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Abstract

As a function of time t, mean residual life (MRL) is the remaining life expectancy of a subject

given its survival to t. In survival analysis, the relationship between a survival time and a covariate

can be conveniently modeled with the proportionality mean residual life (MRL) model proposed

by Oakes and Dasu(1990) and provides an alternative to the Cox proportionality hazards model,

Cox (1972). In this paper we consider the proportional MRL regression model with a nonparametric

covariate effect. We discuss estimation of the proportional function when the baseline MRL function

is not specified. We develop the asymptotic properties of the proportionality function. Simulation

studies are presented to assess the finite sample behavior.
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Chapter 1

Introduction

In the field of reliability and survival analysis, numerous research have been done on mean

residual life function and hazard rate function due to their wide applications. It is often of interest

to analyze the mean residual life as a function of time to characterize the survival over time. For a

nonnegative survival time T with finite expectation, the mean residual life at time t ≥ 0 is defined

as

m(t) = E(T − t|T > t)

For a comprehensive review of previous research on this function, readers are refereed to Guess &

Proschan (1988) and Csörgő & Zitikis (1996).

In many instances, scientists are interested in exploring the possible relationship between a sur-

vival time T and a covariate Z. To assess the effect of covariates on the mean residual life, we

consider the proportional mean residual life model proposed by Oakes and Dasu (1990):

m(t|Z) = m0(t) exp(βTZ) (1.1)

where m(t|Z) is the mean residual life corresponding to the p-vector covariate Z, m0(t) is some

unknown baseline mean residual life function, and β is the regression parameter. Here βT denotes

the transpose of β. When one considers a nonparametric covariate effect, it is appropriate to use

1



the model:

m(t|Z) = m0(t)Ψ(Z) (1.2)

where Z is the corresponding covariate, which could be one dimensional or a p-vector. In this article

we only consider Z as a one dimensional covariate, and assume Ψ(Z) = exp(ψ(Z)) to ensure the

positivity of the MRL function.

Previous work on the mean residual life has focused on single-sample and two-sample cases with

model (1.1). Oakes and Dasu (2003) has outlined the methods for these cases in their recent

work, while Magulari and Zhang (1994) provide a way to estimate the parameters in model (1.1),

but mainly for uncensored survival data. In most applications, the survival times of some subject

are censored instead of being fully observed. To accommodate censoring, Chen and Jewell (2002)

proposed an inference procedure for model (1.1) in the presence of censoring based on Magulari

and Zhang’s work (1994). Another straightforward approach is to apply the inverse-probability-

of-censoring-weighted paradigm of Robins and Rotnitzky (1992) to the estimating equations from

complete event times; however, this would require estimating or modeling the censoring distribution.

When it comes to a general form ψ(Z) and a nonparametric baseline MRL function m0(t) in model

(1.2), we employ localized likelihood equation and counting process theory to develop the estima-

tion procedure for baseline MRL function m0(t), and ψ(Z). Our inference procedure mimics the

Semi-parametric Regression Analysis of Mean Residual Life with Censored Survival Data for model

(1.1) by Chen and Cheng (2005), and the Local Likelihood and Local Partial Likelihood in Hazard

Regression by Fan and Gijbels (1997).
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Chapter 2

Estimation Procedure

Let T and C be the failure time and potential censoring time, respectively, and let X =

min(T,C). Here, conditional on the covariate Z, T and C are assumed to be independent. In order

to avoid lengthy technical discussion of the tail behavior of limiting distributions, we further assume

that 0 < τ = inf{t : P (X > t) = 0} < ∞. If necessary, Ying’s (1993) treatment of the asymptotic

properties beyond τ can be adapted.

Suppose the observed data set consists of n independent triplets (Xi, δi, Zi), where i = 1, · · · , n,

Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Here I(·) is the indicator function. In addition, let

Ni(t) = I(Xi ≤ t)δi, Yi(t) = I(Xi ≥ t). Let Λi(t) be the cumulative hazard rate function of Ti.

2.1 Survival Function

The conditional survival function of time T with conditional pdf f(t|Z = z) is defined by

S(t|Z = z) =
∫∞
t
f(u|Z = z)du. It is well known that the survival function of T given Z is related

to the MRL function of time T given Z (Lawless 1998) in a proportional MRL model as

S(t|Z) = P (T ≥ t|Z) =
m(0|Z)

m(t|Z)
exp

{
−
∫ t

0

1

m(u|Z)
du

}
. (2.1)
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From (2.1) and under model (1.2) we develop the relationship between S(t|Z) and the hazard rate

function λ(t|Z). Taking log on both sides of (2.1) we get

logS(t|Z) = log
m0(0)Ψ(Z)

m0(t)Ψ(Z)
− 1

Ψ(Z)

∫ t

0

1

m0(u)
du

Now take the derivative with respect to t on both sides to get

−d logS(t|Z) =
dm0(t)

m0(t)
+

1

Ψ(Z)

dt

m0(t)
(2.2)

By the connection of survival function and hazard rate function, we also have

−d logS(t|Z) =
f(t|Z)dt

S(t|Z)
= λ(t|Z)dt = dΛ(t|Z) (2.3)

Now, (2.2) and (2.3) would give us

m0(t)dΛ(t|Z) =
1

Ψ(Z)
dt+ dm0(t) (2.4)

2.2 Likelihood Function

Under model (1.2), suppose temporarily, that the baseline MRL function m0(·) is known,

and that ψ(z) has been parameterized as ψ(z) = βTZ. Under independent and noninformative

censoring, which means that the distribution of C does not involve the parameters β, it can be

shown that the conditional likelihood function is given by

L =
n∏
i=1

{
[f(Xi|Zi)]δi

n∏
i=1

[S(Xi|Zi)]1−δi
}
.

This kind of likelihood appears often in the literature [c.f. Aitkin and Clayton(1980)]. Then the

log-likelihood function is

logL =

n∑
i=1

[δi log λ(Xi|Zi) + logS(Xi|Zi)] (2.5)
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Now, using the proportional MRL model (1.1), the associated score function becomes

∂ logL

∂β
=

n∑
i=1

exp(−βTZi)Zi

[
− δi

exp{−βTZi}+m′0(Xi)
+

∫ Xi

0

1

m0(u)
du

]
. (2.6)

The details of this derivation are given in the Appendix A.

2.3 Local Likelihood

Suppose now that the form of ψ(z) is not specified, and that the pth order derivative of ψ(z)

exists. Then, by Taylor’s expansion,

ψ(Z) ≈ ψ(z) + ψ′(z)(Z − z) + · · ·+ ψ(p)(z)

p!
(Z − z)p,

for Z in neighborhood of a single value z. Let h be the bandwidth parameter that controls the size of

the local neighborhood and let K be the kernel function that smoothly weighs down the contribution

of remote data points. Set

Z = {1, Z − z, · · · , (Z − z)p}T

and

Zi = {1, Zi − z, · · · , (Zi − z)p}T

Then, locally around z, ψ(Z) can be modeled as

ψ(Z) ≈ βTZ, (2.7)

where β = (β0, · · · , βp)T = {ψ(z), · · · , ψ
(p)(z)
p! }

T . Using the local model(2.7), and incorporating the

localizing weights, we obtain the local log-likelihood by (2.4), (2.5) and (2.6) as

ln(β) = n−1
n∑
i=1

[
δi

exp{−βTZi}+m′0(Xi)

m0(Xi)
+ log

m0(0)

m0(Xi)
+ exp{−βTZi}

∫ Xi

0

1

m0(u)
du

]
Kh(Zi−z)

(2.8)

with associated score function

∂ln(β)

∂β
= n−1

n∑
i=1

exp(−βTZi)Zi

[
− δi

exp{−βTZi}+m′0(Xi)
+

∫ Xi

0

1

m0(u)
du

]
Kh(Zi − z), (2.9)
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where Kh(t) = h−1K(t/h). It can be shown that ln(β) is strictly concave with respect to β(details

are given in section 2.5). Thus, this local log-likelihood has a unique maximizer with respect to β.

Let β̂ be the maximizers of (2.8). Then, according to our parametrization, a natural estimator of

ψ(v)(z), v = 0, · · · , p, for a known baseline MRL function m0(t) is

ψ̂(v)(z) = v!β̂v. (2.10)

2.4 Sampling Properties

Our goal in this work is to establish the asymptotic normality of the estimator ψ̂(z). Since

ψ̂(z) = β̂0, a solution to the local score function, we begin this section with proving Bartlett identi-

ties for the local likelihood (2.9).

Proposition 1. First-order Bartlett identity

E

{
Ψ(z)−1Z

[
− δ

Ψ(z)−1 +m′0(X)
+

∫ X

0

1

m0(u)
du

] ∣∣Z = z

}
= 0 (2.11)

where Ψ(z) = exp{ψ(z)}.

Proof. We know that

E
{
m0(t)dN(t)− Y (t)

[
Ψ(z)−1dt+ dm0(t)

] ∣∣Z = z
}

= 0 (2.12)

We also note that

Ψ(z)−1Z

[
− δ

Ψ(z)−1 +m′0(X)
+

∫ X

0

1

m0(u)
du

]

= −
∫ τ

0

Ψ(z)−1Z

m0(t){Ψ(z)−1 +m′0(t)}
{
m0(t)dN(t)− Y (t)

[
Ψ(z)−1dt+ dm0(t)

]}
Hence, (2.11) follows by taking the conditional expectation of the above equality with respect to X

given Z = z. �

The next result shows the second order Bartlett identity for the score function ∂ln(β)
∂β . Namely,
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we will show that E[− ∂2l
∂β2 ] = E[ ∂l∂β ( ∂l∂β )T ].

Proposition 2. The following equation holds.

E

[∫ τ

0

− Ψ(z)−1

m0(t)(Ψ(z)−1 +m′0(t))
Y (t)Ψ(z)−1dt

∣∣Z = z

]
= −E

[
δ

(
Ψ(z)−1

Ψ(z)−1 +m′0(X)

)2 ∣∣Z = z

]
.

(2.13)

Proof. Note that

δ

(
Ψ(z)−1

Ψ(z)−1 +m′0(X)

)2

=

∫ τ

0

Ψ(z)−2dN(t)

(Ψ(z)−1 +m′0(t))2
.

Using this and (2.12) gives us (2.13). �

Before we state the main result of this section, we need to impose some conditions on m0(·):

C1: For any t ≥ 0,

|m′0(t)| ≤ 1. (2.14)

This is not restrictive, because from Nanda, Bhattacharjee and Alam(2005), C1 is a necessary and

sufficient condition for the existence of proportional mean residual life model.

C2: There exists an η > 0 such that

E


∣∣∣∣∣
∫ X

0

1

m0(u)
du

∣∣∣∣∣
2+η ∣∣Z

 (2.15)

is finite and continuous at the point Z = z.

C3:

E

{∣∣∣∣∣
∫ X

0

1

m0(u)
du

∣∣∣∣∣ ∣∣Z
}

(2.16)

is finite and continuous at the point Z = z.

C4: As n→∞ and h→ 0, nh→∞.
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Theorem 1. Under conditions above, there exists a solution β̂ to the local likelihood equation

(2.8) such that

H(β̂ − β∗)
P−→ 0,

where H = diag{1, h, · · · , hp}, h is the bandwidth of the kernel function and β∗ is the true value of

β.

Theorem 2. Under conditions above, the solution given in Theorem 1 is asymptotically normal:

√
nhH(β̂ − β∗)

D−→ N{0, f−1(z)S−1(z)G(z;β∗)S
−1(z)},

where

S(z) =

∫
uuTK(u)duE

[
δ

(
Ψ(z)−1

Ψ(z)−1 +m′0(X)

)2 ∣∣Z = z

]

and

G(z;β∗) =

∫ ∞
−∞

K2(v)E


[

exp(−ZTβ∗)U
exp(−ZTβ∗) +m′0(X)

]⊗ 2

δ
∣∣Z = hv + z

 dv

2.5 Asymptotic Concavity of the Local Likelihood

From the last section, we know that there exists a solution to the local likelihood equation

that is consistent. But we don’t know which solution is consistent if there are more than one solution.

However, in this section we will establish the asymptotic strict concavity of the local likelihood which

ensures the uniqueness of the solution with probability tending to 1. Therefore the unique solution

must be consistent with probability one. Let A
⊗

2 denote AAT for a vector or matrix A. The

Hessian matrix of ln(β) is given by

l′′n(β)

= n−1
n∑
i=1

exp(−βTZi)Z
⊗

2
i

[
δim

′
0(Xi)

(exp{−βTZi}+m′0(Xi))2
−
∫ Xi

0

1

m0(u)
du

]
Kh(Zi − z),

P−→ E

{∫ τ

0

− exp(−βTZ)Z
⊗

2

m0(t)[exp(−βTZ) +m′0(t)]
Y (t) exp(−βTZ)dtKh(Zi − z)

}

= E

{
Kh(Z − z)Z

⊗
2E

{∫ τ

0

− exp(−βTZ)

m0(t)[exp(−βTZ) +m′0(t)]
Y (t) exp(−βTZ)dt|Z

}}
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By Proposition 2,

l′′n(β)
P−→ −E

{
Kh(Z − z)Z

⊗
2E

{
δ

[
exp(−βTZ)

exp(−βTZ) +m′0(X)

]2
|Z

}}
< 0

This gives us the asymptotic strict concavity of the local likelihood.
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Chapter 3

Nonparametric Estimation of The

Baseline MRL Function

Since we do not know the baseline MRL function m0(t), we now modify our procedure to get

an estimator of the baseline and β̂v simultaneously. Accommodating the local likelihood, suppose

we rewrite the model (1.2) as

m(t|Z) = m̃0 exp(β̃T Z̃), (3.1)

where m̃0 = m0(t) exp(β0), β̃ = {β1, · · · , βp}T = {ψ′(z), · · · , ψ
(p)(z)
p! }

T and Z̃ = {Z − z, · · · , (Z −

z)p}T . It is shown in the Corollary 1.4.1 of Fleming and Harrington (1991) that

E{dNi(t)|=t−;β∗,m∗(·)} = Yi(t)dΛi(t;β∗,m∗(·)) (3.2)

where =t is the right-continuous filtration {=t : t ≥ 0} defined by =t = σ{Ni(u), Yi(u+), Zi : 0 ≤

u ≤ t, i = 1, · · · , n} and β∗, m∗(·) are the true values of the parameter β and m0(·). Let, for

i = 1, · · · , n,

Mi(t;β,m0) = Ni(t)−
∫ t

0

Yi(s)dΛi(s;β,m0)

Then {Mi(t;β∗,m∗(t))} are zero-mean =t martingales(Fleming and Harrington, 1991). Therefore

it is natural to estimate m∗(·) and β∗ from local estimating equations parallel to the partial score

10



equations:

n−1
n∑
i=1

{dNi(t)− Yi(t)dΛi(t;β,m0(t))}Kh(Zi − z) = 0 (0 ≤ t ≤ τ), (3.3)

n−1
n∑
i=1

∫ τ

0

Zi{dNi(t)− Yi(t)dΛi(t;β,m0(t))}Kh(Zi − z) = 0. (3.4)

Under model (3.1), by (2.4), (3.3) and (3.4), it is equivalent to estimate m̃0(t) and β̃ from the

following equations:

n−1
n∑
i=1

{m̃0(t)dNi(t)− Yi(t)[exp(−β̃T Z̃i) + dm̃0(t)]}Kh(Zi − z) = 0 (0 ≤ t ≤ τ), (3.5)

n−1
n∑
i=1

∫ τ

0

Z̃i{m̃0(t)dNi(t)− Yi(t)[exp(−β̃T Z̃i) + dm̃0(t)]}Kh(Zi − z) = 0. (3.6)

In fact (3.5) is a first-order linear ordinary differential equation in m̃0(t), so we can solve for m̃0(t)

in terms of β̃ as ̂̃m0(t; β̃) = ŜNA
−1

(t)

∫ τ

t

ŜNA(u)Q(u; β̃)du (3.7)

where

ŜNA(t) = exp

{
−
∫ t

0

∑n
i=1Kh(Zi − z)dNi(u)∑n
i=1 Yi(u)Kh(Zi − z)

}

Q(t; β̃) =

∑n
i=1 Yi(t) exp(−β̃T Z̃i)Kh(Zi − z)∑n

i=1 Yi(t)Kh(Zi − z)

Details of this derivation are shown in section 5.

Now we substitute ̂̃m0(t; β̃) into (3.6) to get an estimator for β∗. And it is easy to see that the

resulting equations (3.6) are algebraically equivalent to

U(β) = n−1
n∑
i=1

∫ τ

0

{Z̃i − Z̄(t)}{ ̂̃m0(t; β̃)dNi(t)− Yi(t) exp(−β̃T Z̃i)dt}Kh(Zi − z) = 0,

where

Z̄(t) =

∑n
i=1 Z̃iYi(t)Kh(Zi − z)∑n
i=1 Yi(t)Kh(Zi − z)

.

We are not able to solve for β0 directly from the above equations because β0 is cancelled out.

However, once we have the estimator of β1, β̂1 = ψ̂′(z), then integrating ψ̂′(z) from 0 to z would
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give us ψ̂(z), while assuming ψ(0) = 0, which is a reasonable condition. As a consequence, we can

recover the estimator of m0(t), m̂0(t) by

m̂0(t) =
̂̃m0(t; β̃)

exp{ψ̂(z)}
. (3.8)
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Chapter 4

Simulation study

Numerical studies were conducted to assess the finite-sample properties of the proposed

estimation procedure. We consider the sample size n to be 50 with a one dimensional covariate Z

for each of n subjects. Suppose ψ(Z) = −Z2 and Ψ(Z) = exp(−Z2) ≈ βTZ = (β0, β1)T (1, Z − z)

where Z is a uniform random variable on [−1, 1]. We estimate ψ(Z) at z1, z2, · · · , z50 which are fixed

values uniformly selected from [−1, 1]. We select C uniformly from the interval [1, 3] in order for the

total censoring rate to be about 5%− 15%. The censoring variable C is assumed to be independent

of Z and T . The normal kernel function is adopted throughout the simulations.

4.1 Model 1

In this model, we suppose m0(t) = 1. By (2.1), we have

S(t|Z) = exp

{
−
∫ t

0

1

m(u|Z)
du

}
.

Therefore,

t = − logS(t|Z)

exp(Z2)
. (4.1)

Now we can use (4.1) to generate the lifetime Ti associated with the covariate Zi.
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4.2 Model 2

In this model, we assume m0(t) = t+ 1, and by (2.1)

S(t|Z) =
exp(−Z2)

(t+ 1) exp(−Z2)
exp

{
−
∫ t

0

1

(u+ 1) exp(−Z2)
du

}
= (t+ 1)−1−exp(Z

2).

Therefore,

t = S(t|Z)
1

−1−exp(Z2) − 1. (4.2)

Now we can use (4.2) to generate the lifetime T associated with the covariate Zi.

14



Chapter 5

Derivations and Proofs

5.1 Derivation of (2.6)

By (2.2) and (2.3), we have the following form for the hazard rate function

λ(t|Z) =
exp(−βTZ) +m′0(t)

m0(t)

Then we have

∂δ log λ(X|Z)

∂β
= exp(−βTZ)Z

δ

exp(−βTZ) +m′0(t)
,

and

∂ logS(X|Z)

∂β
= exp(−βTZ)Z

∫ X

0

1

m0(u)
du.

Thus, by (2.5), we can easily get (2.6)

∂ logL

∂β
=

n∑
i=1

exp(−βTZi)Zi

[
− δi

exp{−βTZi}+m′0(Xi)
+

∫ Xi

0

1

m0(u)
du

]
.
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5.2 Proof of Theorem 1

We follow the ideas from Fan, Gijbels, and King (1996) in this proof. Let γ = H(β − β∗),

γ̂ = H(β̂ − β∗), γ∗ = 0 and Ui = −H−1Zi. Put

ln(γ) = n−1
n∑
i=1

[δi log
exp(UTi γ − ZTi β∗) +m′0(Xi)

m0(Xi)
+ log

m0(0)

m0(Xi)

− exp(UTi γ − ZTi β∗)

∫ Xi

0

1

m0(u)
du]Kh(Zi − z).

Then, the problem is equivalent to showing that there exists a solution γ̂ to the associated score

function

0 = l′n(γ)

= n−1
n∑
i=1

[
δi

exp(UTi γ − ZTi β∗)

exp(UTi γ − ZTi β∗) +m′0(Xi)
− exp(UTi γ − ZTi β∗)

∫ Xi

0

1

m0(u)
du

]
UiKh(Zi − z)

(5.1)

such that

γ̂
P−→ 0.

Let Sε denote the sphere centered at γ∗ with radius ε. We will show that for any ε > 0, the

probability that

sup
γ∈Sε

ln(γ) < ln(γ∗) (5.2)

tends to one.

First, we know that

l′n(γ∗) = n−1
n∑
i=1

[
δi

exp(−ZTi β∗)
exp(−ZTi β∗) +m′0(Xi)

− exp(−ZTi β∗)
∫ Xi

0

1

m0(u)
du

]
UiKh(Zi − z)

P−→ f(z)

∫
uK(u)duE

{
Ψ(z)−1Z

[
− δ

Ψ(z)−1 +m′0(X)
+

∫ X

0

1

m0(u)
du

] ∣∣Z = z

}
.

By (2.11), we get that

l′n(γ∗)
P−→ 0.
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And, therefore, with probability tending to one,

∣∣l′n(γ∗)
T (γ − γ∗)

∣∣ ≤ ε3. (5.3)

Secondly,

l′′n(γ∗) = n−1
n∑
i=1

[
δi

exp(−ZTi β∗)m′0(Xi)

(exp(−ZTi β∗) +m′0(Xi))2
− exp(−ZTi β∗)

∫ Xi

0

1

m0(u)
du

]
U

⊗
2

i Kh(Zi − z)

P−→ f(z)

∫
uuTK(u)du×

E

[∫ τ

0

− Ψ(z)−1

m0(t)(Ψ(z)−1 +m′0(t))
Y (t)Ψ(z)−1dt|Z = z

]
.

By (2.13),

l′′n(γ∗) = −f(z)

∫
uuTK(u)duE

[
δ

(
Ψ(z)−1

Ψ(z)−1 +m′0(X)

)2 ∣∣Z = z

]
+ oP (1).

= −f(z)S(z) + oP (1).

Hence, with probability tending to one,

(γ − γ∗)T l′′n(γ∗)(γ − γ∗) < −af(z)ε2, for any γ ∈ Sε, (5.4)

where a is the smallest eigenvalue of S(z). Let γj and γ∗j be the jth elements of γ and γ∗, respectively.

By Talyor expansion around the point γ∗,

ln(γ)− ln(γ∗) = l′n(γ∗)
T (γ − γ∗) +

1

2
(γ − γ∗)T l′′n(γ∗)(γ − γ∗) +Rn(γ̃), (5.5)

where γ̃ is a point between γ∗ and γ, and

Rn(γ) =
1

6

∑
j,k,l

(γj − γ∗j)(γk − γ∗k)(γl − γ∗l)
∂3

∂γj∂γk∂γl
ln(γ).

By condition (2.16),

|Rn(γ)| ≤ ε3{C + oP (1)} (5.6)
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for some constant C > 0. Substituting (5.3), (5.4), (5.6) into (5.5), we conclude that with probability

tending to one that when ε is small enough,

ln(γ)− ln(γ∗) ≤ 0 for all γ ∈ Sε.

Hence, ln(γ) has a local maximum in the interior of Sε. Since at a local maximum the score

equation (5.1) must be satisfied, it follows that for any ε > 0, with probability tending to one, the

score equation has a solution γ̂(ε) within Sε. Let γ̂ be the closest root to γ∗. Then

P{||γ̂||2 ≤ ε} −→ 1.

This in turn completes the proof of Theorem 1. �

5.3 Proof of Theorem 2

We still use the notation introduced in the proof of Theorem 1. By Taylor’s expansion, we

have

0 = l′n(γ̂) = l′n(γ∗) + l′′n(γ∗)(γ̂ − γ∗) +OP (||γ̂ − γ∗||2).

Hence,

γ̂ − γ∗ = [l′′n(γ∗) + oP (1)]−1l′n(γ∗)

= [−f(z)S(z) + oP (1)]−1l′n(γ∗)

(5.7)

Thus we only need to establish the asymptotic normality of l′n(γ∗). We first compute the mean and

the variance of l′n(γ∗).
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El′n(γ∗) = E

{
[δ

exp(−ZTβ∗)
exp(−ZTβ∗) +m′0(X)

− exp(−ZTβ∗)
∫ X

0

1

m0(u)
du]UKh(Z − z)

}

= E

{
E

{
[δ

exp(−ZTβ∗)
exp(−ZTβ∗) +m′0(X)

− exp(−ZTβ∗)
∫ X

0

1

m0(u)
du]UKh(Z − z)

∣∣Z}} .

But we know that, for any z′

E

{[
δ

exp(−ZTβ∗)
exp(−ZTβ∗) +m′0(X)

− exp(−ZTβ∗)
∫ X

0

1

m0(u)
du

]
UKh(Z − z)

∣∣Z = z′

}
= 0.

Hence,

El′n(γ∗) = 0

For variance,

V ar(l′n(γ∗)) = n−1E

K2
h(Z − z)

{[
δ

exp(−ZTβ∗)
exp(−ZTβ∗) +m′0(X)

− exp(−ZTβ∗)
∫ X

0

1

m0(u)
du

]
U

}⊗
2


= n−1E

K2
h(Z − z)

[∫ τ

0

exp(−ZTβ∗)U
exp(−ZTβ∗) +m′0(X)

dM(t)

]⊗ 2


By conditioning on Z and using

d < M,M > (t) = Y (t)
exp(−βTZ) +m′0(t)

m0(t)
dt,
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(Fleming and Harrington,1991)we have

V ar(l′n(γ∗)) = n−1E

K2
h(Z − z)

[∫ τ

0

exp(−ZTβ∗)U
exp(−ZTβ∗) +m′0(X)

]⊗ 2

Y (t)
exp(−βT∗ Z) +m′0(t)

m0(t)
dt


= n−1E

K2
h(Z − z)

[∫ τ

0

exp(−ZTβ∗)U
exp(−ZTβ∗) +m′0(X)

]⊗ 2

dN(t)


= n−1E

K2
h(Z − z)

[
exp(−ZTβ∗)U

exp(−ZTβ∗) +m′0(X)

]⊗ 2

δ


= n−1

∫ ∞
−∞

fZ(t)E

K2
h(Z − z)

[
exp(−ZTβ∗)U

exp(−ZTβ∗) +m′0(X)

]⊗ 2

δ
∣∣Z = t

dt

= n−1h−1f(z)

∫ ∞
−∞

K2(v)E


[

exp(−ZTβ∗)U
exp(−ZTβ∗) +m′0(X)

]⊗ 2

δ
∣∣Z = hv + z

dv + o(n−1h−1)

= n−1h−1f(z)G(z;β∗) + o(n−1h−1)

To prove the asymptotic normality of l′n(γ∗), we use the Cramer-Wold device. For all θ ∈ Rd, we

need to show
√
nh{θT l′n(γ∗)− θTEl′n(γ∗)}

D−→ N(0, f(z)θTG(z;β∗)θ).

To establish the asymptotic normality of θT l′n(γ∗), we only need to verify the Lyapunov condition:

E

n∑
i=1

∣∣∣∣∣√nhn−1Kh(Z − z)

[
δ

exp(−ZTβ∗)
exp(−ZTβ∗) +m′0(X)

− exp(−ZTβ∗)
∫ X

0

1

m0(u)
du

]
θTU

∣∣∣∣∣
2+η

−→ 0,

for some η > 0. By condition (2.14) and (2.15), the left-hand side of the above expression is bounded

by O{(nh)−η/2} and therefore converges to zero. Hence,

√
nh(γ̂ − γ0) =

√
nh[−f(z)S(z) + oP (1)]−1l′n(γ∗)

D−→ N{0, f−1(z)S−1(z)G(z;β∗)S
−1(z)}

This completes the proof of Theorem 2.
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5.4 Derivation of (3.7)

We mentioned that (3.5) is in fact a first-order linear ordinary differential equation in m̃0(t),

which is equivalent to

{
n∑
i=1

Kh(Zi − z)dNi(t)

}
m̃0(t)−

{
n∑
i=1

Yi(t)Kh(Zi − z)

}
dm̃0(t)

=

{
n∑
i=1

Yi(t) exp(−β̃T Z̃i)Kh(Zi − z)

}
dt

(5.8)

Let

Q(t; β̃) =

∑n
i=1 Yi(t) exp(−β̃T Z̃i)Kh(Zi − z)∑n

i=1 Yi(t)Kh(Zi − z)

and

P (t; β̃) =

∑n
i=1Kh(Zi − z)dNi(t)∑n
i=1 Yi(t)Kh(Zi − z)

,

and divide both sides of (5.8) by m̃0(t)
∑n
i=1 Yi(t)Kh(Zi − z), we get

−P (t; β̃) +
dm̃0(t)

m̃0(t)
=
Q(t; β̃)dt

−m̃0(t)
. (5.9)

Let

−P (t; β̃) =
1

µ(t)
dµ(t)

which implies

µ(t) = ŜNA(t)

and (5.9) is equivalent to

Q(t; β̃)µ(t) = −m̃0(t)
dµ(t)

dt
− µ(t)

dm̃0(t)

dt
= −dm̃0(t)µ(t)

dt
.
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Hence,

̂̃m0(t; β̃) = ŜNA
−1

(t)

∫ τ

t

ŜNA(u)Q(u; β̃)du+ m̃0(τ)µ(τ)

= ŜNA
−1

(t)

∫ τ

t

ŜNA(u)Q(u; β̃)du
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