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Figure 5.4. PPV machine insulates with glass wool (left) and with aluminum foil 

(right) 

Figure 5.5. Mapping temperature at the center of the furnace with a Pyrex
®
 sample 

(bleu curve), sample + insulator (red curve), sample + aluminum foil (purple curve) at 

570
°
C 

From Figure 5.5 we observe for both experiments  that the temperature 

decreases, which was initially unexpected and we expected a temperature maybe 
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lower or higher than 570
°
C but in any case more constant. Currently, we are not able 

to advance a valid explanation concerning these two results other than speculating that 

the controller may behave differently with these two measures. Studying the thermal 

behavior of the furnace requires addition work such as recording the activity of the 

coils that are turned on and off by the controller and study the effect of convection 

and radiation on the glass temperature. Also, it is paramount to measure the 

temperature inside the glass sample as opposed to the air around the sample by 

drilling holes in the glass and inserting thermocouples at various locations of the 

sample. These tasks are part of future work. 

Since we are not able to improve the temperature gradient in the furnace we 

decided to conduct all experiments with the furnace as designed without glass wool or 

aluminum foil.  
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CHAPTER SIX 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

When the load is removed during the experiment, the spring starts to recover its 

original shape. In order to obtain the best response of the sample the spring must 

recover freely and no force must be applied on it. 

Figure 6. 1. PPV experiment with flat ends Pyrex
®
 spring under a 500g load 

 

6.1 External factors 

 

Before conducting creep-recovery experiments using the PPV, the influence of 

several external factors on the experimental measurements due to the experimental 

setup and procedure has to be understood. 
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6.1.1 Weight offset 

 

The LVDT, the silica rod and the top Inconel plate are directly above and rest 

on top of the sample. Therefore, their weight must be counterbalanced with a pulley 

system in order to let the spring expand freely during the recovery of the glass. A 

mass of 100.2 g was added to overcome this problem. 

6.1.2 Friction in pulleys and steel wire 

 

During the recovery part, the spring recovers its original shape by pushing the 

top plate upward. After properly counterbalancing the pulley system, the only 

resistive force is the pulley friction and the bending of the  steel wire. This was 

quantified by gradually adding weight to the system until the pulley starts moving. 

The friction was estimated to be equivalent to a resistive force of 27mN (i.e., 2.8 g), 

which corresponds to 0.6% of the loading force of 4.9 N (i.e., 500 g). 

6.1.3 Top plate rotation 

  

When the load is applied the top plate becomes automatically in contact with 

the top end part of the spring. The main drawback of the spring samples is that the 

ends are not perfectly flat and parallel with the top and bottom plates, because of the 

inaccuracies of the manufacturing process. In order to account for it, each sample is 

tested at room temperature to measure the rotation of the top plate (see Figure 6.1). As 

discussed later in this chapter, the rotation of the top plate and the points of contact 

between the Inconel plate and the spring have shown to be a major source of 

uncertainty that requires additional investigation. 
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Figure 6.2. Schematic showing the position of the top plate a) with no force applied 

and b) with a force applied 

6.1.4 Vibrations during loading and unloading 

 

 During the loading and unloading steps, the mass added has to be placed and 

removed from the PPV machine as quickly as possible near the LVDT at the top of 

the silica tube connected to the top plate. This method is not ideal since the user must 

be careful when adding and removing the load in order to avoid inducing vibrations in 

the system that would be measured by the LVDT and spoil the data. 

6.2 Differential Scanning Calorimetry and X-Ray Diffraction 

 

 6.2.1 Differential Scanning Calorimetry (DSC) 

 

We performed DSC experiments to determine a temperature range for the 

glass transition (Tg) of Pyrex
®
 and to see if we observe a shift of the Tg when the glass 

has different thermal histories . We did three types of experiments: 

a b 

Fapplied 



51 

1) Two DSC experiments on a virgin rod of Pyrex
®
 before being used by the 

glassblower to create a spring. The rate in temperature is 25
°
C.min

-1
.  

2) Two DSC experiments on a piece of spring before being used in the PPV 

machine. The rate in temperature is 25
°
C.min

-1
. 

3) Two DSC experiments on a piece of spring after being used for a PPV 

experiment with a soaking time of two hours at 570
°
C. The rate in 

temperature is 25
°
C.min

-1
. 

The value of Tg is determined by taking the minimum of the time-derivative of the 

heat flow curve. 

Figures 6.2, 6.3 and 6.4 present the results obtained during the experiments 1, 2 and 3 

respectively.   

Table 6.1 gives the value of Tg for each experiment. 

 

Figure 6.3. DSC results on piece of virgin Pyrex
®
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Figure 6.4. DSC results on a piece of spring before a PPV experiment  

Figure 6.5. DSC results on a piece of spring after a PPV experiment with a s oaking 

time of 2 hours at 570
°
C 

Table 6.1. Values of Tg for the three DSC experiments  

Experiment 
Number 

1 2 3 

Tg (C) 605 612 620 
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We can observe that after each treatment we have an increase of the Tg value. 

One possible explanation is the fact that Pyrex
®
 is a phase-separated glass [15] and 

each thermal history on the glass will affect the value of Tg. Indeed, the two phases of 

Pyrex
®
 are a SiO2 phase and a Na2B8O13 phase. The high-silica matrix phase also 

contains Na-borate droplets of 20-50 Angstroms. However, the presence of two 

phases in the glass should show two different values of Tg but only one is observed. 

Since the size of the droplets are small and maybe in a very low quantity we can 

assume that the DSC machine that we used is not accurate enough to measure the 

second Tg. 

Figure 6.5 and 6.6 show the immiscibility dome (dash line) for the system 

sodium tetraborate-silica and precisely for Pyrex
®
. We can explain the increase of the 

value of Tg by the fact that we have more silica in the matrix. Indeed, for experiment 1 

we measured a Tg of 605
°
C and the percentage of silica in the Pyrex

®
 is approximately 

80% (see Figure 6.6, point 1). When the glassblower creates the spring, the 

temperature of the torch is above the temperature of miscibility gap and the glass is 

cooled slowly after forming: we obtain a new composition for the silica-matrix and 

higher than 80% (see Figure 6.6, point 2). It could be explained the increase of Tg 

value. Then, we do a PPV experiment at 570
°
C for two hours. The percentage of silica 

in the matrix increases and consequently the value of Tg increases also (see Figure 

6.6, point 3). 
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Figure 6.6. Metastable immiscibility dome in the system sodium tetraborate-silica 

[15] 

As discussed in future work addition tests will be carried out to evaluate if this phase 

separation aspect of Pyrex
®
 adversity impacts our study. 

Figure 6.7. Schematic showing a possible explanation for the different value of T g 

after different heat treatments  

However, during the DSC experiments we use a rate of temperature of 

25
°
C.min

-1
. This rate has been chosen in order to increase the signal and to identify 

 

1 

2 

3 570 
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easily the Tg value. But, if we did the same experiments with a lower rate we would 

observe a shift of the Tg at the lower temperature as shown in Figure 6.7. That's why, 

it is more correct to talk about a range of Tg than a value of Tg. 

Figure 6.8. DSC experiments with different rate of temperature: 10 (blue), 15 (red), 20 

(green) and 25
°
C.min

-1
(purple) 

6.2.2 X-Ray Diffraction (XRD) 

 

These experiments were performed in order to know if there is some 

crystallization in the glass during the creep-recovery experiment. Erick Koontz – PhD 

student at Clemson University – performed two experiments: 

1) XRD experiment on a virgin piece of Pyrex
®
 

2) XRD experiment on a virgin piece of Pyrex
®
 treated at 1000

°
C during 40 

minutes. 

As shown in Figure 6.8 there is no sharp peak that would denote the presence 

of crystallization in the glass before and after heat treatment. Therefore, there seems 

to be no risk to crystallize the glass during a creep-recovery experiment with the PPV. 
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Additional XRD experiments should be performed on samples that have been treated 

at higher temperatures (i.e., up to 1300
°
C) to study the effect of the high temperature 

propane torch used by the glassblower to manufacture spring samples. 

Figure 6.9. XRD results for a virgin rod of Pyrex
® 

(blue curve) and a virgin rod of 

Pyrex
®
 after a heat treatment at 1000

°
C during 40 minutes (red curve) 

6.3 Creep-recovery experiment with a Pyrex
®
 spring of 50mm height 

 

6.3.1 Step-by-step procedure 

 

Each PPV experiment follows a procedure developed empirically from the 

initial experiments. 

1) Creep experiment at room temperature 

This first experiment consists of quantifying the top plate rotation when the 

load is applied. The deformation measured is the sum of the elastic response of the 

spring and the rotation of the plate. According to Equation (2.24) we can easily 
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calculate the elastic response of the spring and then determine the rotation of the top 

plate.  

Equation (2.24) is inversely proportional to the shear modulus G of the glass where G 

is also dependent on temperature. 

2) Creep-recovery experiment 

In the first step the temperature increases with a rate of 5
°
C.min

-1
 until the 

target temperature (570
°
C) is reached. During the second step, the sample is soaked 

inside the furnace for 2 hours, in order to have homogeneity in temperature inside and 

at the surface of the glass and to let the controller stabilizes  the temperature (as 

illustrated in Figure 6.9). The third step is the loading part where a known mass (e.g., 

500 g or 400 g) is added to compress the spring during 15min. Finally, the load is 

removed in the beginning of the fourth step where the spring sample recovers partially 

its original shape until a steady-state is reached. 

Figure 6.10. a) Ramp temperature and soaking time and b) Zoom on the stabilization 

region 

3) Data processing 
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Once the creep-recovery curve is obtained from which the recovery part is 

extracted. The recovery part is then converted onto a retardation curve, fitted with a 

Prony series from which the retardation parameters  are extracted. These retardation 

parameters will be also converted into relaxation parameters. More details are given 

later in this chapter. 

4) Numerical analysis 

After extracting the relaxation parameters, we need to correlate the results with 

a numerical analysis using ABAQUS, i.e. Finite Element Analysis (FEA) software. 

The properties of the material, e.g. Young's modulus, Poisson's ratio, temperature, and 

relaxation parameters are defined as input and the software calculates the elastic 

response of the spring, the deformation of the spring during the compression and the 

recovery. 

6.3.2 Results 

 

(a) Experiments repeatability 

 

Three experiments were performed with a mass of 500g to check if we can 

observe repeatability between experiments. We used three springs of 50mm height in 

length at 570
°
C under a 15 min compression. The creep-recovery curves are shown in 

Figure 6.10. 
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Figure 6.11. Creep-recovery experiment with a 50mm Pyrex
®
 spring under a load of 

500g at 570
°
C 

Discussion 

We can observe 3 different parts also shown in Figure 2.10 (creep-recovery 

experiment under tensile stress): 

 Segments [AB] & [CD] which correspond to the elastic response of the spring 

and the top plate rotation.  

 Segment [BC] which is the time-dependant loading response, i.e. the spring is 

compressed. 

 Segment [DE] which represents the strain delayed part, i.e. the recovery of the 

glass when no force is applied. We can also observe that segment [D'E] is 

constant. This shows that we have reached the steady-state and the glass does 

not recover anymore. 

C 
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D' E 
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However, we can see there is no repeatability among these three experiments even 

though the three spring samples had the same geometry (50mm height and 4 active 

coils) and the load (m=500g), and the temperature (570
°
C) were also the same, we 

obtain three different creep-recovery curves. We compared the loading parts and 

recovery parts (tabulated in Table 6.2) and we observed that while the loading parts 

are significantly different, the recovery values are fairly close. 

Table 6.2. Recovery values for 3 experiments under a 500g load 

 Experiment 1 Experiment 2 Experiment 3 

Elastic response + 
top plate rotation + 

compression (mm) 

6.274 8.880 7.418 

Recovery (mm) 1.4251 1.4272 1.2610 

 

We tried to understand why we did not obtain the same compression value of 

each experiment and our first explanation is the load is not applied at the center of the 

spring due to the irregular shape of the top coil of the spring. The point of contact 

between the top plate and the coil is likely to be off-center, which creates a bending 

moment in the spring in addition to the vertical compressive force. The variations in 

the location of the points of contact among samples may is therefore expected to 

create the non-repeatability of the results shown in Figure 6.10. To validate this 

explanation we used the FEA sofware ABAQUS to model the spring. We did five 

different simulations by changing the location of the load as shown in Figure 6.11. 

The coordinates of each location are given below in terms of the radius of the spring 

(r) and the pitch of the coil (p). 

 Position 1: Center of the spring (0,0,0) 
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 Position 2: Half radius of the spring (-r/2,0,0) 

 Position 3: Radius of the spring (-r,0,0) 

 Position 4: Radius of the spring (r,0,p/2) 

 Position 5: Radius of the spring (0,-r,3p/4) 

Figure 6.12. Position of the load on the spring for the five simulations in ABAQUS 

 

(b)  Numerical analysis 

 

Figure 6.12 shows the spring drawn with Solidworks (3D CAD design software) and 

used with ABAQUS. The coloring shows the stress level within the spring. 
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Figure 6.13. Spring with four active coils in ABAQUS 

Figure 6.14. Numerical analysis with ABAQUS for a load at position 1 (blue curve), 

position 2 (red curve), position 3 (green curve), position 4 (purple curve) and position 

5 (brown curve) under a 500g load at 570
°
C. 
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Figure 6.15. Numerical analysis with ABAQUS showing the recovery for a load at 

position 1 (blue curve), position 2 (red curve), position 3 (green curve), position 4 

(purple curve) and position 5 (brown curve) under a 500g load at 570°C. 

It can be seen that by changing the position of the load from the center to the 

edge of the spring, the deformation of the loading part increases (by up to 40%) while 

the recovery part is fairly constant (within 3%). This may validate the explanation for 

the non-repeatability of the loading part under the same load (500g). Table 6.3 

summarizes the results obtain with the numerical analysis. 

Table 6.3. Numerical analysis results on ABAQUS for different load positions at 

570
°
C 

Load position 
Position 1 

(blue 

curve) 

Position 2 
(red 

curve) 

Position 3 
(green 

curve) 

Position 4 
(purple 

curve) 

Position 5 
(brown 

curve) 

Elastic 
response + 

Compression 

(mm) 

5.182 5.432 6.215 6.571 7.123 

Recovery 
(mm) 

1.326 1.312 1.283 1.298 1.296 
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Since the extraction of the retardation parameters is exclusively based on the recovery 

part, the non-repeatability of the loading part is acceptable. 

(c) Retardation curve 

Once the creep-recovery curve is obtained experimentally, it is converted into a 

retardation curve by following four steps: 

1) Extract the recovery part from the creep-recovery curve (elastic response + top 

plate rotation + recovery)  

Figure 6.16. Elastic response + top plate rotation + recovery  

2) Remove the value of the elastic response and the top plate rotation in order to 

obtain only the recovery of the glass . 



65 

Figure 6.17. Recovery curve 

3) Normalize the displacement in order to obtain the normalized recovery curve. 

The normalization is achieved by scaling the curve with the difference 

between the maximum and the minimum values of the recovery curve. The 

normalized recovery curve is then between 0 and 1. 

Figure 6.18. Normalized recovery curve 
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4) Convert the time scale into logarithmic time scale to obtain the retardation 

curve. This curve will be fit with the Prony Series. 

Figure 6.19. Retardation curve in semi log scale 

The four steps were applied to the three experimental data obtained for 500g 

load. Figure 6.18 shows that the retardation curves are slightly different. The main 

explanation for this deviation could be due to the fact that the load is never applied in 

the same location on the spring which may affect the elastic response and the top plate 

rotation. This inaccuracy can change the curvature of the retardation curve. 
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Figure 6.20. Retardation curves for the three experiments under a 500g load  

 

Since we did not obtain exactly the same retardation curves we decided to use 

an average retardation curve which is then fitted with the Prony series. 

Figure 6.21. Average retardation curve under a 500g load  
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6.4 Extraction of pure shear retardation parameters 

 

Once we obtain the retardation curve, we need to fit it with a Prony Series 

which describes the generalized Maxwell model. A Matlab program was created for 

this major part by a former student at Clemson University [5]. The input data of the 

program are some arbitrary retardation times 1j  (j=1…N) where N1 is an arbitrary 

number of terms. The output of the program includes  the retardation weights 1j. 

Inside the program, an optimization function has been programmed which tries to find 

the best retardation weight 1j corresponding to the retardation time 1j in order to 

minimize the deviation with the experimental data. Equation 6.1 describes 

mathematically the optimization function: 

 
         ∑( (  )  ∑       ( 

  
   

)) 

 

   

 

   

 (6.1) 

where n is number of experimental data points (e.g., n=10 000), N number of terms in 

the Prony Series (e.g., N=5), and  (  ) is the experimental retardation function. 

 To run the program we need in input data the retardation time 1j. A first set of 

data chosen arbitrarily has been tested and only the retardation times with a 

retardation weight 1j bigger than 1.10
-6

 were kept. The Matlab program is run a 

second time until the experimental data are correctly fitted by the Prony Series. Table 

6.4 shows the retardation parameters fitting the average retardation curve (Figure 

6.22) for a load of 500g. 
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Table 6.4. Retardation parameters fitting a retardation curve for a 500g load 

Retardation time 1j Retardation weight 1j 

1 0.041789 

10 0.058519 

19.63 0.161703 

144.37 0.5618225 

380 0.1754636 

 

Figure 6.22. Retardation curve fitted by a Prony series for Pyrex
®
 at 570

°
C 

6.4.1 Conversion of retardation parameters into relaxation parameters  

 

 Gy et al. [16] developed a mathematical procedure necessary to convert the 

retardation parameters into relaxation parameters. Some viscoelastic constants are 

needed [17] [18] to determine the relaxation parameters. A Matlab program was 

created to solve the following equations. 

1) The relaxation viscoelastic moment      is defined by a relationship 

between the viscosity  and the shear modulus G: 
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 (6.2) 

In our case, the difficulty presented by the equation above is the fact that we need to 

know the viscosity of the glass. The viscosity is strongly dependent of the temperature 

and we have a temperature gradient in the furnace. However, we do not know what 

the temperature is inside the sample (see future work). According to Figure 6.7 we 

know that the temperature of transition region of Pyrex
®
 is around 570

°
C. The 

assumption that we did for the calculation of the relaxation parameter is the following: 

We considered that the lower 22mm of the spring are expected to have a temperature 

equal to or above than 570
°
C (see Figure 5.3) and consequently the viscosity is lower 

than the higher part of the spring. The lower 22mm could be consider more "liquid" 

and the higher part more "solid" and during the creep-recovery test the lower part will 

compress more than the second one. 

The average temperature for the lower 22mm is 573.5
°
C and according to Figure 6.23 

the viscosity is 10
12.28 

Pa.s. In this thesis we assume that the temperature of the glass 

is the same as that of the air. However, this may induce inaccuracy that will be 

resolved as part of future work. 
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Figure 6.23. Viscosity curve for Pyrex
®
 [18] [19] 

2) The relaxation viscoelastic constant is defined as the total delayed strain, i.e. 

recovery and the instantaneous elastic response of the spring . 

 
   

  

     
 

                        

              

 (6.3) 

To obtain the (m+1) relaxation times we need to solve a polynomial equation of order 

(m+1), in term of the variable p, where m is the number of retardation parameters. 

The negative reciprocals of the (m+1) values of p give the relaxation times 1j. 
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where   ( ) is defined by: 
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Once the relaxation times are found, they are used to determine the relaxation weights 

1j by solving a system of (m+1) equations. 

   ( 
 

   

)  ∑
   

  
   

   

   

 

   

   (6.6) 

k=1…m 

   ( )  ∑       

 

   

      (6.7) 

Table 6.5 shows the relaxation parameters after applying the method describes by Gy 

et al. 

Table 6.5. Relaxation parameters of Pyrex
®
 at 573.5°C 

Relaxation times 1j Relaxation weight 1j 

0.801375 0.214625 

6.512016 0.380140 

13.518012 0.098150 

57.346681 0.198280 

307.726579 0.032939 

641.308711 0.075867 

 

6.4.2 Relaxation parameters for a creep-recovery experiment under 400g 

load 

 

We did exactly the same experiments described above for a load of 500g but 

this time with a load of 400g. The goal of these experiments was  to compare the 

relaxation parameters and checked the expect linearity of the glass [6], i.e. the stress 
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increases in proportion to the strain; we expect to measure the same retardation curve 

under a load of 400g as for a under a load of 500g. 

We observed the same problem as mentioned in the experiment with a 500g 

load: different compressions maybe due to the position of the load during the test. An 

average retardation curve has been created, and then fitted with a Prony series. 

Retardation and relaxation parameters are shown in Table 6.6. 

Figure 6.24. Retardation curves for the two experiments under a 400g load  
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Figure 6.25. Average retardation curve under a 400g load 

Figure 6.26. Average retardation curve under a 400g load fitted with a Prony series  
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Table 6.6. Retardation and relaxation parameters at 573.5°C 

Retardation times 

1j 

Relaxation weight 

1j 

Relaxation times 

1j 

Relaxation weight 

1j 
  0.937520 0.072530 

1 0.0070274 5.534432 0.718003 

10 1e-006 10.000053 0.000003 

19.63 0.23982 52.961929 0.125686 

144.37 0.7393074 377.910025 0.000683 

380 0.005472593 821.417820 0.083095 

 

Compared to the results obtain with 500g, we can see that we do not obtain exactly 

the same results. Several explanations could explain this difference: 

1) The fit for the 400 g retardation curve is not as good for the 500g retardation 

curve and therefore we do not have the same retardation parameters. 

2) We have some differences in the retardation curves due to the experiment and 

the inaccuracy with the load position. 

6.4.3 Comparison of the stress relaxation results obtain with a creep-recovery 

experiments under tensile stress 

 

The former student at Clemson University studied stress relaxation of Pyrex
®
 

glass under tensile stress. The goal of this section is to compare the results obtained 

between the two methods (tensile and compressive stresses) and to formulate an 

explanation on the differences observed. Figure 6.26 summarizes the results. 
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Figure 6. 27. Retardation curves obtained after a creep-recovery experiment under 

tensile stress (blue curve) and compressive stress (red curve) 

As shown on Figure 6.27 we can see that we do not obtain the same results. There can 

be several explanations: 

1) For the creep-recovery experiment under compressive stress there is a 

temperature gradient of 25
°
C inside the furnace which is not the case for the 

experiment under tensile stress (i.e., the temperature gradient is only 3°C). 

There is inaccuracy in the temperature for the first case and will affect the 

viscosity and then the stress relaxation parameters. 

2) For both cases, a rotation from the top plate for the PPV or from the spring in 

the case of the experiment under tensile stress is measured. If the rotation is 

not well known, there is an uncertainty on the value of the instantaneous 

response and then on the curvature of the retardation curve. 
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CHAPTER SEVEN 

 

  CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 

 The intent of this thesis was to present a new method for the determination of 

pure shear retardation parameters using a Parallel Plate Viscometer (PPV) machine. 

This research is part in a larger project focused on studying precision glass molding 

(PGM) where the grasp of stress relaxation is an important parameter to control the 

accurate lens shape. 

The advantage of using the PPV machine is its simplicity in conducting creep-

recovery experiments. The major part of the problems encountered during this 

research has been understood. Nevertheless, some difficulties have to be resolved to 

improve accuracy in the measurement, such as the temperature gradient inside the 

furnace and the uncertainty in the load position during the loading part. Despite these 

issues, the method for calculating the stress relaxation parameters was implemented. 

Complementary to the experimental measurements a simulation using Finite Element 

Analysis (FEA) software was created to verify the results obtained experimentally. 

7.2 Future work 

 

After a year working on the PPV machine, we are able to determine a list of tasks to 

continue the work started. 
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1) Even though the temperature gradient in the air in the furnace is well known, 

the temperature inside the glass needs to be properly characterizes in order to 

increase confidence in determination of the viscosity. This could be done by 

inserting thermocouples inside the glass sample at different locations. 

2) We need to obtain a better control of the load position since it changes 

significantly during the compression and ultimately affects  the interpretation 

of the recovery data. 

3) Once the pure shear stress relaxation parameters are determined, a new set of 

experiments must be performed to determine the hydrostatic stress relaxation 

parameters. This is usually done using a uniaxial test, which includes both 

shear and hydrostatic behaviors. 

4) Since the project is focused on the precision glass molding process of specific 

types of glass, the stress relaxation characterization method must be applied to 

the optical glasses of interest such as N-BK7
®
 and L-BAL35

®
. These glasses 

are known as low-Tg glasses and are generally more difficult to work with than 

Pyrex
®
.  
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APPENDICES 

Appendix A 

Temperature-dependent mechanical properties of Pyrex
®
 glass 
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Appendix B 

Matlab program for the conversion of retardation parameters into relaxation 

parameters 

clear all 
  
fprintf('\n'); 
Ed=input('Total delayed elasticity value Ed (mm): '); 
fprintf('\n'); 
Ei=input('Instantaneous elastic response value Ei (mm): '); 
fprintf('\n'); 
RVC=(Ed+Ei)/Ei; 
  
G=input('Shear modulus value (GPa): '); 
fprintf('\n'); 
G1=G*10^9; 
n=input('Viscosity value (log(Pa.s)): '); 
fprintf('\n'); 
n1=10^n; 
fprintf('|-----------------------------------------------------------

---------------------------------------|\n') 
fprintf('| Delayed strain |Instantaneous response|   (Ed+Ei)/Ei (RVC)  

|   Shear modulus     |Log(Viscosity)|\n'); 
str = fprintf('|  %d |   %d      |   %d     |   %d     |%d |\n', 

Ed,Ei,RVC,G1,n1); 
fprintf('|-----------------------------------------------------------

---------------------------------------|\n') 

  
Parameter=input('How many retardation time do you want: '); 
fprintf('\n'); 

  
if Parameter==1 
    rt1=input('1st retardation time: '); 
    rw1=input('1st retardation weight: '); 
    a=[rt1;rw1;RVC;G1;n1]; 
    syms x 
    f=(-x*x)*((a(1)*a(2))/(1+a(1)*x))*(a(3)-

1)+(x*a(3))+((a(4))/(a(5))); 
    y=solve(f,x); 
    solnvalue=double(y); 
    rlt1=-1/(solnvalue(1)); 
    rlt2=-1/(solnvalue(2)); 
    A=[(rlt1/(1-rlt1/rt1)) (rlt2/(1-rlt2/rt1));rlt1 rlt2]; 
    B=[0;n1/G1]; 
    S=inv(A)*B; 
    Sum_rlwi=S(1)+S(2); 
    Sum_rwi=rw1; 
    fprintf('|-------------------------------------------------------

-----------------------------|\n') 
fprintf('| Retardation time |Retardation weight|   Relaxation time  |   

Relaxation weight     |\n'); 
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str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt1,rw1,rlt1,S(1)); 
str = fprintf('|                  |                  |    %.6f         

|   %.6f                |\n', rlt2,S(2)); 
str = fprintf('|                  |       %.6f   |                    

|   %.6f              |\n', Sum_rwi,Sum_rlwi); 
fprintf('|-----------------------------------------------------------

-------------------------|\n') 

     
end 

  
if Parameter==2 
    rt1=input('1st retardation time: '); 
    rw1=input('1st retardation weight: '); 
    rt2=input('2nd retardation time: '); 
    rw2=input('2nd retardation weight: '); 
    a=[rt1;rw1;rt2;rw2;RVC;G1;n1]; 
    syms x 
    f=(-x*x)*((a(1)*a(2))/(1+a(1)*x)+(a(3)*a(4))/(1+a(3)*x))*(a(5)-

1)+(x*a(5))+((a(6))/(a(7))); 
    y=solve(f,x); 
    solnvalue=double(y); 
    rlt1=-1/(solnvalue(1)); 
    rlt2=-1/(solnvalue(2)); 
    rlt3=-1/(solnvalue(3)); 
    A=[(rlt1/(1-rlt1/rt1)) (rlt2/(1-rlt2/rt1)) (rlt3/(1-rlt3/rt1)); 
    (rlt1/(1-rlt1/rt2)) (rlt2/(1-rlt2/rt2)) (rlt3/(1-rlt3/rt2));     
    rlt1 rlt2 rlt3]; 
    B=[0;0;n1/G1]; 
    S=inv(A)*B; 
    Sum_rlwi=S(1)+S(2)+S(3); 
    Sum_rwi=rw1+rw2; 
    fprintf('|-------------------------------------------------------

-----------------------------|\n') 
fprintf('| Retardation time |Retardation weight|   Relaxation time  |   

Relaxation weight     |\n'); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt1,rw1,rlt1,S(1)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt2,rw2,rlt2,S(2)); 
str = fprintf('|                  |                  |    %.6f         

|   %.6f                |\n', rlt3,S(3)); 
str = fprintf('|                  |       %.6f   |                    

|   %.6f              |\n', Sum_rwi,Sum_rlwi); 
fprintf('|-----------------------------------------------------------

-------------------------|\n') 

     
end 

  
if Parameter==3 
    rt1=input('1st retardation time: '); 
    rw1=input('1st retardation weight: '); 
    rt2=input('2nd retardation time: '); 
    rw2=input('2nd retardation weight: '); 
    rt3=input('3rd retardation time: '); 
    rw3=input('3rd retardation weight: '); 
    a=[rt1;rw1;rt2;rw2;rt3;rw3;RVC;G1;n1]; 
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    syms x 
    f=(-

x*x)*((a(1)*a(2))/(1+a(1)*x)+(a(3)*a(4))/(1+a(3)*x)+(a(5)*a(6))/(1+a(

5)*x))*(a(7)-1)+(x*a(7))+((a(8))/(a(9))); 
    y=solve(f,x); 
    solnvalue=double(y); 
    rlt1=-1/(solnvalue(1)); 
    rlt2=-1/(solnvalue(2)); 
    rlt3=-1/(solnvalue(3)); 
    rlt4=-1/(solnvalue(4)); 
    A=[(rlt1/(1-rlt1/rt1)) (rlt2/(1-rlt2/rt1)) (rlt3/(1-rlt3/rt1)) 

(rlt4/(1-rlt4/rt1)); 
    (rlt1/(1-rlt1/rt2)) (rlt2/(1-rlt2/rt2)) (rlt3/(1-rlt3/rt2)) 

(rlt4/(1-rlt4/rt2)); 
    (rlt1/(1-rlt1/rt3)) (rlt2/(1-rlt2/rt3)) (rlt3/(1-rlt3/rt3)) 

(rlt4/(1-rlt4/rt3)); 
    rlt1 rlt2 rlt3 rlt4]; 
    B=[0;0;0;n1/G1]; 
    S=inv(A)*B; 
    Sum_rlwi=S(1)+S(2)+S(3)+S(4); 
    Sum_rwi=rw1+rw2+rw3; 
    fprintf('|-------------------------------------------------------

-----------------------------|\n') 
fprintf('| Retardation time |Retardation weight|   Relaxation time  |   

Relaxation weight     |\n'); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt1,rw1,rlt1,S(1)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt2,rw2,rlt2,S(2)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt3,rw3,rlt3,S(3)); 
str = fprintf('|                  |                  |    %.6f         

|   %.6f                |\n', rlt4,S(4)); 
str = fprintf('|                  |       %.6f   |                    

|   %.6f              |\n', Sum_rwi,Sum_rlwi); 
fprintf('|-----------------------------------------------------------

-------------------------|\n') 

     
end 

  
if Parameter==4 
    rt1=input('1st retardation time: '); 
    rw1=input('1st retardation weight: '); 
    rt2=input('2nd retardation time: '); 
    rw2=input('2nd retardation weight: '); 
    rt3=input('3rd retardation time: '); 
    rw3=input('3rd retardation weight: '); 
    rt4=input('4th retardation time: '); 
    rw4=input('4th retardation weight: '); 
    a=[rt1;rw1;rt2;rw2;rt3;rw3;rt4;rw4;RVC;G1;n1]; 
    syms x 
    f=(-

x*x)*((a(1)*a(2))/(1+a(1)*x)+(a(3)*a(4))/(1+a(3)*x)+(a(5)*a(6))/(1+a(

5)*x)+(a(7)*a(8))/(1+a(7)*x))*(a(9)-1)+(x*a(9))+((a(10))/(a(11))); 
    y=solve(f,x); 
    solnvalue=double(y); 
    rlt1=-1/(solnvalue(1)); 
    rlt2=-1/(solnvalue(2)); 



85 

    rlt3=-1/(solnvalue(3)); 
    rlt4=-1/(solnvalue(4)); 
    rlt5=-1/(solnvalue(5)); 
    A=[(rlt1/(1-rlt1/rt1)) (rlt2/(1-rlt2/rt1)) (rlt3/(1-rlt3/rt1)) 

(rlt4/(1-rlt4/rt1)) (rlt5/(1-rlt5/rt1)); 
    (rlt1/(1-rlt1/rt2)) (rlt2/(1-rlt2/rt2)) (rlt3/(1-rlt3/rt2)) 

(rlt4/(1-rlt4/rt2)) (rlt5/(1-rlt5/rt2)); 
    (rlt1/(1-rlt1/rt3)) (rlt2/(1-rlt2/rt3)) (rlt3/(1-rlt3/rt3)) 

(rlt4/(1-rlt4/rt3)) (rlt5/(1-rlt5/rt3)); 
    (rlt1/(1-rlt1/rt4)) (rlt2/(1-rlt2/rt4)) (rlt3/(1-rlt3/rt4)) 

(rlt4/(1-rlt4/rt4)) (rlt5/(1-rlt5/rt4)); 
rlt1 rlt2 rlt3 rlt4 rlt5]; 
    B=[0;0;0;0;n1/G1]; 
    S=inv(A)*B; 
    Sum_rlwi=S(1)+S(2)+S(3)+S(4)+S(5); 
    Sum_rwi=rw1+rw2+rw3+rw4; 
    fprintf('|-------------------------------------------------------

-----------------------------|\n') 
fprintf('| Retardation time |Retardation weight|   Relaxation time  |   

Relaxation weight     |\n'); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt1,rw1,rlt1,S(1)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt2,rw2,rlt2,S(2)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt3,rw3,rlt3,S(3)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt4,rw4,rlt4,S(4)); 
str = fprintf('|                  |                  |    %.6f         

|   %.6f                |\n', rlt5,S(5)); 
str = fprintf('|                  |       %.6f   |                    

|   %.6f              |\n', Sum_rwi,Sum_rlwi); 
fprintf('|-----------------------------------------------------------

-------------------------|\n') 

     
end 

  
if Parameter==5 
    rt1=input('1st retardation time: '); 
    rw1=input('1st retardation weight: '); 
    rt2=input('2nd retardation time: '); 
    rw2=input('2nd retardation weight: '); 
    rt3=input('3rd retardation time: '); 
    rw3=input('3rd retardation weight: '); 
    rt4=input('4th retardation time: '); 
    rw4=input('4th retardation weight: '); 
    rt5=input('5th retardation time: '); 
    rw5=input('5th retardation weight: '); 
    a=[rt1;rw1;rt2;rw2;rt3;rw3;rt4;rw4;rt5;rw5;RVC;G1;n1]; 
    syms x 
    f=(-

x*x)*((a(1)*a(2))/(1+a(1)*x)+(a(3)*a(4))/(1+a(3)*x)+(a(5)*a(6))/(1+a(

5)*x)+(a(7)*a(8))/(1+a(7)*x)+(a(9)*a(10))/(1+a(9)*x))*(a(11)-

1)+(x*a(11))+((a(12))/(a(13))); 
    y=solve(f,x); 
    solnvalue=double(y); 
    rlt1=-1/(solnvalue(1)); 
    rlt2=-1/(solnvalue(2)); 
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    rlt3=-1/(solnvalue(3)); 
    rlt4=-1/(solnvalue(4)); 
    rlt5=-1/(solnvalue(5)); 
    rlt6=-1/(solnvalue(6)); 
    A=[(rlt1/(1-rlt1/rt1)) (rlt2/(1-rlt2/rt1)) (rlt3/(1-rlt3/rt1)) 

(rlt4/(1-rlt4/rt1)) (rlt5/(1-rlt5/rt1)) (rlt6/(1-rlt6/rt1)); 
    (rlt1/(1-rlt1/rt2)) (rlt2/(1-rlt2/rt2)) (rlt3/(1-rlt3/rt2)) 

(rlt4/(1-rlt4/rt2)) (rlt5/(1-rlt5/rt2)) (rlt6/(1-rlt6/rt2)); 
    (rlt1/(1-rlt1/rt3)) (rlt2/(1-rlt2/rt3)) (rlt3/(1-rlt3/rt3)) 

(rlt4/(1-rlt4/rt3)) (rlt5/(1-rlt5/rt3)) (rlt6/(1-rlt6/rt3)); 
    (rlt1/(1-rlt1/rt4)) (rlt2/(1-rlt2/rt4)) (rlt3/(1-rlt3/rt4)) 

(rlt4/(1-rlt4/rt4)) (rlt5/(1-rlt5/rt4)) (rlt6/(1-rlt6/rt4)); 
(rlt1/(1-rlt1/rt5)) (rlt2/(1-rlt2/rt5)) (rlt3/(1-rlt3/rt5)) (rlt4/(1-

rlt4/rt5)) (rlt5/(1-rlt5/rt5)) (rlt6/(1-rlt6/rt5)); 
rlt1 rlt2 rlt3 rlt4 rlt5 rlt6]; 
    B=[0;0;0;0;0;n1/G1]; 
    S=inv(A)*B; 
    Sum_rlwi=S(1)+S(2)+S(3)+S(4)+S(5)+S(6); 
    Sum_rwi=rw1+rw2+rw3+rw4+rw5; 
    fprintf('|-------------------------------------------------------

-----------------------------|\n') 
fprintf('| Retardation time |Retardation weight|   Relaxation time  |   

Relaxation weight     |\n'); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt1,rw1,rlt1,S(1)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt2,rw2,rlt2,S(2)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt3,rw3,rlt3,S(3)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt4,rw4,rlt4,S(4)); 
str = fprintf('|       %.6f   |       %.6f     |   %.6f         |   

%.6f                |\n', rt5,rw5,rlt5,S(5)); 
str = fprintf('|                  |                  |    %.6f         

|   %.6f                |\n', rlt6,S(6)); 
str = fprintf('|                  |       %.6f   |                    

|   %.6f              |\n', Sum_rwi,Sum_rlwi); 
fprintf('|-----------------------------------------------------------

-------------------------|\n') 

     
end 

 

 

 

 


