path dependence theory (i.e., public banks in India are more efficient than domestic private and foreign banks due to the advantage that they had for over 40 years until 1990), but also they may have a human capital advantage. Combining these two hypothesis tests, the KBV of firm is also supported, as attested by the revelations of Indian bank managers, whom we interviewed. These managers reported that public Indian banks hired “better” employees than domestic private and foreign banks in India, which may have positively influenced the rates of efficiency diffusion.

1.6 Conclusions and Limitations

We compared the operational efficiency of U.S. and Indian banks and compared the relative efficiencies of public, domestic private and foreign banks operating in India. We grounded our hypotheses in diffusion theory and path dependence theory and tested them empirically using the test statistic derived by Kneip et al. (2013b). The assumption of convexity of the production frontier is tested by using the test statistic derived by Kneip et al. (2013a). To our knowledge, this is the first paper to test the assumption of convexity of the production frontier in SOM and banking literature. All the previous papers that have estimated efficiency of banks operating in the U.S. or in India have used DEA estimator without testing for convexity of the
production frontier. However, under the alternative hypothesis of non-convex production set, DEA estimator is inconsistent. So, we recommend the explicit testing for convexity of the production frontier in future research that aims to capture efficiency before applying traditional DEA analyses. Our rejection of null hypothesis of convexity of the production frontier is consistent with the findings of Wheelock and Wilson (2011) and Wheelock and Wilson (2012) in parametric settings.

Although diffusion theory and path dependence theory have been used extensively in research, this paper is among the first to ground hypotheses in these two theories in SOM banking sector research and test them empirically. We found a significant difference between the expected efficiency of banks operating in India and in the U.S. When compared to the Sathye (2003) benchmark research, our results indicate that Indian banks may have caught up with U.S. banks in terms of efficient banking due to the diffusion of technology and best banking practices from the western world to the emerging market economies. This diffusion may have also been enabled by the widespread outsourcing of advanced telecommunications and information technology to Indian firms over the past two decades. Similarly, the finding that state-owned Indian banks are more efficient than domestic private and foreign banks operating in India implies that the public banks still have a competitive advantage due in part to past government policies that imposed restrictions over domestic private and foreign banks. Moreover, to the extent that the public sector banks have more competitive employees, the KBV implemented in services, would suggest that these employees were better able to capture the best practices and technology transferred to India.

There are some limitations in our study. First, the data we used were secondary data and they come with certain limitations (see Roth et al. (2010) for a detailed discussion on this). Second, owing to the slow convergence rate of the FDH estimator, the sample size of subsample of observations used to test Hypothesis 2a and 2b, n_k,

30
was small. However, test of stochastic dominance supports our results from these hypotheses tests. Future research is warranted in these areas.

In conclusion, this research offers strategic operations insights for furthering future SOM research beyond banking. Importantly, our empirical results have implications for practice and policy. To improve the efficiency of domestic private and foreign banks, either they can aggressively pursue talent and/or the Indian government can carry forward their liberalization and de-regulation policies. Thus, managers of less-efficient banks can achieve higher efficiency by imitating the highly-efficient banks. Moreover, the Indian Government of India should continue its reform process to elevate the banking sector overall. Taken together the substantive and methodological contributions add to our strategic operations arsenal and offer a bridge for advancing operations management more broadly.
Essay 2.
Effect of Readmission Rates on Marginal Cost in Hospital Services: An Econometric Analysis

Abstract

We investigate the effect of readmission rates on hospital costs and hospitals’ profit incentives to reduce readmissions. We consider consequences of the new Medicare policies that impose reimbursement penalties on hospitals with higher than threshold readmission rates. Using aggregate level data from 169 Arizona hospitals, we estimate their marginal costs using structural estimation techniques developed in the empirical Industrial Organization (IO) literature. Contributing to ongoing hospital and government debates, our empirical results demonstrate that marginal hospital costs do indeed increase significantly with increases in readmission rates. Taking into account the readmission cost results, we simulate outcomes under counterfactual market structures that could arise as result of the new penalty system for Medicare reimbursements to hospitals. Importantly, we find the plan to implement reimbursement penalty for
hospitals with above average readmissions can act to induce competition among hospitals to lower average readmission rates.

2.1 Introduction

In this paper, we subject to rigorous empirical scrutiny of the influence of hospital readmission on marginal hospital costs. In operations management, a readmission coincides with the notion of “rework,” which is a manifestation of a quality failure. As such, we anticipate that readmissions should increase the marginal cost of healthcare services. Readmissions are subject to both qualitative and quantitative external costs (e.g., patient welfare, such as lost wages etc., and added costs to payers, including private and public). Most recently, the Patient Protection and Affordable Care Act (PPACA) was implemented to penalize hospitals that are deemed to have higher than threshold patient readmission rates (hereafter “high” readmission rates) (Stone and Hoffman 2010). Beginning in 2013, hospitals with high readmission rates will have their total Medicare reimbursements reduced by 1 percent; this penalty will be increased in phases until 2015, when they will rise to 3 percent (Rau 2011). The underlying presumption behind the penalty is this: total healthcare expenditures will fall if readmission rates decrease. Operationally, then, readmissions represent a hospital’s failure to provide adequate care during the patients’ initial stay in the hospital and a reimbursement penalty will incentivize hospitals to improve quality.

As a backdrop in 1983, Medicare moved from a “fee-for-service” (FFS) system—hospital provided the payers with itemized bills for each admitted patient (e.g., a night in a hospital bed, or for hours of surgery)—to a prospective payment system (PPS). PPS paid hospitals a fixed fee per case that is based on diagnosis groupings rather than per service item. It sought to eliminate the strong incentives for hospitals to
hold patients for more days than were medically required, which in turn, resulted in shortened average length of patient stays and reduced hospital over-crowding (Phelps 2012). However, PPS had no measured effects on hospital readmission rates, which were already high in 1983; thereafter, remained significantly unchanged for three decades. On average, one in five Medicare patients served by hospitals are readmitted for the same diagnosis within 30 days of discharge; cumulatively, 35 percent are readmitted within 90 days of their discharge (Jencks et al. 2009). Unexpectedly, the PPS payment structure may have actually created strong financial incentives for hospitals to not reduce readmissions, as the Medicare continued to reimburse fully for readmitted patients. Thus, the PPACA penalty is the latest in a series of hospital cost control measures for treating Medicare patients.

Figure 2.1 illustrates how the cost of readmissions and penalties can potentially affect hospitals’ financial incentives. Consider two hospitals with an identical patient: Hospital 1 is not penalized (i.e., the actual readmission rate is less than the threshold readmission rate), whereas Hospital 2 is subject to penalties (i.e., the actual readmission rate is more than the threshold readmission rate). In Hospital 1, a patient receives a treatment during her first admission, which costs the hospital $10,000 and the Diagnosis Related Group (DRG) is priced at $15,000. Since this hospital is not penalized under the new payment scheme, it is paid $15,000 by Medicare and earns a profit of $5,000. If this same patient is discharged and readmitted within 30 days for the same diagnosis, the hospital’s costs can either increase or decrease. If the readmitted patient’s state of health is worse upon readmission (versus the initial admission), the cost of treating the readmitted patient will be higher (i.e., $10,500 in Figure 2.1); and hence, the total profit earned on the readmission will be lower ($4,500). Alternatively, if the cost to the Hospital 1 of treating a readmitted patient is lower ($9,500) as compared to the first admission (e.g., the surgeon and the hosp
tal staff understand the patient diagnosis and situation better after readmission and require fewer or more, specific tests and/or less coordination than in the first admission) then the hospital’s total profit will be higher for a readmitted patient than for a first time admission ($5,500). Next we examine the payment structure for Hospital 2 in Figure 2.1, which treats an identical patient as in Hospital 1. Because Hospital 2 is being penalized for its high readmissions, its reimbursement for a first time admission is automatically reduced in contrast to unpenalized Hospital 1 (i.e., $14,550 vs. $15,000, respectively, in Figure 2.1). Similarly, if this same patient is readmitted to Hospital 2, its payment is still penalized. Thus, Hospital 2 incurs a penalty for both its first time admissions and readmissions since its actual readmission rate higher than threshold. In this example, the penalty is 3 percent on revenues.

Figure 2.1: Illustrative Example of Payment Scheme for Penalized and Unpenalized Hospitals

These illustrations suggest two important unresolved research questions: 1)
Without a penalty, do hospitals have financial incentives to either reduce or induce readmissions? 2) How will the PPACA readmission penalty mechanisms affect hospitals and patients? More specifically regarding the latter, will the new PPACA penalty scheme reduce average readmission rates of hospitals in any market? This paper examines these questions by empirically investigating the systematic effects of hospital incentives under two payment structures—prior to and post PPACA. Namely, we first evaluate the effect of readmissions on hospital’s marginal cost. Next, we assess the effect of the new penalty system on readmission rate of hospitals. In doing so, we acknowledge that there may be other marketplace incentives influencing an individual hospital readmissions, such as the hospital’s perceived reputation and the effect of bed utilization, but we are not able to explore these here.

Theoretically, we take the operations management stance that hospital readmissions are arguably analogous to external failures, which means that the defect is not identified until the product/service affects with the customer externally to the setting (e.g., Crosby 1979, Juran 1988, Giffi et al. 1990, Fitzsimmons and Fitzsimmons 2008). Manufacturing rework has been shown to increases costs (e.g., Savage and Seshadri 2003, Alukal 2006). Programs like lean, six-sigma, and lean-six-sigma can be viewed as “interventions” that when implemented will act to improve product quality and minimize rework and its associated costs (see Linderman et al. 2003, Shah and Ward 2003, Rao et al. 2004, Alukal 2006; Schroeder et al. 2008, Zu et al. 2010). Nonetheless, when external failures occur in manufacturing, the company’s remedial costs more often than not go beyond those of reproducing the original products. In addition to the intangibles, added direct tangible costs are associated with the logistics and overhead of returning the defective product to its facilities. In contrast, as depicted in Figure 2.1, a hospital’s marginal cost to treat a readmitted patient can be either lower or higher than the cost of the original treatment (e.g., patient’s health
status is better or worse upon readmission than at their initial admission), and/or the effort to recapture overhead and intangible costs can be either difficult (e.g., system congestion, added billing and other services, etc.) or easy (e.g., better staff coordination and knowledge about patient). On one hand, hospitals could have incentives to readmit in order to capture the charges for the higher patient costs and fill capacity; on the other hand, if overhead and other costs are not directly recouped, hospitals may be naturally incentivized to reduce readmissions even without a government penalty.

These countervailing perspectives on incentives create a dilemma regarding the operational impact on hospital marginal costs. Recognizing the inherent complexity in assessing hospital costs and the general lack of transparency, it is imperative for both hospital administrators and payers to have a better understanding of the systematic effects of patient readmissions (i.e., process failures) on hospital costs—especially, as the Medicare reimbursement penalty is in play. Despite their importance, little is known about how these potential process failures actually affect hospital marginal costs even without penalties, and in turn, patient welfare and the viability of hospital business models. We operationally define marginal cost as the cost to treat one patient per episode of stay in the hospital; following the Medicare policy, we define a quality failure as a readmission within 30 days of discharge.

This research is a first step in this direction by providing broad-based, strategic insights through combinative operations strategy and economics perspectives to examine quality failures (readmissions) in hospitals. To date, there is no empirical study that addresses completely our two overarching questions. Friedman and Basu (2004) examined the costs of readmissions but differed in several important ways from this study. First, we use operations strategy as our theoretical lens to investigate both quality and cost tradeoffs, while their study was primarily cost focused. Second,
Friedman and Basu (2004) computed readmission costs to the payer, whereas we estimate marginal cost incurred by the hospital. This distinction highlights differences in methodology. To estimate marginal cost, we use structural estimation technique developed in the empirical Industrial Organization (IO) literature (Berry 1994), which had the added advantage of allowing us to conduct counterfactual analyses of the market.

We employ secondary data that capture operational and financial variables from hospitals in Arizona to develop a demand estimation model involving demand, price, and other hospital characteristics. We then take our demand estimates and apply the methods in Berry et al. (1995) to estimate the supply side of the model which uncovers the effect of readmissions on marginal cost. Finally, we model and simulate outcomes under counterfactual market structures that could arise from the Medicare penalty. The first counterfactual examines the effect of the proposed penalty on the hospitals’ decision to reduce their readmission rates. The second counterfactual removes critical access hospitals—those perceived to be at risk of shutting down because of cost cutting—from the market—and measures the potential welfare loss of patients due to the high prices that the other remaining hospitals could charge. Insights from this study have the potential to inform both operations management in healthcare as well as provide timely insight about healthcare practices. Further, we provide insight into the current discussions about key policy decisions, such as funding levels for critical access hospitals (see, for example, Scott 2012). Finally, the incorporation of the estimation methods from empirical IO literature also contributes to the operations management literature by suggesting other methods to analyze secondary data.

The rest of this paper is organized in the following way. We review relevant literature, present our hypothesis in Section 2.2 and describe our data in Section 2.3. We explain our econometric specification and estimation strategy in Section 2.4.
We present results in Section 2.5 and discuss the implications of these results and conclude in Section 2.6.

2.2 Literature and Hypothesis Development

We broadly review three major streams of literature. First, we present a multidisciplinary review of the relevant healthcare literature from operations strategy and quality management to describe our conceptualization of a readmission as a quality defect. We consider the nature of quality failures as either internal or external and describe the salient dimensions of quality. Second, taking a medical and management perspective, we summarize the issues related to nurse staffing on patient outcomes and costs. Third, we cover structural estimation procedures drawing upon the economics and operations management literature.

There are multiple operations management studies about strategic healthcare delivery decisions (see Roth et al. 1996 for a discussion on hospitals’ operations strategies) as well as analytical articles about capacity requirements (e.g., number of beds, staffing, etc.) and surgical scheduling and patient flow models (see Green 2004 for a detailed review). The rapidity of change in healthcare delivery systems has escalated over the past decade. Advances in clinical technologies (e.g., faster MRIs, improvement in radiology technologies, etc.), changes in management practices (e.g. lean-six-sigma, computerized medical records, etc.) and incorporation of penalties in payers’ reimbursement policies all potentially affect hospital costs. Yet, there is a dearth of operations management literature on readmissions in this dynamic environment. KC and Terwieschs (2012) seminal work is an exception. They examined the probability that an individual patient moved from an intensive care unit (ICU) to step down care center had to be readmitted back (internally) into the ICU. KC and
Terwiesch (2012) found that the probability of readmission to the ICU increased as the initial length of stay (LOS) of the patient decreased. Our study differs from theirs in important ways. First, our research provides additional insights by using the hospital as the unit of analysis instead of the patient. Aggregating up from the patient to the hospital level would require the precise assessment of all factors that influence marginal hospital costs. Arguably, many of these transactions and overhead costs on individuals can not be easily measured as attributed to readmission status (e.g., added staff coordination, external communications to family members, etc.). Second, from an operations strategy perspective, with a hospital as the unit of analysis, we capture, in part, the systematic aggregate effects of readmissions on the hospital’s marginal cost. Third, we examine actual hospital discharge and readmission data versus using internal patient transfers from the ICU to a step down care unit within the same hospital. Using operations and quality management terminology, our study evaluates patient readmissions in terms of external quality failures, whereas KC and Terwiesch (2012) examined internal quality failures. In summary, these are two complementary but different perspectives that together provide more holistic view of the operational implications of patient readmissions on patients and costs.

Using operations strategy as a theoretical lens for understanding quality (Garvin 1987), hospital readmission signifies unacceptable quality. Notably, a readmission does not meet patients’ needs for effective, safe care nor achieve “freedom from deficiencies” (Juran 1992), which is a basic assumption for quality. From this viewpoint, a hospital with a higher readmission rate relative to its peers is perceived as having poor quality (Rau 2011). Quality is a multidimensional construct. Garvin (1987) identified eight dimensions of quality (performance, features, reliability, conformance, durability, serviceability, aesthetics, and perceived quality) in the manufacturing sector. While in general, these same dimensions with perhaps the exception of durability,
also apply to healthcare service quality.

Performance quality coincides with the depth of treatment, such as the use of advanced technologies for diagnosis. The feature dimension covers the ancillary services provided, such as meal choices, pre-admission patient information, or even the scope of the hospital’s discharge plans. For example, if the plan does not ensure that follow-up treatments can continue after the patient is discharged from the hospital, the readmission rate could be affected. The reliability dimension refers to a hospital’s ability to provide consistently the correct interventions for every patient. Metaphorically, when a patient “falls through the cracks,” in the care process, it could conceivably affect readmission probability. The conformance dimension is very relevant to hospital care quality, since it includes whether the correct treatment was delivered on time and met medical specifications. In hospitals, all service providers are expected to follow the specific patient care path requirements; external customers (patients) when capable, are informed of clinical requirements and procedures for their own care (e.g., walking after surgery, taking medications after discharge); their own involvement impacts their healing process. Deviations on the part of service providers and/or patients can have some bearing on readmissions. Likewise, serviceability, which is the ease of servicing a product after sale or in this context the ability of a discharged patient to obtain services needed, such as assistance with billing, and availability and access to needed information. We anticipate that the latter is particularly relevant to readmissions. For example, when the patient has concerns about her discharge care plan or how to respond to unexpected health events, can the patient easily receive the required information? So, low serviceability may lead to readmission if the discharged patient could not receive services needed to perform her discharge plan. Aesthetics can affect patient satisfaction with the overall hospital experience. The extent to which dissatisfaction with the “look and feel” and other
intangibles causes mental anguish during the hospital stay, influences the patient’s outcomes after discharge, and in turn, readmissions could be affected. It would be difficult to explicitly capture how the dimensions of quality individually act to influence readmissions; however, we contend that each works in concert with others to define “quality of patient care” (hereafter quality). While we do not explicitly investigate this link in our study, such deviations from quality could be termed “avoidable” causes of readmissions, which is an area for future research.

In health care research, staffing studies, especially on nurses, are pervasive. Yet those that investigate how the number of hours of care by nurses, the level of nurse staffing and the nurses’ working conditions affect the quality of care outcomes have had mixed results (see Pronovost et al. 2001 Needleman et al. 2002, Stone et al. 2007, Penoyer 2010). Moreover, other studies relating staffing to costs are also inconsistent. Some found positive relationships between nurse staffing level and hospital costs (e.g., McCue et al. 2003) and others, negative relationships (see Thungjaroenkul et al. 2007 for a detailed survey of all past findings).

Drawing upon the industrial organization literature in economics, structural estimation—a procedure that has its theoretical basis rooted in economics literature, offers a way to assess marginal costs that may be useful in health care, where the transparency and availability of such data is sparse. In economics, Berry (1994) used structural estimation technique to model standard demand and supply equations, wherein he modeled demand as a discrete-choice model and assumed that prices are endogenously determined by various firms in a market. Berry’s (1994) technique was used to study various demand models of differentiated product segments and these kind of models are now well-known as “Demand Estimation Models.” In operations management, Olivares et al. (2008) used structural estimation technique to analyze operating room scheduling decisions and found that the scheduling managers purpose-
ly try to avoid incurring over-time costs. Recently, Allon et al. (2011) used structural estimation technique to estimate the value of reducing customer wait times in the drive-thru fast-food industry and Deshpande and Arikan (2012) used the technique to impute the overage to underage cost ratio of the newsvendor model in the airline industry and found that airlines usually “under-emphasize” flight delays.

Given the above, both operations researchers (e.g., KC and Terwiesch 2012) and healthcare researchers (Chen et al. 1999, DesHarnais et al. 2000) consider high rates of hospital readmissions to be indicators of poor quality of care. As indicated earlier, operations strategy posits that rework increases a company’s cost (e.g., Giffi et al. 1990, Savage and Seshadri 2003, Alukal 2006). Thus, hospital readmissions are cast as rework that occur because some portions of the care process provided during the original hospitalization had an adverse impact on patient clinical outcomes 1, which resulted in the need for the patient to be readmitted. This logic also appears to underpin the PPACA legislation. Thus, from operations management theory of quality, the marginal cost of a hospital with high readmission rates should be systematically higher than a hospital with lower readmission rates. In essence, a hospital with high readmission rates could potentially have the medical equivalent of a hidden factory’s costs (Miller and Vollman 1985), but also have a second stream of revenue. More formally stated:

\[H_1: \text{Hospitals with high readmission rates will have higher marginal cost, ceteris paribus} \]

1Note that this notion of defect applies to readmissions that are in some sense ‘avoidable’ and not those that are ‘unavoidable’ or non-preventable on the part of the hospital. The notions of avoidable and unavoidable readmissions are a current topic of interest in the health care literature but we are unable to separate them in this research.
2.3 Data

To test our hypotheses, we combine multiple datasets for all hospitals operating in the state of Arizona from 2008-2010. The data on hospital characteristics, including the ownership type, type of hospital, provision of emergency service, and readmission rates came from the Center for Medicare and Medicaid Services (CMS-Hospital Compare website). Other data needed to estimate marginal costs, including average price, demand, and other hospital characteristics (i.e., the number of beds, the length of the patient stay, the nurse staffing level, and provision of trauma care) was obtained from the Arizona State Department of Health’s website. We use a unique hospital identifier variable to merge the two datasets. The data for these variables was gathered for 56 hospitals operating in Arizona in 2008 and 2009, and for 57 hospitals operating in 2010 (of which 56 are the same as those in 2008 and 2009; 1 hospital is different). The descriptive statistics of the key variables are given in Table 2.1. Price is defined as the ratio of gross revenue of a hospital to the total number of patients. Demand is defined as the total number of patients served by a hospital. Beds is defined as the total number of staffed beds in a hospital. Average LOS is computed as the ratio of total length of stay in a hospital to demand. Nurse Staffing (FTE) is the full time equivalence of registered nurses working in a hospital. Nurse ratio is computed as the ratio of nurse staffing to demand. Since the data set included all hospital admissions in these hospitals for the three year period, there was a large variance in average price, demand, number of beds, average length of patient stay, nurse staffing level (full-time equivalence), and ratio of nurse staffing level (full-time equivalence) to total patients admitted.

Data on the number of readmitted patients and case-mix adjusted percent readmissions of heart attack, heart failure, and pneumonia were obtained from CMS.
Table 2.1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price ($)</td>
<td>62,920.02</td>
<td>23,064.30</td>
<td>24,523.46</td>
<td>143,646.50</td>
</tr>
<tr>
<td>Demand</td>
<td>10,353.55</td>
<td>9,904.16</td>
<td>264</td>
<td>39,378</td>
</tr>
<tr>
<td>Beds</td>
<td>201.39</td>
<td>172.42</td>
<td>14</td>
<td>718</td>
</tr>
<tr>
<td>Average LOS (Days)</td>
<td>4.08</td>
<td>1.28</td>
<td>1.66</td>
<td>11.86</td>
</tr>
<tr>
<td>Nurse Staffing (FTE)</td>
<td>348.84</td>
<td>352.64</td>
<td>13.40</td>
<td>1,305.30</td>
</tr>
<tr>
<td>Nurse Ratio</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.13</td>
</tr>
<tr>
<td>Readmission Rate (%)</td>
<td>19.04</td>
<td>3.75</td>
<td>3.27</td>
<td>22.51</td>
</tr>
</tbody>
</table>

CMS publishes data on readmissions only for these three case types and only based on Medicare data. Since data for other case types and for patients with other private healthcare insurances are unavailable, we assumed that the readmission rates matched those for Medicare. For each of the three case types (heart attack, heart failure, pneumonia), we calculated case-mix adjusted total patients by multiplying the number of readmitted patients by the case-mix adjusted percent readmission. We then calculated a composite readmission rate for each hospital by dividing the sum of the number of readmitted patients of heart attack, heart failure, and pneumonia by the sum of case-mix adjusted total patients of heart attack, heart failure, and pneumonia. For hospitals, data on the number of readmitted patients was available; however, data on the case-mix adjusted percent readmissions was not available for the three case types. We imputed the missing case-mix adjusted percent readmissions for these hospital in the following way.

First, we calculated the case-mix of heart attack, heart failure, and pneumonia (case-mix adjusted total patients to total demand) for other hospitals in the same market for which data on both number of readmitted patients and case-mix adjusted percent readmissions was available. We then calculated the average case-mix of heart attack, heart failure, and pneumonia cases in each market. Second, we imputed
the missing case-mix adjusted percent readmissions (heart attack, heart failure or pneumonia) for a hospital by multiplying the total demand for that hospital by the corresponding case-mix average (heart attack, heart failure or pneumonia) of that market. To check the robustness of our imputation, we also used the average case-mix after removing the maximum and the minimum case-mix in each market and the results remained qualitatively the same. Hence, we proceeded with the overall average in the rest of this paper. The average readmission rate of our sample (19.04%) is similar to the U.S. national average of 20% (Jencks et al. 2009), which provides support for the validity of our imputation.

2.4 Econometric Model and Estimation Procedure

We use the demand estimation technique proposed by Berry (1994) and further enhanced by Berry et al. (1995). We define the utility of an individual ‘i’ from visiting a hospital ‘j’ as

\[U_{ij} = \alpha p_j + \beta x'_j + \xi_j + \epsilon_{ij}, \] (2.36)

where \(p_j \) is the price and \(x'_j \) is a vector of hospital characteristics (number of beds, nurse staffing, ownership of hospital, whether the hospital had emergency service or not, whether the hospital had trauma care or not) observed by both econometrician and consumers, \(\xi_j \) is a vector of characteristics of the hospital which are not observed by the econometrician but are observed by patients, and \(\epsilon_{ij} \) represents the individual i’s idiosyncratic preferences related to hospital j. We characterized the average utility of all individuals from visiting a hospital ‘j’ as \(\delta_j \) and we assume that \(\epsilon_{ij} \) had a Type-1 extreme value distribution (Berry 1994) initially. So,

\[\delta_j = \alpha p_j + \beta x'_j + \xi_j. \] (2.37)
The choice probabilities from the logit model defined above give market shares as

\[s_j = \frac{\exp(\delta_j)}{1 + \sum_{k=1}^{J} \exp(\delta_k)}, \]

(2.38)

where \(J \) was the total number of hospitals in each market. In our case, \(s_0 \), the corresponding market share of the outside option, is the share of the total population which did not visit any hospital during a given year. We normalize the outside option so that \(\delta_0 = 0 \). Then, we use Berry’s (1994) inversion method to get

\[\log(s_j) - \log(s_0) = \delta_j = \alpha p_j + \beta x_j + \xi_j, \]

(2.39)

which we refer to as the non-nested logit model in the remainder of the paper.

The non-nested logit model does not take into account the possibility of different substitution patterns from one hospital to another. For instance, patients in an acute care hospitals were more likely to switch to another acute care hospital rather than switching to a critical access hospital and vice-versa. The non-nested logit model imposes equality constraints on the probability of switching from one hospital to another, if they have equal market shares. The non-nested logit model violates the independence of irrelevant alternatives (IIA) assumption. The nested logit model overcomes this limitation as described below by allowing substitution patterns to differ across types of hospitals.

We follow the structure of Cardell (1997) and the notations of Berry (1994). First, we create three nests \((g = 0, 1, 2) \) based on the type of hospital, where \(g = 1 \) contained acute care hospitals and \(g = 2 \) contains critical access hospitals and the outside option is the only member of \(g = 0 \). Let \(J_g \) be the set of hospitals in group
The utility an individual i obtains from visiting hospital $j \in \mathcal{J}_g$ is:

$$U_{ij} = \delta_j + \zeta_{ig} + (1 - \sigma)\epsilon_{ij}, \quad (2.40)$$

where σ is the substitutability factor ($0 < \sigma < 1$), $\delta_j = \alpha p_j + \beta x'_j + \xi_j$ and ζ are common to all hospitals in a group g for a consumer i and $(\zeta + (1 - \sigma)\epsilon)$ has an extreme value distribution since ϵ had an extreme-value distribution (Cardell 1997).

Then, the market share of a hospital j within its nest is:

$$s_{j|g} = \frac{\exp(\delta_j/(1 - \sigma))}{D_g}, \quad (2.41)$$

where

$$D_g = \sum_{j \in \mathcal{J}_g} \exp(\delta_j/(1 - \sigma)). \quad (2.42)$$

The market share of hospital j is:

$$s_j = \frac{\exp(\delta_j/(1 - \sigma))}{D_g^{\sigma} \left[\sum_g D_g^{(1-\sigma)} \right]}. \quad (2.43)$$

Again, we use Berry’s (1994) inversion method to get

$$\log(s_j) - \log(s_0) = \alpha p_j + \beta x'_j + \sigma \log(s_{j|g}) + \xi_j. \quad (2.44)$$

In the remainder of the paper, we refer to this model as the nested logit model. The nested logit model allows hospitals within a nest to have closer substitutability between themselves than with hospitals in a different nest.
We assume hospitals compete in Bertrand price competition and let
\[\Pi_j = D_j(x, p, \xi) p_j - C_j(D_j(x, p, \xi)) \] (2.45)
be the profit of hospital \(j \), where \(D_j(x, p, \xi) \) is the demand for hospital \(j \) and \(C_j(D_j(x, p, \xi)) \) is the cost of treating \(D_j(x, p, \xi) \) patients. Then,
\[\tilde{\Pi}_k = \sum_{j \in k} \Pi_j = \sum_{j \in k} D_j(x, p, \xi) p_j - C_j(D_j(x, p, \xi)) \] (2.46)
is the profit of a firm owning \(k \) hospitals. Under the assumption that hospitals set price to maximize profit, the first order equation for each hospital,
\[D_j + \sum_{l \in k} \left[\frac{\partial D_l}{\partial p_l} (p_l - mc_l) \right] = 0. \] (2.47)
determines the prices charged. Given the first order conditions determine the optimal price setting behavior of hospitals, we can invert this expression to solve for the marginal cost of the hospitals as
\[mc = p + \Omega^{-1} D, \] (2.48)
where \(p \) was the vector of prices of all hospitals, \(D \) was the vector of market shares of all hospitals, and \(\Omega \) was a matrix of all hospitals’ own and cross price elasticities. In the data we 2 of the three terms on the left hand side of the equation—\(p \) and \(D \)—and we use the demand side model to estimate the price elasticities, \(\Omega \). With all three terms in hand, we can estimate marginal cost. For the non-nested model, the
elasticities are given as

$$\Omega_{ij} = \begin{cases}
\alpha s_i (1 - s_i) & \text{if } i = j, \\
-\alpha s_i s_j & \text{if } i \neq j, \text{ but hospitals } i \text{ and } j \text{ are owned by the same firm} \\
0 & \text{otherwise},
\end{cases}$$

(2.49)

and for nested model

$$\Omega_{ij} = \begin{cases}
\alpha s_i \left[\frac{1}{1 - \sigma} - \left(\frac{\sigma}{1 - \sigma} \right) s_{ijg} \right] - \alpha s_i^2 & \text{if } i = j, \\
-\alpha s_i \left[\left(\frac{\sigma}{1 - \sigma} \right) s_{ijg} + s_j \right] & \text{if } i \neq j, i, j \notin g \\
-\alpha s_i s_j & \text{if } i \neq j, i, j \in g \\
0 & \text{otherwise}.
\end{cases}$$

(2.50)

Finally, on the supply side, we let the marginal cost depend linearly on a set of observed and unobserved cost variables as:

$$mc = X^c \gamma + \omega,$$

(2.51)

where X^c is a matrix of observed cost variables, ω is the set of unobserved cost variables, and γ is the parameter to be estimated. We are primarily interested in the coefficient of the effect of readmission rates on marginal cost.

A key assumption for the validity of the above calculations of marginal cost from available information on prices, market shares, and demand elasticities, is that firms compete to maximize profit in Bertrand price setting competition (Bertrand 1883). While this modeling assumption seems reasonable for many hospitals, it is not testable with the data. Also, some of the hospitals in our data set are govern-
ment hospitals, and others have non-profit status, which raises some concerns about whether these hospitals do have a profit maximizing objective. Some of the concerns can be allayed by noting that non-profit status simply means such a hospital does not pay out profits to shareholders, and does not imply that the hospital does not seek economic rents. Non-profit hospitals have incentives to maximize rents, because they need them to finance a variety of hospital goals such as: spending on capital projects, investments in medical technologies, or higher salaries for employees. As a robustness check in Section 2.5.3 below, we estimate the supply side model under the assumption that only for-profit hospitals maximize profits, and all others set their price equal to their cost.

2.4.1 Non-Nested Model

We divide the state of Arizona into three regions: Phoenix metropolitan area, Tucson metropolitan area, and other. We then define the market as a year-region combination which results in nine markets (i.e., 2008-Phoenix, 2008-Tucson, . . ., 2010-other.) For the non-nested logit model, we compute s_j as the ratio of total patient admissions in each hospital j to the total population in the corresponding market. Further, s_0 for each market is computed as the difference between 1 and the sum of market shares of all hospitals in a particular market. Using equation 2.39, we estimate α and the vector β by regressing $\log(s_j) - \log(s_0)$ on price and hospital characteristics (i.e., number of beds, ownership type, provision of emergency service, and provision of trauma care).
2.4.2 Nested Model

In addition to s_j and s_0, we compute $s_{j|g}$ as the market share of each hospital within a nest for the nested model. Using equation 2.44, we estimate α, σ, and the vector β by regressing $\log(s_j) - \log(s_0)$ on price, $\log(s_{j|g})$, and the hospital characteristics which include the number of beds, type of ownership, provision of emergency service, and provision of trauma care.

2.5 Results and Discussion

2.5.1 Non-Nested Model

Table 2.2 shows the ordinary least squares (OLS) estimates of α and the β vector. These estimates seem reasonable. For example, the estimate of α (coefficient of price) is negative while the coefficient on the number of beds is positive and hospitals with emergency service have significantly higher market share than hospitals without emergency service departments.

Table 2.2: Non-Nested Model: OLS Estimates [DV: $\log(s_j) - \log(s_0)$]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>-6.67×10^{-6}**</td>
<td>(2.86×10^{-6})</td>
</tr>
<tr>
<td>Beds</td>
<td>5.5×10^{-3}**</td>
<td>(4.16×10^{-3})</td>
</tr>
<tr>
<td>Government–Local#</td>
<td>-1.06*</td>
<td>(0.54)</td>
</tr>
<tr>
<td>Proprietary#</td>
<td>0.61**</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church#</td>
<td>0.63</td>
<td>(0.40)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other#</td>
<td>0.45*</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private#</td>
<td>0.59**</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Emergency Service</td>
<td>0.46*</td>
<td>(0.27)</td>
</tr>
<tr>
<td>Trauma Care</td>
<td>-0.13</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-7.46**</td>
<td>(0.37)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District

*p < 0.1, **p < 0.05
However, the OLS estimates do not allow price to be correlated with unobserved hospital characteristics. In the next specification we use instrumental variables for price. We use the sum of the rival hospitals’ characteristics (beds, nurses, and ownership type) in a market as instruments for each hospital’s price. We do not use nurses as an independent variable in the demand estimation to prevent the problem of reverse causality. The sum of the rival hospitals’ characteristics in a market are appropriate instruments since these variables may affect price, but are not directly related to the utility function (Berry et al. 1995). Table 2.3 shows the estimates of α and the β vector using instruments for price.

Table 2.3: Non-Nested Model: IV Estimates [DV: $\log(s_j) - \log(s_0)$]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>-9.41×10^{-3}</td>
<td>(5.64×10^{-3})</td>
</tr>
<tr>
<td>Beds</td>
<td>3.38×10^{-3}**</td>
<td>(1.72×10^{-3})</td>
</tr>
<tr>
<td>Government–Local*</td>
<td>2.13</td>
<td>(2.46)</td>
</tr>
<tr>
<td>Proprietary*</td>
<td>1.65**</td>
<td>(1.08)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church*</td>
<td>2.72*</td>
<td>(1.68)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other*</td>
<td>1.09</td>
<td>(0.73)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private*</td>
<td>1.34*</td>
<td>(0.73)</td>
</tr>
<tr>
<td>Emergency Service</td>
<td>-0.20</td>
<td>(0.80)</td>
</tr>
<tr>
<td>Trauma Care</td>
<td>0.43</td>
<td>(0.61)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.94</td>
<td>(3.66)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District
*p < 0.1, **p < 0.05

We then computed the marginal cost of all hospitals using the first order condition inversion in equation 2.48. We used the coefficient of price from the model with instruments for this purpose as suggested by Berry (1994). Table 2.4 shows the summary statistics of marginal cost (mc), profit (price - marginal cost), and markup ($\frac{\text{profit}}{\text{price}}$) for all hospitals using the non-nested model. We use the marginal cost estimated from the non-nested model for our counterfactual analysis described later.
Table 2.4: Summary Statistics of Non-Nested Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Cost ($)</td>
<td>53,295.84</td>
<td>23,098.07</td>
<td>15,003.15</td>
<td>134,177.50</td>
</tr>
<tr>
<td>Profit ($)</td>
<td>9,624.18</td>
<td>178.72</td>
<td>9,497.74</td>
<td>10,040.68</td>
</tr>
<tr>
<td>Markup (%)</td>
<td>17.19</td>
<td>5.78</td>
<td>6.61</td>
<td>38.82</td>
</tr>
</tbody>
</table>

2.5.2 Nested Model

The OLS results for the nested model in Table 2.5 show that the estimate of \(\alpha \) (coefficient of price) is negative; that estimate of \(\sigma \) is smaller than 1 (Berry 1994), and that the coefficient of the number of beds is positive.

Table 2.5: Nested Model: OLS Estimates [DV: log(\(s_j \)) − log(\(s_0 \))]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Err.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>-3.66 \times 10^{-6†}</td>
<td>(2.59 \times 10^{-6})</td>
</tr>
<tr>
<td>log(s_{j</td>
<td>g})</td>
<td>0.44**</td>
</tr>
<tr>
<td>Beds</td>
<td>5 \times 10^{-3***}</td>
<td>(4 \times 10^{-4})</td>
</tr>
<tr>
<td>Government–Local#</td>
<td>-0.49</td>
<td>(0.49)</td>
</tr>
<tr>
<td>Proprietary#</td>
<td>0.93**</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church#</td>
<td>0.61*</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other#</td>
<td>0.78**</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private#</td>
<td>0.60**</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Emergency Service</td>
<td>0.02</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Trauma Care</td>
<td>-0.34*</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-5.93**</td>
<td>(0.40)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District
†\(p < 0.2 \), *\(p < 0.1 \), **\(p < 0.05 \)

Since in the nested model, it is possible that both price and log(s_{j|g}) are correlated with unobserved characteristics, we use instrumental variables for price and log(s_{j|g}). The sum of the rival hospitals’ characteristics (beds, nurses, and ownership type) within a nest in a market are used as instruments for each hospital’s price and log(s_{j|g}) (Berry et al. 1995). The results for the nested model with instruments for price and log(s_{j|g}) are shown in Table 2.6. The results in Table 2.6 are similar to
those in Table 2.5.

Table 2.6: Nested Model: IV Estimates [DV: \(\log(s_j) - \log(s_0) \)]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Err.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>(-4.42 \times 10^{-5})†</td>
<td>(3.45 \times 10^{-5})</td>
</tr>
<tr>
<td>(\log(s_{j</td>
<td>g}))</td>
<td>0.36**</td>
</tr>
<tr>
<td>Beds</td>
<td>(4 \times 10^{-3})**</td>
<td>(1 \times 10^{-3})</td>
</tr>
<tr>
<td>Government–Local#</td>
<td>0.86</td>
<td>(1.40)</td>
</tr>
<tr>
<td>Proprietary#</td>
<td>1.35**</td>
<td>(0.48)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church#</td>
<td>1.57†</td>
<td>(0.98)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other#</td>
<td>1.01**</td>
<td>(0.40)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private#</td>
<td>0.94**</td>
<td>(0.41)</td>
</tr>
<tr>
<td>Emergency Service</td>
<td>(-0.20)</td>
<td>(0.44)</td>
</tr>
<tr>
<td>Trauma Care</td>
<td>(-0.04)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Intercept</td>
<td>(-3.70)*</td>
<td>(2.08)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District
†\(p < 0.2\), ‡\(p < 0.15\), *\(p < 0.1\), **\(p < 0.05\)

Using the nested model estimates in Table 2.6, we compute the marginal cost of all hospitals using equation 2.50. The summary statistics of the estimated marginal cost, profit, and markup for all hospitals using the nested model are given in Table 2.7. Table 2.8 contains the supply side estimates. We estimated the vector \(\gamma\) by using equation 2.51. We regressed marginal cost on the readmission rate, the average length of patient stay, nurse ratio, and type of ownership and used the sum of the rival hospitals’ cost-characteristics within a nest in a market as instruments for the readmission rate and the average length of patient stay. The coefficient on readmission rate 2.8 is positive and significant (\(p < 0.1\)), which supports our hypothesis. The coefficient on readmission rate is 3430.475, which implies that a 1 percent increase in readmission rate increases marginal cost by $3,430.475. Since the average marginal cost is $47,454.19 (see Table 2.7), a 1 percent increase in readmission rate increases marginal cost by \((3,430.475/47,454.19) \times 100 = 7.23\) percent.
Table 2.7: Summary Statistics of Nested Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Cost ($)</td>
<td>47,454.19</td>
<td>23,388.24</td>
<td>9,839.64</td>
<td>135,177.50</td>
</tr>
<tr>
<td>Profit ($)</td>
<td>15,465.83</td>
<td>1250.90</td>
<td>14,463.22</td>
<td>18,534.11</td>
</tr>
<tr>
<td>Markup (%)</td>
<td>27.72</td>
<td>9.72</td>
<td>10.07</td>
<td>59.88</td>
</tr>
</tbody>
</table>

Table 2.8: Nested Model: Supply Side Estimates [DV: Marginal Cost]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Err.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission Rate</td>
<td>3430.48*</td>
<td>(1851.81)</td>
</tr>
<tr>
<td>Average LOS</td>
<td>1131.13</td>
<td>(4696.99)</td>
</tr>
<tr>
<td>Government–Local#</td>
<td>67426.06*</td>
<td>(38360.94)</td>
</tr>
<tr>
<td>Proprietary#</td>
<td>7093.81</td>
<td>(6796.41)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church#</td>
<td>5095.27</td>
<td>(11866.39)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other#</td>
<td>4538.93</td>
<td>(7176.56)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private#</td>
<td>1677.93</td>
<td>(6075.93)</td>
</tr>
<tr>
<td>Nurse Ratio</td>
<td>536409.70**</td>
<td>(125382.30)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-48711.96</td>
<td>(29577.34)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District

*p < 0.1, **p < 0.05

56
2.5.3 Robustness

For all non-profit hospitals (i.e, voluntary non-profit-church, voluntary non-profit-other, and voluntary non-profit-private hospital types), we fixed marginal cost equal to the price so that their profit was zero. This differed from the previously estimated cost model that assumed all hospitals were profit maximizing. Then, we computed the marginal cost for the rest of the hospitals using Equation 2.48 and Equation 2.50. The revised marginal cost estimates were then regressed on readmission rate, average length of patient stay, nurse ratio, and type of ownership of hospital where instruments were used for the readmission rate and the average length of patient stay, as before. Table 2.9 shows the supply side estimates. The coefficient on readmission rate is positive and significant ($p < 0.05$) as before. This robustness test provides further evidence that hospitals with higher readmission rates have higher marginal costs. Since the marginal costs of voluntary non-profit-church, voluntary non-profit-other, and voluntary non-profit-private hospital types were fixed to their price, their coefficients are significantly higher than government-hospital district (see Table 2.9).

Table 2.9: Nested Model (Not for Profit): Supply Side Estimates [DV: Marginal Cost]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>(Std. Err.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission Rate</td>
<td>3684.65**</td>
<td>(1872.34)</td>
</tr>
<tr>
<td>Average LOS</td>
<td>1353.95</td>
<td>(4749.07)</td>
</tr>
<tr>
<td>Government–Local#</td>
<td>69836.64*</td>
<td>(38786.31)</td>
</tr>
<tr>
<td>Proprietary#</td>
<td>6334.69</td>
<td>(6871.78)</td>
</tr>
<tr>
<td>Voluntary non-profit–Church#</td>
<td>19741.55*</td>
<td>(11997.97)</td>
</tr>
<tr>
<td>Voluntary non-profit–Other#</td>
<td>19805.21**</td>
<td>(7256.14)</td>
</tr>
<tr>
<td>Voluntary non-profit–Private#</td>
<td>17101.70**</td>
<td>(6143.31)</td>
</tr>
<tr>
<td>Nurse Ratio</td>
<td>513053.60**</td>
<td>(126772.60)</td>
</tr>
<tr>
<td>Intercept</td>
<td>−53099.11*</td>
<td>(29905.31)</td>
</tr>
</tbody>
</table>

#Holdout Group: Government–Hospital District

*p < 0.1, **p < 0.05
2.5.4 Counterfactuals

To further test the implications of these findings, we run two counterfactual simulations using our estimation results. First, we examine the impact of the proposed government penalty on hospitals’ decisions to reduce readmissions. Second, we estimate how hospitals will be affected by the closure of critical care hospitals, thought to be at risk as a result of the recent cost cutting measures (Rau 2011).

2.5.4.1 Counterfactual 1: Effect of Medicare Penalty on Average Readmission Rate of Hospitals in Arizona

For our first exercise, we need to give more structure to the supply-side model. In the model in Section 2.4, hospitals choose prices with the readmission rate taken as given. Here, we treat the readmission rate as an endogenous choice variable, abstracting away from pricing decisions. There are some types of investments that hospitals can make to affect their readmission rates. Examples include investments in medical technologies, equipment, doctor quality. But other factors outside the control of the hospital affect readmission rates such as the case mix of patients and how patients care for themselves at home after a procedure. We allow these outside factors to vary across hospitals and assume all hospitals have access to the same technologies related to readmission rate investments. We specify the readmission rate for hospital j as

$$r_j = r_{0j} - I_{0j}$$

where I_{0j} is the amount of readmission rate investment made by hospital j in the absence of a penalty. r_{0j} measures the degree to which factors outside the control of the hospital affect readmissions. We then define a quadratic cost function over the
investment level as
\[C(I_{0j}) = aI_{0j} + bI_{0j}^2 \]
with parameters \(a > 0 \) and \(b > 0 \), so that the cost function is convex. The cost function is assumed to be identical for all hospitals. Augmenting the investment cost function to the marginal cost function estimated from the data in Equation 2.51, the cost to hospital \(j \) is given as,

\[mc_j = x^c \hat{\gamma} + \hat{\gamma}_r r_j + C(I_{0j}) + \omega_j, \]

where \(x^c_j \) is a vector of length of stay, nurse ratio, and ownership type and \(\hat{\gamma} \) is the vector of their corresponding estimates from Table 2.8. In the augmented model, the readmission rate will be an endogenous decision. Each hospital will select a level of investment \(I_j \), and hence readmission rate \(r_j \), to minimize the cost function given in equation 2.53. The optimal level of initial investment \(I^*_0 \), (and readmissions \(r_j = r_{0j} - I^*_0 \)) is set to equate the marginal benefit \(\gamma_r \) and marginal cost \(a + 2bI \) of readmission rate reductions.

\[I^*_0 = \frac{\gamma_r - a}{2b} \]

Because all hospitals are assumed to have the same investment technologies and cost of readmissions \(\hat{\gamma}_r \), \(I^*_0 \) is the same for all hospitals.

From the supply side estimates, we know \(\hat{\gamma}_r \), but we do not have sufficient data to estimate the parameters \(a \) and \(b \) on the investment cost function. To conduct the counterfactual exercise we make the following normalization: \(I^*_0 = 1 \), in which case \(\hat{\gamma}_r = a + 2b \). This normalization holds under the assumption that the hospitals in the data are making optimal decisions about investments in a marketplace when no
readmission penalties apply. In this case, we cannot pin down a or b, but with the normalization and estimate of γ, we know the relative values from the equation above, which determine the convexity of the investment function. The convexity gives rise to diminishing marginal productivity in readmission rate investments. If b is large relative to a, there are quickly vanishing returns to investment, in which case the penalty will have less of an effect on readmission rates.

In the presence of the penalty system, hospitals can make changes to their investments that affect their readmission rates (e.g., investments in medical technologies, equipment, doctor quality). The optimal level of investment, hence optimal readmission rate, depends on two crucial parameters describing the penalty system. First is the average readmission rate amongst hospitals in the market, or readmission penalty threshold, \bar{r}. There is no penalty for hospitals with readmission below \bar{r}. Above \bar{r} the hospital pays a penalty on revenues generated by each patient, of some value between 1 percent and 3 percent. We fix this value at penalty dollars per patient, and is constant across hospitals. Given this non-convex penalty system, the optimal level of readmission takes on a discrete solution. For hospitals originally below the threshold, $r_0 + I_0 \ast < \bar{r}$, they make no change to investment; that is $I = I_0 \ast$. For hospitals above the threshold, $r_0 + I_0 \ast > \bar{r}$ they either keep their readmission rate unchanged or reduce it to \bar{r}. They have no incentive to reduce below the penalty threshold, nor to reduce to a level that remains above \bar{r}.

Whether or not to reduce readmission depends on the marginal cost of treating a patient. For a hospital that makes additional investments to reduce to the threshold, marginal cost will be

$$mc_{j}^{\text{invest}} = x_j \hat{\gamma} + \hat{\gamma}_r \bar{r} + a(r_{0j} - \bar{r}) + b(r_{0j} - \bar{r})^2. \quad (2.54)$$
On the other hand, if the hospital incurs penalty without investing in readmission reduction, then its predicted marginal cost will be

\[mc_j^{\text{penalty}} = x_j^c \hat{\gamma} + \hat{\gamma}_r r_j + \text{penalty}. \]

If \(mc_j^{\text{invest}} < mc_j^{\text{penalty}} \), then hospital \(j \) will invest to reduce readmissions, otherwise hospital \(j \) will rather incur penalty and not change its readmission rate. The cost of investment will be the lowest when \(b = 0 \). When \(b = 0 \), \(a = \hat{\gamma}_r \), and

\[mc_j^{\text{invest}} = x_j^c \hat{\gamma} + \hat{\gamma}_r \bar{r} + a(r_0j - \bar{r}) \]
\[= x_j^c \hat{\gamma} + \hat{\gamma}_r \bar{r} + \hat{\gamma}_r (r_j + 1 - \bar{r}) \]
\[= x_j^c \hat{\gamma} + \hat{\gamma}_r r_j + \hat{\gamma}_r. \]

Comparing the above equation with Equation 2.55, it is be clear that the imposed penalty by the government must be greater than \(\hat{\gamma}_r \) for hospitals to reduce readmissions. We make a simplifying assumption that all hospitals with readmission rate greater than the average readmission rate in the corresponding market are assessed a fixed penalty of \$4000 per patient. Note that in our analysis, \(\hat{\gamma} = 3430.48 \) (see Table 2.8), so, the penalty is greater than \(\hat{\gamma} \).

We analyze the hospitals’ decisions by varying quadratic cost coefficient \(b \) from 0 to 1710 in increments of 10. Figure 2.2 shows a plot of the number of hospitals choosing to reduce readmissions versus \(b \). As expected, the number of hospitals choosing to reduce readmissions decrease as \(b \) increases. This is intuitive; since as \(b \) increases, the cost of investment increases and hence more hospitals will choose to incur the proposed penalty rather than invest to reduce readmissions.

We next simulate this analysis for \(t \) time periods to study the steady-state
behavior of all hospitals in our data set. This exercise highlights important features of
the penalty system. First, the average readmission rate \bar{r}_t (indexed to time) changes
across time. After the first period, some hospitals reduce their readmission rate,
lowering $\bar{r}_{t=2}$ for the second period. This lowering can have two effects. Some hospitals
that were below $\bar{r}_{t=1}$ in period 1 will be over $\bar{r}_{t=2}$ and choose to reduce readmission.
The hospitals in period 1 that didn’t lower will maintain their readmission rate. Some hospitals
that lowered in period 1, may revert back to their original readmission rate because the additional investment cost to further lower (higher than in period 1 because of diminishing returns to investment) may not be worth the savings in the
penalty. The amount that \bar{r} falls over the long run depends on the distribution of r_0.

We simulate across time for a fixed $b = 700$ and $a = 2030.475$ until the absolute value of the difference between average readmission rate of the current period and the average readmission rate of the previous period was less than 0.001. Figures 2.3, 2.4, and 2.5 show the plot of average readmission rate across time periods for all hospitals in markets 1, 2, and 3 respectively. The steady-state behavior of hospitals in markets 4, 5, 6, 7, 8, and 9 are not shown for brevity; however, we note that the steady-state behavior of hospitals in markets 4 and 7 are similar to those in market 1, hospitals in markets 5 and 8 are similar to those in market 2, and hospitals in markets 6 and 9 are similar to those in market 3.

Figure 2.3: Steady-State Behavior of Hospitals in Market 1
Next, we introduce stochastic shocks into our model (Rust 1987). Specifically, we let
\[r_{jt} = r_{0j} + \epsilon_{jt} - I_{0j}, \]
where \(t \) indexes the time period and \(\epsilon_{jt} \) is the shock experienced by hospital \(j \) in period \(t \). We assume that all hospitals will know the realization of the shock before making their investment decision. Using the above normalization procedure, if the hospitals choose to reduce their readmission rates to the average readmission rate,
then their predicted marginal cost in time period t would be

$$m_{C_j^t}^{\text{invest}} = x_j^c \hat{r}_t + \hat{c}_r r_t + a (r_{jt} + 1 - \epsilon_{jt} - \bar{r}_t) + b (r_{jt} + 1 - \epsilon_{jt} - \bar{r}_t)^2.$$ \hspace{1cm} (2.56)

On the other hand, if the hospitals incur penalty without investing to reduce readmissions, then their predicted marginal cost in time period t would be

$$m_{C_j^t}^{\text{penalty}} = x_j^c \hat{r}_t + \hat{c}_r r_{jt} + \text{penalty}.$$ \hspace{1cm} (2.57)

Again, hospital j will invest to reduce readmissions in time period t if $m_{C_j^t}^{\text{invest}} < \text{penalty}$.
We assume $a = 2030.48, b = 700, t = 50$. Since we introduce stochastic shocks, we simulate each time period 10,000 times and compute the grand mean of readmission rate of all hospitals in each time period. We assume ϵ to have normal distribution with mean 0 and two different variances: 1 and 5. We refer to the first case as “low variance” and the second case as “high variance” in the remainder of this paper. Figures 2.6, 2.7, and 2.8 show the plot of average readmission rate across time periods for all hospitals in markets 1, 2, and 3 respectively for both low variance and high variance cases. Both the cases are simulated for 10,000 runs. We also include the steady-state behavior of each market without stochastic shock, as explained previously just for completeness and comparison.

Figure 2.6: Steady-State Behavior of Hospitals in Market 1 with Stochastic Shock
As seen from Figures 2.6, 2.7 and 2.8, the effect of the stochastic shock on the average readmission rate is not consistent in the 3 markets. In markets 1 and 2, the hospitals have lower readmission rate with low variance shock, whereas in market 3, the hospitals have lower readmission rate with high variance shock. It is also interesting to note that in markets 1 and 3, the average readmission rate is lower with stochastic shocks than with no shock; however, in market 2, the average readmission rate is higher with stochastic shocks than with no shock. One of the reasons for these differences among the markets is the fact that the readmission rates of hospitals in market 2 are very close to each other to begin with, which is not the case in markets 1 and 3. Again, behavior of hospitals in markets 4 and 7 were similar to
those in market 1, hospitals in markets 5 and 8 were similar to those in market 2, and hospitals in markets 6 and 9 were similar to those in market 3. So, these are not shown for brevity.

2.5.4.2 Counterfactual 2: Effect of Elimination of Critical-Access Hospitals on Prices of Acute Care Hospitals

Some researchers are concerned that critical-access hospitals will be affected the most by the recent cost cutting measures (Scott 2012). In the second counterfactual analysis, we eliminate all critical access hospitals to determine if their absence from the market will affect hospital charges and consequently patient welfare. Critical
access hospitals are present in the original data set only in markets 3, 6, and 9. The following equilibrium equation is used to estimate the average price charged by all acute care hospitals in these three markets

\[0 = D(p^*) + \Omega_{\text{post}}(p^*)(p^* - mc). \] (2.58)

We solve this equation after eliminating the critical access hospitals, using the fsolve function in Matlab to compute \(p^* \) and hence \(D(p^*) \), \(\Omega_{\text{post}}(p^*) \). The marginal costs are estimated earlier in the supply side estimation of the non-nested model and are assumed to remain the same. The non-nested model estimates are used since there are no hospitals in the critical access nest in this counterfactual environment. The price charged by the acute care hospitals after eliminating the critical access hospitals in all three markets do not increase. At least two explanations are plausible. First, to the extent that the healthcare sector is different from other industries, less competition does not always translate to higher prices. Second, the market share of the critical-access hospitals was much smaller to begin with, so these hospitals are price-takers and not price-setters. Our counterfactual finding implies this: on average, patients pay the same amount to receive a treatment in an acute care hospital even when there are no critical access hospitals providing competition in the market. The welfare loss to patients is then attributed to the loss of access to critical care hospitals, and not from increased prices.

2.6 Conclusions

This paper examines whether the operations strategy perspective on quality management literature holds for hospitals. Namely, hospital readmissions, when
viewed as rework, would act to increases costs. To the extent that this perspective is valid for hospitals, then hospital administrators should have an internal incentive to reduce readmissions. Yet, in practice, readmissions have not declined as would have been predicted by operations strategy. This paper is among the first to address this disparity. We demonstrate empirically that increased readmission rates significantly increases hospitals’ marginal costs in our sample. A 1 percent increase in readmissions increased the marginal cost by about 7.2 percent, controlling for the average length of patient stay, type of ownership, and nurse ratio. This result offers several important future research paths. First, the increased marginal cost of hospitals due to readmissions should have been an incentive by itself for the hospitals to reduce its readmission rate. Thereby, it will be valuable to identify why hospital administrators make decisions to do otherwise, which leads to the following question: what other beliefs or incentives may exist that direct management attention to the problem of readmissions? One possibility is that a hospital with low capacity utilization would find it more profitable to allow a high readmission rate to continue because it provides a positive profit for otherwise idle capacity. We leave it to future research to investigate how bed utilization and discharge plans influence readmission rates. A second related line of research would be to explore whether the new penalty will align hospital managers’ goals—and behavioral decision-making—with those of Medicare. Medicare’s plan to penalize those hospitals that have high readmission rates, should increase their incentive to reduce readmission rates. Consequently, these findings suggest that the Medicare penalty may indeed serve to align both the hospitals’ and Medicare’s goals to reduce readmissions. However, the counterfactual analysis suggested that the penalty may not increase incentives enough for hospitals to completely eliminate readmissions. Remember, that despite the increased marginal costs for readmissions, some hospitals still have high readmissions. Importantly, the counterfactual analysis
found that the penalty for high readmissions being phased-in by Medicare will force hospitals with readmission rates close to the average market readmission rate to make investments that will reduce their readmissions and prevent them from incurring the penalty. We examined whether the government’s efforts to reduce costs could actually increase prices charged by acute care hospitals if critical access hospitals were driven out of business. Counter to conventional wisdom, eliminating critical access hospitals did not increase the prices charged by acute care hospitals.

This paper used CMS data and data from the Arizona department of health to estimate how readmissions affected hospitals’ marginal cost. The marginal cost was estimated using demand estimation model from empirical IO literature. We applied aggregate data for the analysis of whether hospitals had an incentive to reduce readmission rates. Future research using patient level data could investigate whether readmissions increase the marginal cost for each type of surgery and/or treatment, and also, whether particular patient characteristics influence marginal cost and readmission rates. If patient characteristics influenced the marginal cost and readmission rates, then these patient characteristics could influence which patients the hospital admitted. Currently patient level data are not available for researchers, but as more data become publically available, researchers will be able to distinguish between the average length of patient stay for new patients and readmitted patients; thereby linking the hospital level results with the patient level as found in KC and Terwiesch (2012). This distinction will provide opportunities for investigating the increases in hospital marginal costs due to average length of patient stay and other intangible factors.

A third research path is creating a systems view for hospital management so that ramifications of local decisions on the whole system is monitored. Administrators often wrestle with the problem of how to ensure the survival of their hospital. They
must be able to understand how investments in quality healthcare affects overall efficiency measures, which hospitals have both the requisite capacity and the capability according to operations strategy. When capacity utilization drops, an internal incentive for a manager to welcome any patients may emerge— even if the marginal cost is increased due to a higher readmission rate. In this case, they may take actions that are not aligned with other managers, who are striving to reduce the readmission rate and reduce the average length of patient stay. Clearly, there is a need for further investigation of the internal incentives within the hospital system and how these incentives could be aligned with the payers’ incentives to improve healthcare quality while reducing costs. Our study provides evidence that an operations strategy perspective to the readmission problem offers promise for untangling the complexity of hospital marginal costs for managers and policymakers alike.
Essay 3.
Hospital and Patient Incentives to Reduce Readmission Rates: A Quality Management Framework

Abstract

This paper develops an analytical model to evaluate the impact of a recent U.S. government plan—referred to as Patient Protection and Affordable Care Act (PPACA), which aims to penalize hospitals with high readmission rates, on the hospitals’ (providers’) profits. We assess the government’s cost as well as the patient welfare from a quality management perspective. We aim to find the optimal design of an incentive mechanism that can better save the government’s expense and improve the welfare of the patients. We find that hospital’s optimal readmission rate is either zero or a value greater than zero, but less than the threshold readmission rate set by the government depending on the price to cost ratio of the treatment. Results also indicate that the optimal readmission rate for the hospital increases as the threshold readmission rate and payment factor set by the government increase. Our analytical results
demonstrate potentially unintended consequences. Namely, patient welfare can be adversely affected if the government policy does not take patient welfare appropriately into account.

3.1 Introduction

We investigate the potential impact of the recent Medicare plan to penalize hospitals with high readmission rates in the U.S. on the government, hospitals, and patients. In an effort to reduce hospital readmission rates, the enacted Patient Protection and Affordable Care Act (PPACA) initiates, among other things, the Hospital Readmissions Reduction Program (Stone and Hoffman 2010). The key content of this reform is to financially penalize hospitals with excessively high risk-adjusted readmission rates for Medicare patients. More specifically, the Medicare payments to the hospitals overall will be reduced by an adjustment factor (Stone and Hoffman 2010) whenever any hospital’s readmission rate is greater than the threshold readmission rate set by the government. Beginning in 2013, hospitals with high readmission rates will have their Medicare reimbursements for all care provided cut by 1 percent and higher penalties (up to 3 percent) will be phased in by 2015. These penalties are the latest in a series of cost control measures. The implied government’s argument for imposing a penalty is this: high readmissions represent a hospital’s quality failure to properly cure the patient during the patients’ initial stay, and hence, the hospital should be penalized in their Medicare payment. Readmissions (also called rehospitalizations) have been identified as one major determinant of surging health care costs. Ironically, high readmission rates may be a consequence of the established reimbursement mechanisms compensating hospitals with a set payment for each admission (Epstein 2009).
Medicare institutionalized prospective payment system (PPS) in 1983 to shift from an itemized billing system in which Medicare had reimbursed hospitals on a fee-for-service (FFS) basis for each service item provided to an admitted patient (e.g., a night in a hospital bed, or hours of surgery). The PPS system reimbursed hospitals with a fixed fee per episode of patient’s stay rather than per service item. The PPS system’s aim was to eliminate the perverse incentives in the FFS system, which actually induced hospitals to inflate demand by providing more services to their patients than were medically necessary. For example, itemized billing was an incentive to hold patients longer than medically required because hospitals were paid per night of patient stay. The introduction of PPS reduced the average length of patient stay and hospital over-crowding (Phelps 2012). However, as can be similarly intuited, PPS did not correct hospitals’ incentives to bring down their readmission rates, which were already high in 1983–and remained essentially unchanged since then. On average, 20 percent of Medicare patients are readmitted to the hospital for the same diagnosis within 30 days of discharge; 35 percent have been readmitted within 90 days of their discharge (Jencks, Williams, and Coleman 2009). Until the PPACA penalty was implemented, hospitals continued to receive a full PPS payment for readmitted patients. Thus, it is highly likely that PPS payments created a strong financial incentive for hospitals to continue with a 20 percent readmission rate (on average) rather than trying to reduce it.

Figure 3.1 illustrates how the penalty affects hospitals’ financial incentives. Consider two hospitals: one unpenalized hospital (i.e., a hospital with an actual readmission rate less than the threshold readmission rate) and one penalized hospital (i.e., a hospital with an actual readmission rate more than the threshold readmission rate). In hospital 1, a patient receives a treatment during a first time admission that earns the hospital a profit of $5,000. If this same patient is discharged and
readmitted within 30 days for the same treatment, the hospital earns a profit of $5,000 once again. The bottom half of Figure 3.1 illustrates the payment structure for a penalized hospital (Hospital 2) when the same patient receives a treatment from Hospital 2. The penalized hospital’s payment causes that hospital’s profit to be reduced for both first time admission and the readmission since its actual readmission rate is more than the threshold readmission rate.

Figure 3.1: Profit for Two Hospitals

In this paper, we operationalize the hospital-patient dyad as a simple open queueing network. Based on this dyad, a principal-agent model is analyzed with the government as the principal and the hospital as the agent. Our goal is to first evaluate the impact of the proposed incentive system on hospital quality measured by readmission rate, government reimbursement spending, and patient welfare. In particular, we are interested in the effects of the triad interaction among government, hospital and patients. Furthermore, we search for the optimal design of an incentive
mechanism that can better save the government’s expense and improve the welfare of the patients. As a positive alternative to the penalty-based incentive mechanism, we extend our current framework to include the possibility and the provision of incentives to reduce readmission rates by enhancing hospital’s post-discharge care (e.g. close follow-up, home care support program) as well as motivating better patients’ cooperation with the treatment procedure.

Several potential incentive issues exist in this environment. The hospital generates revenue from a patient’s discharge and is motivated to shorten the duration of patient stay by discharging the patient earlier. Although these decisions must be based on “objective” expertise judgment and the patient’s interest, they are indistinguishable from the government’s perspective. This is a typical moral hazard incentive issue. This is essentially the reason that the penalty scheme should be risk-adjusted. We investigate analytically whether or not the proposed PPACA plan makes the best use of the observable information. We use a standard principal-agent moral hazard model to examine the effects of this synergy between hospital and patients on the design of incentive mechanisms for the hospital and the healthcare system as a whole.

This paper makes significant contributions. It provides key insights to policymakers regarding the impact of the proposed plan to penalize hospitals with high readmissions on the hospitals and the patient welfare. In particular, results indicate that, depending on the price to cost ratio of the treatment, the optimal readmission rate for hospitals will be zero or a value greater than zero but less than the threshold value of readmission rate allowed by the government. We find that the optimal value of hospital’s readmission rate increases as the threshold value allowed by the government increases. Similarly, the optimal value of hospital’s readmission rate increases as the penalty imposed by the government on hospitals with high readmissions decreases. As a socially responsible organization, the government needs to take into
account the interest of society as a whole. More specifically, the government objective is to optimize the weighted sum of hospital’s expected profit, patient welfare, and government’s cost. These results provide timely insight to the government policy makers about the threshold value of the allowed readmission rate, payment factor, and patient welfare and to the hospitals about the optimal value of the readmission rate that they should maintain to maximize their profits.

The rest of this paper is organized in the following way. We review relevant literature in Section 3.2 and present our mathematical model in Section 3.3. We present results and mathematical proofs in Section 3.4 and discuss the implications of these results and conclude in Section 3.5.

3.2 Literature Review

We review two streams of literature: healthcare operations management and principal-agent models applied to healthcare industry. First, we present a review of the relevant healthcare literature and applications of healthcare in operations management literature. Second, we present a brief review of the papers that have used principal-agent model and game theory in healthcare operations setting. There are multiple operations management studies about strategic healthcare delivery decisions such as analytical articles about capacity requirements (e.g., number of beds, staffing) and other decisions such as scheduling surgeries. Other studies have examined how to streamline patient flows (see Green 2004 for a detailed review and Roth et al. 1996 for a discussion on hospitals’ operations strategies). Although there have been many analytic studies on healthcare in operations management, there have been very few papers dealing with readmissions from an operations perspective. KC and Terwiesch (2012) estimate the effect of initial length of stay of patients in one hospital’s intensive
cardiac unit on probability of readmission of the patients from step down care center back to the ICU. They find that the initial length of stay has a negative effect on the probability of readmission. In the light of the new penalty plan, Bartel et al. (2013) extend this finding to the set of entire Medicare patients across all the hospitals in the U.S. There have been two notable papers on readmissions from a policy perspective. Friedman and Basu (2004) use proprietary cost and readmissions data of a sample of U.S. hospitals to compute the total cost to the payer (U.S. Government or Medicare) due to potential readmissions. Venkataraman et al. (2013) estimate the effect of readmissions on marginal cost of hospitals using data on hospitals in Arizona. They find that readmission rates have positive effect on marginal cost. We use this result in our mathematical model to model the hospital cost, as described in detail in Section 3.3.

We use operations strategy theoretical lens to posit that readmission in healthcare implies quality defect (Garvin 1987). In particular, a readmission does not meet Juran’s (1992) definition of “freedom from deficiencies”. A readmission does not also meet the patient’s requirement or standard of care. So, high readmission rates are considered to be indicators of poor quality (Rau 2011). Quality is a multidimensional construct. Eight dimensions of quality (performance, features, reliability, conformance, durability, serviceability, aesthetics, and perceived quality) have been identified in the manufacturing sector (Garvin 1987). We believe that all these dimensions, except durability, also apply in the healthcare services.

Recently, Eappen, Lane, Rosenberg, Lipsitz, Sadoff, Matheson, Berry, Lester, and Gawande (2013) published their findings on the relationship between occurrence of surgical complications and hospital finances. Their empirical findings using data of a Texas hospital system indicate that hospitals have financial incentives to create surgical complications since these complications change the diagnosis related group (DRG) of the surgery, which in turn increases the payment from the Medicare. As
indicated above, the effect of readmissions on financial incentives for government and hospitals was recently examined by Friedman and Basu (2004) and Venkataraman et al. (2013) respectively. However, the impact of the potential penalization plan, including the threshold value allowed by the government and the penalty structure on the optimal readmission rate and patient welfare remains yet to be analyzed. This paper fills in this literature gap.

Principal-agent model and queueing models have been used often in the healthcare and quality operations management literature. So and Tang (2000) develop a mathematical model to understand the effect of reimbursement policy for drugs on the drug usage by the clinic. They find that patients with worse initial conditions and drugs with lower profit margin will force the clinics to set a lower output target level of the patients’ well being. They also find that the clinics will set a lower output target level if the reimbursement threshold set by the payer for a particular drug is lower, which is intuitive. Fuloria and Zenios (2001) develop a dynamic principal-agent model to outline the FFS payment system of Medicare (purchaser of medical services) and a hospital (provider), where the Medicare’s problem is to maximize the social welfare and hospital’s problem is to maximize its expected profit. They find that the Medicare should move to a prospective payment system with a retrospective penalty on deaths occurring in the hospital. Our problem is similar, however, the current system itself is of prospective payment and we do not consider linear payment system as considered by them. Jiang et al. (2013) model pay for performance outpatient healthcare system as a principal-agent model where the payer’s (principal) problem is to minimize the cost while achieving a target waiting time for the patient and the hospital’s problem is to maximize its profit given the contracting terms by the principal. The hospital dynamics are modeled as a M/D/1 queueing system. They find that the linear contract cannot achieve the second-best solution and propose a threshold
penalty payment system. Chao et al. (2003) analyze customer flows between different sites in a multisite healthcare system and provide guidelines for resource allocation in such cases while meeting a target for waiting time of patients. Anand et al. (2011) study customer-intensive queueing systems where quality and speed are trade-offs. They find that customer intensity leads to results different from those of conventional queueing systems. In particular, the speed of the servers reduces as the number of competing servers goes up and the price charged by the server increases as the number of competing servers goes up. We build on this stream of literature by modeling a prospective payment system healthcare service as a principal-agent model with government (payer) being the principal hospital (provider) being the agent. The payer’s problem is to maximize its expected profit, which is modeled as a weighted average of hospital’s expected profit, patient welfare and payer’s cost, which is explained in detail in Section 3.3.

3.3 Model

Timeline of events of admission and readmission to a hospital and the payment details are shown in Figure 3.2 and all the notations used in the model are listed in Table 3.1.

We assume $k \sim \text{BIN}(N, r)$ and since N is sufficiently large, we use normal approximation to binomial. So, $k \sim N(Nr, Nr(1 - r))$, and $X = \frac{k - Nr}{\sqrt{Nr(1 - r)}} \sim N(0, 1)$. The hospital gets full payment (pN) from Medicare if its realized readmission rate (k/N) is lower than the threshold readmission rate (α) while it gets a penalized payment ($p\delta N$) if its realized readmission rate (k/N) is greater than the threshold readmission rate (α).
Expected Revenue = \(\Pr \left[\frac{k}{N} \leq \alpha \right] \left(\text{Exp. Rev.} \mid \frac{k}{N} \leq \alpha \right) \)
+ \(\Pr \left[\frac{k}{N} > \alpha \right] \left(\text{Exp. Rev.} \mid \frac{k}{N} > \alpha \right) \)
= \(\Pr \left[\frac{k}{N} \leq \alpha \right] \left(pN + pk \mid \frac{k}{N} \leq \alpha \right) \)
+ \(\Pr \left[\frac{k}{N} > \alpha \right] \left(\delta pN + \delta pk \mid \frac{k}{N} > \alpha \right) \).

\[E[k; k \leq Na] = E[\sqrt{Nr(1-r)}X + Nr; \sqrt{Nr(1-r)}X + Nr \leq Na] \]

= \(\sqrt{Nr(1-r)}E \left[X; X \leq \frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right] \)
+ \(NrE \left[1; X \leq \frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right] \)
= \(-\sqrt{\frac{Nr(1-r)}{2\pi}} \exp \left\{ -\frac{N^2(\alpha - r)^2}{2Nr(1-r)} \right\} + Nr\Phi \left(\frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right) \).
Table 3.1: Notation Table

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of admitted patients per year</td>
</tr>
<tr>
<td>k</td>
<td>Number of readmitted patients per year (Random Variable)</td>
</tr>
<tr>
<td>α</td>
<td>Threshold readmission rate</td>
</tr>
<tr>
<td>p</td>
<td>Price per patient</td>
</tr>
<tr>
<td>r</td>
<td>Probability of readmission</td>
</tr>
<tr>
<td>δ</td>
<td>Payment factor for penalized hospitals</td>
</tr>
<tr>
<td>c</td>
<td>Cost of treating a patient</td>
</tr>
<tr>
<td>w</td>
<td>Wait time cost per patient</td>
</tr>
</tbody>
</table>

\[
E[k; k > N\alpha] = E[\sqrt{Nr(1-r)}X + Nr; \sqrt{Nr(1-r)}X + Nr > N\alpha] \\
= \sqrt{Nr(1-r)}E \left[X; X > \frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right] \\
+ NrE \left[1; X > \frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right] \\
= \sqrt{Nr(1-r)} \frac{2\pi}{2\pi} \exp \left\{ -\frac{N^2(\alpha - r)^2}{2Nr(1-r)} \right\} \\
+ Nr \left[1 - \Phi \left(\frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right) \right].
\]

So, Expected Revenue = \(pN\Phi \left(\frac{N(\alpha - r)}{\sqrt{Nr(1-r)}} \right) (1 + r)(1 - \delta) + p\delta N(1 + r) \\
+ p(\delta - 1)\sqrt{\frac{Nr(1-r)}{2\pi}} \exp \left\{ -\frac{N^2(\alpha - r)^2}{2Nr(1-r)} \right\}.

The admission and readmission process is modeled as a queueing network with feedback as shown in Figure 3.3. Further, we use queueing theory results (Kulkarni 2005) to model the hospital cost and patient wait time cost for patient welfare, that we use later in government’s objective function.
Figure 3.3: Queueing with Feedback

Time Spent by a patient in a hospital = \frac{1}{(1 - r)\mu - N}

Hospital Cost = \frac{cN}{(1 - r)\mu - N}, \quad (3.59)

where \mu is the hospital capacity. Similarly,

Patient Cost = \frac{wN}{(1 - r)\mu - N}, \quad (3.60)

So, the hospital’s expected profit is given by the difference between its expected revenue and cost.

\[
\text{Hospital Profit} = pN\Phi \left(\frac{N(\alpha - r)}{\sqrt{Nr(1 - r)}} \right) (1 + r)(1 - \delta) + p\delta N(1 + r) \\
+ p(\delta - 1) \sqrt{\frac{Nr(1 - r)}{2\pi}} \exp \left\{ -\frac{N^2(\alpha - r)^2}{2Nr(1 - r)} \right\} - \frac{cN}{(1 - r)\mu - N},
\]

(3.61)
The government side problem is modeled as optimizing the weighted average of hospital’s profit, patient welfare, and government’s cost (which is equal to the hospital’s revenue). Using Equations 3.59 and 3.60, government’s objective is given by

\[
\text{Government’s Objective} = \xi [\tau(\text{Hospital Profit}) - (1 - \tau)(\text{Patient Cost})] \\
- (1 - \xi)(\text{Hospital Revenue}) \\
= \beta_1(\text{Hospital Revenue}) + \beta_2(\text{Hospital Cost}) \\
+ \beta_3(\text{Patient Cost}) \\
= \beta_1(\text{Hospital Profit}) + \beta'_2(\text{Hospital Cost}) \\
+ \beta_3(\text{Patient cost}),
\]

where \(\xi \) and \(\tau \) are any given weights, \(\beta_1 = \xi \tau - 1 + \xi, \beta_2 = -\xi \tau, \beta_3 = -\xi (1 - \tau), \beta'_2 = \beta_1 + \beta_2 = \xi - 1. \)

3.4 Results

The theorems below determine the optimal value of readmission rate \(r^* \), which maximizes hospital’s expected profit. Proofs of all theorems are in appendix.

Theorem 1. If \(p < \frac{c\mu}{(\mu - N)^2} \), then \(r^* = 0 \).

Theorem 1 shows that it is optimal for hospitals to have zero readmission rate if the price to cost ratio is below a threshold value. This is intuitive since for treatments with low price to cost ratio, hospitals will have no incentives to induce readmissions, while for treatments with high price to cost ratio, hospitals will have incentives to induce readmissions as shown in Theorem 2.
Theorem 2. If \(p \geq \frac{c\mu}{(\mu - N)^2} \), then \(\exists r^* < \alpha \) such that \(\frac{\partial \Pi}{\partial r} \) at \(r = r^* \) is zero.

Theorem 3 proves the uniqueness of \(r^* \).

Theorem 3. \(r^* \) is unique if \(\delta < \frac{c\mu}{p[(1-r)\mu - N]^2} \) or if

\[
\delta < \frac{(1+r^*)}{(1+r)} + \frac{c}{p(1+r)} \left[\frac{1}{(1-r)\mu - N} - \frac{1}{(1-r^*)\mu - N} \right] \quad \forall r > \alpha.
\]

To analyze the government’s objective function in Equation 3.62, we first investigate the effect of threshold readmission rate and payment factor set by the government on optimal readmission rate of the hospital and patient cost. We use the numerical values given in Table 3.2.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>10,000</td>
</tr>
<tr>
<td>(p)</td>
<td>70,000</td>
</tr>
<tr>
<td>(c)</td>
<td>60,000</td>
</tr>
<tr>
<td>(w)</td>
<td>45,000</td>
</tr>
<tr>
<td>(\mu)</td>
<td>22,000</td>
</tr>
</tbody>
</table>

As seen in Figure 3.4, optimal readmission rate \((r^*)\) increases as the threshold readmission rate \((\alpha)\) increases and if payment factor \((\delta)\) increases. This effect is intuitive since as the threshold readmission rate and payment factor increase, the government is allowing more readmissions and hence hospitals have incentive to induce more readmissions.

We prove these results analytically in Theorems 4 and 5 respectively. Also, the effect of threshold readmission rate is steeper than the effect of payment factor. This implies that the government should pay more attention to setting the right threshold readmission rate than setting the right payment factor.
Figure 3.4: Effect of Threshold Readmission Rate and Payment Factor on Optimal Readmission Rate

![Figure 3.4](image)

Theorem 4. Optimal readmission rate (r^*) is non-decreasing in threshold readmission rate (α).

Theorem 5. Optimal readmission rate (r^*) is non-decreasing in payment factor (δ).

Figure 3.5 shows the effect of threshold readmission rate and payment factor on optimal patient cost. Since optimal patient cost increases as optimal readmission rate increases, the effects of threshold readmission rate and payment factor on optimal patient cost are similar to their effects on optimal readmission rate. This implies that if government’s policy goes awry, then patient’s welfare will be adversely affected.
3.5 Conclusions

This paper examined the impact of Medicare’s plan to penalize hospitals with readmission rates greater than the corresponding government determined threshold readmission rates on government, hospitals, and patients. To study the impact of the plan, a principal-agent model is developed with government as the principal and hospital as the agent. The hospital’s problem is modeled as an optimization problem to maximize expected profit which is the difference between expected revenue and hospital’s cost. The hospital gets full payment if its empirical readmission rate is less than the government set threshold readmission rate, whereas it gets a penalized
payment if its empirical readmission rate is greater than the threshold readmission rate. To model hospital’s cost and patient wait time cost, queueing with feedback model results were used. We find that hospital’s optimal readmission rate will be zero or a value greater than zero, but less than the threshold readmission rate depending on the ratio of price to cost of the treatment. The government’s problem is modeled to optimize hospital’s profit and patient wait time cost (both of these together constitute societal welfare at large) and government’s cost. We find that if government’s policy goes wrong, then hospitals will be the main beneficiary, while the patient’s welfare will be adversely affected. We plan to extend the government side optimization problem by imposing the individual rationality constraint so that the hospitals participate in this penalty plan. If not, the hospitals would prefer going bankrupt instead of participating in this program.

This paper has certain limitations. First, homogeneity of patients was assumed for modeling simplicity. However, in reality patients’ characteristics are very heterogeneous. Second, a fixed price and unit hospital cost and patient welfare cost was assumed due to the assumption of patient homogeneity. Third, individual rationality constraint was relaxed in the current analysis. However, we plan to extend our analysis by imposing the constraint. In spite of these limitations, the results of this essay provide timely insights to hospital administrators and policy makers in the government as well as the patients in light of the recent Medicare penalty.

This essay provides several avenues for future research. First, a dynamic principal-agent model can be built to find the hospital’s optimal decision over a period of time given the penalty, threshold readmission rate in each time period and hospital’s decision in the previous periods. Second, patient’s heterogeneity can be modeled which will be private information to hospitals only. Third, after the data for payment factor, threshold readmission rate and realized readmission rate become available; an
empirical analysis could be done to study the impact of penalty on readmission rate of all hospitals in the U.S.
Conclusions

First, this dissertation finds key antecedents that affect efficiency in banking industry and effectiveness in healthcare industry. Although efficiency in banking industry has been estimated many times in the past, test of equality of means comparing efficiency of two groups in banking industry has been missing in the literature. The first essay of this dissertation fills this gap by testing equality of means of banks operating in the U.S. and in India. The hypothesis is grounded in diffusion theory, where by technology diffusion has enabled banks operating in India to catch up with their western counterparts in terms of efficient banking, especially after foreign banks were allowed to operate in India since 1990. The second hypothesis of the first essay, grounded in path dependence theory, contrasts the means of state-owned banks, domestic private banks, and foreign banks operating in India. We find evidence of path dependence, i.e., the economic policies until 1990 that gave inherent advantage to the state-owned banks still have an effect in India and hence we find that state-owned banks are more efficient than domestic private and foreign banks in India. This implies that the Indian government needs to carry forward the liberalization policies further to enable efficient operation of domestic private and foreign banks. By interviewing managers of all three type of banks in India, we found that state-owned banks tend to hire “better” employees by having a nation-wide test and an interview
process. Domestic private and foreign banks in India need to manage their labor in a more efficient way through better in-house training programs. They should also pursue innovation which will enable them to be more efficient and in turn will help them in making investments. This would mean that domestic private and foreign banks should probably focus on innovation to compensate for the path dependence disadvantage. These banks should also manage their labor better. The foreign banks have recently been able to attract employees by paying higher salary and hence future research on this topic after a decade will probably show that the domestic private and foreign banks are equally or more efficient than state-owned banks.

Second, this dissertation finds cost drivers of hospitals in healthcare industry. The second essay finds that readmission rate increases marginal cost of the hospital, defined as the cost of treating one patient per episode, significantly. In particular, we find that as the readmission rate increases by 1 percent, the marginal cost incurred by the hospital goes up by 7.2 percent. This finding is very significant since this increase coupled with the recent act (PPACA) to penalize hospitals with high readmission rates will serve as “double whammy” to the hospitals. Interestingly, the local hospital administrators who we talked to are not aware of this effect in their hospital and hence this finding has the potential to be impactful in the light of Medicare’s recent penalization plan. This finding has a operations strategy quality management implication. Readmissions are costly for hospitals and hence hospitals should invest more in quality failure prevention costs (Juran 1992). The second essay of this dissertation also estimates the impact of the potential penalty on the average readmission rate of all hospitals in three markets in the state of Arizona. We find that the market in which initial competition among hospitals in terms of their readmission rates is high achieves lower average readmission rate in the steady-state once the penalty sets in. We also find that with the introduction of stochastic shock, the hospitals in market
with low competition tend to achieve lower readmission rate than without stochastic shock. However, this effect is reverse in the market with high competition in terms of their initial readmission rate. After eliminating critical access hospitals, we find that the average price charged by the acute care hospitals remains the same. This implies that the patient welfare in terms of their cost will remain unaffected even if critical access hospitals go out of business. However, their access to care will be severely affected and hence we do not recommend elimination of critical access hospitals.

The third essay of this dissertation builds on the second essay by developing a principal-agent model to analyze the impact of PPACA on government, hospitals, and patients. The hospital side problem is modeled as maximization of its expected profit which is the difference between its expected revenue from the government and its cost. The hospital will get full revenue if its realized readmission rate (number of readmissions/total admissions) is less than the government determined threshold readmission rate, while it will get a penalized payment if its realized readmission rate is higher than the threshold readmission rate. We find that the optimal value of readmission rate that maximizes hospital’s expected profit is zero or an interior value greater than zero but less than the threshold readmission rate depending on the price to cost ratio of the treatment. The government side is modeled as an optimization problem with weights for hospital profit, patient welfare, and government cost. Analytical and numerical results indicate that if the government gives low weight to hospital profit and societal welfare in general, then the optimal threshold readmission rate and the optimal payment factor that optimizes government objective are their lower bounds respectively. However, if the government gives high weight to hospital profit and societal welfare in general, then the optimal threshold readmission rate and payment factor is greater than zero but less than the respective upper bounds. Results also indicate that optimal readmission rate and patient cost are non-decreasing
in threshold readmission rate and payment factor set by the government.

This dissertation makes several contributions to the service and healthcare operations management literature. First, it integrates diffusion theory from marketing and path dependence theory from economics into service operations. Second, it introduces test of convexity and test of equality of means to the operations management literature when estimating efficiency of decision making units. Third, this dissertation provides hospital administrators an internal incentive to reduce readmission rates on their own even without the Medicare plan to penalize hospitals with high readmission rates. Fourth, the findings of the second essay provide an alignment of goals between the government that actively seeks to reduce readmission rates and the hospitals, which now have an internal incentive to reduce readmission rates. Fifth, the structural estimation methodology can be used by policy makers to estimate hospital cost especially in the case of proprietary hospitals, which are not obligated to publish their cost data. Sixth, our findings from the third essay provide valuable insights to the government, hospitals, and the patients in light of the Medicare’s penalty plan.
Appendices
Appendix A Proofs of Theorems in Essay 3

Proof of Theorem 1

Proof.

\[\frac{\partial \Pi}{\partial r} = p\delta N + \frac{pN(\delta - 1)(1 - 2r)}{4\pi} \exp\left(\frac{-N(\alpha - r)^2}{2r(1-r)}\right) \frac{N}{\sqrt{Nr(1-r)}} \]

\[+ pN(\delta - 1)\sqrt{\frac{Nr(1-r)}{2\pi}} \exp\left(\frac{-N(\alpha - r)^2}{2r(1-r)}\right) \left[\frac{\alpha - r}{r(1-r)} + \frac{(\alpha - r)^2}{2r^2(1-r)} - \frac{(\alpha - r)^2}{2r(1-r)^2} \right] \]

\[+ pN(1 - \delta)\Phi\left(\frac{N(\alpha - r)}{\sqrt{Nr(1-r)}}\right) \]

\[+ pN(1 + r)(\delta - 1) \exp\left(\frac{-N(\alpha - r)^2}{2r(1-r)}\right) \sqrt{\frac{N}{2\pi r(1-r)}} \]

\[+ \frac{pN(1 + r)(\delta - 1) \exp\left(\frac{-N(\alpha - r)^2}{2r(1-r)}\right)}{2\sqrt{2\pi}} \frac{N^2(\alpha - r)(1 - 2r)}{\sqrt{[Nr(1-r)]^3}} - \frac{cN\mu}{[(1 - r)\mu - N]^2}. \]

When \(r = 0 \)

\[\frac{\partial \Pi}{\partial r} = p\delta N + pN(1 - \delta) - \frac{cN\mu}{(\mu - N)^2} \]

\[= N \left[p - \frac{c\mu}{(\mu - N)^2} \right]. \]

So, \(\frac{\partial \Pi}{\partial r} \) at \(r = 0 \) is \(\geq 0 \) if and only if

\[p \geq \frac{c\mu}{(\mu - N)^2}. \] \((63) \)
If Equation 63 does not hold, for any \(r (r \not\approx \alpha) \)

\[
\frac{\partial \Pi}{\partial r} = p\delta N + pN(1 - \delta)\Phi\left(\frac{N(\alpha - r)}{\sqrt{N\gamma(1 - r)}}\right) - \frac{cN\mu}{(1 - r)\mu - N)^2}
\]

\[
\leq p\delta N + pN(1 - \delta) - \frac{cN\mu}{(1 - r)\mu - N)^2}
\]

\[
= N\left[p - \frac{c\mu}{(1 - r)\mu - N)^2} \right]
\]

\[
\leq N\left[p - \frac{c\mu}{\mu - N)^2} \right] < 0.
\]

So, \(r^* = 0. \)

Proof of Theorem 2

Proof. Assuming Equation 63 holds, when \(r = \alpha \),

\[
\frac{\partial \pi}{\partial r} = p\delta N + \frac{pN(\delta - 1)}{4\pi} \frac{1 - 2\alpha}{\sqrt{N\alpha(1 - \alpha)}} + \frac{pN(1 - \delta)}{2} + pN(1 + \alpha)(\delta - 1) \frac{N}{2\pi\alpha(1 - \alpha)}
\]

\[
- \frac{cN\mu}{[(1 - \alpha)\mu - N)^2}
\]

\[
= pN\left[0.5 + \frac{\delta}{2} + (\delta - 1) \left(\frac{1 - 2\alpha}{4\pi} \sqrt{\frac{2\pi}{N\alpha(1 - \alpha)}} + \sqrt{\frac{N(1 - \alpha)}{2\pi\alpha}} \right) \right]
\]

\[
- \frac{cN\mu}{[(1 - \alpha)\mu - N)^2}
\]

So, \(\frac{\partial \pi}{\partial r} \) at \(r = \alpha \) is < 0 if and only if

\[
\delta < \frac{c\mu}{[(1 - \alpha)\mu - N]^2}
\]

\[
+ p \left[\frac{(1 - 2\alpha)}{4\pi} \sqrt{\frac{2\pi}{N\alpha(1 - \alpha)}} + \sqrt{\frac{N(1 + \alpha)^2}{2\pi\alpha(1 - \alpha)}} - \frac{1}{2} \right]
\]

\[
+ p \left[\frac{(1 - 2\alpha)}{4\pi} \sqrt{\frac{2\pi}{N\alpha(1 - \alpha)}} + \sqrt{\frac{N(1 + \alpha)^2}{2\pi\alpha(1 - \alpha)}} + \frac{1}{2} \right].
\]

(64)

The second term of Equation 64 is close to 1 for large \(N \). So, the above equation always holds for large \(N \) since \(\delta < 1 \). So, \(\frac{\partial \pi}{\partial r} \) at \(r = \alpha \) is < 0. By intermediate value
theorem, there exists a $r^* < \alpha$ such that $\frac{\partial \pi}{\partial r}$ at $r = r^*$ is 0. \hfill \Box

Proof of Theorem 3

Proof. For $r > \alpha$ ($r \neq \alpha$):

\[
\frac{\partial \pi}{\partial r} = p\delta N - \frac{cN\mu}{((1-r)\mu - N)^2}
\]

\[
= N \left[p\delta - \frac{c\mu}{((1-r)\mu - N)^2} \right].
\]

So, $\frac{\partial \pi}{\partial r} < 0$ if and only if

\[
\frac{c\mu}{((1-r)\mu - N)^2} > p\delta.
\]

(65)

If the condition in Equation 65, then uniqueness is proved. If the condition does not hold true, then we need to show that $E[\Pi]$ at $r = r^* < \alpha$ is greater than $E[\Pi]$ at any $r > \alpha$.

\[
E[\Pi]_{r^*} = p\delta N(1 + r^*) + pN(1 + r^*)(1 - \delta) - \frac{cN}{[(1-r^*)\mu - N]},
\]

(66)

and at any $r > \alpha$ (r is not close to α):

\[
E[\Pi] = p\delta N(1 + r) - \frac{cN}{[(1-r)\mu - N]}.
\]

(67)

So, $E[\Pi]_{r^*} > E[\Pi]$ at any $r > \alpha$ if and only if

\[
p\delta N(1 + r^*) + pN(1 + r^*)(1 - \delta) - \frac{cN}{[(1-r^*)\mu - N]} > p\delta N(1 + r) - \frac{cN}{[(1-r)\mu - N]}
\]

\[
p\delta r^* + p(1 + r^*)(1 - \delta) - \frac{c}{[(1-r^*)\mu - N]} > p\delta r - \frac{c}{[(1-r)\mu - N]}
\]
or
\[\delta < \frac{(1 + r^*)}{(1 + r)} + \frac{c}{p(1 + r)} \left[\frac{1}{(1 - r)\mu - N} - \frac{1}{(1 - r^*)\mu - N} \right]. \]

The last condition should hold for all values for \(r > \alpha \). Note: the first term on the RHS of last equation is strictly less than 1 and the second term is strictly greater than 0.

\[\square \]

Proof of Theorem 4
Proof.

\[
\frac{\partial (\text{Hospital Profit})}{\partial r^* \partial \alpha} = \frac{p(1 - \delta) N^2 (\alpha - r^*)(1 - 2r^*) \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{2r^* (1 - r^*) \sqrt{2\pi Nr^*(1 - r^*)}} - \frac{pN^3 (1 + r^*) (1 - \delta)(1 - 2r^*)}{2\sqrt{2\pi} [Nr^*(1 - r^*)]^3} \]

\[
+ \frac{p(1 - \delta) N^2 \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{\sqrt{2\pi Nr^*(1 - r^*)}} \]

\[
- \frac{p(1 - \delta) N \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{r^*(1 - r^*)} \sqrt{\frac{Nr^*(1 - r^*)}{2\pi}} \]

\[
+ \frac{p(1 - \delta) N^2 (\alpha - r^*)^2}{[r^*(1 - r^*)]^2} \sqrt{\frac{Nr^*(1 - r^*)}{2\pi}} \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right) \]

\[
+ \frac{p(1 - \delta) N^2 (\alpha - r^*)^3}{2r^*^3 (1 - r^*)^2} \sqrt{\frac{Nr^*(1 - r^*)}{2\pi}} \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right) \]

\[
- \frac{p(1 - \delta) N^2 (\alpha - r^*)^3}{2r^*^2 (1 - r^*)^3} \sqrt{\frac{Nr^*(1 - r^*)}{2\pi}} \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right) \]

\[
p(1 - \delta) N(\alpha - r^*) \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right) \sqrt{\frac{Nr^*(1 - r^*)}{2\pi}} \]

\[
r^*(1 - r^*) \frac{pN^3 (1 + r^*) (1 - \delta)(\alpha - r^*) \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{r^*(1 - r^*) \sqrt{2\pi Nr^*(1 - r^*)}} \]

\[
+ \frac{pN^3 (1 + r^*) (1 - \delta)(\alpha - r^*) \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{2r^*^2 (1 - r^*) \sqrt{2\pi Nr^*(1 - r^*)}} \]

\[
- \frac{pN^3 (1 + r^*) (1 - \delta)(\alpha - r^*) \exp \left(\frac{-N(\alpha - r^*)^2}{2r^*(1 - r^*)}\right)}{2r^* (1 - r^*)^2 \sqrt{2\pi Nr^*(1 - r^*)}} \]

100
\[
\frac{\partial (\text{Hospital Profit})}{\partial r^* \partial \alpha} \geq 0 \text{ since }
\]
\[
N(\alpha - r^*)(1 + r^*) \sqrt{\frac{N}{2\pi r^*(1 - r^*)}} \geq (1 + r^*)(1 - 2r^*) \sqrt{\frac{N}{8\pi r^*(1 - r^*)}}
\]

and
\[
N(\alpha - r^*)^2 \sqrt{\frac{N}{2\pi r^*(1 - r^*)}} \geq (\alpha - r^*) \sqrt{\frac{N(1 - r^*)}{2\pi r^*}}.
\]

\[
\square
\]

Proof of Theorem 5 is similar to the proof Theorem 4.
Appendix B Codes of Computer Programs

Codes of computer programs for all essays are presented in this appendix.

B.1 Essay 1

All the codes for Essay 1 are written in “R” software

(“C:/Users/Sriram/Desktop/Summer Paper”)
comb=read.csv("combined_deposits_investments.csv")
n=nrow(comb)
x=t(matrix(c(comb$Deposits,comb$Employees),nrow=n,ncol=2))
y=t(matrix(c(comb$Loans,comb$Investments),nrow=n,ncol=2))
outlier1=ap(x,y,NDEL=12)

Detecting Outliers using Simar (2003) Method
setwd("C:/Users/Sriram/Downloads/Summer Paper")
t=read.csv("outliers_loo_us_indian.csv")
n=nrow(t)
k=n-1
dhat=matrix(nrow=198,ncol=1)
for (i in 1:198){
t1=t[i,]
tref=t[-i,]
x1=t(matrix(c(t1$Deposits,t1$Employees),nrow=1,ncol=2))
y1=t(matrix(c(t1$Loans,t1$Investments),nrow=1,ncol=2))
xre=t(matrix(c(tref$Deposits, tref$Employees), nrow=k, ncol=2))
yre=t(matrix(c(tref$Loans, tref$Investments), nrow=k, ncol=2))
dhat[i, 1]=dea(XOBS=x1, YOBS=y1, XREF=xre, YREF=yre)
}
write.csv(dhat, “outliers_loo_us_indian_eff.csv”)

Testing Convexity of Production Frontier

setwd(“C:/Users/Sriram/Downloads/Summer Paper”)
t=read.csv(“combined_deposits_investments_4_loans_employees_loo_us_indian.csv”)
n = nrow(t)
X = t(matrix(c(t$Deposits, t$Employees), nrow = n, ncol = 2))
Y = t(matrix(c(t$Loans, t$Investments), nrow = n, ncol = 2))
p=2
q=2
a=2*(p+q)/(p+q+1)
k=seq(1, (n-1), 1)
k=k[which.min(abs(n-k-k**a))]
m=n-k
ind=sample.int(n, size=k, replace=FALSE)
X1=X[, ind]
Y1=Y[, ind]
X2=X[, -ind]
Y2=Y[, -ind]
ghat1=dea(XOBS=X1, YOBS=Y1)
ghat2=fdh(XOBS=X2, YOBS=Y2)
ghat2=t(ghat2)
k1=floor(k/2)
ind1=sample.int(k,size=k1,replace=FALSE)
X11=X1[,ind1]
Y11=Y1[,ind1]
X12=X1[-ind1]
Y12=Y1[-ind1]
ghat11=dea(XOBS = X11, YOBS = Y11)
ghat12=dea(XOBS = X12, YOBS = Y12)
m1=floor(m/2)
ind2=sample.int(m,size=m1,replace=FALSE)
X21=X2[,ind2]
Y21=Y2[,ind2]
X22=X2[-ind2]
Y22=Y2[-ind2]
ghat21=fdh(XOBS = X21, YOBS = Y21)
ghat21=t(ghat21)
ghat22=fdh(XOBS = X22, YOBS = Y22)
ghat22=t(ghat22)
kappa2=1/(p+q)
n1mean=floor(k**(2*kappa2))
n2mean=floor(m**(2*kappa2))
indmean1=sample.int(k,size=n1mean,replace=FALSE)
indmean2=sample.int(m,size=n2mean,replace=FALSE)
X1mean=X1[,indmean1]
Y1mean=Y1[,indmean1]
X2mean=X2[,indmean2]
Y2mean=Y2[,indmean2]
ghatmean1=dea(XOBS = X1mean, YOBS = Y1mean,XREF=X1,YREF=Y1)
ghatmean2=fdh(XOBS = X2mean, YOBS = Y2mean,XREF=X2,YREF=Y2)
ghatmean2=t(ghatmean2)
write.csv(ghat1,"DEA1_eff.csv")
write.csv(ghat2,"FDH2_eff.csv")
write.csv(ghat11,"DEA11_eff.csv")
write.csv(ghat12,"DEA12_eff.csv")
write.csv(ghat21,"FDH21_eff.csv")
write.csv(ghat22,"FDH22_eff.csv")
write.csv(ghatmean1,"DEAmean1_eff.csv")
write.csv(ghatmean2,"FDHmean2_eff.csv")

Estimating Efficiency using FDH Estimator

setwd("C:/Users/Sriram/Downloads/Summer Paper")
t=read.csv("combined_deposits_investments_4_loans_employees_loo_us_indian.csv")
n=nrow(t)
x=t(matrix(c(t$Deposits,t$Employees),nrow=n,ncol=2))
y=t(matrix(c(t$Loans,t$Investments),nrow=n,ncol=2))
dhat=fdh(XOBS=x,YOBS=y)
write.csv(dhat,"all_deposits_investments_4_loans_employees_loo_us_indian_fdh.csv")

Testing Hypothesis 1

setwd("C:/Users/Sriram/Downloads/Summer Paper/hypothesis1")
t1=read.csv("usbanks.csv")
n1 = nrow(t1)
\[
X_1 = \text{t}(\text{matrix}(c(t1$Deposits, t1$Employees), nrow = n1, ncol = 2))
\]
\[
Y_1 = \text{t}(\text{matrix}(c(t1$Loans, t1$Investments), nrow = n1, ncol = 2))
\]
\[
g_{11} = \text{fdh}(\text{XOBS} = X_1, \text{YOBS} = Y_1)
\]
\[
g_{11} = \text{t}(g_{11})
\]
\[
k_1 = \text{floor}(n1/2)
\]
\[
\text{ind}1 = \text{sample.int}(n1, \text{size}=k1, \text{replace}=\text{FALSE})
\]
\[
X_{11} = X_1[,\text{ind}1]
\]
\[
Y_{11} = Y_1[,\text{ind}1]
\]
\[
X_{12} = X_1[,-\text{ind}1]
\]
\[
Y_{12} = Y_1[,-\text{ind}1]
\]
\[
g_{111} = \text{fdh}(\text{XOBS} = X_{11}, \text{YOBS} = Y_{11})
\]
\[
g_{111} = \text{t}(g_{111})
\]
\[
g_{112} = \text{fdh}(\text{XOBS} = X_{12}, \text{YOBS} = Y_{12})
\]
\[
g_{112} = \text{t}(g_{112})
\]
\[
t2 = \text{read.csv}(\text{“indianbanks.csv”})
\]
\[
n2 = \text{nrow}(t2)
\]
\[
X_2 = \text{t}(\text{matrix}(c(t2$Deposits, t2$Employees), nrow = n2, ncol = 2))
\]
\[
Y_2 = \text{t}(\text{matrix}(c(t2$Loans, t2$Investments), nrow = n2, ncol = 2))
\]
\[
g_{21} = \text{fdh}(\text{XOBS} = X_2, \text{YOBS} = Y_2)
\]
\[
g_{21} = \text{t}(g_{21})
\]
\[
k_2 = \text{floor}(n2/2)
\]
\[
\text{ind}2 = \text{sample.int}(n2, \text{size}=k2, \text{replace}=\text{FALSE})
\]
\[
X_{21} = X_2[,\text{ind}2]
\]
\[
Y_{21} = Y_2[,\text{ind}2]
\]
\[
X_{22} = X_2[,-\text{ind}2]
\]
\[
Y_{22} = Y_2[,-\text{ind}2]
\]
ghat21 = fdh(XOBS = X21, YOBS = Y21)
ghat21 = t(ghat21)
ghat22 = fdh(XOBS = X22, YOBS = Y22)
ghat22 = t(ghat22)
p = 2
q = 2
kappa = 1/(p+q)
n1mean = floor(n1**(2*kappa))
n2mean = floor(n2**(2*kappa))
indmean1 = sample.int(n1, size = n1mean, replace = FALSE)
indmean2 = sample.int(n2, size = n2mean, replace = FALSE)
X1mean = X1[, indmean1]
Y1mean = Y1[, indmean1]
X2mean = X2[, indmean2]
Y2mean = Y2[, indmean2]
ghatmean1 = fdh(XOBS = X1mean, YOBS = Y1mean, XREF = X1, YREF = Y1)
ghatmean1 = t(ghatmean1)
ghatmean2 = fdh(XOBS = X2mean, YOBS = Y2mean, XREF = X2, YREF = Y2)
ghatmean2 = t(ghatmean2)
write.csv(ghat1, "usbanks_eff_fdh.csv")
write.csv(ghat2, "indianbanks_eff_fdh.csv")
write.csv(ghat11, "usbanks11_eff_fdh.csv")
write.csv(ghat12, "usbanks12_eff_fdh.csv")
write.csv(ghat21, "indianbanks21_eff_fdh.csv")
write.csv(ghat22, "indianbanks22_eff_fdh.csv")
write.csv(ghatmean1, "usbanks_eff_fdh_mean.csv")
Testing Hypothesis 2a

setwd(“C:/Users/Sriram/Downloads/Summer Paper/hypothesis2a”)
t1=read.csv(“publicbanks.csv”)
n1 = nrow(t1)
X1 = t(matrix(c(t1$Deposits, t1$Employees), nrow = n1, ncol = 2))
Y1 = t(matrix(c(t1$Loans, t1$Investments), nrow = n1, ncol = 2))
ghat1=fdh(XOBS = X1, YOBS = Y1)
ghat1=t(ghat1)
k1=floor(n1/2)
ind1=sample.int(n1,size=k1,replace=FALSE)
X11=X1[,ind1]
Y11=Y1[,ind1]
X12=X1[-ind1]
Y12=Y1[-ind1]
ghat11=fdh(XOBS = X11, YOBS = Y11)
ghat11=t(ghat11)
ghat12=fdh(XOBS = X12, YOBS = Y12)
ghat12=t(ghat12)
t2¡-read.csv(”privatebanks.csv”)
n2 = nrow(t2)
X2 = t(matrix(c(t2$Deposits, t2$Employees), nrow = n2, ncol = 2))
Y2 = t(matrix(c(t2$Loans, t2$Investments), nrow = n2, ncol = 2))
ghat2=fdh(XOBS = X2, YOBS = Y2)
ghat2=t(ghat2)
k2=floor(n2/2)
ind2=sample.int(n2,size=k2,replace=FALSE)
X21=X2[,ind2]
Y21=Y2[,ind2]
X22=X2[-ind2]
Y22=Y2[-ind2]
ghat21=fdh(XOBS = X21, YOBS = Y21)
ghat21=t(ghat21)
ghat22=fdh(XOBS = X22, YOBS = Y22)
ghat22=t(ghat22)
p=2
q=2
kappa=1/(p+q)
n1mean=floor(n1**(2*kappa))
n2mean=floor(n2**(2*kappa))
indmean1=sample.int(n1,size=n1mean,replace=FALSE)
indmean2=sample.int(n2,size=n2mean,replace=FALSE)
X1mean=X1[,indmean1]
Y1mean=Y1[,indmean1]
X2mean=X2[,indmean2]
Y2mean=Y2[,indmean2]
ghatmean1=fdh(XOBS = X1mean, YOBS = Y1mean,XREF=X1,YREF=Y1)
ghatmean1=t(ghatmean1)
ghatmean2=fdh(XOBS = X2mean, YOBS = Y2mean,XREF=X2,YREF=Y2)
ghatmean2=t(ghatmean2)
write.csv(ghat1,“publicbanks_eff_fdh.csv”)
write.csv(ghat2, “privatebanks_eff_fdh.csv”)
write.csv(ghat11, “publicbanks11_eff_fdh.csv”)
write.csv(ghat12, “publicbanks12_eff_fdh.csv”)
write.csv(ghat21, “privatebanks21_eff_fdh.csv”)
write.csv(ghat22, “privatebanks22_eff_fdh.csv”)
write.csv(ghatmean1, “publicbanks_eff_fdh_mean.csv”)
write.csv(ghatmean2, “privatebanks_eff_fdh_mean.csv”)

Kolmogorov Smirnov Test–Hypothesis 2a

setwd(“C:/Users/Sriram/Downloads/Summer Paper/hypothesis2a”)
t1=read.csv(“KSTest_Public.csv”)
t2=read.csv(“KSTest_Private.csv”)
x=t1$farrell_public
y=t2$farrell_private
ks.test(x,y,alternative=“less”)

Testing Hypothesis 2b

setwd(“C:/Users/Sriram/Downloads/Summer Paper/hypothesis2b”)
t1=read.csv(“publicbanks.csv”)
n1 = nrow(t1)
X1 = t(matrix(c(t1$Deposits, t1$Employees), nrow = n1, ncol = 2))
Y1 = t(matrix(c(t1$Loans, t1$Investments), nrow = n1, ncol = 2))
ghat1=fdh(XOBS = X1, YOBS = Y1)
ghat1=t(ghat1)
k1=floor(n1/2)
ind1=sample.int(n1,size=k1,replace=FALSE)
X11 = X1[, ind1]
Y11 = Y1[, ind1]
X12 = X1[, -ind1]
Y12 = Y1[, -ind1]
ghat11 = fdh(XOBS = X11, YOBS = Y11)
ghat11 = t(ghat11)
ghat12 = fdh(XOBS = X12, YOBS = Y12)
ghat12 = t(ghat12)
t2 = read.csv("foreignbanks.csv")
n2 = nrow(t2)
X2 = t(matrix(c(t2$Deposits, t2$Employees), nrow = n2, ncol = 2))
Y2 = t(matrix(c(t2$Loans, t2$Investments), nrow = n2, ncol = 2))
ghat2 = fdh(XOBS = X2, YOBS = Y2)
ghat2 = t(ghat2)
k2 = floor(n2/2)
ind2 = sample.int(n2, size = k2, replace = FALSE)
X21 = X2[, ind2]
Y21 = Y2[, ind2]
X22 = X2[, -ind2]
Y22 = Y2[, -ind2]
ghat21 = fdh(XOBS = X21, YOBS = Y21)
ghat21 = t(ghat21)
ghat22 = fdh(XOBS = X22, YOBS = Y22)
ghat22 = t(ghat22)
p = 2
q = 2
kappa=1/(p+q)
n1mean=floor(n1**(2*kappa))
n2mean=floor(n2**(2*kappa))
indmean1=sample.int(n1,size=n1mean,replace=FALSE)
indmean2=sample.int(n2,size=n2mean,replace=FALSE)
X1mean=X1[,indmean1]
Y1mean=Y1[,indmean1]
X2mean=X2[,indmean2]
Y2mean=Y2[,indmean2]
ghatmean1=fdh(XOBS = X1mean, YOBS = Y1mean,XREF=X1,YREF=Y1)
ghatmean1=t(ghatmean1)
ghatmean2=fdh(XOBS = X2mean, YOBS = Y2mean,XREF=X2,YREF=Y2)
ghatmean2=t(ghatmean2)
write.csv(ghat1,“publicbanks_eff_fdh.csv”)
write.csv(ghat2,“foreignbanks_eff_fdh.csv”)
write.csv(ghat11,“publicbanks11_eff_fdh.csv”)
write.csv(ghat12,“publicbanks12_eff_fdh.csv”)
write.csv(ghat21,“foreignbanks21_eff_fdh.csv”)
write.csv(ghat22,“foreignbanks22_eff_fdh.csv”)
write.csv(ghatmean1,“publicbanks_eff_fdh_mean.csv”)
write.csv(ghatmean2,“foreignbanks_eff_fdh_mean.csv”)

Kolmogorov Smirnov Test–Hypothesis 2a

```
setwd(“C:/Users/Sriram/Downloads/Summer Paper/hypothesis2b”)
t1=read.csv(“KSTest_Public.csv”)
t2=read.csv(“KSTest_Foreign.csv”)
```
\[x = t1$farrell_public \]
\[y = t2$farrell_foreign \]
\[\text{ks.test}(x, y, \text{alternative} = \text{“less”}) \]

B.2 Essay 2

B.2.1 Demand-Side Estimation

Codes for Demand-Side Estimation (using Stata software) are presented below.

\textit{xi:regress dv price totalavailablebeds i.hownercode i.eservcode i.trauma} (Table 2.2)
\textit{xi:ivregress 2sls dv (price= ivbeds ivnurse ivhowner) totalavailablebeds i.hownercode i.eservcode i.trauma} (Table 2.3)
\textit{xi:regress dv price nemktsh totalavailablebeds i.hownercode i.eservcode i.trauma} (Table 2.5)
\textit{xi:ivregress 2sls dv (price nemktsh= ivnebeds ivnemurse ivneowner) totalavailablebeds i.hownercode i.eservcode i.trauma} (Table 2.6)

B.2.2 Marginal Cost Computation

Codes for marginal cost computation (using Matlab software) are presented below.

\textbf{Non-Nested Model:}

\[\text{alpha} = -0.0000941; \]
\[N = \text{size(data, 1)}; \]
for \(i = 1:N \)
for \(j = 1:N \)
if \(j = i \)
\[\text{omega}(i, j) = (\text{alpha} \times \text{data}(i, 27) \times (1 - \text{data}(i, 27))); \]
else

omega(i,j)=0;
end
end
end
omega(15,16)=-alpha*data(15,27)*data(16,27);
omega(16,15)=-alpha*data(16,27)*data(15,27);
omega(23,24)=-alpha*data(23,27)*data(24,27);
omega(23,25)=-alpha*data(23,27)*data(25,27);
omega(24,23)=-alpha*data(24,27)*data(23,27);
omega(24,25)=-alpha*data(24,27)*data(25,27);
omega(25,23)=-alpha*data(25,27)*data(23,27);
omega(25,24)=-alpha*data(25,27)*data(24,27);
omega(31,32)=-alpha*data(31,27)*data(32,27);
omega(32,31)=-alpha*data(32,27)*data(31,27);
omega(57,58)=-alpha*data(57,27)*data(58,27);
omega(58,57)=-alpha*data(58,27)*data(57,27);
omega(74,75)=-alpha*data(74,27)*data(75,27);
omega(75,74)=-alpha*data(75,27)*data(74,27);
omega(82,83)=-alpha*data(82,27)*data(83,27);
omega(82,84)=-alpha*data(82,27)*data(84,27);
omega(83,82)=-alpha*data(83,27)*data(82,27);
omega(83,84)=-alpha*data(83,27)*data(84,27);
omega(84,82)=-alpha*data(84,27)*data(82,27);
omega(84,83)=-alpha*data(84,27)*data(83,27);
omega(90,91)=-alpha*data(90,27)*data(91,27);
omega(91,90)=-alpha*data(91,27)*data(90,27);
\[\omega(116,117) = -\alpha \cdot \text{data}(116,27) \cdot \text{data}(117,27); \]
\[\omega(117,116) = -\alpha \cdot \text{data}(117,27) \cdot \text{data}(116,27); \]
\[\omega(133,134) = -\alpha \cdot \text{data}(133,27) \cdot \text{data}(134,27); \]
\[\omega(134,133) = -\alpha \cdot \text{data}(134,27) \cdot \text{data}(133,27); \]
\[\omega(141,142) = -\alpha \cdot \text{data}(141,27) \cdot \text{data}(142,27); \]
\[\omega(141,143) = -\alpha \cdot \text{data}(141,27) \cdot \text{data}(143,27); \]
\[\omega(142,141) = -\alpha \cdot \text{data}(142,27) \cdot \text{data}(141,27); \]
\[\omega(142,143) = -\alpha \cdot \text{data}(142,27) \cdot \text{data}(143,27); \]
\[\omega(143,141) = -\alpha \cdot \text{data}(143,27) \cdot \text{data}(141,27); \]
\[\omega(143,142) = -\alpha \cdot \text{data}(143,27) \cdot \text{data}(142,27); \]
\[\omega(149,150) = -\alpha \cdot \text{data}(149,27) \cdot \text{data}(150,27); \]
\[\omega(149,151) = -\alpha \cdot \text{data}(149,27) \cdot \text{data}(151,27); \]
\[\omega(150,149) = -\alpha \cdot \text{data}(150,27) \cdot \text{data}(149,27); \]
\[\omega(150,151) = -\alpha \cdot \text{data}(150,27) \cdot \text{data}(151,27); \]
\[\omega(151,149) = -\alpha \cdot \text{data}(151,27) \cdot \text{data}(149,27); \]
\[\omega(151,150) = -\alpha \cdot \text{data}(151,27) \cdot \text{data}(150,27); \]
\[\omega(177,178) = -\alpha \cdot \text{data}(177,27) \cdot \text{data}(178,27); \]
\[\omega(178,177) = -\alpha \cdot \text{data}(178,27) \cdot \text{data}(177,27); \]
for k = 5:13
for l = 5:13
if l = k
\[\omega(k,l) = -\alpha \cdot \text{data}(k,27) \cdot \text{data}(l,27); \]
end
end
end
end
for m = 64:72
for n=64:72
if n =m
omega(m,n)=-alpha*data(m,27)*data(n,27);
end
end
end

for p=123:131
for q=123:131
if q =p
omega(p,q)=-alpha*data(p,27)*data(q,27);
end
end
end

D=data(1:N,27);
price=data(1:N,26);
oinv=inv(omega);
mcost=price+(oinv*D);

Nested Model:

alpha=-0.0000442;
sigma=0.3569454;
N=size(d,1);
for i=1:N
for j=1:N
if j==i
o(i,j)=(alpha*d(i,27)*((1/(1-sigma)) - ((sigma*d(i,31))/(1-sigma)))
)
- (alpha*d(i,27)*d(i,27));
else
 o(i,j)=0;
end
end
end
end

o(15,16)=-alpha*d(15,27)*((sigma*d(16,31)/(1-sigma)) + d(16,27));
o(16,15)=-alpha*d(16,27)*((sigma*d(15,31)/(1-sigma)) + d(15,27));
o(23,24)=-alpha*d(23,27)*((sigma*d(24,31)/(1-sigma)) + d(24,27));
o(23,25)=-alpha*d(23,27)*((sigma*d(25,31)/(1-sigma)) + d(25,27));
o(24,23)=-alpha*d(24,27)*((sigma*d(23,31)/(1-sigma)) + d(23,27));
o(24,25)=-alpha*d(24,27)*((sigma*d(25,31)/(1-sigma)) + d(25,27));
o(25,23)=-alpha*d(25,27)*((sigma*d(23,31)/(1-sigma)) + d(23,27));
o(25,24)=-alpha*d(25,27)*((sigma*d(24,31)/(1-sigma)) + d(24,27));
o(31,32)=-alpha*d(31,27)*((sigma*d(32,31)/(1-sigma)) + d(32,27));
o(32,31)=-alpha*d(32,27)*((sigma*d(31,31)/(1-sigma)) + d(31,27));
o(57,58)=-alpha*d(57,27)*((sigma*d(58,31)/(1-sigma)) + d(58,27));
o(58,57)=-alpha*d(58,27)*((sigma*d(57,31)/(1-sigma)) + d(57,27));
o(74,75)=-alpha*d(74,27)*((sigma*d(75,31)/(1-sigma)) + d(75,27));
o(75,74)=-alpha*d(75,27)*((sigma*d(74,31)/(1-sigma)) + d(74,27));
o(82,83)=-alpha*d(82,27)*((sigma*d(83,31)/(1-sigma)) + d(83,27));
o(82,84)=-alpha*d(82,27)*((sigma*d(84,31)/(1-sigma)) + d(84,27));
o(83,82)=-alpha*d(83,27)*((sigma*d(82,31)/(1-sigma)) + d(82,27));
o(83,84)=-alpha*d(83,27)*((sigma*d(84,31)/(1-sigma)) + d(84,27));
o(84,82)=-alpha*d(84,27)*((sigma*d(82,31)/(1-sigma)) + d(82,27));
o(84,83)=-alpha*d(84,27)*((sigma*d(83,31)/(1-sigma)) + d(83,27));
\[o(90, 91) = -\alpha d(90, 27)*((\sigma*d(91, 31)/(1-\sigma)) + d(91, 27)); \]
\[o(91, 90) = -\alpha d(91, 27)*((\sigma*d(90, 31)/(1-\sigma)) + d(90, 27)); \]
\[o(116, 117) = -\alpha d(116, 27)*((\sigma*d(117, 31)/(1-\sigma)) + d(117, 27)); \]
\[o(117, 116) = -\alpha d(117, 27)*((\sigma*d(116, 31)/(1-\sigma)) + d(116, 27)); \]
\[o(133, 134) = -\alpha d(133, 27)*((\sigma*d(134, 31)/(1-\sigma)) + d(134, 27)); \]
\[o(134, 133) = -\alpha d(134, 27)*((\sigma*d(133, 31)/(1-\sigma)) + d(133, 27)); \]
\[o(141, 142) = -\alpha d(141, 27)*((\sigma*d(142, 31)/(1-\sigma)) + d(142, 27)); \]
\[o(141, 143) = -\alpha d(141, 27)*((\sigma*d(143, 31)/(1-\sigma)) + d(143, 27)); \]
\[o(142, 141) = -\alpha d(142, 27)*((\sigma*d(141, 31)/(1-\sigma)) + d(141, 27)); \]
\[o(142, 143) = -\alpha d(142, 27)*((\sigma*d(143, 31)/(1-\sigma)) + d(143, 27)); \]
\[o(143, 141) = -\alpha d(143, 27)*((\sigma*d(141, 31)/(1-\sigma)) + d(141, 27)); \]
\[o(143, 142) = -\alpha d(143, 27)*((\sigma*d(142, 31)/(1-\sigma)) + d(142, 27)); \]
\[o(149, 150) = -\alpha d(149, 27)*((\sigma*d(150, 31)/(1-\sigma)) + d(150, 27)); \]
\[o(149, 151) = -\alpha d(149, 27)*((\sigma*d(151, 31)/(1-\sigma)) + d(151, 27)); \]
\[o(150, 149) = -\alpha d(150, 27)*((\sigma*d(149, 31)/(1-\sigma)) + d(149, 27)); \]
\[o(150, 151) = -\alpha d(150, 27)*((\sigma*d(151, 31)/(1-\sigma)) + d(151, 27)); \]
\[o(151, 149) = -\alpha d(151, 27)*((\sigma*d(149, 31)/(1-\sigma)) + d(149, 27)); \]
\[o(151, 150) = -\alpha d(151, 27)*((\sigma*d(150, 31)/(1-\sigma)) + d(150, 27)); \]
\[o(177, 178) = -\alpha d(177, 27)*((\sigma*d(178, 31)/(1-\sigma)) + d(178, 27)); \]
\[o(178, 177) = -\alpha d(178, 27)*((\sigma*d(177, 31)/(1-\sigma)) + d(177, 27)); \]

for k=5:13
for l=5:13
if l = k
\[o(k, l) = -\alpha d(k, 27)*((\sigma*d(l, 31)/(1-\sigma)) + d(l, 27)); \]
end
end

end
for m=64:72
for n=64:72
if n =m
 o(m,n)=-alpha*d(m,27)*((sigma*d(n,31)/(1-sigma)) + d(n,27));
end
end
end

for p=123:131
for q=123:131
if q =p
 o(p,q)=-alpha*d(p,27)*((sigma*d(q,31)/(1-sigma)) + d(q,27));
end
end
end

D=d(1:N,27);
price=d(1:N,26);
oinv=inv(o);
mcost=price+(oinv*D);

Nested Model: Robustness Check

alpha=-0.0000442;
sigma=0.3569454;
N=size(d,1);
for i=1:N
 for j=1:N
if j==i
 o(i,j) = (alpha*d(i,27)*((1/(1-sigma)) - ((sigma*d(i,31))/(1-sigma))))
 - (alpha*d(i,27)*d(i,27));
else
 o(i,j)=0;
end
end
end

o(15,16) = -alpha*d(15,27)*((sigma*d(16,31)/(1-sigma)) + d(16,27));
o(16,15) = -alpha*d(16,27)*((sigma*d(15,31)/(1-sigma)) + d(15,27));
o(23,24) = -alpha*d(23,27)*((sigma*d(24,31)/(1-sigma)) + d(24,27));
o(23,25) = -alpha*d(23,27)*((sigma*d(25,31)/(1-sigma)) + d(25,27));
o(24,23) = -alpha*d(24,27)*((sigma*d(23,31)/(1-sigma)) + d(23,27));
o(24,25) = -alpha*d(24,27)*((sigma*d(25,31)/(1-sigma)) + d(25,27));
o(25,23) = -alpha*d(25,27)*((sigma*d(23,31)/(1-sigma)) + d(23,27));
o(25,24) = -alpha*d(25,27)*((sigma*d(24,31)/(1-sigma)) + d(24,27));
o(31,32) = -alpha*d(31,27)*((sigma*d(32,31)/(1-sigma)) + d(32,27));
o(32,31) = -alpha*d(32,27)*((sigma*d(31,31)/(1-sigma)) + d(31,27));
o(57,58) = -alpha*d(57,27)*((sigma*d(58,31)/(1-sigma)) + d(58,27));
o(58,57) = -alpha*d(58,27)*((sigma*d(57,31)/(1-sigma)) + d(57,27));
o(74,75) = -alpha*d(74,27)*((sigma*d(75,31)/(1-sigma)) + d(75,27));
o(75,74) = -alpha*d(75,27)*((sigma*d(74,31)/(1-sigma)) + d(74,27));
o(82,83) = -alpha*d(82,27)*((sigma*d(83,31)/(1-sigma)) + d(83,27));
o(82,84) = -alpha*d(82,27)*((sigma*d(84,31)/(1-sigma)) + d(84,27));
o(83,82) = -alpha*d(83,27)*((sigma*d(82,31)/(1-sigma)) + d(82,27));
o(83,84) = -alpha*d(83,27)*((sigma*d(84,31)/(1-sigma)) + d(84,27));
\[o(84,82) = -\alpha d(84,27)*((\sigma d(82,31)/(1-\sigma)) + d(82,27)); \]
\[o(84,83) = -\alpha d(84,27)*((\sigma d(83,31)/(1-\sigma)) + d(83,27)); \]
\[o(90,91) = -\alpha d(90,27)*((\sigma d(91,31)/(1-\sigma)) + d(91,27)); \]
\[o(91,90) = -\alpha d(91,27)*((\sigma d(90,31)/(1-\sigma)) + d(90,27)); \]
\[o(116,117) = -\alpha d(116,27)*((\sigma d(117,31)/(1-\sigma)) + d(117,27)); \]
\[o(117,116) = -\alpha d(117,27)*((\sigma d(116,31)/(1-\sigma)) + d(116,27)); \]
\[o(133,134) = -\alpha d(133,27)*((\sigma d(134,31)/(1-\sigma)) + d(134,27)); \]
\[o(134,133) = -\alpha d(134,27)*((\sigma d(133,31)/(1-\sigma)) + d(133,27)); \]
\[o(141,142) = -\alpha d(141,27)*((\sigma d(142,31)/(1-\sigma)) + d(142,27)); \]
\[o(141,143) = -\alpha d(141,27)*((\sigma d(143,31)/(1-\sigma)) + d(143,27)); \]
\[o(142,141) = -\alpha d(142,27)*((\sigma d(141,31)/(1-\sigma)) + d(141,27)); \]
\[o(142,143) = -\alpha d(142,27)*((\sigma d(143,31)/(1-\sigma)) + d(143,27)); \]
\[o(143,141) = -\alpha d(143,27)*((\sigma d(141,31)/(1-\sigma)) + d(141,27)); \]
\[o(143,142) = -\alpha d(143,27)*((\sigma d(142,31)/(1-\sigma)) + d(142,27)); \]
\[o(149,150) = -\alpha d(149,27)*((\sigma d(150,31)/(1-\sigma)) + d(150,27)); \]
\[o(149,151) = -\alpha d(149,27)*((\sigma d(151,31)/(1-\sigma)) + d(151,27)); \]
\[o(150,149) = -\alpha d(150,27)*((\sigma d(149,31)/(1-\sigma)) + d(149,27)); \]
\[o(150,151) = -\alpha d(150,27)*((\sigma d(151,31)/(1-\sigma)) + d(151,27)); \]
\[o(151,149) = -\alpha d(151,27)*((\sigma d(149,31)/(1-\sigma)) + d(149,27)); \]
\[o(151,150) = -\alpha d(151,27)*((\sigma d(150,31)/(1-\sigma)) + d(150,27)); \]
\[o(177,178) = -\alpha d(177,27)*((\sigma d(178,31)/(1-\sigma)) + d(178,27)); \]
\[o(178,177) = -\alpha d(178,27)*((\sigma d(177,31)/(1-\sigma)) + d(177,27)); \]

for \(k = 5:13 \)
for \(l = 5:13 \)
if \(l = k \)
\[o(k,l) = -\alpha d(k,27)*((\sigma d(l,31)/(1-\sigma)) + d(l,27)); \]
end
end
for m=64:72
 for n=64:72
 if n = m
 o(m,n) = -alpha*d(m,27)*((sigma*d(n,31)/(1-sigma)) + d(n,27));
 end
 end
end
for p=123:131
 for q=123:131
 if q = p
 o(p,q) = -alpha*d(p,27)*((sigma*d(q,31)/(1-sigma)) + d(q,27));
 end
 end
end
D=d(1:N,27);
price=d(1:N,26);
oinv=inv(o);
mcost=price+(oinv*D);
for r=1:N
 if (d(r,23)==5) —— (d(r,23)==6) —— (d(r,23)==7)
 mcost(r)=price(r);
 end
end
B.2.3 Supply-Side Estimation

Codes for Supply-Side Estimation (using Stata software) are presented below.

```stata
xi:ivregress 2sls mcnested_mod_cp_new (readm_overall_pct los = ivnenurse ivneowner ivneeserv) nr i.hownercode (Table 2.8)
xi:ivregress 2sls mcnested_mod_cp_nonprofit_new (readm_overall_pct los = ivnenurse ivneowner ivneeserv) nr i.hownercode (Table 2.9)
```

B.2.4 Counterfactual

Codes for all counterfactual analyses (using Matlab software) are presented below.

Code to Produce Figure 2.2

```matlab
n=size(cf,1);
penalty=4000;
b=0:10:1710;
for j=1:length(b)
a(j)=(3430.475-(2*b(j)));
for i=1:n
if cf(i,3) != cf(i,7)
diff(i) = cf(i,3)+1-cf(i,7);
mc1(i,j) = (3430.475*cf(i,3)) + (1131.134*cf(i,4)) + (536409.7*cf(i,5)) + cf(i,8) + 
penalty - 48711.96;
mc2(i,j) = (3430.475*cf(i,7)) + (1131.134*cf(i,4)) + (536409.7*cf(i,5)) + cf(i,8) + 
(a(j)*diff(i)) + (b(j)*diff(i)*diff(i)) - 48711.96;
if mc1(i,j) == mc2(i,j)
reduce(i,j) = 1;
else reduce(i,j) = 0;
```
end
else mc1(i,j)=0;
mc2(i,j)=0;
reduce(i,j)=2;
end
end
end

for j=1:length(b)
count(j)=0;
for i=1:n
if reduce(i,j) == 1
count(j) = count(j)+1;
end
end
end
diff=diff’;
plot(b,count)
xlabel(’Quadratic Cost Coefficient (b)’)
ylabel(’Number of Hospitals Choosing to Reduce Readmissions’)

Code to Produce Figure 2.3

n=size(cf1,1);
penalty=4000;
b=700;
a=(3430.475-(2*b));
for i=1:n
r(i,2)=cf1(i,3);
end
t=2;
rbar(1)=0;
rbar(2)=mean(cf1(:,3));
while abs(rbar(t)-rbar(t-1)) ¿ 0.001
for i=1:n
if r(i,t) ¿ rbar(t)
diff(i,t) = r(i,t)+1-rbar(t);
mc1(i,t) = (3430.475*r(i,t)) + (1131.134*cf1(i,4)) + (536409.7*cf1(i,5)) + cf1(i,8) +
penalty - 48711.96;
mc2(i,t) = (3430.475*rbar(t)) + (1131.134*cf1(i,4)) + (536409.7*cf1(i,5)) + cf1(i,8) +
(a*diff(i,t)) + (b*diff(i,t)*diff(i,t)) - 48711.96;
if mc1(i,t) ¿ mc2(i,t)
r(i,t+1) = rbar(t);
else r(i,t+1) = r(i,2);
end
else r(i,t+1)=r(i,2);
end
end
rbar(t+1)= mean(r(:,t+1));
t=t+1;
end
time=1:1:t-1;
rbar(1)=[];
plot(time,rbar)
xlabel('Time Period')
ylabel('Average Readmission Rate')

Codes to produce Figures 2.4 and 2.5 are similar to the above code and are hence omitted for brevity.

Code to Produce Figure 2.6

Code to Produce Results for High Variance Case:

```matlab
n=size(cf1,1);
penalty=4000;
b=700;
S=10000;
T=50;
e=5.*randn(S,n,T);
a=(3430.475-(2*b));
for s=1:S
    for i=1:n
        r(s,i,1)=cf1(i,3);
    end
    rbar(s,1)=mean(cf1(:,3));
    for t=1:T
        for i=1:n
            if r(s,i,t) > rbar(s,t)
                diff(s,i,t) = r(s,i,t) + 1 - e(s,i,t) - rbar(s,t);
            end
            mc1(s,i,t) = (3430.475*r(s,i,t)) + (1131.134*cf1(i,4)) + (536409.7*cf1(i,5)) + cf1(i,8) + penalty - 48711.96;
            mc2(s,i,t) = (3430.475*rbar(s,t)) + (1131.134*cf1(i,4)) + (536409.7*cf1(i,5)) + cf1(i,8)
        end
    end
end
```

126
\[+ \left(a \cdot \text{diff}(s,i,t) \right) + \left(b \cdot \text{diff}(s,i,t) \cdot \text{diff}(s,i,t) \right) - 48711.96; \]

if \(mc1(s,i,t) \not< mc2(s,i,t) \)

\[r(s,i,t+1) = rbar(s,t); \]
else \(r(s,i,t+1) = r(s,i,1); \)
end
else \(r(s,i,t+1) = r(s,i,1); \)
end
end

\[rbar(s,t+1) = \text{mean}(r(s,:,t+1)); \]
end
end

for \(t=1:T+1 \)

\[\text{avgrbar}(t) = \text{mean}(rbar(:,t)); \]
end

\[\text{avgrbar} = \text{avgrbar}'; \]

Codes to produce results for low variance case and no-shock case are similar and are hence omitted for brevity.

The following code will produce the figure:

\[t=0:1:50; \]
\[t=t'; \]

figure

\[\text{plot}(t,\text{shock}(:,1),'-',t,\text{shock}(:,2),':k',t,\text{shock}(:,5),'-r') \]

\[\text{xlabel}('\text{Time Period (t)}') \]
\[\text{ylabel}('\text{Average Readmission Rate}') \]

\[\text{legend}('\text{Low Variance}','\text{High Variance}','\text{No Shock}','\text{Location}','\text{Northeast}') \]

Codes to produce Figures 2.7 and 2.8 are similar to the above code and are hence
B.3 Essay 3

Code to produce Figure 3.4 (using Matlab software) is presented below.

```matlab
function r_star = rStar(alpha, gamma, p, c, N, mu, lambda)

fun = @(r)(p*gamma)*N+((p*N*(gamma-1)*sqrt(2*pi/(N*r*(1-r))))*exp(-(N*(alpha-r)^2)/(2*r*(1-r)))*(1-r-r))/(4*pi)+(p*(gamma-1)*sqrt(N*r*(1-r)/(2*pi)))*exp(-(N*(alpha-r)^2)/(2*r*(1-r)))*N*(alpha-r)*((1/(r*(1-r)))+((alpha-r)/(2*r^2*(1-r)))-(alpha-r)/(2*r*(1-r)^2)))+p*N*(1-gamma)*normcdf((N*(alpha-r))/(sqrt(N*r*(1-r))), 0, 1))+(p*N*(1+r)*(gamma-1)*exp(-(N*(alpha-r)^2)/(2*r*(1-r))))*((sqrt(N/(2*pi*r*(1-r))))+(N*(alpha-r)*(N*(1-r)-(N*r))/sqrt(8*pi*(N*r*(1-r)^3))))-((c*N*mu)/(((1-r)*mu)-lambda)^2);

r_star = fzero(fun, alpha);

N = 10000;
alpha = 0.01:0.01:0.5;
gamma = 0.01:0.01:0.99;
p = 70000;
w = 45000;
lambda = N;
mu = 2.2*N;
c = 60000;
for i = 1:length(alpha)
    for j = 1:length(gamma)
        r(i, j) = rStar(alpha(i), gamma(j), p, c, N, mu, lambda);
        q(i, j) = 1 - r(i, j);
    end
end
```

omitted for brevity.
patcost(i,j) = w*N/((q(i,j)*mu)-lambda);
end
end
surf(gamma,alpha,r)
xlabel('Payment Factor (δ)')
ylabel('Threshold Readmission Rate (α)')
zlabel('Optimal Readmission Rate (r*)')

Code to produce Figure 3.5 is similar to the above and hence is omitted for brevity.
Bibliography

