











Figure 5.4. PPV machine insulates with glass wool (left) and with aluminum foil

(right)
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Figure 5.5. Mapping temperature at the center of the furnace with a Pyrex® sample

(bleu curve),sample +insulator (red curve), sample +aluminumfoil (purple curve) at

570C

From Figure 5.5 we observe for both experiments that the temperature

decreases, which was initially unexpected and we expected a temperature maybe
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lower or higherthan 570 Cbut in any case more constant. Currently, we are not able
to advance a valid explanation concerning thesetwo results other than speculating that
the controller may behavedifferently with these two measures. Studying the thermal
behaviorofthe furnacerequires addition work such as recording the activity of the
coils thatare turnedon and offby the controller and study the effect of convection
and radiation on the glass temperature. Also, it is paramount to measure the
temperature inside the glass sample as opposed to the air around the sample by

drilling holes in the glass and inserting thermocoup les at various locations of the

sample. These tasks are part of future work.

Since we are not able to improve the temperature gradient in the furnace we

decided to conductall experiments with the furnace as designed without glass wool or

aluminum foil.
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CHAPTER SIX

EXPERIMENTAL RESULTS AND DISCUSSION

When the load is removed during the experiment, the spring starts to recover its
original shape. In order to obtain the best response of the sample the spring must

recover freely and no force must be applied on it.

PPV expeniment with flat ends Pyrex spring

Displacement (mm)
B

1

Loading Unloading

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(sec)

Figure 6. 1. PPV experiment with flat ends Pyrex® spring under a 500g load

6.1 External factors

Before conducting creep-recovery experiments using the PPV, the influence of
several external factors on the experimental measurements due to the experimental

setup and procedure has to be understood.
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6.1.1 Weightoffset

The LVDT, thesilicarod and the top Inconel plate are directly above and rest
on top ofthe sample. Therefore, theirweight must be counterbalanced with a pulley

system in order to let the spring expand freely during the recovery of the glass. A

mass of 100.2 g was added to overcome this problem.

6.1.2 Frictioninpulleys and steel wire

During the recovery part, the spring recovers its original shape by pushing the
top plate upward. After properly counterbalancing the pulley system, the only
resistive force is the pulley friction and the bending of the steel wire. This was
quantified by gradually adding weight to the system until the pulley starts moving.

The friction was estimatedto be equivalent to a resistive force of 27mN (i.e., 2.8 g),

which corresponds to 0.6% of the loading force of 4.9 N (i.e., 500 g).

6.1.3 Top plate rotation

When theload is applied the top plate becomes automatically in contact with
the top end part of the spring. The main drawback of the spring samples is that the
ends are notperfectly flat and parallel with the top and bottom plates, because of the
inaccuracies of the manufacturing process. In order to account for it, each sample is
testedat roomtemperature to measure the rotation of the top plate (see Figure 6.1). As
discussed later in this chapter, the rotation ofthe top plate and the points of contact
between the Inconel plate and the spring have shown to be a major source of

uncertainty that requires additional investigation.
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Figure 6.2. Schematic showingthe position of the top plate a) with no force applied

and b) with a force applied

6.1.4 Vibrations during loading and unloading

During the loadingand unloading steps, themass added has to be placed and
removed from the PPV machine as quickly as possible near the LVDT at the top of
the silicatube connectedto thetop plate. This methodis not ideal since the user must
be carefulwhen addingandremovingthe load in orderto avoid inducing vibrations in

the system that would be measured by the LVDT and spoil the data.

6.2 Differential Scanning Calorimetry and X-Ray Diffraction
6.2.1 Differential Scanning Calorimetry (DSC)

We performed DSC experiments to determine a temperature range for the
glass transition (T,) of Pyrex® and to see if we observeashift of the T, when the glass

has different thermal histories. We did three types of experiments:
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1) Two DSC experiments on avirgin rod of Pyrex® before being used by the
glassblower to create a spring. The rate in temperature is 25 C.min™.

2) Two DSC experiments on a piece of spring before being used in the PPV
machine. The rate in temperature is 25 C.min™.

3) Two DSC experiments on a piece of spring after being used fora PPV

experiment with a soaking time of two hours at 570°C. The rate in

temperature is 25 C.min™.,

The value of T, is determined by taking the minimum of the time-derivative of the

heat flow curve.

Figures 6.2,6.3 and 6.4 presentthe results obtained duringthe experiments 1, 2and 3

respectively.

Table 6.1 gives the value of T, for each experiment.
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Figure 6.3. DSC results on piece of virgin Pyrex®
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Figure 6.4. DSC results on a piece of spring before a PPV experiment
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Figure 6.5. DSC results on a piece of spring after a PPV experiment with a s oaking

time of 2 hours at 570°C

Table 6.1. Values of T, forthe three DSC experiments

Experiment
Number 1 2 3
T,(C) 605 612 620
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We can observe that after each treatment we havean increase of the T, value.
One possible explanationis the fact that Pyrex® is a phase-separated glass [15] and
each thermal history on the glass will affect the value of T,. Indeed, the two phases of
Pyrex® are a SiO, phase and a Na,BsO;5 phase. The high-silica matrix phase also
contains Na-borate droplets of 20-50 Angstroms. However, the presence of two
phasesin the glass should show two different values of T4 but only one is observed.
Since the size of the droplets are small and maybe in a very low quantity we can

assume that the DSC machine that we used is not accurate enough to measure the

second T,.

Figure 6.5 and 6.6 show the immiscibility dome (dash line) for the system
sodiumtetraborate-silica and precisely for Pyrex®. We can explain the increase of the
value of T by the fact thatwe have more silica in the matrix Indeed, for experiment 1
we measured a T,0f605 C and the percentage of silica in the Pyrex® is approximately
80% (see Figure 6.6, point 1). When the glassblower creates the spring, the
temperature of the torchis above the temperature of miscibility gap and the glass is
cooled slowly after forming: we obtain a new composition for the silica-matrixand
higher than 80% (see Figure 6.6, point 2). It could be explained the increase of T
value. Then, we do a PPV experiment at 570 C for two hours. The percentage of silica

in the matrix increases and consequently the value of T increases also (see Figure

6.6, point 3).
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Figure 6.6. Metastable immiscibility dome in the systemsodium tetraborate-silica

[15]

As discussed in future work addition tests will be carried out to evaluate if this phase

separation aspect of Pyrex® adversity impacts our study.
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Figure 6.7. Schematic showing a possible explanation for the different value of T,

after different heat treatments

However, during the DSC experiments we use a rate of temperature of

25 C.min™. This rate has been chosen in order to increase the signal and to identify

4



easily the T, value. But, if we did the same experiments with a lower rate we would

observe ashift ofthe T, at the lowertemperature as shown in Figure 6.7. That's why,

it is more correct to talk about a range of T, than a value of T,
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Figure 6.8. DSC experiments with different rate of temperature: 10 (blue), 15 (red), 20

(green) and 25 C.min*(purple)

6.2.2 X-Ray Diffraction (XRD)

These experiments were performed in order to know if there is some
crystallization in the glass during the creep-recovery experiment. Erick Koontz — PhD

student at Clemson University — performed two experiments:

1) XRD experiment on a virgin piece of Pyrex®
2) XRD experiment on a virgin piece of Pyrex® treated at 1000 C during 40

minutes.

As shown in Figure 6.8 there is no sharp peak that would denote the presence
of crystallization in the glass before and after heat treatment. Therefore, there seems

to be noriskto crystallize the glass during a creep-recovery experiment with the PPV.
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Additional XRD experiments should be performed onsamples that have been treated

at higher temperatures (i.e., up to 1300°C) to study theeffect of the high temperature

propane torch used by the glassblower to manufacture spring samples.
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Figure 6.9. XRD results for a virgin rod of Pyrex® (blue curve) and a virgin rod of

Pyrex® after a heat treatment at 1000 C during 40 minutes (red curve)

6.3 Creep-recowveryexperiment with a Pyrex®spring of 50mmheight

6.3.1 Step-by-step procedure

Each PPV experiment follows a procedure developed empirically from the

initial experiments.

1) Creep experimentat room temperature

This first experiment consists of quantifying the top plate rotation when the
load is applied. The deformation measured is the sum of the elastic response of the

spring and the rotation of the plate. According to Equation (2.24) we can easily
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calculate the elastic response ofthe springandthen determine the rotation of the top

plate.

Equation (2.24) is inversely proportional to the shear modulus Gofthe glass where G

is also dependent on temperature.

2) Creep-recovery experiment

In the first step the temperature increases with a rate of 5'C.min™ until the
target temperature (570°C) is reached. During the second step, the sample is soaked
inside the furnace for 2hours, in order to have homogeneity in temperature inside and
at the surface of the glass and to let the controller stabilizes the temperature (as
illustrated in Figure 6.9). The third stepis the loading part where a known mass (e.g.,
500 g or 400 g) is added to compress the spring during 15min. Finally, the load is
removed in the beginning ofthe fourth stepwhere the springsample recovers partially

its original shape until a steady-state is reached.
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Figure 6.10. a) Ramp temperatureand soaking time and b) Zoom on the stabilization

region

3) Data processing
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Once the creep-recovery curve is obtained fromwhich the recovery part is
extracted. The recovery part is thenconverted onto a retardation curve, fitted with a
Prony series fromwhich the retardation parameters are extracted. These retardation
parameters willbe also convertedinto relaxation parameters. More details are given

later in this chapter.

4) Numerical analysis

Afterextracting the relaxation parameters, we needto correlate theresults with
a numericalanalysis using ABAQUS, i.e. Finite Element Analysis (FEA) software.
The properties of the material, e.g. Young's modulus, Poisson's ratio, temperature, and
relaxation parameters are defined as input and the software calculates the elastic
response of the spring, the deformation of the springduring the compression and the

recovery.
6.3.2 Results
(@) Experiments repeatability

Three experiments were performed with a mass of 500g to check if we can
observe repeatability between experiments. We usedthree springs of 50mm height in
length at 570 C undera 15 min compression. The creep-recovery curves are shown in

Figure 6.10.
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Creep-recovery expenments under a 500g load
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Figure 6.11. Creep-recovery experiment with a 50mm Pyrex® spring under a load of

500g at 570°C
Discussion

We can observe 3 different parts also shown in Figure 2.10 (creep-recovery

experiment under tensile stress):

=  Segments [AB] & [CD] which correspondto the elastic response of the spring
and the top plate rotation.

= Segment [BC] which is the time-dependantloading response, i.e. the spring is
compressed.

= Segment [DE] which represents the strain delayed part, i.e. the recovery of the
glass when no force is applied. We can also observe that segment [D'E] is
constant. This shows thatwe have reached the steady-stateandthe glass does

not recover anymore.
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However, we can see thereis no repeatability amongthese three experiments even
though thethreespring samples had the same geometry (50mm height and 4 active
coils) and the load (m=500g), and the temperature (570 C) were also the same, we
obtain three different creep-recovery curves. We compared the loading parts and
recovery parts (tabulated in Table 6.2) and we observed that while the loading parts

are significantly different, the recovery values are fairly close.

Table 6.2. Recovery values for 3 experiments under a 500g load

Experiment 1 Experiment 2 Experiment 3
Elastic response +
top plate rotation + 6.274 8.880 7.418
compression (mm)
Recovery (mm) 1.4251 1.4272 1.2610

We tried to understand why we did not obtain the same compression value of
each experiment and our first explanationis the load is not applied at the center of the
spring due to the irregular shape of the top coil of the spring. The point of contact
between the top plate and the coil is likely to be off-center, which creates a bending
moment in the spring in addition tothe vertical compressive force. The variations in
the location of the points of contact among samples may is therefore expected to
create the non-repeatability of the results shown in Figure 6.10. To validate this
explanation we used the FEA sofware ABAQUS to model the spring. We did five
different simulations by changing the location of the load as shown in Figure 6.11.
The coordinates of each locationare givenbelow in terms of the radius of the spring

(r) and the pitch of the coil (p).

e Position 1: Center of the spring (0,0,0)
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e Position 2: Half radius of the spring (-r/2,0,0)
e Position 3: Radius of the spring (-r,0,0)
e Position 4: Radius of the spring (r,0,p/2)

e Position 5: Radius of the spring (0,-r,3p/4)

5
Figure 6.12. Position ofthe load on the spring for the five simulations in ABAQUS

(b) Numerical analysis

Figure 6.12 shows thespring drawnwith Solidworks (3D CAD design software) and

used with ABAQUS. The coloring shows the stress level within the spring.
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Figure 6.13. Spring with four active oils in ABAQUS
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Figure 6.14. Numerical analysis with ABAQUS fora load at position 1 (blue curve),
position2 (red curve), position 3(green curve), position4 (purple curve) and position

5 (brown curve) under a 500g load at 570°C.
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Figure 6.15. Numerical analysis with ABAQUS showing the recovery for a load at

position 1 (blue curve), position 2 (red curve), position 3 (green curve), position 4

(purple curve) and position 5 (brown curve) under a 500g load at 570°C.

It can be seenthatby changing theposition of the load fromthe center to the

edge ofthe spring, thedeformation of the loading part increases (by up to 40%) while

the recovery part is fairly constant (within 3%). This may validate the explanation for

the non-repeatability of the loading part under the same load (500g). Table 6.3

summarizes the results obtain with the numerical analysis.

Table 6.3. Numerical analysis results on ABAQUS for different load positions at

570C
Position 1 | Position2 | Position 3 Position 4 | Position 5
Load position (blue (red (green (purple (brown
curve) curve) curve) curve) curve)
Elastic
response +
Compression 5.182 5.432 6.215 6.571 7.123
(mm)
Recovery
(mm) 1.326 1.312 1.283 1.298 1.296
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Since the extraction of the retardation parameters is exclusively based on therecovery

part, the non-repeatability of the loading part is acceptable.
(c) Retardation curwe

Once the creep-recovery curve is obtained experimentally, it is converted into a

retardation curve by following four steps:

1) Extract the recovery part fromthe creep-recovery curve (elastic response + top

plate rotation + recovery)
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Figure 6.16. Elastic response + top plate rotation + recovery

2) Removethe value ofthe elastic response andthe top plate rotation in order to

obtain only the recovery of the glass.
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Figure 6.17. Recovery curve
3) Normalize the displacementin order to obtain the normalized recovery curve.
The normalization is achieved by scaling the curve with the difference
between the maximum and the minimum values of the recovery curve. The

normalized recovery curve is then between Oand 1.
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Figure 6.18. Normalized recovery curve
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4) Convert the time scale into logarithmic time scale to obtain the retardation

curve. This curve will be fit with the Prony Series.

Retardation curve
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Figure 6.19. Retardation curve in semi log scale

The foursteps were applied to the three experimental data obtained for 500g
load. Figure 6.18 shows that the retardation curves are slightly different. The main
explanation for this deviation could be due to the fact that the load is never applied in
the same location onthe spring which may affect the elastic response andthe top plate

rotation. This inaccuracy can change the curvature of the retardation curve.
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Retardation curves under a 500g load
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Figure 6.20. Retardation curves for the three experiments under a 500g load

Since we did not obtain exactly the same retardation curves we decided to use

an average retardation curve which is then fitted with the Prony series.

Average Retardation curve under a 500g load
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Figure 6.21. Average retardation curve under a 500g load
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6.4 Extraction of pure shear retardation parameters

Once we obtain the retardation curve, we need to fit it with a Prony Series
which describesthe generalized Maxwell model. A Matlab program was created for
this major part by a former student at Clemson University [5]. The input data of the
program are some arbitrary retardation times A;; (j=1...N) where N, is an arbitrary
number of terms. The output of the programincludes the retardation weights vy;.
Inside the program, an optimization function has been programmed which tries to find
the best retardation weight vy; corresponding to the retardation time Ay in order to
minimize the deviation with the experimental data. Equation 6.1 describes

mathematically the optimization function:

n N
Minimize Z(d)(tk) - z vljexp(—)lt_:))z (6.2)
k=1 j=1 ]

where n is number of experimental data points (e.g., n=10 000), N number of terms in

the Prony Series (e.g., N=5), and ¢(t,) is the experimental retardation function.

Torun the programwe need in input data the retardation time 2y;. A first set of
data chosen arbitrarily has been tested and only the retardation times with a
retardation weight vy; bigger than 1.10°® were kept. The Matlab program is run a
second time until the experimental data are correctly fitted by the Prony Series. Table
6.4 shows the retardation parameters fitting the average retardation curve (Figure

6.22) for a load of 500g.
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Table 6.4. Retardation parameters fitting a retardation curve fora 500g load

Retardation time 2y; Retardation weight v;
1 0.041789
10 0.058519
19.63 0.161703
144.37 0.5618225
380 0.1754636

Retardation curve fitted by a Prony series
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Figure 6.22. Retardation curve fitted by a Prony series for Pyrex® at 570°C

6.4.1 Conwersion of retardation parameters into relaxation parameters

Gy et al.[16] developeda mathematical procedure necessary to convert the
retardation parameters into relaxation parameters. Some viscoelastic constants are
needed [17] [18] to determine the relaxation parameters. A Matlab program was

created to solve the following equations.

1) The relaxation viscoelastic moment < 7, > is defined by a relationship

between the viscosity n and the shear modulus G:
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Ui
<1, >=— 6.2
T >=7 (6.2)

In our case, thedifficulty presented by the equationabove is the fact that we need to
knowthe viscosity ofthe glass. Theviscosity is strongly dependent of the temperature
and we have a temperature gradient in the furnace. However, we do not know what
the temperature is inside the sample (see future work). According to Figure 6.7 we
know that the temperature of transition region of Pyrex® is around 570°C. The

assumptionthat we did for the calculation ofthe relaxation parameter is the following:

We considered that the lower 22mm of the spring are expected to have a temperature
equalto orabovethan 570°C (see Figure 5.3) and consequently the viscosity is lower
than the higher part ofthe spring. The lower 22mm could be consider more "liquid"
and the higher part more "solid" and duringthe creep-recovery testthe lower part will

compress more than the second one.

The averagetemperature for the lower 22mm is 573.5 C and according to Figure 6.23
the viscosity is 10'*? Pa.s. In this thesis we assume thatthe temperature of the glass

is the same as that of the air. However, this may induce inaccuracy that will be

resolved as part of future work.
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Figure 6.23. Viscosity curve for Pyrex® [18] [19]

2) Therelaxation viscoelastic constant is defined as the total delayed strain, i.e.

recovery and the instantaneous elastic response of the spring.

2
<ty > _ 6recovery B 6instantaneous (6 3)

5 =
< Tq > 6instantaneous

To obtain the (m+1) relaxation times we need to solve a polynomial equation of order

(m+1), in term of the variable p, where mis the number of retardation parameters.

The negative reciprocals of the (m+1) values of p give the relaxation times ;.

2. (n) <17{> am <17> +< 1 )_0 6.4
P <1, >2 p <1, >2 <1, > (64)

where ¢, (p) is defined by:

m A
— 1j .
».() jél T p Vi (6.5)
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Once the relaxation times are found, they are used to determine therelaxation weights

oy by solving a systemof (m+1) equations.

n (o)=L
: le (6.6)
I Ak
k=1...m
m
W0) = ) Tyt =<7 > 67
j=1

Table 6.5 shows the relaxation parameters after applying the method describes by Gy

et al.

Table 6.5. Relaxation parameters of Pyrex® at 573.5°C

Relaxation times 1 Relaxation weight o;
0.801375 0.214625
6.512016 0.380140
13.518012 0.098150
57.346681 0.198280

307.726579 0.032939
641.308711 0.075867

6.4.2 Relaxation parameters for a creep-recoveryexperiment under 400g

load

We did exactly the same experiments described above for a load of 500g but

this time with a load of 400g. The goal of these experiments was to compare the

relaxation parameters and checkedthe expect linearity of the glass [6], i.e. the stress
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increases in proportion tothe strain; we expect to measure the same retardation curve

under a load of 400g as for a under a load of 500g.

We observed the same problem as mentioned in the experiment with a 500g
load: different compressions maybe due to the position of theload during thetest. An
average retardation curve has been created, and then fitted with a Prony series.

Retardation and relaxation parameters are shown in Table 6.6.

Retardation curves under a 400g load
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Figure 6.24. Retardation curves for the two experiments under a 400g load

73



Figure 6.25. Average retardation curve undera 400g load
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Figure 6.26. Averageretardation curve under a 400g load fitted with a Prony series
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Table 6.6. Retardation andrelaxation parameters at 573.5°C

Retardation times | Relaxation weight | Relaxation times Relaxation weight

M Vij Ty 0

0.937520 0.072530

1 0.0070274 5.534432 0.718003

10 1e-006 10.000053 0.000003

19.63 0.23982 52.961929 0.125686

144.37 0.7393074 377.910025 0.000683

380 0.005472593 821.417820 0.083095

Compared to the results obtain with 500g, we can see that we do not obtain exactly

the same results. Several explanations could explain this difference:

1) Thefit forthe 400 g retardationcurve is not as good for the 500g retardation
curve and therefore we do not havethe same retardation parameters.

2) We have some differences in the retardation curves due tothe experiment and

the inaccuracy with theload position.

6.4.3 Comparison of the stress relaxation results obtain with a creep-recovery

experiments under tensile stress

The former student at Clemson University studied stress relaxation of Pyrex®
glass under tensile stress. The goal of this section is to compare the results obtained
between the two methods (tensile and compressive stresses) and to formulate an

explanation on the differences observed. Figure 6.26 summarizes the results.
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Retardation curves at 573.5°C

-
Tensile stress

09F Compressive stress (PPV)

08} ]
0.7+ i}
06} \ ]
= 05} ]
04} .
0.3} |
02} .

01+ <

2 3 4

10° 10 10 10' 10 10
log(Time)
Figure 6. 27. Retardation curves obtained after a creep-recovery experiment under

tensile stress (bluecurve) and compressive stress (red curve)

As shown onFigure 6.27 we can see thatwe do not obtain thesame results. There can

be several explanations:

1) For the creep-recovery experiment under compressive stress there is a
temperature gradient of 25 C inside the furnace which is not the case for the
experiment under tensile stress (i.e., the temperature gradient is only 3°C).
There is inaccuracy in the temperature for the first case and will affect the
viscosity and then the stress relaxation parameters.

2) Forboth cases, arotationfromthe top plate for the PPV or fromthe spring in
the case ofthe experiment under tensile stress is measured. If the rotation is
not well known, there is an uncertainty on the value of the instantaneous

response and then on the curvature of the retardation curve.
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CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The intent of this thesis was to presenta new method for the determination of
pure shearretardation parameters using a Parallel Plate Viscometer (PPV) machine.
This researchis part in a larger project focused on studying precision glass molding
(PGM) where the grasp of stress relaxation is an important parameter to control the

accurate lens shape.

The advantage ofusingthe PPV machine is its simplicity in conducting creep-
recovery experiments. The major part of the problems encountered during this
research has beenunderstood. Nevertheless, some difficulties have to be resolved to
improve accuracy in the measurement, such as the temperature gradient inside the
furnace and the uncertainty in the load position during the loading part. Despite these
issues, themethod for calculating the stress relaxation parameters was implemented.

Complementary to the experimental measurements a simulation using Finite Element

Analysis (FEA) software was created to verify the results obtained experimentally.

7.2 Future work

Afterayearworking on the PPV machine, we are able to determine a list of tasks to

continue the work started.

7



1

2)

3)

4)

Even though the temperature gradient in the air in the furnace is well known,
the temperature inside the glass needs to be properly characterizes in order to
increase confidence in determination ofthe viscosity. This could be done by
inserting thermocouples inside the glass sample at different locations.

We need to obtain a better control of the load position since it changes
significantly duringthe compressionand ultimately affects the interpretation
of the recovery data.

Once the pure shear stress relaxation parameters are determined, a new set of
experiments must be performed todetermine the hydrostatic stress relaxation
parameters. This is usually done using a uniaxial test, which includes both
shear and hydrostatic behaviors.

Since the project is focused on the precision glass molding process of specific
typesofglass, the stress relaxation characterization method mustbe applied to
the optical glasses of interestsuch as N-BK7® and L-BAL35". These glasses
are known as low-T, glasses and are generally more difficult to work with than

Pyrex®.
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APPENDICES

AppendixA

Temperature-dependent mechanical properties of Pyrex® glass
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AppendixB

Matlab program for the conversion of retardation parameters into relaxation

parameters

clear all

fprintf('\n'");

Ed=input (' Total delayed elasticity value Ed (mm): ');
fprint£('\n");

Ei=input (' Instantaneous elastic response value Ei (mm): ');
fprintf('\n'");

RVC=(Ed+Ei) /Ei;

G=input ('Shear modulus value (GPa): ');

fprintf('\n");

G1=G*10"9;

n=input ('Viscosity value (log(Pa.s)): ");

fprintf('\n");

nl=10"n;

fprintf (' |- """
—————————————————————————————————————— -I\n")

fprintf('| Delayed strain |Instantaneous response| (Ed+E1) /Ei1 (RVC)
\ Shear modulus |Log (Viscosity) | \n') ;

str = fprintf ('] sd | sd | sd | sd [$d |\n',
Ed,Ei, RVC, Gl,nl);
fprintf('|[-—-—--"""-""""""""—"—"—"— - -
—————————————————————————————————————— -/\n")

Parameter=input ('How many retardation time do you want: ") ;
fprintf('\n'");

if Parameter==
rtl=input('lst retardation time: ');
rwl=input ('lst retardation weight: ');
a=[rtl;rwl;RVC;Gl;nl];
syms x
f=(-x*x)*((a(l)*a
L)+ (x*a(3))+((a(4))/(
y=solve (f, x);
solnvalue=double(y);
rltl=-1/(solnvalue (1)) ;
rlt2=-1/(solnvalue (2)) ;
A=[(rltl/(1-rltl/rtl)) (rlt2/(1l-rlt2/rtl));rltl rlt2];
B=[0;nl/G17];
S=inv (A) *B;
Sum rlwi=S (1)+S(2) ;
Sum rwi=rwl;

2))/ (1+a (1) *x))* (a(3) -
(5)));

(
a

fprintf('| """ e
————————————————————————————— [\n")
fprintf('| Retardation time |Retardation weight| Relaxation time |
Relaxation weight [\n');
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str = fprintf ('] %.6f | %.6f %.6f

%.6f [\n'", rtl,rwl,rltl,S(1));

str = fprintf ('] | | $.0f

\ %.6f [\n', rlt2,S(2));

str = fprintf ('] | $.0f |

\ %.0f I\n', Sum rwi,Sum rlwi);

fprintf (' |- o
————————————————————————— [\n")

end

if Parameter==
rtl=input('lst retardation time: ');
rwl=input('lst retardation weight: ');
rt2=input ('2nd retardation time: ");
rw2=input ('2nd retardation weight: ");
a=[rtl;rwl;rt2;rw2;RVC;Gl;nl];
syms x
f=(-x*x)*((a(l)*

L)+(x*a(5))+((a(6))/
y=solve (f, x);
solnvalue=double(y);
rltl=-1/(solnvalue (
rlt2=-1/(solnvalue (
rlt3=-1/(solnvalue (
A=[(rltl/(l1-rltl/rt
(rltl/ (1-rltl/rt2))
rltl r1lt2 rlt3];
B=[0;0;nl/G1];
S=inv (A) *B;
Sum rlwi=S (1)+S(2) +S(3);
Sum_rwi=rwl+rw2;

(rlt2/(1-rlt2/rtl)) (rlt3/(l-rlt3/rtl));
1t2/ (1-rlt2/rt2)) (rlt3/ (1-rlt3/rt2));

fprintf('|--——----"""""""""""" - ———
————————————————————————————— [\n")
fprintf('| Retardation time |Retardation weight| Relaxation time |
Relaxation weight I\n'");
str = fprintf('| $.6f | %$.6f | $.6f
%.6f [\n'", rtl,rwl,rltl,S(1));
str = fprintf('| $.6f | $.6f | $.6f
%.6f [\n', rt2,rw2,rlt2,S(2));
str = fprintf ('] | | %.0f
| $.6f [\n', rlt3,S(3));
str = fprintf ('] | $.6f |
\ %.06f [\n', Sum rwi,Sum rlwi);
fprintf (' |- e
————————————————————————— I\n")
end
if Parameter==
rtl=input('lst retardation time: ');
rwl=input('lst retardation weight: ');
rt2=input ('2nd retardation time: ');
rw2=input ('2nd retardation weight: ');
rt3=input (

'3rd retardation time: ');
rw3=input ('3rd retardation weight: ');
a=[rtl;rwl;rt2;rw2;rt3;rw3;RVC;Gl;nl];
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syms x
f= (-

x*x)* ((a(l)*a(2))/ (1+a (1) *x)+(a(3) *a

5)*x)) *(a(7)-1)+(x*a(7))+((a(8))/ (al
y=solve (f, x);
solnvalue=double(y);
rltl=-1/(solnvalue (
rlt2=-1/(solnvalue (
rlt3=-1/(solnvalue (
rltd4=-1/(solnvalue (
A=[(rltl/(1l-rltl/rt

(rlt4/ (1-rltd/rtl));

4))/(1+a(3)*x)+(a(5)*a(6))/ (1+al
)

(
9))):

(rlt2/(1-rlt2/rtl)) (rlt3/(l-rlt3/rtl))

(rltl/ (1-rltl/rt2)) (rlt2/ (l-rlt2/rt2)) (rlt3/ (1-rlt3/rt2))
(rltd/ (1-rltd/rt2));
(rltl/ (1-rltl/rt3)) (rlt2/ (l-rlt2/rt3)) (rlt3/ (1-rlt3/rt3))

(rlt4/ (1-rltd/rt3));
rltl rl1lt2 rlt3 rltd];
B=[0;0;0;nl1/G1];
S=inv (A) *B;
Sum_rlwi=S(1)+S(2)+S(3)+S(4);
Sum rwi=rwl+rw2+rw3;
P TNt £ (" | mmmm oo o o -

fprintf('| Retardation time |Retardation weight| Relaxation time \
Relaxation weight [\n');

str = fprintf ('] %.6f | %.6f | %.6f

%.6f [\n', rtl,rwl,rltl,S(1l));
str = fprintf ('] $.6f | $.0f |
%.6f [\n', rt2,rw2,rlt2,S(2));
str = fprintf ('] %.6f | %.6f |
%.6f [\n', rt3,rw3,rlt3,S(3));
str fporintf ('] |

| .6f [\n', rltd4,s(4));

str fporintf ('] | $.0f

\ .6f I\n', Sum rwi,Sum rlwi);
fprintf('|[--——-"""""""""""""— -

o o
o (&)
Hh Hh

o°
[
h

o0 I oo |l

end

if Parameter==
rtl=input('lst retardation time: ');
rwl=input ('lst retardation weight: ');
rt2=input ('2nd retardation time: ');
rw2=input ('2nd retardation weight: ');
rt3=input ('3rd retardation time: ');
rw3=input ('3rd retardation weight: ");
rt4=input ('4th retardation time: ');
rwé4=input ('4th retardation weight: ');
a=[rtl;rwl;rt2;rw2;rt3;rw3;rtd;rwd;RVC;Gl;nl];
sSyms x
f= (-
x*x)*((a(l)*a(2))/ (1+a(l)*x)+
5)*x)+ (a(7)*a(8))/ (1+a (7 )
y=solve (f, x);
solnvalue=double(y)
rltl=-1/(solnvalue (1)) ;
rlt2=-1/(solnvalue (2)) ;
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(rlt
(rlt
(rlt

(rlt
rltl

fpri
Rela
str
%.60f
str
%.60f
str
%.0f
str
%.06f
str

str

end

if P

A=

rlt3=-1/(solnvalue
rlt4=-1/(solnvalue
rlt5=-1/(solnvalue
[(rltl/(1-rltl/rtl)) (rlt2/(1l-rlt2/rtl))
4/ (1-rltd4/rtl)) (rlt5/(l-rlt5/rtl));
(rltl/ (1-rltl/rt2)) (rlt2/ (l-rlt2/rt2))
4/ (1-rltd/rt2)) (rlth5/(l-rlt5/rt2));
(rltl/ (1-rltl/rt3)) (rlt2/ (l-rlt2/rt3))
4/ (1-r1t4/rt3)) (rlt5/ (1-rlt5/rt3));
(rltl/ (1-rltl/rt4)) (rlt2/ (l-rlt2/rt4d))
4/ (1-rltd/rtd)) (rlt5/(l-rlt5/rtd));
rlt2 rlt3 rltd4d rltb5];

=[0;0;0;0;nl1/G1]

S=inv (A) *B;
Sumfrlwi=$(1)+S(2)+S(3)+S(4)+S(5);

Sum rwi=rwl+rw2+rw3+rwé;

’

(3))
(4));
(5))

’

3
4
5
1 (r1t3/(1-rlt3/rtl))
(r1t3/ (1-rlt3/rt2))
(rlt3/ (1-rlt3/rt3))

(rlt3/ (1-rlt3/rt4))

fprintf('|-~-———-—--"-"""""""""""" -
————————————————————————— [\n")
ntf('|] Retardation time |Retardation weight| Relaxation time \
xation weight [\n');
= fprintf ('] %.6f | %.60f | $.6f
[\n', rtl,rwl,rltl,S(1l));
= fprintf ('] %.6f | %.6f | %.6f
[\n', rt2,rw2,rlt2,S(2));
= fprintf ('] %.6f | %.6f | %.6f
[\n', rt3,rw3,rlt3,S(3));
= fprintf ('] %.6f | %.6f | %.6f
[\n', rt4,rwd,rltd,S(4));
= fprintf ('] | | %.6f
%.6f [\n', rlt5,S(5));
= fprintf ('] | $.0f
$.0f [\n', Sum rwi,Sum rlwi);
Nt (| mmmm mmm e m e e
————————————————————— [\n")
arameter==
rtl=input('lst retardation time: ');
rwl=input ('lst retardation weight: ');
rt2=input ('2nd retardation time: ');
rw2=input ('2nd retardation weight: ');
rt3=input ('3rd retardation time: ');
rw3=input ('3rd retardation weight: ');
rtd4=input ('4th retardation time: ');
rwi4=input ('4th retardation weight: ");
rtS5=input ('5th retardation time: ');
rwS=input ('5th retardation weight: ');

=[rtl;rwl;rt2;rw2;rt3;rwl3;rtd;rwd;rt5;rw5;RVC;Gl;nl];

syms x
f= (-
X*X)*((a(l)* 2 )/ (1+a (1) *x)+(a(3) * )/ (1+a(3)*x)+(a(5)*a(6))/ (1+a(
5)*X)+(a(7) )/ (1+a ( )*X)+(a(9) ))/ (1+a (9)*x))* (a(ll) -
)+(x*a(1l))+ (((12))/ (13))) 7
y=solve (f, x);
solnvalue=double(y)

rltl=-1/(solnvalue (1)) ;
rlt2=-1/(solnvalue (2)) ;
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rlt3=-1/(solnvalue
rlt4=-1/(solnvalue
rlt5=-1/(solnvalue
rltée=-1/(solnvalue
A=[(rltl/(1l-rltl/rtl)) (rlt2/(1l-rlt2/rtl)) (rlt3/(l-rlt3/rtl))
(rlt4/ (1-rltd4/rtl)) (rlt5/(l-rlt5/rtl)) (rltée/ (l-rlte6/rtl)):
(rltl/ (1-rltl/rt2)) (rlt2/(l-rlt2/rt2)) (rlt3/(1-rlt3/rt2))
(rlt4/ (1-rltd/rt2)) (rltb5/(l-rlt5/rt2)) (rlt6/ (l-rlte6/rt2)):
(rltl/ (1-rltl/rt3)) (rlt2/ (l-rlt2/rt3)) (rlt3/(1-rlt3/rt3))
(rlt4/ (1-rltd4/rt3)) (rlth5/(l-rlt5/rt3)) (rlté6/ (l-rlte6/rt3)):;
(rltl/ (1-rltl/rt4)) (rlt2/ (l-rlt2/rtd)) (rlt3/ (1-rlt3/rtd))
(rlt4/ (1-rltd/rt4d)) (rlt5/ (1-rltb5/rt4d)) (rlt6/ (l-rlt6/rtd));
(rltl/ (1-rltl/rt5)) (rlt2/ (l-rlt2/rt5)) (rlt3/ (l-rlt3/rtb5)) (rlt4/ (1-
rltd4/rtb)) (rlt5/(1-rlt5/rtb5)) (rlt6/(l-rlt6/rth)) ;
rltl rlt2 rlt3 rlt4d rlt5 rlte];
B=[0;0;0;0;0;nl1/G17];
S=inv (A) *B;
Sumfrlwi=S(1)+S(2)+S(3)+S(4)+S(5)+S(6);
Sum rwi=rwl+rw2+rw3+rwd+rwb;

3
4
5
6
1

forintf('|--——f>-"--"-""""""""""" -
————————————————————————————— I\n")
fprintf('| Retardation time |Retardation weight| Relaxation time \
Relaxation weight [\n');
str = fprintf ('] $.6f | %.6f | $.6f
%.6f [\n', rtl,rwl,rltl,S(1));
str = fprintf ('] $.6f | %.6f | %.6f
%.6f [\n', rt2,rw2,rlt2,S5(2));
str = fprintf('| %.6f | %.6f | %.6f
%.6f [\n', rt3,rw3,rlt3,S(3));
str = fprintf('| %.6f | %.6f | %.6f
$.6f [\n', rt4,rwd,rltd,S(4));
str = fprintf ('] $.0f | $.0f | $.0f
%.6f [\n', rth5,rw5,rlt5,S(5));
str = fprintf ('] | | $.0f
\ %.6f [\n', rlt6,S(6)):;
str = fprintf ('] | $.0f
\ %.6f [\n', Sum rwi,Sum rlwi);
foprintf('|-———--"-"-"-"""""""""""
————————————————————————— [\n")
end
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