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fuels have vastly different knock behavior under certain conditions, and the best 

achievable CA50 will be limited by the fuel source.  An adaptive combustion phasing 

target algorithm should adapt to both of these differentiating aspects of fuel behavior. 

 

(a)      (b) 

Figure I.3  Fuel behaviors are different for gasoline and E85 

Ignition timing is the last control actuator setting selected at a given operating 

point because it is a strong function of all other actuator positions. Proper ignition timing 

is extremely critical for fuel economy and emissions it is important to develop fast 

prediction models that can be used in conjunction with algorithms developed for the 

remaining actuators. Figure I.4 shows the relative efficiency, defined as normalized 

Indicated Mean Effective Pressure (IMEP) value compared to the best available IMEP at 

Minimum spark advance for Best Torque (MBT), for one engine speed and load (2250 

RPM and 0.5 bar MAP). The spark timing to achieve best engine efficiency for gasoline 

and E85 (85% ethanol blend with 15% gasoline) requires a 9 Crank Angle (CA) degree 



 

 4 

difference. If the spark timing were held unchanged for these two fuels, engine efficiency 

loss at this operating condition would have been 2%. Moreover, this efficiency margin 

will increase up to 15% under some knock limited operating conditions, because the 

octane number of the two fuels differs significantly. Having the ability to detect different 

fuel properties and optimize the control algorithm to maintain the highest engine 

efficiency is a necessity.  

 

Figure I.4: Engine efficiency decrease if spark timing unchanged with different fuel type 

input. 

I.1.2 MOTIVATION FOR MODEL-BASED CONTROL ALGORITHM RESEARCH 

This research hypothesizes that a closed loop model based spark timing control 

algorithm can be used to regulate combustion phasing in a Spark-Ignition (SI) engine that 
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is operating on an unknown blend of input fuels. Success of this research will help enable 

a new generation of internal combustion engines that are capable of on-the-fly adaptation 

to a wide range of fuels.  The introduction of multi-fuel-adaptive engines would; (1) 

facilitate a reduction in automotive bio-fuel processing prior to vehicle use, (2) allow the 

use of fuels containing varying levels of water content, (3) encourage locally-appropriate 

bio-fuel production to reduce fuel transportation, (4) allow new fuel formulations to enter 

the market with minimal infrastructure impediment, and (5) enable the engine to adapt to 

pump-to-pump fuel variations and maintain peak fuel efficiency.  These outcomes will 

make the production of bio-fuels cost-competitive with other transportation fuels, lessen 

dependence on foreign sources of energy, and reduce life-cycle greenhouse gas emissions 

from automotive transportation; all of which are pivotal societal issues. 

There are a number of technical challenges that require research prior to 

implementation of multi-fuel-adaptive engines.  Ultimately, highly flexible engines that 

contain a large number of control actuators will allow the greatest adaptation to new fuel 

types. Control actuators that influence fundamental engine operation will be most 

desirable in such engines.  The primary control areas pertain to gas exchange, mixture 

preparation, in-cylinder charge motion, and combustion, along with compression and 

expansion ratios.  Acceptable fuel properties for SI engines, material selection, fuel 

systems, and emissions control devices are a few of the other technical aspects of multi-

fuel-adaptive engines that must be addressed prior to realization.  Control algorithms that 

can sense and adapt to changing fuel conditions are the focus of the proposed research. 
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In the current market, the number of control actuators available (cam timings, 

charge motion control valves, turbo charging, load, etc.) on spark-ignition engines is 

rapidly increasing to meet demand for improved fuel economy and reduced exhaust 

emissions. These designs increase operational flexibility, but the added complexity 

greatly complicates control strategy development because there can be a wide range of 

potential actuator settings at each engine operating condition. Traditional map-based 

actuator calibration becomes challenging as the number of control degrees of freedom 

expand significantly, driving the need for model-based control approaches. Map based 

control requires minimum computational power; however intensive labor and advanced 

calibration methods are needed for high degree of freedom engines. Once the maps are 

generated, the control performance will be very stable and able to meet the expected 

accuracy when inside the map region.  

Figure I.5 shows the ignition timing map for the test engine determined by the 

conventional full factorial experimental populated method. The test engine was not 

equipped with extra control actuators (besides engine speed and load) that will require 

separate calibration for spark timing. Therefore, only around 200 data points are required 

to populate the entire ignition timing map. 
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Figure I.5 Conventional full factorial experimental populated maps for the test engine 

 The calibration time increases exponentially when extra degrees of freedom are 

introduced. For example, multi-fuel adaptive ability, the possible blends between 

available fuel sources will result in an ultra high degree of freedom mapping problem. 

Advanced and fully automated engine testing systems have allowed the automotive 

industry to successfully adopt model-based calibration and design of experiments (DoE) 

technology [8][9][10] to reduce the calibration time, as shown in Figure I.6. These 

methods represent the current ‘state-of-the-art’ in the industry, and offer a robust final 

calibration that utilizes a relatively simple control structure (relative to model-based 

control techniques) within the engine controller. 
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Figure I.6 Model based calibration (Design of experiments) method illustration 

In contrast map-based methods, model based control requires an upfront effort of 

model development that hinges upon the comprehensive knowledge about the underlying 

phenomenon. Model based controls do require increased computational power for real 

time actuation and provides higher adaptive ability and predictiveness, therefore  

enabling novel approaches to high degree of freedom engine controls. Consequently, a 

tradeoff between model accuracy and computation power requirements is very important. 
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Selection between factorial populated maps and physical models depends on the 

application as shown in Figure I.7. It is important to note that actual spark timing 

prediction accuracy is not as primary factor influencing the use of model-based methods.  

It is expected that model-based control systems may suffer from slightly lower prediction 

accuracy than a map-based, but model-based methods offer the potential to significantly 

simplify the calibration process, and add flexibility to the control system. 

 

Figure I.7 Comparison between map based control and physical model based control 

methods 

I.1.3 MOTIVATION FOR MULTI-FUEL ADAPTIVE ENGINES 

The International Energy Agency (IEA) world energy outlook projects by 2035 

there will be nearly a 50% energy gap with current available known fuel sources, 

meaning a large portion of unknown energy sources will need to be found or developed 

to sustain usage predictions, as shown in Figure I.8. The United States Energy Policy Act 

in 2005 [2] and the Energy Independence and Security Act in 2007 [3] mandated 

significant increases in the production and use of bio-fuels in 2012 and 2020 respectively.  

http://www.iea.org/
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This legislation requires a wide range of bio-fuel development and is spurring renewed 

interest and development of flexible fuel vehicles.   

 

Figure I.8: International Energy Agency (IEA) world energy outlook showing the 50% 

unknown energy need to be found or developed to sustain humanity development [1]. 

The U.S. Energy Information Administration (EIA) projects that number of 

transportation vehicles will continue increasing over next 30 years, as shown in Figure 

I.9. A large majority of these vehicles will use liquid fuels. 

 

http://www.iea.org/
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Figure I.9: U.S. Energy Information Administration (EIA) projects vehicle demand for 

transportation will increase over the next 30 years [2]. 

Different ways of addressing the energy crisis for transportation have been 

studied for years [4], as shown in Figure I.10. Non-conventional liquid fuel sources are 

still considered an important alternative energy over the near future to sustain the 

vehicles on the road. However, several limitations that constrain the development of this 

alternative energy are: 1) the vehicle fleet has a significant single-fuel legacy, 

discouraging the introduction of new fuel types; 2) current processing techniques for 

production of bio-fuel sources for  current engines reduces the ‘well-to-wheel’ efficiency 

of the system; 3) fuel feedstocks vary by geographic location; 4) future fuel sources are 

evolving and unknown; 5) engines are becoming more complex to meet fuel economy 

and emissions regulations, and are generally designed around a single fuel. 
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Figure I.10: Energy solutions for transportation [4]. 

Future engines should not be optimized for only one or two types of known fuels 

to allow flexibility for the introduction of new fuel to the marketplace. Blends of several 

fuels in the storage tank over time may result in decreased fuel efficiency if the engine 

does not have a flexible control structure. Therefore, a control algorithm able to not only 

optimize the modern high-degree of freedom engine efficiency, but also adapt to a 

reasonable range of unknown fuel sources is highly desirable. The main goal of this 

research is to develop such an algorithm. 
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I.2  RESEARCH BACKGROUND 

I.2.1 SI COMBUSTION MODELING 

Fuel properties such as stoichiometric air-to-fuel ratio, laminar flame speed, and 

octane number (among others) influence engine calibration, in particular injection 

duration and spark timing.  Air and fuel mixture preparation processes and the associated 

physics are better understood [6] than combustion for the purposes of engine control. 

Feed forward models combined with cost effective oxygen sensor feedback are already 

used in production engines for flex-fuel (E85 and gasoline) injection control [7]. On the 

other hand, ignition timing is the last control step that depends on set points for  all other 

engine actuators. The actuator set points translate into in-cylinder physical conditions, 

such as turbulence intensity, pressure, temperature, and recirculated exhaust gas content 

of the unburned gases.  Since different fuel sources might lead to different burn rates 

(through laminar flame speed), spark timing requires adjustment for individual fuel 

sources to achieve optimal fuel efficiency (i.e. MBT timing). 

Combustion models are used to represent the mixture reaction rates in the 

cylinder, predict the formation of emissions, and capture abnormal combustion 

phenomenon (i.e. knock). Different classes of combustion models have been 

implemented into engine simulations. They could be categorized as 0D, quasi-D, 1D and 

3D combustion models based on their computational power requirements and model 

predictiveness, as shown in Figure I.11. 
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Figure I.11 Combustion models background  

The Wiebe function [11][12] can be seen as a 0D combustion model. It uses 

specific parameters during the combustion process, like start of combustion, burning 

duration, etc., and experiment based fitting coefficients to set up an equation that 

represents the mass burn rate during engine combustion process.  It is the simplest 

combustion model and can be implemented into the 0-D engine simulation with time as 

the only independent variable, but predictiveness is extremely limited due to a semi-

empirical nature of the model.. To reduce the need for large set of calibration data, 

researchers proposed a method to predict parameters in Wiebe function based on the 

existing correlations of laminar burning velocity. The parameter changes in Wiebe 

function could be predicted by comparing with the relative change of the estimated 

laminar burning velocity at spark timing [13]. However, for a Wiebe function, it is totally 

empirical based combustion model and without physical meaning, so it cannot be used to 
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predict engine combustion process. Another kind of fully empirical based combustion 

model is Neural Network (NN) or Black Box based combustion model.  NNs are trained 

on the experiment data to build the relationships between inputs and outputs. The 

predicted outputs of the NN combustion model could be combustion duration [14][15], 

emissions [16][17] and etc. The nature of NN to other methods using complex equation 

fitting do not allow flexibility to make adjustments to a single aspect without completely 

retraining the model. To improve this situation, semi-physical neural networks or grey 

box based combustion models have been proposed [18][19]. In these models, physical 

models and neural networks (or black box) are combined to try to increase the adaptive 

ability of the combustion models.  

For the quasi-dimensional combustion model, the well-known approach to SI 

combustion is the turbulent flame entrainment combustion model, which is firstly 

proposed by Keck [10][20].This model subsequently assumes that fresh gas eddies are 

entrained in a spherical flame front and burn in a characteristic time [21]-[24]. During the 

turbulent entrainment process, the mass entrainment rate is affected by unburned gas 

density, flame front area, turbulence intensity and laminar flame speed. The burn-up rate 

within the reaction zone is influenced by entrained and burned gas mass, Taylor micro-

scale and laminar flame speed. This quasi-dimensional combustion model incorporates 

mixture flow parameters and geometric aspects of the flame front interaction with the 

combustion chamber within the 0-D framework. It aims to fulfill the real-time calculation 

and the accuracy and adaptive ability of the model depends on the sub-models.  
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In [25], a simplified turbulence model for the prediction of the in-cylinder 

turbulence parameter during combustion for SI engines is proposed. It simplified from 

the K-ϵ model, ignores the squish and swirl influence, and assumes that the turbulence is 

in equilibrium. This sub-model is easy to code in thermodynamic models. For the 

stratified SI engine combustion modeling, a new quasi-dimensional calculation is 

developed [26]. It is based on the two-zone entrainment model. However, due to the 

insufficient of two-zone treatment to describe the inhomogeneous air/fuel composition, 

the four unburned zones are defined. There are a rich zone, a stoichiometric zone, a lean 

zone and a remaining air zone. Similar to the existing method, a burned zone is defined 

and these zones are connected to each other by the mixture model calculated mass flow 

rates. The mixture model puts the current geometry of the zones into consideration and 

the flame propagation was developed to fulfill the stratified combustion process. In [27], 

to predict the mass burning rates, a quasi-dimensional combustion model is proposed, 

which is based on flame stretch concepts and turbulent entrainment theory. The flame 

stretch sub-model assesses the flame response to combined effects of curvature, non-

unity Lewis number mixture and turbulent strain.  This model can simulate the 

development of early flame, flame propagation and flame termination periods. It neglects 

the spark ignition processes and does not consider flame kernel formation. In order to 

better capture the detailed flame front shape, a 1D coherent flame model (CFM) 

combustion model is proposed [28]. This is a 1D physical combustion model for gasoline 

engine transient application used to replace the traditional empirical models. This CFM-

1D model is simplified from the 3D extended coherent flame model (ECFM) for gasoline 

combustion [29]. For this model, there are two zones in the combustion chamber: burned 
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and unburned zones. Two zones are separated by a premixed turbulent flame modeled by 

using a 1D adaptation of the 3D flame surface density method. The chemical reactions of 

fuel oxidation happen in a very thin layer which is called the flamelet. For the 

simplification of the 1D CFM model from 3D model, there are some assumptions: 

mixture is homogenous, mixture is perfect gases (fresh air, fuel vapor and burned gases), 

stoichiometric combustion, no dependency on different variables space and the 

cylindrical combustion chamber.  

Some three-dimensional combustion modeling examples are shown below. In 

[27][37], an improved DPIK model and G-equation combustion model are proposed. The 

flame kernel position is tracked by particles and the turbulent flow effects on the 

turbulent flame during velocity are concerned. The G-equation combustion model was 

modified and implemented into KIVA-3V. Using the G-equations (level set method) can 

track the propagation of the mean turbulent flame. To model the chemical reaction within 

the cells which contains the mean turbulent flame, the flame surface density and the 

turbulent burning velocity are considered. The detailed turbulent flame brush is ignored 

and species in cells in the burnt gas behind the mean flame front location are assumed to 

be chemical equilibrium. In order to reducing the computing time, the fine numerical 

resolution is not needed and the narrow band concept of Chopp [38] was applied. In [39], 

a universal engine combustion model called the GAMUT (G-equation for All Mixtures. 

A Universal Turbulent) is developed here. The methodology can be applied to partially 

premixed, premixed and non-premixed combustion regimes. The level set method (G-

equation) is a very powerful numerical technology which can be applied to analyze and 
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compute interface motions. The application examples are the crystal growth calculation, 

shape recovery, two-phase flow, image processing and combustion [40]. In 1985, 

Williams introduced the method to describe the flame propagation for a premixed air-fuel 

mixture. In this model, G-equations are used to track the premixed turbulent flame 

propagation (e. g., for premixed and partially premixed combustion). The diffusion 

combustion that happens behind the premixed flame branched was modeled with a 

modified characteristic time scale model. When combined with the Shell auto-ignition 

model, this model can be used to simulate premixed and diffusion combustion processes 

in diesel combustion. A new three-zone combustion model was developed to provide 

better correspondence of the numerical calculated results to the experimental data in a 

wide range of operation parameters for engines with different geometry [41]. The 

additional third zone is used to simulate the processes in the flame kernel volume inside 

the spark plug gap. It captures detailed mechanism of chemical and thermal ionization 

chemical interaction, heat transfer between electrodes and combustion products and the 

mass exchange between in-cylinder combustion products and third zone. This three-zone 

model looks more adequate to simulate the real process of SI engine combustion. 

Chemical kinetics method to the simulation of combustion and behavior of combustion 

products in all zones gives a chance to carefully analyze the ionization process and 

confirm the two peaks of ion current. 

Among all the available SI combustion modeling options, quasi-dimensional 

turbulent flame entrainment model and 1D CFM are agreed to be most practical models 

for real time control purposes. They do not require intensive computing time but still able 
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to capture most of the physical fundamentals of SI combustion, as shown in Figure I.12. 

Fidelity and computational power requirements can be balanced based on the specific 

applications. Framework of this research will base on the quasi-dimensional turbulent 

flame entrainment model.  

 

Figure I.12 Quasi dimensional turbulent flame entrainment model is able to capture most 

of the physical fundamentals of SI combustion process 

I.2.2 ARTIFICIAL NEURAL NETWORK BACKGROUND 

Fidelity of physical combustion models strongly depends on sub input model 

development. There are several input models found to be problematic which will be 

explained in Chapter 3. Moreover, physical combustion models are generally crank angle 

resolution equations which contain more than necessary information for spark timing 

control. Therefore an approach that utilize a neural network to eliminate the problematic 

input models and covert the discrete time domain combustion model to mean value 

model will be implemented, as shown in Figure I.13.  
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Figure I.13 A semi physical neural network is used to eliminate problematic sub input 

models and convert combustion model to a mean value model 

Artificial Neural network (ANN) approach is based on the biological neural 

network to model the interconnection of the neuron in the nervous systems of the human 

brain and other organisms. ANN as a non-linear processing system can be applied to a 

wide range of areas, especially where the algorithms are too complex or unclear. 

However, a suitable manner for the organization of the processing units to accomplish a 

given pattern recognition task is critical for artificial neural network to be useful. 

Artificial neural network are organized into processing units layers where the connections 

can be interlayer or intralayer or both. Feedforward and feedback manners could be used 

to organize the connections across the layers and among the units within a layer. The 

basic structures of artificial neural networks includes: instar and outstar, which have fan-

in and fan-out geometries respectively [52]; group of instars/outstars, which is a 

heteroassociation network; bidirectional associative memory, where either of the layers 
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can be used as input/output; autoassociative memory, where each unit is connected to 

both itself and every other unit. 

In 1943, Warren McCulloch and Walter Pitts brought out McCulloch-Pitts 

neuron, a model of computing element, which performs the inputs’ weighted sum to the 

element followed by a threshold logic operation [42]. However, the weights for this 

model of computing are fixed and hence the model could not learn from examples. In 

1949, Donald Hebb proposed a learning scheme which based on pre- and post-synaptic 

values of the variables to adjust a connection weight [43]. In neural network literature, 

Hebb’s law has been seen as a fundamental learning rule. Marvin Minsky developed a 

learning machine in 1954 and it could automatically adapt the connection strengths [44]. 

In 1958, Rosenblatt proposed the perceptron model which applies perceptron learning 

law to adjust weights [45]. The learning law was converged for linearly separable pattern 

classification problem. A multilayer perceptron, other than a single layer of perceptrons, 

could be used to perform any pattern classification. But the lack of systematic learning 

algorithm to adjust the weights made the classification task difficult to realize. In 1969, 

Minsky and Papert used several illustrative examples to show the limitation of the 

perceptron model [46]. Until 1984, the development of neural network models for pattern 

recognition tasks had been severely hampered due to the lack of suitable learning law for 

a multilayer perceptron network for 15 years. In 1960s, Widrow and Hoff tried to adjust 

the weights of an Adaline model for a eomputing element by an LMS learning algorithm 

[47]. The convergence of the LMS algorithm was proven to be successful applied for 

adaptive signal processing situations. In early 1980s, two key developments brought back 
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the interest in artificial neural networks. They are energy analysis of feedback neural 

networks by John Hopfield [48][49] and the generalized delta rule (or error back-

propagation learning law) which applies a systematic way to adjust the weights of a 

multilayer feedforward neural network [50]. About the same time, Ackley, Hinton and 

Sejnowski brought out a feedback neural network called Boltzmann machine which has 

stochastic neuron units [51]. Boltzmann machine has additional hidden units to make a 

given pattern storage problem representable in a feedback network. 

Neuronal dynamics governs a neural network’s operation. Normally, the neuronal 

dynamics consists of two parts: they are corresponding to dynamics of the activation state 

and dynamics of the synaptic weights, respectively. Learning laws are implementation 

models of synaptic dynamics. The basic learning laws are: Hebb’s law, where the product 

of input data and the unit output signal have the proportional weight increment. This law 

has a representation of an unsupervised learning. Perceptron learning law, as a supervised 

law, it requires a desired output for each input. Delta learning law, it could be seen as a 

continuous perceptron law and can be generalized to the case of a feedforward network 

multilayers. For Wldrow and Hoff LMS learning law, also called the Least Mean Squared 

error learning law, the convergence of the weights for a given set of training data could 

be achieved by applying input-output pattern pairs data several times. Correlation 

learning law, which is a special case of the Hebbian learning law, it is a supervised 

learning. Instar (Winner-take-all) learning law, it is a case of unsupervised learning. 

Outstar learning, however is a supervised learning law, used with a network of instars to 

capture the characteristics of the input and output patterns for data compression.  
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There are two difference situations for the applications: one is where the known 

neural networks models and concepts could be used directly and the other is potential to 

use the neural networks ideas but still unclear how to evolve a suitable neural network 

architecture. For the direct application, there are: (1) pattern classification, which is the 

most direct among all neural networks applications. One example is the recognition of 

Olympic Games symbols [52]. (2) Associative memories, which is used to store a pattern 

or data for later recall or to store association between two patterns, has example 

applications like image pattern recall [53][54], content addressable memory [55], 

information retrieval [56][57][58]. (3) Optimization is one of the most successful 

applications of neural network [59]-[62]. There are examples such as Graph bipartition 

problem [63], Linear programming problem and Travelling salesman problem [64]. (4) 

Vector quantization: achieving a significant compression in the data representation by 

encoding a large sent of training data vectors into a small set of representative points 

[65][66]. (5) Control applications, includes robotic, process control, aerospace, industrial 

manufacturing and automotive engineering [67][68]. The main task of the neural 

networks in control is the generation of an appropriate input signal to the physical process 

(called plant) to get the desired feedback from the plant [69][70]. There are two types of 

plant control: open-loop control and close-loop feedback control. The controller includes 

cascade of a system and the inverse of the plant in an open-loop control system. The 

system aims to achieve a desired response for the input. This means the controller will 

generate a control signal to the actuators to get the desired response output. In the 

process, the plant’s inverse transfer function is needed and the characteristic of the plant 

should not change during the process. Multilayer feedforward networks have the ability 
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to capture characteristics of the plant transfer function and the plant’s inverse transfer 

function. Then, the controller could be designed by using the neural network [71][72]. 

From 1980s, Ford Motor Company, as one of the pioneers, started the research 

and development of Neural networks in automotive engineering [73][74]. The growth of 

the emphasis on model based development helps to push mature elements of neural 

network into the mainstream. Although neural network can be used for both on-board and 

outside of the vehicle applications, the available computational ability limits the on-board 

application.  Three main roles of neural network in automotive engineering are discussed 

below. They are models, virtual sensors and controllers. The neural networks have broad 

applications in modeling, like vehicle dynamics modeling [75][76][77], driver behavior 

[78][79][80], engine combustion [81][18] [82], emissions [83][84], hybrid vehicle energy 

storage system [16] and so on. Virtual sensors are often ' Black Box ' like neural network. 

They are especially suitable for the situation that the physical is complex or uncertain 

while there are plenty of data. Virtual sensors could be an air-fuel ratio estimator 

[86][87], an emission calculator [88][89] or an air flow mass/rate estimator [90][91]. 

Neural network used as controller has been known for a long time [92]-[96]. In the 

automotive applications, there are examples such as vehicle electric actuators and system 

controller [97][98][99], engine operation controller [100][101][102] and vehicle handling 

controller [103][104].    
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I.2.3 ENGINE SYSTEM CONTROL FRAMEWORK 

Feed forward model-based control requires a target combustion phasing for 

proper calibration that is generally based on the crank angle location where fifty percent 

of the air/fuel mixture is burned (CA50). The best CA50 location (MBT timing) will 

phase the combustion to a best efficiency range that is a balance between early 

combustion (heat transfer loss) and late combustion (expansion loss). For control 

strategies with variable octane fuels, the best CA50 location may be  limited by abnormal 

combustion (or knock), as shown in Figure I.14.  

 

Figure I.14 SI engine knock phenomenon  

Based on compression ratio or boost level, the desired combustion phasing will be 

determined by the calibrator for a particular engine with a known fuel source input. 

However, when fuel type is altered engine will be subjected to different characteristics of 
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knock and then require an update for the desired CA50 in the ‘knock region’ to avoid 

mechanical damaged or maintain high thermal efficiency.   

Traditionally, knock feedback control utilizes a structure-mounted accelerometer 

as an observer [105], spark plug ionization signal [106], or in-cylinder pressure sensor 

[107]. The sensor will accumulate several knock events and constantly adjust spark 

advance using an adaptive map until knock is eliminated.  The spark timing delivered to 

the engine is the sum of the base ignition map, spark advance adjustment and the adaptive 

map.  Drawbacks of such feedback approach are: 1) The engine will experience large 

amount of knock events until the adaptive map has been created; 2) The learning process 

is relatively slow because the algorithm requires input from all the possible operating 

conditions (speed/load points). In an example given by the Kiencke [105], the adaptation 

map required 50km of vehicle operation for 50:50 blending of 87 and 93 octane fuel 

sources. 

To speed up this process a feed-forward knock prediction algorithm is desired in 

the multi-fuel adaptive engines because of the possible wide range of fuel source inputs. 

Spark knock is the consequence of auto-ignition in the unburned end-gas ahead of the 

propagating spark ignited flame front. The auto-ignition characteristic therefore is greatly 

related to the octane rating of the fuel source and governed by kinetics chemical reactions 

under the time history of temperature and pressure of the unburned end gas. Auto-ignition 

models [108]-[111] are available with a wide variety of fidelity options. Two other fuel 

properties are also of particular interest to knock control; 1) laminar flame speed that 

describes the potential mass burn rate which can reduce the time scale of the end-gas 
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exposure prior to combustion, and 2) fuel heat of vaporization which alters charge 

cooling effects and unburned mixture temperatures.  

Existing flex-fuel engines have known boundaries of their input fuels (0% to 85% 

ethanol) so it is possible calibrate the engine prior to production with all possible blend 

ratios.  Fuel type/blend detection is a critical aspect of multi-fuel engines so that 

calibration can be adjusted to optimize fuel efficiency at all times.  Fuel blend ratio can 

be detected directly by measuring known chemical differences between liquid-phase 

gasoline and ethanol [112].  Less expensive ‘sensorless’ strategies have also been 

employed by inferring blend ratio from existing exhaust oxygen sensors and fuel 

injection parameters [113],[114]. Sensorless methods exploit differences in 

stoichiometric air-to-fuel ratios between fuels of different and known chemical 

compositions (i.e. carbon/hydrogen and carbon/oxygen ratios).  Cylinder pressure during 

compression has also been successfully used to determine blend ratios of gasoline and 

ethanol [115].  All of these fuel type sensing routines are based on known fuels, so their 

boundary conditions are well defined.  Ultimately, fuel behavior, not type, within the 

engine is the most important aspect influencing calibration and control of multi-fuel-

adaptive engines because it is assumed that future fuel compositions are not known at the 

time of initial calibration. A task within the proposed research is to develop a fuel 

‘behavior’ sensing routine based on cylinder pressure. 

Combustion phasing feedback have been studied for closed loop ignition control 

by linking various modeling approaches with either engine speed, torque [116][117], 

cylinder pressure [118][119][120], or ionization detectors [121]-[127]. While these 

http://www.nciku.cn/search/en/volatility
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methods are well-suited for use on high degree of freedom engines they have seen 

somewhat limited use in production because of low accuracy, poor durability, and high 

cost.  Additionally, most control strategies based around these concepts do not properly 

account for the difference between normal cycle-to-cycle variability and actual 

combustion phasing differences that need to be corrected.  Large sample sets are required 

to have high confidence in decision making, limiting use in a highly transient engine.  

The proposed task of this research is to use cylinder pressure feedback combined with 

statistical data analysis to update fuel properties with small data sets.  
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I.3 RESEARCH OBJECTIVES 

A model based ignition control algorithm for multi-fuel adaptive engines is 

proposed in this research, including a feed forward spark timing prediction, utilizing a 

quasi-dimensional turbulent flame entrainment model as well as a reduced detailed mean 

value model using a semi-physical neural network for predicting the combustion 

duration. Two virtual fuel properties observers for sensing the laminar flame speed and 

octane number of fuel sources are used for the purpose of multi-fuel adaptation. The 

feed-forward spark timing prediction is then be determined based on the combustion 

duration prediction and a desired combustion phasing (CA50). This desired combustion 

phasing is first determined by the calibration engineer for a particular engine taking into 

consideration combustion stability, emissions, performance, etc. Then the “best 

achievable” combustion phasing in the knock region will be updated based on the current 

fuel source input. The illustration of the overall closed-loop algorithm is shown in Figure 

I.15. Six proposed tasks to achieve this objective are listed below and each of the 

technical details will be presented in the following chapters. 
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Figure I.15. Proposed multi-fuel adaptive model based spark timing control 

algorithm. 

Task 1. Setup a test engine including 1) installation and calibration of all the 

sensors for research grade combustion analysis and engine control 

purposes.  These sensors include in-cylinder and manifold pressure 

acquisition, temperature measurement from critical locations and 

boundary conditions (mass flow and oxygen measurement etc.); 2) access 

the control of the test cell and test engine environment including inlet air 

temperature, inlet fuel pressure and temperature, engine coolant 

temperature and oil temperature etc. for data consistency and results 

repeatability; 3) prepare a rapid-prototype engine controller with a 
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Graphic User Interface (GUI) that can quickly test the newly developed 

control algorithm and dial in the control parameters real time; 4) build and 

validate a 1D engine simulation model that will be used offline for 

combustion model development. 

Task 2. Record and document detailed experimental combustion data from the test 

engine using gasoline and E85 fuels over a wide range of normal engine 

operating conditions. Check the data quality and repeatability by doing 

several repeated tests. Each data point is constructed with 500 consecutive 

cycles for quality evaluation. Import the experimental data into the 

validated 1D engine simulation model for generating physical combustion 

related data, such as residual gas fraction, turbulence intensity etc.   

Task 3. Formulate preliminary physical input models for residual gas fraction, 

turbulence intensity and laminar flame speed, that are capable of 

accurately representing the influence of all engine control actuators on 

combustion and can run in real-time.  

Task 4. Derive a real-time combustion model that will provide a feed-forward 

prediction of ignition timing during transient conditions based on the 

desired combustion phasing. The predicted spark timing accuracy should 

be within 2-3 Crank Angle Degree (CAD) of the calibrated ideal spark 

timing. Executed time for the prediction model should be in the 0.01 

second range with a reasonable computing processor.  
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Task 5. Develop a virtual fuel behavior sensing feedback strategy using cylinder 

pressure that accounts for real cycle-to-cycle variations in combustion 

phasing. Observe only the fuel behavior, rather than actual fuel type, by 

understanding how the fuel affects combustion such as burn rate, knock 

etc. 

Task 6. Design a methodology to update the desired combustion phasing location 

based on fuel behavior throughout the engine operating range. This model 

will focus mainly on knock performance of each fuel, for example the 

knock limited low engine speed and high load operating conditions. By 

observing the fuel behavior and self-calibrating the closed loop engine 

spark timing control model. It will be possible to maintain highest 

available engine efficiency. 

Task 7. Experimentally validate the proposed real time closed loop control 

strategy using a rapid-prototype engine controller with Hardware In the 

Loop (HIL) testing including 1) steady-state performance for spark timing 

prediction accuracy assessment; 2) predictable transient engine operating 

condition testing (e.g. step or ramp change in engine RPM and load), and 

evaluation of the spark timing prediction performance. 

I.4 BOARDER IMPACTS 

The transportation accounts for 72% of petroleum usage in the United States, 

about half of which is imported [5]. In the near future (20 years) internal combustion (IC) 
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(a) 

 

(b) 

Figure VI.16. Real-time combustion phasing experimental results in transient 

operating conditions with (a) gasoline fuel input and (b) E85, tested for N2. Constant 

combustion target set at 8 CA ATDC. 
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Investigation on actual ignition signal from N2 reveals the reason for the unstable 

combustion which is not because of any malfunction on other engine actuators but the 

spark timing prediction itself. This is probably because of the large network structure 

required by the N2. Transient training sample contains three patterns: 1) combustion 

duration dynamics; 2) natural stochastic combustion variation; 3) transient response of 

combustion to a changing operating condition. N2 requires minimum 70 neurons to be 

able to produce satisfactory performance compared to only 5 neurons needed in N1. The 

larger size of the network scarifies the generalization capability as explained in the 

previous chapter. Although the observed correlation coefficients are above 0.94 on the 

validation of N2, and experimental results also showing the network can operate at 

certain conditions, however N2 cannot generate stable predictions when large 

disturbances or un-seen operating conditions occurred. On the contrast, N1 which is an 

optimized minimum size network with steady state average training data can perform 

much stable across a wide range of different operating conditions.    
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VI.8 CONCLUSIONS 

In this chapter, a model based ignition control algorithm for multi-fuel adaptive 

engines is studied with an aim to provide an alternative method to reduce advanced 

engine calibration time. A semi-physical approach has been investigated which utilizes an 

artificial neural network to convert a well-proven discrete time domain quasi-dimensional 

turbulent flame propagation model into a mean value combustion duration model.  

Generalization capability is the main focus of the network formulation because it 

will greatly affects the stability of the feed forward control algorithm. Generalization is 

strongly influences by the network structure including the number of hidden layers, 

number of neurons in each hidden layer, inputs and outputs patterns. Conclusion from the 

theoretical study on the network structure indicates: 1) increasing number of inputs will 

generally require larger size network; 2) large networks need more training samples to 

produce satisfactory output results; 3) adding one extra input will increase the training 

time by the order of 2. Therefore, a proper optimized network structure contributes to the 

overall model performance. 

Inputs and sub-models were selected based on the physical model to represent 

mixture preparation, and combustion reaction rates were modeled with a neural network. 

The structure of the neural network has been optimized by selecting the most sensitive 

physical inputs and then minimizing the number of neurons in the hidden layer. The 

optimized neural network is proved to be able to represent the combustion duration with 

two types of fuels. The algorithm also successfully operated in a transient driving cycle in 

a computational vehicle simulation. 
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Validation of the ignition control algorithm was carried out under both steady 

state conditions with experimental data; transient driving cycle simulation with a virtual 

engine in the loop, and also the real time engine dynamometer testing. A comparison of 

the combustion phasing control performance between the transient and steady-state 

conditions is made which shows an average of 2 CA deviations from the control target 

for both transient and steady-state conditions with gasoline and E85. It is shown that the 

ignition control algorithm is able to regulate the combustion phasing with steady state 

and “moving” CA50 target for both gasoline and E85. Laminar flame speed plays an 

important role to the fuel adaptation ability. It is the only changing parameter that will 

affect combustion duration if fuel type is altered. The semi-physical approach is able to 

keep the fuel type sensitive property by taking laminar flame speed as input. Robustness 

of the neural network is also tested when engine speed is over 3500 RPM. The neural 

network is constructed with the minimum number of 3 inputs and 5 neurons which aims 

to decrease the chance of data over fitting and better control stability. It is concluded that 

the new semi-physical neural network combustion duration model is able to control the 

combustion phasing for two fuel sources under both steady-state and transient conditions.   
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VII SUMMARY AND CONCLUSIONS 

VII.1 THESIS SUMMARY 

The objective of this thesis is to develop a semi-physical artificial neural network 

combustion model for feed forward spark timing control of multi-fuel adaptive SI 

engines. The control algorithm closed loop by feeding back two fuel properties which are 

octane number and laminar flame speed. An adaptive desired combustion phasing target 

helps to self calibrate for the current fuel source. Laminar flame speed is emphasized 

because it is a primary physical parameter related to ignition timing prediction, and it will 

change if a different fuel source is used. The fuel property observer outputs an estimate of 

laminar flame speed for an arbitrary fuel based on the burn-rate difference to a baseline 

case, using an inverse quasi-dimensional turbulent flame entrainment model with in-

cylinder pressure feedback. A real-time model re-calibration method for laminar flame 

speed prediction is also proposed. Desired combustion phasing targets were calculated 

based on an Arrhenius function (auto-ignition correlation) with the virtual octane number 

sensing of the current fuel source. The two fuel properties sensors of laminar flame speed 

and octane number ensured the capability of fuel type adaptive closed loop ignition 

control algorithm.  

Inputs to the feed forward combustion model is loosely based on a well-

established turbulent flame entrainment model, artificial neural network is used to replace 

the crank angle resolution combustion process calculations. Optimization on inputs 

selection and neural network internal structure is focused because of the large influences 

on network generalization capability. Generalization is the ability of the neural network 
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to interpolate and extrapolate unseen data which directly reflected in the overall control 

stability. Evaluation on a neural network not only depends on how well it can interpolate 

between the training data, but also on if the network can still perform outside the 

boundary.  

The real time engine dynamometer experimental results are presented. It is shown 

that the semi-physical neural network control algorithm is able to regulate the combustion 

phasing with steady state and “moving” CA50 target for both gasoline and E85. Laminar 

flame speed plays an important role to the fuel adaptation ability. It is the only changing 

parameter that will affect combustion duration if fuel type is altered. The semi-physical 

approach is able to keep the fuel type sensitive property by taking laminar flame speed as 

input. Robustness of the neural network is also tested when engine speed is over 3500 

RPM. The neural network is constructed with the minimum number of 3 inputs and 5 

neurons which aims to decrease the chance of data over fitting and better control stability. 

Further investigation on the type of training data is also carried out which proved steady-

state average training samples produced a better network than the cycle to cycle transient 

training samples.  

VII.2 SIGNIFICANT CONCLUSIONS AND FINDINGS 

Contributions and improvements are realized in three distinct areas; (1) non-linear 

laminar flame speed observer, (2) desired combustion phasing target based on knock 

prediction with virtual octane sensing, and (3) the development of a semi-physical 

artificial neural network combustion model to predict combustion duration over the wide 
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operating range that is intended for real-time engine control. Significant findings in each 

category are described separately in the following sections. 

VII.2.1 NON-LINEAR LAMINAR FLAME SPEED OBSERVER  

Multi fuel adaptive SI engines not only aim to take gasoline and E85 as inputs but 

also adapt to several other bio fuel sources that are capable of generating a large range of 

laminar flame speeds. It is very important to estimate the laminar flame speed for the 

current fuel blend because it is a critical input for combustion duration prediction. It is 

assumed that if a different fuel source is used laminar flame speed is the only fuel 

property that will alter combustion duration. Several laminar flame speed experimental 

measurement methods are available based on high speed combustion imaging. The semi-

empirical model will be re-fitted based on the experimental results. This method works 

for getting a research grade laminar flame speed for a specific type of fuel source, 

however, it is not practical if large numbers of fuel types are blended together. For real 

time control purpose, first, only the ‘fuel behavior’ is needed to observe instead of the 

actual fuel types; second, the allowable error margins can be larger than the research 

grade results. Therefore, an observer by comparing the burn rates difference to a base line 

data and output virtual fuel behavior (laminar flame speed) is successfully investigated. 

Then, a real time laminar flame speed model self re-calibration method is also proposed 

for feed forward ignition control. The study is carried out only with gasoline and E85 

because of the limitation of test cell capability, it is proved: 
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 The virtual fuel property sensor (observer) is able to calculate laminar 

flame speed for a wide range of operating conditions with RMSD of 1.27 

(cm/s) for gasoline and 2.17 (cm/s) for E85.   

 Re-calibration of the feed forward laminar flame speed prediction model 

with 5 constants has been investigated for accuracy and response time. 

Using 40 distinct engine operating points as feedback for re-calibrating the 

5 unknown constants is able to reproduce  laminar flame speed for wide 

range of operating conditions with RMSD of 2.73 (m/s).  This represents 

less than 5% error to well-known values. 

VII.2.2 DESIRED COMBUSTION PHASING TARGET 

Model-based ignition timing strategies require a target combustion phasing for 

proper calibration, generally defined by the crank angle location where fifty percent of 

the air/fuel mixture is burned (CA50).  When fuel type is altered the target CA50 must be 

updated in the ‘knock region’ to avoid engine damage while maintaining the highest 

possible efficiency. This process is particularly important when switching between 

gasoline and E85 because they have vastly different octane ratings. A semi-physical 

virtual octane sensor, based on an Arrhenius function combined with a quasi-dimensional 

turbulent flame entrainment combustion model, is described that identifies the size of the 

knock region for a given fuel.  The combustion model is used to calculate cylinder 

pressure and temperature which are analyzed with an Arrhenius knock prediction model 

that accounts for the negative temperature coefficient and air/fuel ratio. An algorithm is 

developed to identify the “best achievable” combustion phasing and update the target 
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desired combustion phasing accordingly. The algorithm operates off-line once the fuel 

octane number is observed to have changed, and then revised combustion phasing targets 

are calculated throughout the knock region. Experimental measurements and simulations 

are used to correlate and validate the algorithm with both gasoline and E85.  

Octane rating of different fuel sources is also critical to the closed loop ignition 

timing control algorithm. It will not affect the actual combustion burn rates but will 

significantly change the achievable combustion phasing target by changing the knock 

characteristic of the unburned mixture. Again, there can be many combination of 

different fuel sources blended together per customers’ usage. A virtual octane sensor is 

developed aiming to update the entire achievable combustion phasing target by several 

knocking events.  

Cylinder pressure is assumed to be able to accurately predict from a combustion 

model or available cylinder pressure sensor data. Unburned gas temperature found to be 

most difficult parameter but contribute significant amount of accuracy to the auto-

ignition prediction routine. It will be even more difficult especially in the advanced high 

degree of freedom engines when residual gas level can be altered in a wide range by 

external EGR or variable valve actuation. The hot or cold EGR will greatly affect the 

unburned mixture temperature hence the overall unburned mixture auto-ignition 

characteristics.    
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VII.2.3 COMBUSTION DURATION MODEL DEVELOPMENT 

Quasi dimensional turbulent flame entrainment combustion model is agreed to be 

the most practical solutions for physics model based ignition timing control. The model 

should be able to account for a wide range of engine technologies/fuel sources because it 

is based on fundamental spark ignition engine combustion principles. However, the 

model accuracy highly depends on each sub-input on crank angle basis, such as turbulent 

intensity, laminar flame speed, flame front area, residual gas fraction etc. Some of the 

inputs are possible to accurately calculate before combustion without intensive 

computational power, such as laminar flame speed, residual gas fraction etc. because the 

in-cylinder pressure and temperature are still able to predict with polytrophic 

compression and ideal gas law. Lots of thermal and fluid dynamics as well as chemical 

kinetics are introduced when combustion started, modeling of each of the inputs becomes 

even more complicated. For example the in-cylinder turbulence which is a typical chaos 

phenomenon, the simplified flame front area model is still highly depends on the 

combustion chamber geometry. Therefore, the tradeoff between the model accuracy and 

required computational power need to be carefully considered.   

However, the crank angle resolution equations described the detail heat release 

reactions is not fully needed for spark timing control, instead only few critical 

combustion phasing need to know before the control algorithm can make a right decision. 

Specifically the most important information is the duration from spark to CA50. This 

inspires the mean value modeling method and therefore neural network is introduced. 

Combined the gas preparation property inputs semi-physical neural network is 

formulated. Structure of the network is studied and optimized. Conclusion from the 
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theoretical analysis indicates: 1) increasing number of inputs will generally require larger 

size network; 2) large networks need more training samples to produce satisfactory 

output results; 3) adding one extra input will increase the training time by the order of 2. 

Study also carried out on the input selection of a linear associative network. Semi-

physical approach has been demonstrated to be able to increase the network 

generalization capability. Physical models also help to increase the correlation of inputs 

and output(s), hence reduce the required network size.      
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VII.3 FUTURE WORK 

Future research on several key areas could improve the robustness and predictive 

capability of the combustion phasing control algorithm discussed in this thesis. A list of 

suggested areas of improvement is as follows: 

 Development of physical sub models for high degree of freedom engines 

including residual gas fraction, turbulence intensity, unburned gas 

temperature, flame front area etc. The newly developed models should be 

able to account for advanced engine technologies without tremendous of 

computational power. Ultimately, this could lead to utilization of pure 

physics based combustion models for real time feed forward ignition 

timing control.  

 Experimentally utilize several other types of bio fuel sources for further 

investigation on the fuel type sensitive combustion model, laminar flame 

speed and octane number observers.  

 Study fast combustion phasing feedback determination methods for  

cylinder pressure sensors which account for combustion cycle to cycle 

variation.    
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