The Open Source Composition Space

Carly Finseth
Clemson University, carly@finsethgroup.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Education Commons

Recommended Citation
https://tigerprints.clemson.edu/all_theses/1059

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
THE OPEN SOURCE COMPOSITION SPACE

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts
Professional Communication

by
Carly Finseth
May 2011

Accepted by:
Dr. Cynthia Haynes, Committee Chair
Dr. David Blakesley
Dr. Jan Rune Holmevik
ABSTRACT

This paper integrates composition theory with pedagogical practice in order to redefine what is traditionally viewed as the ‘writing classroom.’ Specifically, it explores a new way of considering composition as both a term and a cultural ideology that encompasses many forms of creative expression: traditional alphabetic texts, digital alphabetic texts, multimodal texts such as videos and podcasts, and programming code. The work explores a pedagogical model that can be used to teach composition in its various forms. It also examines what it means to instruct in a classroom in today’s digital age by incorporating ideas from traditional classroom teaching, online pedagogy, and dialogic learning methods to propose a model that can span the distance that often exists between teacher and student – literally and figuratively. This thesis suggests a new solution that moves beyond current binaries (print vs. digital, in-class vs. online teaching, textual vs. multimodal) to form a new, inclusive model: The Open Source Composition Space.
DEDICATION

To Dr. Summer Smith Taylor
1971 – 2011

For believing in me and for giving me a chance.
ACKNOWLEDGEMENTS

I can’t imagine undertaking such an adventure such as writing a thesis on my own. Therefore, I must first thank my husband Marc for being willing to pack up our lives, our furry children, our home, and his business, and move across the country from Oregon to South Carolina so that I could follow my dream of going to graduate school. In addition, I may as well go ahead and thank him now for allowing me to put his name in print (something that I am surely going to have to apologize for later).

I must also thank my mentor, Dr. Cynthia Haynes, who has provided inspiration, hope, intellectual insight, motivation, and encouragement as needed along the way. Her relentless and inspiring dedication to teaching and writing program administration has formed the basis for this thesis. I truly couldn’t have done this without her.

In addition, I must certainly thank Dr. Jan Rune Holmevik, whose research in open source culture and education is innovative and inspiring. Also, both Dr. Holmevik and Dr. Haynes have taught me that work can sometimes only be created through play. The community that Drs. Haynes and Holmevik have created online within World of Warcraft, and also in-person through their work as facilitators of Clemson’s Serious Games Colloquium, has provided an outlet not only for me to brainstorm about this thesis, but also to explore notions of communication, community, culture, and fun. Thank you.
In addition, I would like to especially thank Dr. David Blakesley for taking a chance on a student whom he barely knew – and for providing such valuable insights and feedback from the very first moment we met. I admire and respect him as a top scholar in the field and am so grateful that he took a risk and agreed to be a part of my committee.

To Drs. Huiling Ding, Susan Hilligoss, and Tharon Howard, I offer my deepest gratitude for your support and mentorship throughout my time at Clemson. Without your feedback and guidance, this research would not have been possible.

And to my professors, advisors, and classmates throughout the MAPC program, thank you for your patience, your scholarship, and for accepting me as a fellow colleague and friend.

I am one lucky girl.
TABLE OF CONTENTS

Title Page ... i

Abstract .. ii

Dedication .. iii

Acknowledgements.. iv

List of Tables .. viii

Chapter 1: Introduction: Foundations of an Open Source Composition Space 1
 What Is ‘Open Source’? .. 2
 Open Source and Social Culture .. 5
 Redefining ‘Composition’ .. 9
 Maximizing Intention and Motivation .. 13
 Building the Open Source Composition Space: What’s Next? .. 19

Chapter 2: Open Invention .. 23
 Defining ‘Open Invention’ ... 24
 ‘Open Invention’ Begins with Trust and Problem-Solving .. 26
 Inventing Through ‘Desire’ and ‘Skill’ .. 30
 Putting Desire and Skill to Work .. 33
 Using Desire and Skill to Nurture Joy in Learning .. 37
 Tools and Resources for Open Invention .. 40
 Moving from Invention to Collaboration .. 46

Chapter 3: Open Collaboration .. 48
 Defining ‘Open Collaboration’ ... 49
 The Importance of Community .. 51
 The Role of Desire and Skill in Building a Community ... 54
 Using Twitter to Build a Composition Community .. 56
 The Teacher’s Role in Open Collaboration ... 61
 Tools and Resources for Open Collaboration ... 64
 Moving from Collaboration to Revision .. 72

Chapter 4: Open Revision .. 74
 Defining ‘Open Revision’ .. 75
 Making Revision and Critical Thinking Fun .. 79
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus and Conflict in Open Source Culture</td>
<td>84</td>
</tr>
<tr>
<td>The Teacher’s Role in Open Revision</td>
<td>88</td>
</tr>
<tr>
<td>Tools and Resources for Open Revision</td>
<td>93</td>
</tr>
<tr>
<td>Moving from Theory to Action</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 5: The Importance of Building an Open Source Composition Space</td>
<td>100</td>
</tr>
<tr>
<td>Focusing on the Process and the People</td>
<td>103</td>
</tr>
<tr>
<td>If It Works for Them... Why Not Us?</td>
<td>108</td>
</tr>
<tr>
<td>Open Source Composition in Action</td>
<td>112</td>
</tr>
<tr>
<td>Overall Implications for Teaching Writing</td>
<td>115</td>
</tr>
<tr>
<td>Works Cited</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 2
2.1 An example of a student’s Visual Outline for a research paper42

Chapter 3
3.1: An example of a timeline on http://www.twapperkeeper.com 66
3.2: An example of just one of the features on Summarizr 67
3.3: An example of a student wiki assignment at http://www.wikia.com 69
3.4: A screenshot of a class wiki hosted at http://www.wikia.com 70

Chapter 4
4.1 A screenshot of ShiftSpace’s Cutups interface .. 95
4.2 Wikiversity illustration of how to edit a webpage 96

Chapter 5
5.1 Instructions on creating content in Connexions 107
5.2 Writing Spaces, Volume 2 .. 113
5.3 The official poster for The Novel: Live! .. 114
CHAPTER 1

Introduction

Foundations of an Open Source Composition Space

If this thesis were open source you could change this sentence. You would be free to rearrange, remove, redistribute, or otherwise modify anything in this work.\(^1\) Your motivations would be fueled by a greater good, a desire to improve upon the knowledge and scholarship presented. Even so, you would still be modifying this work to then republish for someone else to read, learn from, and perhaps change even further. The words I’ve written may become diluted, changed to be something different from my own; my statements and research would likely be either refuted or celebrated, within the actual text itself. And yet, as an author functioning within an open source notion of what it means to compose and create, I would be okay with that. In fact, I would encourage it. After all, that’s how an open source community operates and thrives. I would offer my research and opinions and you would offer yours until, finally, we could arrive at some level of consensus.

For most of us in academia this notion of allowing others to modify and redistribute our work seems outrageous. Sure, academics are good at sharing: ideas, frustrations, citations. But the *written* word has become almost sacred in academic circles; we hold our alphabetic compositions firmly to our chest. We write to

\(^1\) By ‘open source’ I am referring to the open source software community. Therefore, to proceed with the metaphor, I am assuming that this thesis would be published under GNU/GPL (General Public Licensing). This is different from Creative Commons licensing, in which whether or not the text would be able to be modified would depend upon which Creative Commons license is in effect. See Lowe (2010) for an interesting discussion on Creative Commons and open educational licensing.
express ourselves, we write to communicate our research, we write to add bulk to
our tenure files. We certainly don’t write to simply open up our ideas and our words
for others to modify and reuse. But what if we did? What might this mean for
composition and for the teaching of writing? How might we use notions of ‘open’ to
enhance our own forms of composition, as well as broaden our ideas of authorship?
How might it extend traditional ideologies of collaborative academic scholarship?
And what lessons might we learn from open source culture and practices that could
be applied to the writing classroom? The answers to these questions – and more –
form the beginning discussion for an ‘Open Source Composition Space’: a place
where writing is collaborative, where authorship is negated by ideals of shared
intellectual property, and where students and teachers can learn from each other in
a safe and supportive environment.

Some may argue that the sharing of research and ideas has always been the
foundation of academic scholarship. If so, I argue that we need to get back to the
basics of what it means to compose, create, and teach writing. Imagine what the
power of open source collaboration, creation, and revision could mean to the future
of teaching writing. The possibilities, I imagine, could be awe-inspiring.

What is ‘Open Source’?

Open source is about culture and community, and also about property, such
as redefining ideas of authorship and ownership (Weber 1). In a true open source
community, there is very little ownership in the traditional sense of the word. Each participant is able to add his or her own unique touch or approach to the problem at hand, but rarely is there a need for the designer to insist on individual ownership rights. Instead, the open source product is continually in flux, always being changed and modified to suit the needs of individual users. Thus, an open source creation is owned by many – a community – and is able to serve many as well.

The traditional sense of ‘open source’ relates to computer software. If a piece of software is open source it means that the source code – the raw data behind the product – is made available to the public to access, modify, and redistribute. The hope is that many talented programmers will come together to contribute to a software product and make it better, thus eliminating bugs and streamlining the entire product for everyone. This does not mean, however, that open source community members see ‘open’ as ‘free.’ On the contrary; as Weber puts it: “Programmers often explain it with simple shorthand: when you hear the term free software, think ‘free speech’ not ‘free beer‘” (Weber 5). Thus, much of the ideology behind the open source community is the act of freedom, of being able to access, recreate, and redistribute creative works to the general public.

Linux founder Linus Torvalds defines ‘open source’ as the basic ideological concept that “Information... should be free and freely shared for anyone interested in improving upon it. But those improvements should also be freely shared” (ix). It is this positive and collaborative, community-based activism that fuels most open
source projects and communities. The overall ideology seems to be: You provide the expertise that you can and I'll provide mine; we'll work together for a common solution.

Open source participants and creators often see themselves as part of a greater good, usually in the form of solving some existing problem. An individual who composes and contributes to open source composition, such as programming code, sees herself as “an enthusiast, an artist, a tinkerer, a problem solver, and expert” (Raymond xii). This goes beyond notions of open source developers as mere programmers or computer experts and instead speaks to a greater source of motivation: an inherent need to remedy error or create positive change. As Shirky puts it, open source culture “is geek nirvana, where interest and innovation have more weight than profit or productivity” (1). Again, this points to the underlying motivation inherent to open source communities: self-interest and engagement. Now aren’t those the same traits we wish to see in our writing students?

‘Open’ can mean many things, but for the purposes of this research, I intend for it to be used as a metaphor for opening up the dialogue between teacher and students, as well as between students themselves. Similar to Wells’s dialogic learning model (1999), ‘open’ in this sense refers to broadening relationships between instructors and learners. But I wish for the definition to extend even further and focus on the relationships among students themselves. ‘Open’ should be
about community and collaboration, which may begin with some guidance from teachers, but ultimately will bloom within the relationships between writers.

Open Source and Social Culture

For some, the idea of open composition may not seem that far-fetched. After all, many people are already doing it. Personal diaries are published online in the form of blogs, and Twitter updates and Facebook status feeds provide platforms for people to publish some of their most private thoughts and activities. People are composing and creating publically, for the world to view, every day: from text-based forms of personal expression to videos posted on YouTube and photos uploaded to Flickr. Of course, there is a difference between ‘public’ and ‘open.’ Whereas public composition is made available for others to freely read and enjoy, perhaps even critique, the word ‘open’ implies that the work would also be made available to modify, improve upon, or otherwise access the heart of the content. In composition, we perhaps see this most frequently via video websites such as YouTube and Vimeo; users upload video content and then often remix each other’s works, by rearranging, borrowing, and reusing someone else’s creation in order to make something entirely new.

Sometimes these remixes are legal, but typically they violate one aspect or another of copyright law – and yet, legalities aside, the end results are often creative and inspiring compositions, powerful enough to form bonds between communities,
while allowing authors to compose, create, and comment using a shared and valued language. Just one example of this is what has been dubbed online as the “Brat Pack Mash-up.” An online user that goes by the name of avoidantconsumer decided to take a collection of clips from classic 1980s John Hughes movies, including The Breakfast Club and Pretty In Pink. She then set the clips to a song entitled “Lisztomania” by the band Phoenix to create an entirely new music video for the song, featuring the likes of Molly Ringwald and Ally Sheedy dancing to the tune. That in and of itself is an example of the creativity that can be harnessed with the use of some audio-video editing software and imagination, however, even more impressive are the follow up commentary videos that other users created as a response to this narrative dialogue. From Seattle to San Francisco – and more recently from college campuses such as Michigan State University – people are now reenacting avoidantconsumer’s music video. Groups of friends from around the world are getting together and acting out scenes from John Hughes movies, often taking on the personalities of various characters, each of which are dancing along to the “Lisztomania” song as if a part of the narrative. This is impressive for many reasons, not the least of which is the sense of community that this has created across the Web, as people – strangers, even – are composing and creating together, from thousands of miles away.

2 An infamous example of remix culture in academia is Eric Faden’s “A Fair(y) Use Tale,” which uses clips from Disney movies to teach about copyright law and fair use.
YouTube user *normative* provides a great discussion on this remix culture phenomenon, including the roots of the Brat Pack Mash-Up in his video “The Evolution of Remix Culture” (Normative). The take-away here, as *normative* explains, is that while these compositions have been assumed to be ‘open’ and ‘public,’ they are in fact illegal and in violation of copyright law (Normative). It has become a shared value in much of consumer society to disallow the ‘open’ use of published materials for other works – even if those works aren’t used for profit. In the case of the Brat Pack Mash-Up, neither the owner of the film rights nor the owner of the music rights have pressed charges – but the point is that they *could* – and other, similar remix projects have in fact been prosecuted. Also, at the time of this writing, the account for the user *avoidantconsumer* has been “terminated” from YouTube due to the company receiving “multiple third-party complaints from claimants including The Cartoon Network, Inc” (YouTube).

Whereas some may not think of remix culture as being part of a discussion about ‘open source,’ it shares a similar plight with issues of ownership and authorship sometimes impeding the creation of composition. Lessig argues that the only way to overcome these battles of authorship, especially in a digital age, is to come up with an “optimal balance” between “free” content and controlled content (Lessig 97-99). That is, owners of a work should still be able to retain some control over their compositions while also allowing for free and unrestricted use of Internet technologies. His solution is that someone (although he even admits that he isn’t
sure who that someone should be) should step in and help set governmental
regulations that don’t restrict users from activities such as video remixing but that
doesn’t necessarily allow for free reign, either (Lessig 255). In other words, the laws
shouldn’t be set by the music or film industries; they should be set by objective
lawmakers who are focused on finding a balance between ‘open’ and ‘free.’ Of
course, self-proclaimed ‘open source evangelists’ don’t necessarily agree; ‘open
source’ culture is often based on the dissolving of traditional copyright in the
interest of community-based creation – and many ‘open source’ creators enjoy being
a part of a culture where their work can continue a life of its own, being recreated,
reimagined, and redistributed by additional authors. But Lessig provides a popular
voice of reason when it comes to defining and determining what a realistic ‘open
source’ world might look like.

Another reason why this is relevant to our discussion here, in creating an
‘Open Source Composition Space,’ is that many scholars are beginning to investigate
the use of audio, video, and other technologies in the writing classroom (Halbritter
& Taylor 2006; Faden 2008; Fadde & Sullivan 2009). Instructional multimedia
techniques have become popular as a way of engaging students in first-year
composition classrooms, as has the relatively new practice of having students
actually use audio and video technologies to compose (Fadde & Sullivan 2). Some
instructors have even experimented with the use of cell phones, blogs, and
combinations thereof directly in their writing courses as a means of teaching
composition and critical thinking skills (Flack 2004, Richardson 2008, Woo & Wang 2009). These are fantastic steps forward for the incorporation of new modalities of composition into writing instruction, yet building an ‘Open Source Composition Space’ goes beyond the mere incorporation of technology into the writing classroom; it signifies a cultural and social shift in values and the way in which we choose to interact with our students – and have them interact with each other.

Redefining ‘Composition’

In recent years, composition scholars have noted a change in how we think of composition: from merely alphabetic text to new, inclusive mediums of audio, video, and the visual (Kress 1999; Murray 1998). These new approaches to writing instruction have seeped into our teaching methodologies and curriculums, as well with programs such as Miami University’s Digital Writing Collaborative, University of Central Florida’s Center for Humanities & Digital Research, and Clemson University’s Gaming Across the Curriculum initiative. In fact, an emerging group of scholars are now referring to themselves as being in the ‘digital humanities,’ a moniker that seems to signify pride in both text and technology (O’Donnell 2009). In other words, the binary between the digital and the humanities is slowly yet surely dissolving.

Much of these practical changes point toward a future of digital composition that has been encouraged by the scholarly work of those such as Selfe (1999) and
Wysocki et al (2004), who have studied how multimedia assignments and multimodal teaching techniques can be effectively implemented into writing curriculums. Such research has begun to move away from separating pedagogies into “old” vs. “new” models, such as the separation and classification of composition pedagogies (Berlin 1982) and the academic binary between literature and composition departments (Elbow 2002), and instead calls for innovative, futuristic student-centered thinking that considers composition pedagogy as a means for teaching today’s students how to create and innovate in a technological age (Gossett et al 2002, Ball 2004, Flack 2004, Wysocki et al 2004). In fact, just taking a look through digital academic journals such as *Kairos* (http://kairos.technorhetoric.net) signify an overall – if slow – shift in academic humanities from solely print-based to a move toward embracing the digital. These scholars – who go against traditional norms to publish, create, and teach in digital spaces – aren’t sitting around waiting for academia to catch up with technological innovation; rather, they are forming the forefront of multimodal composition pedagogy and are helping to shape curriculum for future generations.

This emerging form of digital humanities scholarship at times has a subversive quality to it as well, much like the anti-authoritative, pro-freedom approach that many open source programmers hold as part of their ideologies. Many believe – and I consider myself in that group – that a resistance to the incorporation of technology as part of instruction in the humanities is not only
archaic in today’s digital age, but is also anti-intuitive to our own ideas of innovative scholarship. As Faden puts it: “Our discipline, caught in the swift current of the traditional academy's literary river, swims upstream... For example, we are interested in film, video, and new media (electronic culture) but publish essays (alphabetic culture) and, even worse, we take these essays to conferences and read them aloud (oral culture). Formally, we are going backwards. Critical media moves forward” (1).

The point here is that we are learning that traditional methods for teaching writing don’t necessarily work in the modern technological age. Student engagement is always a concern in the classroom, as Wysocki et al (2004) and others have pointed out in their scholarship, and ways to motivate and empower students in the classroom have become hot topics in composition pedagogy research. At the same time, online education is growing at an unbelievable rate. In a 2009 analysis of “more than a thousand empirical studies of online learning,” the United States Department of Education found that online education is not only a “more effective” methodology for learning but that it “is one of the fastest growing trends in educational uses of technology” (Means et al ix). According to the report’s authors, much of this is due to the “hybrid” learning approaches that instructors implement online, including the use of multimedia and Web-based applications (Means et al xi). Logic would follow that such multimodal and technology-based approaches would be similarly effective in the traditional classroom as well.
Although some instructors may now be finding that ‘tried and true’ in-person teaching strategies don’t always translate to the virtual world, this may be a matter of practicing what many of us preach to our students: finding the joy in discovering new knowledge. In order to keep up with demands of teaching in a modern era, teachers are being forced to step outside of their comfort zone and learn new tools and technologies – some of which our students know better than we do. This may be painful and tough (what education-building process isn’t?), but this is also where we can start to learn from open source culture: a dialogic learning approach wherein we teach students to write and they teach us what they know about technology and this quickly changing world. Thus, to adequately engage today’s students, we must find ways to incorporate a connection to that which is most relevant to our changing times: technology.

This is not to say that an ‘open source’ teaching methodology must also be technologically-based, but when building a new model for teaching writing, it’s tough to dismiss the trends toward digital humanities scholarship in composition pedagogy. We can use this knowledge – and the predictions of the future of learning – by realizing that ‘composition’ now encompasses much more than the alphabetic written word: from audio and video to computer programming, web-based writing to performance art. By taking a look at the current shifts toward multimodal teaching and digital humanities studies, not only can we get closer to understanding
the technology-based open source culture, but we can start to move toward building a realistic future – and definition – for composition pedagogy.

In this thesis, I intend to go beyond discussions of terminologies such as ‘text,’ ‘digital,’ and ‘multimodal’ and instead reclaim the word ‘composition.’ In this sense, composition can refer to traditional alphabetic text, digital constructions, and creations of various modes (audio, video, performance art, and so on), as well as computer programming code, a form of composition that reigns in the open source community and that is no less ‘writing’ or ‘composition’ than many an involved traditional text. Writing instruction as we know it is changing everyday; it is my hope that utilizing the term ‘composition’ instead of mere ‘writing’ can help us prepare and embrace the future of composition pedagogy.

Maximizing Intention and Motivation

It may seem strange to think of computer code as composition, but it’s not all that different from alphabetical writing. Coders must learn the syntax, grammar, and style of their genre. In fact, this is even more so than with alphabetical composition, where savvy authors can ‘break the rules’ in order to experiment with prose. Computer programmers aren’t allowed the luxury to forget to dot an ‘i’ or cross a ‘t’; if they do, their code will likely break. Code even takes composition one step further, as programmers quite literally compose in a different language. Furthermore, a
programmer usually has her own unique style of code, a signature, that is easily recognizable, much like a traditional writer has a ‘voice’ in her composition.

Perhaps this is why it’s so easy to see a direct link between open source culture and writing. Open source communities often function similarly to a supportive writing group. A person will compose (in the case of traditional open source culture, this is likely a programmer ‘composing’ code) and, when she gets stuck or runs into errors in the development process, she has other people within the framework of her community to help troubleshoot issues. In the writing classroom, this can translate into individual students composing and then seeking additional help and support from other students if they run into particular difficulties, such as character development, form, style, or even grammar and syntax.

The closest we currently come to this type of relationship in most composition programs is with campus writing centers; there, writers are encouraged to compose with the assistance and input of others – but the key difference between that interaction and what you’d get with an open source learning environment is that writing center tutors are often instructed to treat the writer’s work as sacred; they are not allowed to touch it, write on it, or otherwise harm the sanctity of the student’s original words. In practice, there is a great reason for this: the prevention of plagiarism and the assurance on the part of tutors and instructors that what the student turns in is actually his or her work. There is also the issue of the gap of expertise between the writer (an undergraduate or graduate
student who is typically viewed as a struggling writer) and the tutor (often hired because of his or her expertise in the field of writing), which might cause issues of concern if both parties were composing together on the same document – especially if the writer is turning in the composition for a grade. But there is another way of looking at this as well: that we’re missing out on an educational opportunity for both the writer and the tutor; think of what we could all teach to and learn from one another if boundaries were removed and the only motivation was to come up with the best possible composition. This could function within writing classroom instruction, as well, serving as its own supportive pseudo ‘writing center,’ wherein students are allowed to help each other compose and create – perhaps even on the same document.

What this may come down to is something that is difficult, if not impossible, to teach and predict in our students: motivation and intention. After all, each student may have a different agenda for taking the course and hold different goals in mind for the successful completion of the course. Where one student may set an achievement at receiving an “A,” another may be perfectly satisfied with doing the minimum amount of work required and hoping to ‘slide by’ with a C or even a D – just so long as they pass the class. These initial motivations and intentions are something that vary from student to student, classroom to classroom, and are often what composition instructors are fighting against from the very first day of class. This is where our own motivations and intentions kick in: when many of us attempt
to show our students that composition does have value (regardless of the student’s chosen major) and that there are other factors that can help drive both motivation and intention into something more positive. Once that is complete – when a student feels a productive drive toward learning how to create the best possible composition, and is able to see a positive means to an end – then visits to a collaborative-based writing center could potentially overlook issues of authorship and ownership and instead utilize its own good intentions and motivations to simply help students create.

As any rhetorician will tell you, intention and motivation are nearly impossible to predict. Some creative people will compose (write stories, film movies, draw pictures, code software, etc.) for enjoyment only for the pursuit of creativity. Those driven by a solely creative motivation and intention might not mind an open source culture where their work could be modified and redistributed. For them, their work might be created solely for creativity’s sake and, like those involved in video remix culture and open source programming efforts, a large majority of the self-satisfaction in the composition would come from the collaboration with others. Others might create composition to achieve a particular impact, whether it be to pose a particular argument or to cause some kind of response to an underlying issue (social, cultural, historical, and so on) and thus wouldn’t want their original work and message changed, as modifying it in some way would possibly negate or change the entire purpose or theme. It might hurt
their ego or their pride. In other words, it would forever change the work to something other than what they were originally trying to say. Still others may compose for the ultimate goal of making a living. Professional authors, filmmakers, musicians, artists, and so on who rely on their creations for monetary compensation might understandably have issues – at least initially – with participating within an open source culture where their work could be borrowed, reused, and redistributed. In the case of the classroom, “making a living” might become “getting a good grade and passing the class,” which if we’re being perfectly honest with ourselves, is likely one of the top priorities for our students, especially those in required curriculum English courses. But imagine what could happen in our composition spaces if we managed to shift student intention and motivation from “making an A” to “making a difference.”

Current issues of ownership and authorship in composition often come down to the sacredness of the author’s ‘voice.’ Yet open source culture as a pedagogical model for writing instruction fosters the desire to not only contribute – but to contribute to something that is both useful and good. No one wants to see their contribution removed entirely (thus removing their voice); this is why even the open source programming community often provides ‘signatures’ of contributors within the code itself. But whatever part of the work that they have created, whether large or small, the open source programmer could say they were a part of it. For our composition students, it would translate into a motivation and an
intention to be a part of something larger than themselves, to create and compose something that they were proud of – something that they couldn’t wait to share with their family and their friends.

Personally, I most see this type of motivation and intention in my students when working with multimodal group assignments. When students compose a collaborative multimodal text, one that allows group members to go above and beyond mere alphabetic prose and communicate in the mode(s) with which they feel most comfortable, they become empowered with the knowledge that there is a particular part of the assignment that they can ‘own.’ In other words, ownership in an open source-styled composition space becomes about individual contributions to a greater whole rather than about insular attachments to individualized works. In a collaboration, each group member can contribute his talents to different areas of expertise. The end result – once the multimodal compositions are invented, composed, and revised – is often something that the entire group can be proud of. They post their projects on YouTube, send the files via email, and provide links to their friends and family members. (Where else do you see that type of pride and sharing in the composition space? Certainly not with alphabetic essays.) They are truly proud of their work, and of the role they played in composing it. And once you are able to tap into that sense of empowerment that students can feel by being a part of something, it can drive up the level of enthusiasm that they have for other areas of composition – including the traditional academic research essay. Nothing is
more empowering than realizing that you have something to offer to others; rarely does that happen in insular, individualized composition assignments.

Once again, lessons from open source culture can help us navigate the composition space, starting with parallels between intrinsic motivation and intention. Weber likens open source intention to that of *artistry*, attributing the motivation that open source developers feel to a sense of artistic accomplishment and self-expression (136). Again, this is akin to the motivation of writers, which is often fueled by artistic drive. When it comes to the writing classroom, nurturing this sense of self-accomplishment and artistry in our students can help build a foundation for an open source composition space. Let’s be clear: I’m not suggesting the abolishment of the traditional academic essay, nor am I even saying that every teacher should immediately begin utilizing technology in the classroom. What I am saying, however, is that there is much to be learned from open source culture, as well as the new field of digital humanities, that can help us reshape and reimagine the composition space.

Building the Open Source Composition Space: What’s Next?

Upcoming chapters of this thesis take a look at practical ways of implementing the best aspects of open source culture – invention, collaboration, and revision – as a means for reinventing writing pedagogy into a new pedagogical model: The Open Source Composition Space.
Chapter 2 focuses primarily on the importance of invention, both in open source culture and in the composition space. Open innovation – a concept becoming increasingly popular in corporate workplaces – can help us establish a new definition of ‘open invention’ that can be applied in the writing classroom. Invention also helps with knowledge creation, which is informed by open source notions of motivation and enthusiasm. Further, writing groups can help play an important role in open invention, as well as foster both desire and skill. Open source serious gaming also informs this conversation, by providing suggestions on ways to teach invention, innovation, problem-solving, and critical thinking, as well as provide outlets for discovering joy in composition. Last but not least, the chapter rounds out with a discussion regarding the importance of open source research and brainstorming strategies as tools for invention, including specific technological options and classroom activities.

In Chapter 3, the focus is on the importance of collaboration, including an overview of current open source collaborative practices. Open source community building and social networking provide new ways to consider collaboration in the composition space, such as ways to incorporate a sense of community into our own composition spaces. The chapter continues with a discussion of how collaborative and dialogic teaching models can help build relationships, form knowledge, and create meaning. Rounding out the chapter is a short discussion on available open
source collaboration methods and tools for use in the classroom, including wikis, blogs, and social media tools.

After invention and collaboration comes revision, which is the focus of Chapter 4. Here, lessons that can be learned from the open source culture often hinge upon a constant cycle of revisionary approaches. The discussion includes ways to engage student habits in critical thinking, reading, and writing, and explores how open source culture revises based on a democratic culture of conflict and consensus. Like the other chapters, which look at theory and then apply that theory to a new practical solution, Chapter 4 ends with some practical open source revision techniques, methods, and tools that can be used in composition spaces, such as peer review activities and remix culture.

The fifth and final chapter, Chapter 5, brings all of this together with a brief overview of the importance of creating a new open source model for composition spaces. It helps us make important links between open invention, collaboration, and revision as a way to discuss overarching power issues and other considerations for creating an open source learning environment, which sometimes focuses on breaking down the barriers between student and teacher. It all ends with an overview of the pedagogical impact of incorporating an open model in composition spaces, as well as overall lessons in teaching to be learned from open source communities.
Each of the chapters can be read individually, or as a whole, as a practical tool kit for reinventing the standard writing classroom into one dictated by a community-styled approach to invention, collaboration, and revision: an Open Source Composition Space.
Invention plays a large part in any composition space. As one of the traditional five canons of rhetoric, invention is the starting point for many composers: it’s where the ideas happen; it’s where inspiration begins. There are many ways in which composition instructors teach invention in the traditional writing classroom: brainstorming, mind maps, free association, and so on. Yet in this drive to come up with the perfect tool for teaching invention we often forget to put the focus back where it belongs: on the people. After all, it’s not the mind map or hand-drawn idea cluster that generates ideas; it’s the people coming up with them.

What a focus on standardized invention tools does provide is an avoidance of judgment that is often necessary to the invention process. When a writer uses a mind map, brainstorming outline, or other invention tool, it’s typically to get all ideas – any ideas – down on paper, without judgment, so she can sift through the ‘bad’ to get to the ‘good.’ This may work for some, but isn’t this ultimately counter-intuitive to the goals of invention? Who is to say to that one idea is ‘bad’ and that another is ‘good’? When we try to categorize ideas into ‘good’ vs. ‘bad,’ and force invention to conform to one side or another of a rigid binary, we begin to break down the very qualities of trust, freedom, and lack of judgment that these invention strategies are supposed to create. Thus, in order to create an encouraging environment for invention, we need to find a way to harness this safe, productive
feeling for the classroom, to nurture invention and creativity without judgment – to move beyond mere tools and focus on the people. By this I mean that the heart of composition lies not within the tools and technologies we use to create them but instead lies within the composers themselves: the writers, the students, and the instructors that work together to compose works, build knowledge, and create meaning.

This chapter asks: What if we could design a composition space that allows for inventive freedom without judgment? What might that look like? What tools can we use to encourage invention in the Open Source Composition Space? How do we begin to ‘focus on the people’ – and what might that mean? The first step to forming an Open Source Composition Space is creating a safe environment for the first step of writing: a term I call ‘open invention.’

Defining ‘Open Invention’

Chesbrough (2005) analyzes how concepts of open source culture can be applied to the corporate workforce and many of the insights garnered from his work can be applied to an Open Source Composition Space, as well. "Companies that don't innovate die," says Chesbrough (xvii) – as, I argue, will writers that never invent, imagine, or create anything new. Chesbrough’s primary case study for his book *Open Innovation: The New Imperative for Creating and Profiting from Technology* is the semiconductor corporation Intel, a company that is very clearly not open source but
at the same time innovates in a way that Chesbrough explains is likewise ‘open.’ As Chesbrough discusses, Intel uses outside sources for all of their research, relying upon innovation by many to come up with their ultimate inventions (114). Instead of merely sitting and thinking with their own perhaps limited in-house pool of resources, Intel continually monitors the research of the entire field, garnering ideas here and there from the semiconductor community at large (132-133). Chesbrough has termed this practice ‘open innovation,’ and I feel it’s a fitting beginning for defining a similar phenomenon for the Open Source Composition Space: ‘open invention.’

Whereas composition spaces rarely invent for the learning experience itself (as opposed to, say, corporate profit), the methods used in open invention are quite similar to those of what corporations such as Intel utilize to get ahead in their industry. It’s no secret that Intel is a leader in the semiconductor field; what’s interesting is how they have used the power of many – the innovative thoughts and research of an entire industry – to further their corporate aims. In writing, we may traditionally think of this as plagiarism, yet within the bounds of communal thinking, it has been relabeled as ‘innovation’ and hailed for its success. In composition spaces, we may liken this to group brainstorming: a way for many people to contribute to an overall idea. Issues of ownership and authorship aside, I would like to move this conversation forward with the shared definition that ‘open invention’ is fueled not by sinister corporate greed but instead by true intentions of
achieving ultimate goals of learning and community. ‘Open invention,’ then, can be
defined as a means of beginning the composition process – of sifting through ideas
with complete trust and without judgment – to invent, innovate, and imagine the
first steps of the composition process.

‘Open Invention’ Begins with Trust and Problem-Solving

How many times have we said to our students (or even to ourselves as
writers): it may not be ‘good’ writing, but at least it’s writing! As composition
instructors we naturally encourage the creation of writing in all its forms: from
publishable work to doodles, free writes to self-reflective journaling. Writing is a
creative process and creative people know that invention takes time; a ‘good’ idea
doesn’t always come right away and composition is a difficult, often soul-searching
process.

Because so much of our self identities are wrapped up in our compositions,
the invention process is often difficult to share with others. We hesitate before
showing that ‘rough draft’ to a friend or colleague; instead, we wait until the work is
‘perfect’ or until we’ve built up enough trust with our readers to hand over the reins.
And yet, we expect our students to allow us into their own processes of composition
from the very beginning stages of invention, and assume that the trust and safety
net is already in place. What we forget, however, is that especially at the beginning
of a class year or term when we’re still getting to know students, we expect them to
invent from the start. What we’re asking for is enormous: we want them to invent – to expose their ideas, their inspirations (the ‘good’ ones, the ‘bad’ ones, and even the ‘ugly’ ones) – to people they barely know. We ask for brainstorming and idea generation first and then attempt to win over trust later. In my experience, that isn’t necessarily the best way to encourage invention.

Yet there are lessons to be learned here from open source culture. After all, most open source project ‘inventors’ are likewise strangers to one another: coding, composing, and otherwise contributing to the project efforts sometimes from thousands of miles away from one another. They’ve never met; they seemingly have no basis upon which to form bonds of trust. So how does open source culture deal with invention in the presence of strangers? How do they build trust, form a community, and invent together toward a common goal? The short answer, I believe, is: problem-solving.

In open source culture, invention is triggered by problem-solving. An issue is presented or necessitated and then acted upon in order to find a solution. Weber refers to this as a desire to “scratch your own itch,” and acknowledges that the primary reason for invention in open source culture is an attempt “to solve a problem” (137). In that sense, invention in open source communities is driven by a desire, a need to accomplish an immediate goal. For instance, the problem might be that a free or open source product doesn’t exist for a certain market; as a result, someone may try to create one. Then, in the creation process, an issue or bug will
arise and suddenly there is yet another need for invention: for the original author to
come up with a solution or perhaps for another programmer to step in and assist.
Users of the new open source software solution may then come up with a wish list of
items they want developers to implement or even fix; those items once again get
added to the invention ‘to-do list.’ Nearly every open source project has an ongoing,
never-ending list of problems waiting to be solved. It’s up to the individual
developers to step in, access the code, and pitch in to the overall invention process.

Software projects of any kind typically have at least three ongoing lists in
need of invention: a bug list, wherein users and developers list known issues that
need to be addressed; a feature or ‘wish’ list from users of things they’d love to have
or wish could be a bit different; and a change list, which outlines all of the
differences and attempts that have been made to ‘fix’ or enhance the software. In
open source projects, these lists are made freely available to the public in the hopes
that many minds will work together to problem-solve and ‘invent.’ The beauty of
open source culture is that this system – of invention out of a need or desire to solve
a problem – almost always works.

Just one such example of this can be found within the community for the GNU
Image Manipulation Program (GIMP), a free and open source image manipulation
software program that has similar functionality to programs such as Photoshop.
Lead inventors for the project, Spencer Kimball and Peter Mattis, say that “GIMP is
our answer to the current lack of free (or at least reasonably priced) image
manipulation software” (The GIMP Team, “Frequently Asked Questions”). In other words, GIMP was ‘invented’ because there was a problem that Kimball and Mattis believed needed to be solved. On the official GIMP website (www.gimp.org), project team members have provided installation files, documentation, frequently asked questions, and – for those interested in inventing and problem-solving alongside the project – the source code, so that programmers can jump right in to help solve commonly known issues or perhaps ‘scratch an itch’ of their own. In fact, the GIMP team overtly appeals to other open inventors, asking for help in a variety of areas of the project: from composing code to writing tutorials, or even simply pointing out new problems to solve. As they astutely point out, “In the free software world, there is generally no distinction between users and developers. As in a friendly neighborhood, everybody pitches in to help their neighbors” (The GIMP Team, “Development”). According to the GIMP website there are more than 200 individuals who have contributed to the open source project, including coders, artists, web developers, and writers – and that doesn’t even count the users who report bugs, work on issues, and help one another troubleshoot the program. That is, more than 200 individuals compose and invent together, each and every day, on various aspects of this project without formal hierarchies, complicated management systems, or even issues of authorship, as the names of contributors are merely listed on the GIMP website. And guess what? It works. So far, the GIMP project has released 12 versions of its software, with documentation in 13 languages, and it's still in active
development. To get started composing for the GIMP project, all that is required is a
desire and a capacity for programming, writing, art, or web design; the code is there
for you to invent, modify, and compose as you will.

So how do we take this information and apply it to the Open Source
Composition Space? We begin by considering the needs of an open source
community to solve problems – and then design ways to create problems in our
classrooms that our students actually want to solve. We do that by taking a look at
our classrooms and identifying the two motivating factors that propel open
invention: desire and skill.³

Inventing Through ‘Desire’ and ‘Skill’

‘Membership’ into an open source project typically takes two things: desire
and skill. Beyond that, it's merely an effort to prove to the existing community that
you have both traits and are willing to contribute to the overall effort. Perhaps
because of the inherent nature of open source projects, which are founded upon
ideals of freedom, contributors aren’t given tasks to perform but are instead given a
list of possible problems to solve. Those wishing to join the community are then able
to pick and choose which portion of the project they feel they’re best suited. Trust is
established and maintained by a system of natural order; contributors self-select the
portion of the project they have the most desire and skill to accomplish and

³ For an interesting discussion on 'problem-posing' as a pedagogical methodology for open invention,
see Freire (2000).
continued ‘membership’ in the community hinges upon the success of the results. Thus, if you can successfully solve a problem that benefits the greater good, you are not only trusted but are welcomed into the open source community with ‘open’ arms.

It then follows that if the open source community, typically made up of individual strangers from around the world, can invent together based on shared traits of desire and skill, we should be able to harness that power into the Open Source Composition Space as well. Creating open invention in the writing classroom, then, is simply a matter of redefining student roles to encourage the implementation of a trusting community built upon self-selected strengths.

In the first-year composition program at Clemson University, learning is based on four foundational principles: rhetoric and argumentation, information design and technology, research, and collaboration. As an instructor in this program, I use these four course strands to guide not only student learning but the creation of open invention, as well. At the beginning of the term, I ask students which of these four learning objectives they feel that they are best at – and then require them to write a short summary that explains their answer. Along with this survey, I have them fill out a series of additional multiple choice questions, which ultimately get to the same objective of student assessment but through a slightly different way. For instance, I provide a list of technologies and ask them to circle which ones they have experience with. Answers include: blogs, podcasts, audio/video editing, digital
photography, wikis, website design, and so on. This provides helpful information because some students may say that they aren’t good at information design and technology but then circle 10 different technologies that they use on a regular basis. In other words, it helps break down some of the self-doubt that some students bring with them into their first college composition course, and when I point it out later, it also provides students with self-empowerment; they realize that maybe they know more about a subject than they originally imagined.

One of the most spectacular things I have learned from this exercise is the fact that rarely have these students been given the confidence to imagine that they may have expertise in something; discovering that they do have knowledge that could help others – that ‘skill’ that is so desired in open source culture – is incredibly empowering. In that same class survey I also typically ask at least one open-ended question relating to their hopes for what we might cover in class; this gives me an idea of the skills they’ve entered the class with and also provides me with that all-too-important second aspect of successful open source invention: ‘desire.’ In fact, I’ve found that the majority of my students come into the course with a desire to learn something; poor attitudes stem from the belief that they have no control over what that ‘something’ might be. By asking the students what they want to learn, not only does it give me, as an instructor, the tools to understand their self-assessed strengths, but it provides me with a blueprint for fueling each class’ unique combination of skill and desire into a course that magically shifts from a required
course that they “have” to take into a class that they actually look forward to attending.

Putting Desire and Skill to Work

One way in which I encourage open invention in the classroom is through the use of writing groups. Students often find it surprising to learn that professional writers often rely on ‘support groups.’ In fact, writing groups have become so prolific that there are entire websites designed to help bring writers together. (One such example is *The Writer Magazine* online database.) What is it about writing that necessitates ‘support’? And, if professional writers find value in a support system — where ideas are shared and concepts are freely invented together — then why don’t we adopt some of these same practices in our academic composition spaces? I believe that we can – and should – harness the power of writing groups as a primary tool for open invention. For students to open up with one another, share ideas, and get feedback from their peers, the foundation for trust begins to unfold, and soon invention begins to happen naturally.

Members in writing groups help each other navigate the entire composition process, from invention to revision, perhaps providing above all else the ability to invent and compose in a trusted, safe environment. In academia, writing groups help invent and build trust on the basis of shared language and culture (Maher et al 2008; Curtis 2011). Lee and Boud (2003) theorize that one of the key benefits of
academic writing groups is a shared desire for change: “What is necessary for any productive enhancement of skills and capacities... is the desire to use them to engage in a community of practice that recognizes and rewards the user. Theorizing desire in academic development is... a most important need for the field” (Lee and Boud 197). Their solution to stimulating the necessary desire as part of the invention process is through the formation of writing groups.

In order to start writing groups in the Open Source Composition Space, it helps to have the self-assessment data with regard to students’ desires and skills. (Again, here is where the class surveys prove to be immensely helpful.) Once the surveys are complete, I begin to informally code them based on their answers. First, I start with reading their short essays with regard to which course strand they feel is their biggest strength: rhetoric and argumentation, information design and technology, research, or collaboration. I then make a list of each student’s answers, with the ultimate goal that I would have an equal number of answers for each category. (In an average classroom size of 20, I try to identify 4-5 “experts” in each of the major course strands.) Of course, I’ve found that the distribution of expert knowledge rarely happens so neatly based on their answers to this one question. I’ve found that most students list research as their biggest strength, with expanded answers typically boiling down to one commonality: they studied it in high school. The second most common answer is typically rhetoric and argumentation, with explanations typically amounting to one of two answers: they studied rhetoric in an
AP class and/or their parents or teachers have always told them that they “are good at arguing.” Next comes collaboration, with two or three students per class citing reasons such as: “I work well with others.” Finally, and it’s always last, is information design and technology. These same students, who claim to have experience in a staggering array of digital technologies almost never choose this as their area of expertise. Thus, in order to have an equal amount of students assigned to a particular course strand, I typically must move some of them around from their original essay answer and allow them to see that, based on answers to other questions in the survey, they do have experience in technology – and that that experience can help their classmates as well. (Oddly enough, the hobbyist musician who dubs audio and video in his spare time or the online composer who dabbles in web design on the weekends rarely sees this as a skill that could be brought to a multimodal composition classroom until it’s been explicitly pointed out.)

When it’s all said and done, I have a list of 4-5 students per category who are dubbed the ‘experts’ for those course strands. I then select one student from each category and put them together as members of a writing group. For example, a group is typically made up of: one student from the rhetoric and argumentation list, one from the information design and technology list, one student from the research list, and one from the collaboration list. I announce the groups in class, with an

4 This may be because introductory composition students often have a hard time conceptualizing an English class that composes in non-alphabetical texts. Many of my students have never heard the word ‘multimodal’ and have a stereotypical view of English and writing courses as being strictly literature- and research-based.
explanation of the role that each group member will play in their group. For instance, the student I selected from the ‘research’ list is dubbed the group's ‘researcher’; if research-based questions come up in the invention process, that student will be expected to take the lead to help others in their group to find relevant information; the student chosen from the ‘information design and technology’ list will be on hand to help with technical difficulties or questions relating to tools or technology that we may be using in class – such as how to create a mind map on a Mac computer; and so on. It’s explained that these roles aren’t rigid; they’re free to cross the boundaries and contribute to any or all of the four course strands. But when a group gets stuck or self-doubt begins to creep in, each of the group members somehow naturally encourage each other based on the original roles that they have been assigned. Gee (2007) might call this “the jigsaw method of cooperative learning,” wherein “each module (team) is initially expert on only one part of the whole topic, no team is expert on the whole. But each team distributes its knowledge to the whole... There is no ‘center,’ only a flexible network of distributed roles and responsibilities” (204). I’ve found that, just like in open source culture, when students are able to self-select their strengths and use their skills to contribute to the collective knowledge of a group, they end up discovering a sense of self-empowerment towards the invention and composition process that almost always leads to success.
As Lee and Boud (2003) have discovered, academic writing groups provide members with the necessary desire, motivation, and self-empowerment to improve as writers, as well as allow members to redefine notions of identity as students (197-198). A successful combination of desire and skill, especially in a community – whether it be in a writing group or an open source software project – leads not only to advanced self-development as composers but fosters an overall sense of joy in the work as well.

Using Desire and Skill to Nurture Joy in Learning

Open source culture uses both desire and skill to invent based on two things: need and enjoyment. Many open source projects stem from a simple need to get a particular task accomplished – or to solve a particular problem. Others come simply from a desire for entertainment, enjoyment, and play. For Linux founder Linus Torvalds, “the computer itself is entertainment”; regardless of the current project he is working on, there is always time to play with the computer and discover something new – perhaps even begin “some programming experiments that do not have immediate goals” (Himanen 20, 32). In other words, Torvalds composes out of joy and entertainment for the medium itself. *This* is the type of enthusiasm that we can and should harness for the Open Source Composition Space.

The open source community has discovered that when it comes to invention, motivation, and execution, “joy is an asset” (Raymond 60). This is something that
the gaming community has figured out as well. Serious gaming, “a new field of computer and video games, applied to non-entertainment purposes,” has been harnessing the power of joy-based learning since the early 2000s (The Serious Games Initiative). Games encourage learning – and invention – by stimulating the imagination, providing new avenues for creativity, and establishing new methods of problem-solving and critical thinking (Gee 2007; Ferenstein 2010). Gaming also helps us achieve those two very important parts of the open invention process: it builds both skill and desire. The beauty of games is that when immersed in the joy of gaming, students often don’t even realize that they’re learning. Thus is the key to open invention: Utilizing this inherent joy found in activities such as serious gaming as a means of discovering and developing skill and desire.

Games teach a new way of building knowledge: through problem-solving, critical thinking, and imagination. “It’s not what you’re thinking about when you’re playing a game, it’s the way you’re thinking that matters” (Johnson 81). Johnson (2005) links this to why and how we teach algebra. We know that most students will never use it again, but we teach them anyway: “Learning algebra isn’t about acquiring a specific tool; it’s about building up a mental muscle that will come in handy elsewhere” (Johnson 81). Thus, when playing games, students can learn valuable skills in imagination, narrative development, decision making, constructing order amidst chaos, and exploration as a means of discovery (Johnson 85-88). Video games have a way of forcing players to consider their environments, and use their
own skill sets and desires (whether based on reward or merely in pursuit of fun) to advance and succeed.

When a student practices something in a game environment, they become better at it, developing a skill set that can be transferred into the ‘real’ world (Gee 65). This is no small point of discussion, as “the average young person today in a culture with a strong gamer culture will have spent 10,000 hours playing online games by the age of 21” (McGonigal). One interesting point about this – as McGonigal (2010) points out in her research – is that this 10,000 hours number is precisely the amount of hours that author Malcolm Gladwell, in his 2008 book *Outliers*, discovered to be the ‘magic number’ of hours it requires to master any one skill. As it relates to the composition space, it’s also interesting to think about which of the skills learned during those 10,000 hours might be applicable to our educational goals. Theoretically, during those 10,000 hours, these young gamers will have learned skills in critical thinking, problem solving, and initiating creativity: all talents that are incredibly relevant and useful for the invention process. The only issue with these statistics is that we can’t assume that these skills will automatically transfer over into the writing process, nor can we assume that we will be teaching a class full of gamers. What we *can* do is try and identify which of our students are gamers (such as through the class survey I mentioned) and then assess how those students can use their skills as a way of inspiring and helping other students in their writing groups and in their classrooms as a whole. Furthermore, we can take some
lessons learned from the serious games community and apply them to open invention.

What’s unique about using serious games as a means for invention is its delivery method. Games are interactive and often non-linear in their approach to narrative. “Playing is integral, not coincidental like the appreciative reader or listener. The creative involvement is a necessary ingredient in the uses of games” (Moulthrop 210). That inherent creativity that stems from learning through play – through joy – is what drives both desire and need in the open invention process: to invent, inspire, brainstorm, and compose.

The critical thinking gained through gaming is necessary to the open invention process as well. When we invent, we try to sift through which ideas are ‘good’ or ‘bad,’ which may be most worthy of pursuit in a full-length composition. The practice that gaming provides with regard to critical thinking can help ease this process: not out of judgment, which I see as inherently negative, but instead from a place of thoughtful critical thinking that comes from a place of joy: that which we see in gaming.

Tools and Resources for Open Invention

Although I wish to retain the ideal that, when it comes to open invention, the imagination and creativity of the people (that is, the composers, students, and instructors) are the most important part of the brainstorming process, there are
several tools and technologies that may be of use to you while setting up your own Open Source Composition Space. Here are some of the ideas already discussed in this chapter, as well as a few additional resources:

Writing Groups: Perhaps my favorite ‘tool’ for encouraging positive invention without judgment is the use of writing groups. Separate your students into groups based on their own self-defined skill sets. Then, have the groups work together on a regular basis (I've found it helps for them to meet at least once a week) to work through common invention strategies and problem solve other areas of the composition process. During each meeting, I require that each and every group member contribute at least one thing to the conversation: be it a shared idea, an issue they’re struggling with, a suggested improvement, and so on. Each week, I also have the groups assign one of their members to be the week’s journalist, and that person turns in a weekly reflection in a short essay format, outlining what their group accomplished, specific tools and techniques they may have used to encourage invention, and so on. The weekly reflections help the group members see an actual productive outcome of their meetings, as well as openly acknowledge their own individual contributions to the process. Although specifically brought up in this chapter as a means of stimulating open invention, I’ve found that writing group activities work for all aspects of the composition process, including collaboration and revision.
Visual Outlines: At least once a term, I have my students compose visual outlines. As opposed to the traditional outline format, which is often composed solely with a linear, alphabetic text method of outlining, I ask students to create an idea for a particular assignment using primarily graphic elements. These can range from hard copy hand-drawn outlines that take the shape of, say, comics or digital compositions made in either a program like Microsoft Word or PowerPoint or in a Flash-based format such as Prezi. Alphabetic text is often present but doesn’t form the sole basis for the composition (see Figure 2.1).

![Figure 2.1: An example of a student’s Visual Outline for a research paper.](image-url)
The benefit of using visual outlines as a part of open invention is twofold. First, it helps connect with many different styles of learners; students who learn visually will especially thrive with an assignment like this, whereas those who are typically suited to more alphabetic styles of learning have found the exercise challenging yet also fun – as if they’re putting together a visual puzzle. In other words, it taps into the joyful desire that I always attempt to achieve in the Open Source Composition Space, while also retaining the focus on the people who are inventing rather than the tools themselves. The second benefit I’ve discovered is that it helps with the overall organization, which is part of the pre-writing developmental editing stage of invention. That is, non-linear visual outlines (such as the example in Figure 2.1) often point to many different possibilities for organizing a paper and help students see the value in considering many possibilities rather than sticking to just one linear path, such as what traditional text-based outlines often encourage.

Mind Maps: Some students are more comfortable with technology than others and I’ve found that some students tend to find joy in discovering new digital ways to compose. For those students, I typically introduce a few different technologies that they can invent and compose with, at their own discretion. While I rarely use class time to go over specific technology tools, I do briefly spend time on discussing a few of these invention tools:
• FreeMind: A free mind-mapping software that also includes a helpful wiki for troubleshooting. http://freemind.sourceforge.net

• MindMeister: This mind-mapping tool creates entirely online, as opposed to being downloaded to your computer. I’ve found that students enjoy this tool for the convenience alone.
 http://www.mindmeister.com/

• Zotero: Perhaps most appropriate for a research-based composition project, Zotero is a free technology that uses the power of Mozilla Firefox to help find and organize research sources and citations. Zotero also allows users to set up profiles and share their results with others, making it a truly ‘open’ platform for invention and collaboration. http://www.zotero.org/

• Prezi: A Flash-based alternative to PowerPoint, Prezi is an amazing tool for open invention. Students can use it to create mind maps, visual outlines, brainstorming, and more – and the use of fancy Flash technology makes the experience joyful, as well. Like Zotero, you can share your Prezi designs with others, as well as openly invent with pre-made templates that other users have shared. Prezi offers free accounts for academic use: http://prezi.com

 Serious Games: There are many ways in which serious games can play a part in the open invention process. Just one example that I like to use is the website
http://www.750words.com. 750 Words is an online composition tool wherein users can create a free account and then log in every day to write 750 words: roughly the equivalent of three pages, which according to the website, is the daily recommendation for writing and journaling. The site automatically ‘scores’ users based on how often they write, how often they hit that daily 750 words goal, and will even get cute little badges as ‘rewards’ for jobs well done. I typically set this up as an optional activity that students can do to compete against one another for keeping up a consistent habit of writing every day – although using it as a homework assignment over a course of a month or term, or even using it as an extra credit exercise, would be just as fun.

Role-playing games are another way to bring in joyful learning to the composition space. If your course focuses on reading a particular piece of literature, you can have students sign up to “be” one of those characters for the week. Then, on a class blog or using a tool like Twitter, you can use role-playing to act out a particular class question or debate. In this regard, open invention will happen through sheer imagination, by allowing students to step outside of their own identities as a means for exploring the invention process. Ultimately, the games you bring into the Open Source Composition Space – whether you design them yourself or find them from another resource – are limited only by your own imagination.
Invention is the first part of the Open Source Composition Space: the phase in which students and teachers are brought together to navigate how to imagine, innovate, and create. It’s where instructors begin to help students self-identify their natural skills – and then assist the learning process by instigating a level of desire to succeed in composition. Open invention is where trust is formed, ideas are born, and joy in learning begins.

In the following chapter, we’ll see how the next step in the Open Source Composition Space – open collaboration – can help us move from innovation to creation. Using tools borrowed from dialogic and collaborative learning methodologies, the next chapter has been designed to help instructors build communities within composition spaces.

Although the Open Source Composition Space isn’t so much a linear model for writing pedagogy as it is a three-part guide for building open source culture within composition spaces, the narrative for this thesis propels itself along a path that begins with open invention and moves next into open collaboration. In a traditional pedagogical writing methodology we may view this as moving from a discussion about pre-writing to a discussion about the writing process itself; however, I don’t wish to make such rigid comparisons between the two. Instead, the next chapter is intended to build upon the concepts discussed here of innovation and creativity and move into how we can further learn from open source
programming culture as a way of encouraging a sense of community in our classrooms.
CHAPTER 3

Open Collaboration

A strong sense of community is vital to open source culture – as it is in the Open Source Composition Space. The ability for students to see themselves as something larger, as contributing to an overall sense of a greater goal than simply their individual needs, is essential to building a trusting, safe environment. As discussed in Chapter 2, trust is necessary for open invention: the beginning stages of composition where the ideas take place. It is likewise important to focus on trust as a means for the focus of this chapter: collaboration, because if classmates and group members can't trust one another it will be difficult if not impossible to move past invention and into the next phase of composition, which is where creative action begins. It is this point – where the beginning brainstorming process of invention meets the final processes of revision – that collaboration truly resides: within the primary act of composition.

Open collaboration is about making the entire composition process – from initial invention all the way until final revision – about the students and the relationships that can be built in the Open Source Composition Space. In that sense, whereas collaboration is key to every aspect of the Open Source Composition Space, it becomes even more important here, in this chapter, because of the place that collaboration has in the composition process. This chapter asks: What part does collaboration play in open source culture and how can we channel that for the Open
Source Composition Space? What specific tools and class activities can we utilize to encourage collaboration in writing classrooms? What is the importance of building a community in the Open Source Composition Space – and what exactly would that entail? The answers to these questions and more allow us to move from the first step of open invention into the next phase of true composition: a term I call ‘open collaboration.’

Defining ‘Open Collaboration’

In the Open Source Composition Space, collaboration is key to maintaining open lines of communication as well as the spirit of open source culture, which is based on elements of desire and skill. Many open source projects exist entirely on a strong community; in fact, I can’t think of a single open source case study in which collaboration didn’t play an integral part in the product’s success. This may be due to the fact that community is one of the main motivating factors for participants to join an open source project. It’s difficult to imagine an open source programmer working on a project solo. If they did, wouldn’t it defeat the entire purpose of having the code available for creation, modification, and redistribution because who would be using it? Open source programmers understand the value of creating collaboratively. Their culture is about more than the end product; it’s about the process – and the efforts of the community – in getting there.
This is perhaps no more apparent than with the operating system Ubuntu, one of the largest and most successful open source communities in the world (Pingdom). The project, which started in 2004 as a means for creating “an easy-to-use Linux desktop” system relies upon a network of both commercial (paid) and community (volunteer) efforts to collaborate on the product (“About Ubuntu: The Ubuntu Story”). A project such as Ubuntu could not exist without a strong community – and they know it, too. The Ubuntu website even has a dedicated section entitled “Community” wherein users and contributors can find ideas for project contributions (such as programming, artwork, bug identification and fixes), technical support, and information on how to join a worldwide or local project development team. As the Ubuntu project team defines it, “Open source is collective power in action” (“About Ubuntu: Our Philosophy”).

Yet perhaps the most telling part about Ubuntu’s feelings with regard to the strength of community and collaboration is in the naming of the product itself. “Ubuntu is an ancient African word meaning ‘humanity to others.’ It also means ‘I am what I am because of who we all are’” (“About Ubuntu: The Ubuntu Story”). Ubuntu is transparent in its focus on the people – and that transparency clearly works. Their focus on people, on community, has helped them become one of the leaders in the open source revolution. From the name of the product to the project philosophy, Ubuntu continually models the strength of community. Just as in the Open Source Composition Space, the developers at Ubuntu realize that the people
who innovate, compose, and revise are more important than the technology and tools that they use to create.

With that in mind, this chapter is meant to redefine collaboration as more than just two or more people working together. Instead, I want to define collaboration as that key central process of composing: the glue that holds together the beginning process of invention with the ending process of revision. In that regard, ‘open collaboration’ is then perhaps the most important ingredient of the Open Source Composition Space, as it forms the basis of where actual composing begins. Here, we are moving beyond idea generation, thesis selection, mind mapping, and so on and instead beginning the process of what many of us view as actual ‘composition.’ ‘Open collaboration’ forms the beginning of a social constructionist view of composition wherein writing and making meaning occurs simultaneously alongside the relationships that we build together – and that our students learn to build for themselves.

The Importance of Community

Collaboration cannot be successful without a strong sense of community, that feeling that a person gets from being a part of something working toward a greater good. Perhaps this is because when we become a part of a community, we shed individual identities and begin to truly relate to common goals of the group. “Communities aren’t just a collection of individuals; instead, members have made a
commitment to achieve the shared passions and goals of the group. What’s more, they agree to cooperate toward achieving the goals in particular ways, through a shared set of means” (Howard 16). The goal of the Open Source Composition Space is to create that sense of community that will allow each and every student to see themselves as integral to the success of the class, as well as in each other’s compositions. When left to individual aspirations, students in a composition space may instead fall prey to focusing on just one thing: the grade that they wish to earn in the class. Yet, as writing instructors, I would like to think that we all wish for them to be fueled by a joyful motivation for the process itself, rather than just the end result. Thus, it’s vital that we encourage this sense of community to empower them to see beyond themselves, to redefine identities and help them discover their place within a greater system: as scholars, as teammates, and as composers.

In open source culture, community is everything; without a sense of a shared common goal, there would be no project. “People work with open source code to solve their own immediate problems and to enhance their own skills, but also because of a distinctly positive valence toward the community of hackers of which they are a part” (Weber 140). Therefore, to encourage positive involvement in our own writing classrooms, we must find ways within the Open Source Composition Space to fuel this sense of joint community – so that all students are working together to help each other reach a common goal.
Even though course assignments in an Open Source Composition Space are often completed individually, with individual feedback and grades, the fact that the class often works collaboratively through the process – from invention through revision – helps form a basis of community that is rarely found in large collegiate settings. At the end of a recent class term, a student gave me the following feedback: “Another thing I enjoyed about this class is that it didn’t feel like a class at all, but more like a family. Everyone provided a different element, and class just didn’t seem right when someone was missing.” As an instructor, this was a gratifying, yet completely unintentional result of building a composition space around the individual strengths and needs of each student, by helping foster a sense of community that isn’t often found in college courses, especially in first-year composition classrooms. And I believe that this shared sense of community (or as this student put it, “family”) is what helps students in an Open Source Composition Space learn to work together, as a team. I strive, in my own Open Source Composition Space, to provide students with peer review workshops, with meaningful discussions that occur both inside and outside of the physical composition space through the use of technologies such as blogs, wikis, and Twitter. I attempt to build class activities and discussions on foundations of respect and trust, so that students can find value and intrinsic motivation for the course if for no other reason than simply for the act of being a part of something. When successful, students can then feel as if they are a valuable member of a learning community.
The Role of Desire and Skill in Building a Community

As discussed in Chapter 2, all it takes to participate in an open source community is desire and skill. In the Open Source Composition Space, that means we need to find a way to get students to create based off of desire or interest in the subject matter, as well as discover individual skills that each student can bring to the collective whole. These two elements of desire and skill are just as important in ‘open collaboration’ as they are in the other aspects of the Open Source Composition Space because they lead to those elusive traits we’re always trying to get out of our students in order to help them learn: engagement and motivation. If a student has desire she has motivation, and if she has skill she has a reason to become engaged. In many ways, it’s as simple as that.

An interesting example of a community-based project that has successfully merged both desire and skill is The Johnny Cash Project (www.thejohnnycashproject.com). This unique web-based collaborative project asks contributors to sketch a scene from Johnny Cash’s music video for the song “Ain’t No Grave.” Go to the website and click on “Contribute” and you’re given three random scenes from which to choose. Compose one of the scenes – in your own way, using your own skill and style – and then send it in to the project. Your drawing will then be added to an ongoing timeline of the music video, which ends up morphing into an emotional journey of Johnny Cash’s music. Community members, of course, are first drawn to The Johnny Cash Project based on desire: they are fans of Johnny
Cash’s work and they want to – as the website puts it “become a part” of Cash’s legacy (The Johnny Cash Project). The desire in this case comes from an inherent wish for their work to matter, for their feelings about Johnny Cash’s music to be put into artistic form. But whereas contributions are welcome from anyone, not just any person would feel confident enough in their own skill to draw a scene from one of his music videos. In that sense, community members are self-selected based on the skill that they believe they can bring to the table. Although we don’t typically take on projects such as these in a traditional writing classroom, it’s important to note that this is still composition; The Johnny Cash Project is an example of collective, collaborative composition wherein everyone from around the world is welcome to join in on the efforts. The success of the community is strengthened in its knowledge that members can invent, create, and share with one another in a trusted environment based solely on self-selected desire and skill.

So how can we translate this sense of community into our Open Source Composition Spaces? There are many ways to form a learning community; those that I’ll discuss in the remainder of this chapter include: the use of social media, online technologies, peer review systems, and dialogic and collaborative learning techniques.
Using Twitter to Build a Composition Community

“Facebook makes me hate people I already know. Twitter makes me like people I’ve never met.” –Anonymous

Li and Bernoff (2008) explain the existence of communities based on an inherent human “need to connect” (22). That is, if we’re given the opportunity to collaborate on a social level with peers, we often choose that over working alone, so that we can become a part of something bigger than ourselves. Li and Bernoff call that something a groundswell, a collaborative revolution fueled by the community of social networking and online activities. In a groundswell, the motivation behind participation comes from many different sources, including socializing with current friends and making new ones, being entertained by online content, urging others to come together for a cause, and even as a form of creativity, by composing imaginative works and sharing them with a community as a way of expressing creativity and even get feedback in the form of self-validation (Li & Bernoff 22-23). If done correctly, a groundswell can act as the pinnacle of community-building in the Open Source Composition Space.

One tool that I use early on in the term, and at least weekly throughout, is Twitter. I have found few other social networking tools that are easier to teach (so that the focus remains on the content and composition rather than the tool itself) and also use for class discussions and collaboration. As opposed to tools like Facebook, which are typically used for existing friends to connect and communicate,
Twitter’s primary goal is to start conversations between like-minded individuals who have never met in real life. I find this to be an incredibly powerful tool to use at the beginning of the term as a way of helping create that all-important sense of classroom community. In the Open Source Composition Space, Twitter acts as its own groundswell: it provides students a convenient and fun opportunity to build and share in a community with people they don’t perhaps know in real life. It also provides numerous additional opportunities for learning as well.

For starters, one of the first composition assignments of the term typically revolves around writing a personal biographical statement, much like you would see on the back cover of a book. It asks students to think rhetorically about audience and style, as well as consider their own strengths and what they may or may not want to include for various rhetorical situations. Students are also asked to provide a photo with their bio, along with a separate short essay as to why they chose the photo that they did and how it visually and rhetorically demonstrates the version of themselves that they would like to express. We then revise these bios for several different rhetorical situations, including: write-up in the local newspaper for winning a scholarship, personal and casual biography on Facebook that only your friends will see, and a public online profile that anyone can view – such as Twitter. Once students have considered the various rhetorical angles and have come up with a personal bio and photo that they are comfortable using online, for anyone to view, they set up Twitter accounts.
On Twitter, members ‘follow’ others based on similar interests. I require my students to follow at least one person in the following four categories: 1) at least one news source, such as CNN, BBC, and so on; 2) at least one writer (fiction or non-fiction, blogger, columnist, etc.) who composes on subjects relating to their field of interest or major; 3) at least one professional currently working in the student’s field of interest or major; and 4) at least one other student from class. These requirements have been carefully selected for a reason: each of these categories provides students with a personalized, specific reason to see the value of Twitter that can easily be tailored to their own individual career and academic goals. We discuss how professional relationships are built through social networking, and we take a look at how you can ask questions of professionals working in their own fields of interest. The exercise provides them access to the topics and people that actually matter to them; that is, it helps them see the reason and value behind using Twitter in a composition space: a key that I find is invaluable in terms of tapping into student motivation, as well as overall community-building. This also provides the basis for two major things that I feel are incredibly important to building a composition community: students are able to connect with one another outside of the traditional classroom; and I am able to see their interests, strengths, and dreams (such as answers to the clichéd yet useful question: What do you want to be when you grow up?) so that I can tailor class discussions, activities, and assignments accordingly.
As a class we also discuss using Twitter as a means for practicing composing with the minimum amount of extraneous language. Twitter posts are limited to a maximum of 140 characters a piece, including spaces, and so forcing students to write complete discussion questions and answers in a limited space – without the use of texting language or abbreviations, which are not allowed in the assignment – forces students to compose, edit, recompose, and so on until they have chosen the exact perfect words that they intend to use. This activity is typically done hand-in-hand with a reading of George Orwell’s 1946 article “Politics and the English Language” as a way of reviewing the author’s wise advice for composition, including: “Never use a long word where a short one will do” (Orwell 6). Again, this helps students see the value in Twitter and explains a bit about the values of using it in an English composition space.

Once everyone in class has set up their Twitter accounts, I begin weekly assignments wherein I ask a question on a given morning that relates to the week’s assignments, readings, and discussions and they are required to answer that question, via Twitter, as thoroughly as they can in just 140 words. This is a weekly, graded exercise; participation points are linked to an additional expectation that they respond to other students’ responses and engage in conversation with one another. This last part typically takes a few weeks before students begin stepping outside of their comfort zones and talk with one another in an online, public forum – but once it occurs, the way in which this translates into improved collaboration in
the physical classroom setting is immense. Students learn by reading each other’s online bios that they have more in common with each other than simply taking a required English course. They see, based on common answers to assignment questions, that others in the class think similarly to how they construct meaning themselves. They also recognize and appreciate student responses that are much different than their own, which offers them much-needed glimpses into others’ points of view. I’ve noticed that students who sit across the room from each other in a physical classroom space may smile and talk before and after class based on shared discussions in Twitter. When it comes to having in-person class discussions about particular topics, students will chime in more regularly based off of the confidence in their answers that they developed through Twitter.

I should note that I don’t keep my Twitter assignments insular to just one section of a composition class; all of my composition classes use Twitter at the same time, and connect with each other regardless of which day and time they’re currently taking my class. All of my sections get the same Twitter question at the same time, with the same due date – and all participants in all classes work together to discuss the question simultaneously. This ensures that students are in fact interacting online with like-minded people who they have very possibly never met nor seen in real life, an interesting phenomenon that builds upon Li and Bernoff’s concept of groundswell and I believe does a remarkable job in emulating a real-life social network of empowered collaboration.
The Teacher’s Role in Open Collaboration

If open collaboration is about the focus being on the students, and the relationships that they build among themselves, then you may be wondering: Where does that leave composition instructors? The answer to that, I believe, is actually quite simple. As instructors we can move, as Faigley (1989) would say, “from a teacher’s role as judge to one of coach” (395). We can serve as facilitators for class discussions, managers in the sense of helping form classroom writing groups and assist with tensions or issues, and as coaches. We can be compassionate graders who help students through the composition process, instead of focusing on correcting errors and pointing out mistakes. We can simply help our students become better writers.

Faigley (1989) urges writing instructors to teach “students to analyze cultural definitions of the self, to understand how historically these definitions are created in discourse, and to recognize how definitions of the self are involved with the configuration of relations of power” (411). In a world where wikis, blogs, and social media tools like Facebook and Twitter are quickly becoming our primary methodology of communicating with others, and where most of our students’ compositions are occurring via text messaging, Faigley’s message seems even more important. For today’s culture, and today’s society, notions of the self are no longer insular: they include how we position ourselves online, in chat rooms, in learning environments both online and in-person, and in the world as a whole. Our world is
quickly becoming digitalized, but it is also becoming communal, as the Internet is providing us with more opportunities than ever before for connecting with other humans and creating our own virtual communities.

Wells (1999) has created a two-part model for learning that I believe can help further inform this discussion. One portion of Wells’s teaching methodology is borrowed from “Vygotsky’s social constructivist theory,” which “proposes a collaborative community in which, with the teacher as leader, all participants learn with and from each other as they engage together in dialogic inquiry” (Wells xii). The other half of the method that Wells utilizes is informed by Halliday’s “functional approach to language,” in which the primary teaching goal is “concerned with language in its social uses and with the relationships between spoken and written texts and the situations in which they are created and interpreted” (Wells xiii).

These two methods: the social constructivist view of collaborative learning, and a way of making meaning based on social language, merges into what Wells calls “dialogic inquiry” (xv). This is an important view to consider when creating the Open Source Composition Space because Wells’s concept of dialogic learning can easily be used as a model for teaching open collaboration: instructors engage with students based on relationships and conversations, while students build their own sub-communities within the collaborative classroom structure we have built. Furthermore, when it comes to considering our roles as composition instructors, it provides some comfort, I think, to approach teaching not as critique but as
conversation. We are helping students form their own social constructionist view of meaning and composition; we are helping them become scholars and writers. Instead of existing as a mere lecturer, a one-sided source of information that leaves no room for two-way dialogue, we can exist as part of the conversation, acting as facilitator, mentor, and coach throughout the learning process.

To some, this may sound like a radical approach to teaching writing, yet like it or not, it follows some of the natural directionality our culture is taking with regard to composition. Udell (2005) explains that even our society as a whole is moving away from information being provided to us and toward information that users themselves are creating. Wikipedia is just one such example of this; in fact, the power of users being able to invent, compose, and peer review in a public forum is probably the closest that non-programmers come to participating in an open source-styled composition environment. By removing ourselves, as instructors, from acting as the primary source for composition learning, we are helping students learn to acclimate to how society currently creates: collaboratively and socially, and often in an online environment. We are entering into a new information age: one that is defined not by experts in the field but by the users themselves. Composition, in other words, is becoming collaborative.

As Berlin (1989) points out: “In teaching writing, we are not simply offering training in a useful technical skill that is meant as a simple complement to the more important studies of other areas. We are teaching a way of experiencing the world, a
way of ordering and making sense of it” (58). In today’s collaborative, technological age, I can think of no better way to help provide our students with “a way of ordering and making sense” of our world then to provide them with a community-based, open collaboration model for composing. Since the dawn of the Internet our society has become less and less insular; I believe that our students will need to master the intricacies of composing in a collaborative environment not only to succeed in their chosen professions but to be a positive influence on our world as a whole.

Tools and Resources for Open Collaboration

Although, once again, I wish to emphasize that the relationships between people – especially when considering open collaboration – is more important than the tools and technologies used to get there, I would nevertheless like to provide a list of possible resources that you might consider using when forming your own Open Source Composition Space.

Writing Groups: Although discussed primarily in Chapter 2 as a means of encouraging open invention, writing groups can be used in any phase of the Open Source Composition Space, including during the open collaboration phase. In this context, writing groups can serve as a primary basis for peer review: for encouraging collaborative feedback during the composition process itself – after initial invention has happened and before final revisions are made. I typically use
writing groups as a way for students to check in on each other and make sure that everyone is on track. Weekly meetings with progress reports to the group help students stay on task for larger writing assignments and also help prevent some of the procrastination that often occurs in composition spaces. Although it may be a coincidence, I have noticed that since implementing writing groups, I have had a 100% rate of students meeting deadlines; I haven’t had a single student attempt to turn in a late assignment. I believe that this is at least partially due to the sense of community and accountability that comes from using writing groups throughout the open collaboration process.

Twitter: This chapter discussed some specific ways in which I utilize Twitter in my own Open Source Composition Space. There are many other resources and ideas available for utilizing Twitter to build community, as well. One such example is through the use of a backchannel, which means that students can use Twitter to post (“tweet”) questions and points of discussion during a class lecture. Instructors can then view the tweets and respond to questions accordingly. This helps with shy students who have trouble physically speaking out in class, as well as with the role of instructor so that you can see, in real time, when and where students are having trouble with the overall course content. However you use it, Twitter can help increase student interest in course material, build a stronger sense of community, and help achieve open collaboration. But don’t just take my word for it; a recent study based on the National Survey of Student Engagement found that students who
took classes that incorporated Twitter were overall more engaged in class, were more interactive in class discussions, and even “achieved on average a .5 point increase in their overall GPA for the semester” (Kessler 1).

I’ve also found a couple of third-party Twitter applications that are tremendously helpful for using Twitter in the classroom. The first is Twapper Keeper (http://www.twapperkeeper.com), which provides a way for instructors to archive class tweets so that no tweets get lost in the shuffle. (Using just the standard Twitter interface, tweets aren’t saved after a certain number of entries.) This is helpful when calculating participation on Twitter over the course of the term, as Twapper Keeper also allows you to download and export tweets from a certain hashtag to an Excel file for safekeeping.

Figure 3.1: An example of a timeline on http://www.twapperkeeper.com.
Another fantastic third-party tool for using Twitter in the classroom is called Summarizr (http://summarizr.labs.eduserv.org.uk). Enter in the Twitter keyword (also known as a hashtag) that you’d like to analyze (in my class, for instance, I typically have students tweet under the common hashtag of our class name and number). Summarizr then provides you with interactive graphs of the users that tweet the most, the top conversations, the top users that respond to one another, most used keywords in conversations, and more. It’s tremendously helpful for taking a look at which of your students are using Twitter the most, which are talking to one another the most, and what exactly they’re talking about. It’s also a fun analytic to do while in class, so that students can see in real time who is participating the most, and can be a fun basis for a Twitter-based serious game, such as providing class rewards for students who tweet and/or interact with one another on Twitter the most.

Figure 3.2: An example of just one of the features on Summarizr.
Wikis: Perhaps the quintessential mode of online community-based composition, wikis provide a fantastic way to promote community and open collaboration. As Boston College has found, wikis help “facilitate collaborative authoring,” “create knowledge,” and “encourage creativity” (Boston College 1). They also provide ample opportunity for “students to learn from one another – both in terms of viewing each other’s content but also by seeing the quality of other students’ work” (Boston College 1). Wikia.com, inspired by the same folks that created Wikipedia, offers free accounts to start up wikis quickly and easily. I’ve used Wikia for various composition projects, including one that focuses on collaboration. First, I create an account for the wiki – typically using our class name or description as the title. Then, I provide a list of topics to the class that relate to our overall learning goals and allow them to choose one that they want to write about. (Examples include: ethos, pathos, logos, kairos, visual rhetoric, composition, proofreading, peer review, remix culture, and so on.) After a class discussion about wikis as a genre, such as their objective tone, and conventional items typically included in a wiki, such as a short introduction, a photo, a detailed description of the topic, and then sources, they are asked to login to our class Wikia and write their own wiki page. Typically the assignment asks for students to contribute a 150 word introduction, a photo, and a 350-500 word wiki article, followed by a list of sources for more information. In a follow-up class, I then assign each student a wiki page from one of my other class sections (so, again, it simulates that online collaboration
between strangers) for them to revise. It creates a fabulous outlet for discussing revision techniques, writing styles, and more – and once again perpetuates the idea of open collaboration.

Figure 3.3: An example of a student wiki assignment at http://www.wikia.com.
You can set up your own class wiki at http://www.wikia.com or at http://www.wikispaces.com. Wikipedia even has a service called Wikiversity (http://en.wikiversity.org) that provides various resources, projects, and research for creating your own wiki assignments. Or, if you're more technically savvy, you can download your own code to develop your own custom wiki on your own website from sources such as http://www.mediawiki.org.

![ENGL 103 Wiki](image)

Figure 3.4: A screenshot of a class wiki hosted at http://www.wikia.com.

Blogs: Another easy-to-use tool for creating an online community space is through the use of a class blog. Blogs, short for web logs, are often considered to be a public form of journaling. This means that student bloggers must learn to at once express private thoughts while also taking into account the rhetorical aspect of composing such thoughts for a public audience – a take that I feel is an incredibly interesting form of composition to bring into a composition learning space. With classroom use, blogs have been known to: increase student self-disclosure and
reciprocity between students (Harper 30). They also “provide a space for students to reflect and publish their thoughts and understandings” and help with knowledge construction and making meaning, especially through the use of hyperlinks which are relied upon to link common thoughts and build new contextual frameworks for composition (Ferdig & Trammell 12). Of course, blogs help encourage a sense of community outside of the traditional classroom as well, by encouraging student relationships by way of commenting on one another’s blog posts and providing feedback. In that sense blogging can also be used as a way to promote an informal online peer review system.

Similar to using wikis in the classroom, I find it helpful to begin a class blog by first discussing blogs as a genre, exploring as a class what makes a blog as opposed to just another website. We discuss blogging conventions such as: reverse chronological ordering of posts, a conversational or friendly tone, and the allowance of emotion and argumentation (as opposed to the more sterilized ‘objective’ tone of wikis). We also spend a significant amount of time discussing rhetorical considerations of the author in terms of portraying herself to the world, which is typically done by way of a blog’s “About” page. We then, as a class, collaboratively compose our own “About” page, which begins the foundation for this online community: students collectively agree on how they wish to be seen in the world and then work together to communicate that message to the outside world.
There are many ways in which you can incorporate blogs into the Open Source Composition Space. Some instructors prefer to have each student create his or her own blog, post regularly, and then respond to other classmates’ blogs. I prefer to create one blog for an entire class and have students sign up for days for which they are responsible for the blog discussion. (I find that this cuts down on the number of websites students have to visit and thus encourages more collaboration among the entire class.) I also think that using just one blog for the entire class helps encourage ‘open collaboration’ by asking students to claim ownership in the same website.

Moving from Collaboration to Revision

So far we have moved from concepts borrowed from open invention, which help establish trust throughout the innovation and creativity phases of composition, to discussing ways in which open collaboration can help us create and manage successful communities within composition spaces. In the next chapter, we’ll investigate how notions of consensus and conflict within open source communities can help writers navigate the revision process. That is, we’ll begin a slight move
from discussing how to build a community to an analysis of how those communities can be used as a way of encouraging critical thinking and self-reflection throughout the revision process. Therefore, the following chapter focuses on the next step toward building an Open Source Composition Space: open revision.
CHAPTER 4

Open Revision

The third and final component of the Open Source Composition Space is revision. After invention (when the ideas happen) and then collaboration (when the best thoughts begin to merge into a reasonable composition) comes revision, that time when critical thinking truly begins.\(^5\) Revision is when language and thought are clarified, when troubleshooting occurs and issues are addressed. In composition, this is when we begin to look at our work with a more critical eye; it is when we rearrange and reorganize our thoughts, and we use proofreading to achieve the level of detail and polish that makes our compositions gleam.

What many introductory writers often don’t understand is that revision is a constant, revisionary cycle. Writing is recursive; there is always room for improvements here, tweaks there, rearrangement and restyling and rewording. For those of us who love language, revision can be the time when the fun begins: when the ideas have already been invented, the collaborative composition has begun, and we can dig in to the nitty-gritty soul of our work that explores not only what we want to say – but also how we want to say it. Revision is a time that allows for self-

\(^5\) As briefly mentioned at the end of Chapter 2, the Open Source Composition Space doesn’t necessarily follow the traditional three-step methodology of writing pedagogy: pre-writing, writing, and then revision. Instead, the Open Source Composition Space is meant to be considered more as a series of stepping stones, which inform one another and come together to create one cohesive (and not necessarily linear) model – just as composition is not always straight-forward and linear in its construction. However, if this were in fact a methodology that followed traditional understandings of composition instruction, you might consider invention as the pre-writing stage when innovation and brainstorming begins, collaboration as the writing stage when problem-solving and critical thinking give way to actual composition, and revision as the final stage that brings the entire piece together.
reflection and critical thinking, problem-solving and self-empowerment. It helps a writer to see a new understanding of self through her own composition, and forces her to ask questions of herself, and of her work. Is this really what I wanted to say? Is this the best possible way to say it? What are some language conventions that could help me with this grammatical rule – or perhaps help me learn how to break it? What works, what doesn’t work, and why? As instructors, working through questions such as these throughout the revision process can be a tremendous way for us to teach our students about critical reading, text analysis, and self-reflection.

This chapter takes a look at the recursive writing process and explores ways in which we can engage critical thinking, problem-solving, and self-reflection in a composition space. It asks: How can teachers help students find the joy in revision? In what ways can we arrange a composition space to allow for honest self-reflection in the revision process? How can the open source culture inform ways in which we teach critical thinking? How can collaborative practices help inform the editing process – and what is the teacher’s role in helping create and sustain a democratic model of revision? Through these answers we can begin to arrive at the third and final phase of the Open Source Composition Space: ‘open revision.’

Defining ‘Open Revision’

There is joy to be found in revision. In programming, the delight is often found in troubleshooting bug fixes; when a user discovers something that doesn’t
work as it should, a programmer dives in and attempts to figure out what those problems are. If a solution doesn’t initially work, they keep attempting to solve the problem from different angles, sometimes finding satisfaction simply in the process. In other words, revision in open source culture is driven by problem solving and critical thinking: by discovering a problem and then considering ways of best approaching a solution.

When something is ‘wrong’ in computer programming code, it can mean catastrophic results, often ‘breaking’ a necessary functionality or even an entire piece of software. In addition, many times solutions are attempted – and often fail, only to encourage the programmer to approach the problem in a slightly different manner. Thus, members in an open source community are trained in reading critically; they take a look at their programming code – their compositions – “with a view toward criticizing and improving it – that is, toward doing something, motivating oneself, with it” (Himanen 78). This goes hand-in-hand with many pedagogical goals of writing instruction: we aim not to teach our students simply how to write critically, but also to read critically – and to think critically – as well. Open source culture embraces this ideology, and operates within a revisionary cycle that values these processes of reading, ‘writing’ and thinking critically. Within an open source culture, users and programmers alike are constantly discovering and remedying issues, both major and minor, that need to be ‘fixed.’ And if open source coders aren’t fixing reported problems, they are often taking the initiative to
improve upon existing code or software functionality based on their own needs or desires. That is, regardless of the reasons, the open source community is always problem-solving, critically thinking, and revising.

What’s particularly interesting about this phenomenon in open source culture is that the discovery of errors isn’t a bad thing; in fact, it’s what helps propel the project. It gives programmers something solid to identify and accomplish, and provides a foundation for self-reflective problem solving. It’s satisfying to solve a problem; in fact, many open source programmers are fueled by this desire (Himanen 2002, Raymond 1999). And, because the discovery of bugs and the process of solving complex programs are such core components to the values of the open source community, the concept of constructive criticism seems ingrained into their culture. “While the typical college student struggles mightily to review a peer’s paper, on just about every open source project mailing list you’ll see rigorous, critical feedback that would make any English professor cheer. ‘Nitpicking’ literally occurs, in the form of looking for bugs in the code. Linus’ Law encourages this, predicting that ‘with many eyes, all bugs are shallow’” (Fernandez). Thus, building upon the foundation of ‘open collaboration,’ which harnesses the power of the many, the open source revision process often focuses on identifying and solving issues for the good of the community.

Now this is not to say that writing pedagogy should be focused on finding problems. To be clear: I am not suggesting that we move into what Berlin (1989)
defines as the Neo-Platonic pedagogy and focus merely on the correction of error. On the contrary, I strongly believe that the teacher’s role in the Open Source Composition Space should be as a facilitator; writing instructors shouldn’t merely point out error but instead should help aid students in learning the tools and skills that will help them create meaning and build knowledge throughout their education and life. Much like Berthoff’s (1984) “pedagogy of knowing,” I personally subscribe to the ideal that students should be taught “how to reclaim their imaginations” as a way of making “sense of the world” (751). Writing instruction, then, should help students learn how to create their own meaning and understanding of how language, scholarship, and the world are constructed.

Yet, consider this: a pedagogy of error-correction and a pedagogy of knowing don’t have to be mutually exclusive. Once again using open source culture as a model, ‘open revision’ isn’t always about the correction of error. Sometimes open source programmers work on code simply to make it better, more efficient, or easier to understand. Other times, users and contributors of open source projects simply ‘play’ with the code to see what else they can accomplish, to find out what other features they can accidentally or purposefully discover in a given code composition. They manage to have fun with their compositions while also engaging in critical reading, thinking, and writing. Thus, what I am suggesting here is not a pedagogy modeled on the finding and correction of error but one that embraces critical thinking as a primary goal. Because, even if we don’t focus on ‘errors’ in our own
pedagogies, the fact is that student errors do exist; it’s a part of teaching. And we can help students learn to identify and correct errors on their own – through the power of critical thinking. In the end, once a writer can come to understand the conventions of alphabetic composition and can learn to look at her work with a critical eye, then she can make informed decisions on how to improve it, including issues of style, word choice, and how to know if and when a rule can be broken. Likewise, if students can master ways in which to help one another with their revisions, by learning how and when to provide constructive feedback to their classmates, then the process further becomes one based in the spirit of open source collaboration. The role of revision in the Open Source Composition Space then becomes one of community-based feedback, individual and collective problem-solving, and perhaps above all else critical thinking: which together build the foundation for what I call ‘open revision.’

Making Revision and Critical Thinking Fun

Despite efforts in avoiding an error-based writing pedagogy, in alphabetic composition there are often errors that need to be addressed, common issues in our students’ writings that should be pointed out, and rules that could be discussed and taught. But wouldn’t it be wonderful if, after ‘reported bugs’ were ‘fixed,’ students would take the initiative to discover their own revisions? What if we could tap into this open source need to continually improve upon one’s work for our students?
What if students revised their work not for a grade, and not because the teacher ‘said so,’ but because they genuinely had a desire for improving their compositions? This desire, I believe, could be found through exploring the joy in revision, the fun in language, and the self-exploration that can result from revising one’s work.

An interesting example of collaborative – and fun – revision in action can be found in the ShiftSpace project. “ShiftSpace is an open source layer above any website... By pressing the [shift] + [space] keys, a ShiftSpace user can invoke a new meta layer above any web page to browse and create additional interpretations, contextualizations, and interventions” (“Shift What?”). After installing the ShiftSpace extension for the Mozilla Firefox browser, users can add notes, swap images, map ideas, collaborate on research or other projects, and even modify the code on virtually any website (“Shift What?”). There are 101 members in the ShiftSpace online community, a forum space for users and developers to collaborate on ideas and troubleshoot common issues (ShiftSpace Google Groups). Revision happens collaboratively, in real time, and by a group of people who are (at least in theory) looking to improve upon existing content.

This sounds wonderful for building exercises in open revision – and in fact I’ll discuss ways in which ShiftSpace can be used to encourage fun and playfulness in the editing process; however, I should also point out a few concerns. First, ShiftSpace has seemingly become a forced open source community. It provides a restricted one-way model for revision that provides room for editors and
programmers to add or change content to their liking, but hasn’t been approved by the original content creators. In that sense, ShiftSpace seems to disregard notions of authorship, content distribution, and choice. Not all content needs to be – or even should be – open source, with the raw data, whether it be code, alphabetic text, audio/video content, and so on, being available for modification and redistribution by just anyone. Some authors may choose to restrict portions or all of their work for varying reasons: personal, financial, or even professional. Yet ShiftSpace seems to break all of these unspoken ‘rules’ of open source culture by forcing all web-based content to be open to revision by anyone. As Lessig (2001) argues, there needs to be some level of control that an author retains over her own writing; there needs to be a balance between open content and controlled legislation that allows for communal creativity but also individual rights. ShiftSpace seemingly disregards this notion by confusing available with open source, forgetting that just because it’s there doesn’t mean that it could or should be modified.

The ShiftSpace project also seems to somehow violate the unspoken motivational code of open source culture, which typically is about making something better and more efficient than it was before. Rather, the goal – the inherent need that exists – for the ShiftSpace project seems to be in providing web surfers a voice. One ShiftSpace feature, Yeas and Nays, allows for users to contact Congressional representatives from any site. “Using Yeas and Nays, a citizen can connect via phone to speak with her representatives, and the resulting shift keeps a
record of the call located on the website that informed it” (“Yeas and Nays”).

Another feature, Fisheye, “lets anyone add criticisms to online media, particularly news and opinion articles” (“Fisheye”). Such rhetoric seems to redefine ShiftSpace from an open source project to an activist community, where the desire isn’t to promote change to make improvements in the original content for use of the greater communal good but, instead, becomes a mere tool for creating conflict, criticism, and commentary. This project, though interesting, seems to therefore fall prey, at least partially, to Weber’s “note of caution”: that ‘open source’ “has been overused as a metaphor” (267). Just because a project says that it is open source doesn’t necessarily mean that it is open source – or that it even should be.

Even then, ShiftSpace provides an interesting look at collaborative revision, one that we and our students may even want to join. As an experimental technology, ShiftSpace is fascinating; it allows users to witness and contribute to the transformation of web pages through the power of subversive technology. This can be useful to the Open Source Composition Space, as a tool not just for revision but for activism, community-building, and even critical thinking. In fact, 89% of ShiftSpace users do so for “Research/Academic Work,” including students taking “Digital Media classes at NYU” (Harlo). Top academic uses for ShiftSpace seem to include: providing notes for others in class, discovering and creating ongoing dialogue related to a current website, project, or event, and speaking out on issues important to students (Harlo). Thus, the use of ShiftSpace, although not perhaps
technically 'open source' in its cultural approach, could provide for an interesting classroom exercise in collaborative research, discussion, and revision.

In addition, exploring the ShiftSpace online revisions – and creating your own – could help foster joy within the process of revision. A fun Open Source Composition Space activity might be to create a class website or blog, wherein students write pieces and then other students respond to the work by using the ShiftSpace interface to annotate and revise one another’s work. In this way, the technology becomes more ‘open source’; that is, the students would write and compose web content with the knowledge and acceptance that the work would then be commented upon, revised, and redistributed. Or, you could explore a website that has already had significant revisions made to it by the ShiftSpace community, and then have your students engage in the ongoing dialogue. Because ShiftSpace allows so many varied tools for change, allowing users to modify everything from the alphabetic text to the images to even the code of the web page itself, such exercises would also allow students to explore revision through play, allowing them to comment and modify content without restrictions. Also, perhaps the activist-inspired leaning of ShiftSpace could actually be an asset in the Open Source Composition Space: it has already been set up as a tool to inspire critical reading, critical writing, and critical thinking.

ShiftSpace then, although perhaps not technically ‘open source’ in its approach (although ‘open source’ in its existence, as the code for the project is
available for all to download, modify, and redistribute), provides a foundation to infuse a spirit into the revision process that can help with open concepts of learning. “A prime strength of the hacker learning model lies in the fact that a hacker’s learning teaches others. When a hacker studies the source code of a program, he often develops it further, and others can learn from this work... An ongoing, critical, evolutionary discussion forms around various problems” (Himanen 74). With that in mind, ShiftSpace can help users learn to apply a critical eye to web-based content, share commentary with classmates, and then use these critiques and constructive methods of feedback as a way to provide additional class discussion – even outside of the traditional classroom model. In other words, it can help us teach all three important forms of critical analysis: reading, writing, and thinking – and it can help make the process fun.

Consensus and Conflict in Open Source Culture

What the open source culture knows perhaps above all else is the power in consensus – and in conflict. By ‘conflict’ I don’t mean an all-out argument or war over a competing ideology, but instead I am referring to differences in opinions that can help lead to building skills in teamwork, collaboration, and establishing consensus. Some may argue that consensus brings down the level of innovation and thought – such as the adage that a group is only as strong as its weakest link. However, in open source culture, consensus is valued as one of the major forms of
composition; it is how it is best determined which ideas are worthy of moving forward, and which might ‘break’ or otherwise corrupt the software code. If no one ever questioned the work of an open source project, then change would not occur. Projects would remain stagnant, improvements would not be made. The same goes for student writing: sometimes we need conflict – between our opinion and the student’s, between one student’s opinions and the next – in order for critical thinking to be employed and for valuable revision to occur.

In open source projects, “debugging is important, but at a certain point it may be more sensible to junk the code base and rewrite from scratch rather than patch an obsolete system” (Weber 170). Yet in composition spaces, because students are often so emotionally attached to their own writing, it can be difficult to teach the concept of throwing out the entire idea, starting over, and moving on. Approaching issues like this through collaborative, open revision can be one way to avoid issues with ego and attachment to writing; if revision decisions are made based on consensus, then it takes the individualized attachment out of the process. Also, by allowing students to help review one another’s work in a setting such as a peer review workshop, multiple opinions can be considered on one particular issue, allowing for change to occur through conflict and consensus. If enough people agree that a particular paragraph should be removed from a particular piece of writing, for example, then that level of consensus will help the student move beyond personal
attachment to the alphabetical text and instead move on with the recursive writing process to try something new.

Perhaps the best example of the collective power of consensus throughout the revision process can be analyzed by taking a look at Wikipedia, one of the world’s “largest reference websites” with more than three and a half million articles as of February 2011 (“Wikipedia: About”). Wikipedia founders Jimmy Wales and Larry Sanger and their team realize the importance of conflict and consensus in the open revision process (“Wikipedia: About”). Because any person in the world is free to create his or her own wiki page, Wikipedia has had to implement a system of checks and balances to ensure that the information provided is as objective and accurate as possible. One way to do this, of course, is through an in-depth editing system, which allows anyone to not only initiate a new wiki page but to edit or add content on a page created by someone else. There is also a discussion page available for each article, where contributors and editors can talk about discrepancies and items of contention and then work toward reaching a common consensus. “It is inherent in Wikipedia’s editing model that misleading information can be added, but over time quality is anticipated to improve in a form of group learning as editors reach consensus, so that substandard edits will very rapidly be removed... Theories of critical pedagogy argue that consensus alone maintains the status quo; new knowledge only emerges from a dialectical exposure of power structures” (“Reliability of Wikipedia”). And although Wikipedia has come under scrutiny by
some for its reliability, this editing model, which is based on the power of open
consensus as satisfactory peer review, has resulted in an overall accuracy level that is quite similar to – and in some cases exceeds – that of *Encyclopedia Brittanica* (Giles). All the while, Wikipedia consensus is always changing, as new visitors come to the site and bring new perspectives, ideas, and debates to the conversation.

What Wikipedia demonstrates, among other things, is the power of conflict and the importance of consensus in the open revision process. Conflict leads to discussion, which leads to academic discourse – and if we can achieve this in composition spaces, it will lead to the all-important result of critical thinking (Herndl 360-361). As Herndl says, writing instructors “need research that explores conflict and dissenting positions as necessary and valuable” (358). Without conflict, we cannot promote critical approaches to learning; with it, we can begin to build a collaborative learning model that helps “transform the students’ relations to the discourses in which they participate” (Herndl 360). In other words, conflict and consensus in the composition space builds upon pedagogical models set forth by Berlin’s (1989) New Rhetorical pedagogy, Faigley’s (1989) ‘teacher as coach, not judge’ approach, as well as Berthoff’s (1984) ‘pedagogy of knowing,’ and helps us move toward a learning environment that embraces an ‘open revision’ methodology based on community consensus.
The Teacher’s Role in Open Revision

Weber explains that there is only one way that a leader can “fail” an open source community: by “a lack of responsiveness to those led” (167-168). The teacher’s role in the Open Source Composition Space, then, must be to respond to students in an effective and meaningful way. Perhaps the most obvious way that instructors can respond to student writing within the ‘open revision’ stage is through the grading process.

Compassionate grading can not only teach students about the value of revision but can also help build upon that trust that is so necessary for creating an ‘open’ learning environment. If students feel that they have been treated fairly and respectfully with the evaluation of their work, then they will feel safer pushing those boundaries for all three stages of ‘open’ composition: invention, collaboration, and revision. In addition, grading is the one place within ‘open revision’ wherein instructor feedback is necessary and expected; in other stages of the revision process, students can rely upon each other for feedback, but like it or not, most students will be primarily concerned with how their teachers respond to their writing – and with what kind of grades they ultimately earn as a result. In a perfect world, Open Source Composition Spaces would focus more on the successful completion of a set of learning objectives rather than the results of numerical values or letter grades assigned to student work. But in a practical world, most of us need to consider ways in which to evaluate student compositions: as a way of giving
standardized feedback for our educational institutions. Thus, it’s crucial that we learn to navigate the grading process with compassion, and work toward determining what, exactly, that means.

Following once again the pedagogical ideologies of Faigley (1989), we can begin this process by making a conscientious shift from “judge” to “coach” of the learning environment (395). In the grading process, that may take a bit more time on our part, to move away from one word responses or merely the correction of error using tools such as ‘track changes’ in Microsoft Word, and instead take the time to make thoughtful observations in our students’ writing. In other words, we can do with their writing what we hope our students do with their own reading materials: we can consider it critically and thoughtfully, and come up with good questions, constructive criticisms, and genuine feedback – and then report back on those findings. Moreover, we can encourage that their classmates do the same – by demonstrating what it means to read critically, and then allowing for in-depth revision work in class writing groups or through the implementation of other peer review systems. Then, we can leave the ultimate revision decisions up to the student herself (and this is where the critical thinking comes into play): by asking the student to consider her instructor’s feedback, as well as the feedback from her peers, and then come to a consensus as to which changes should actually be made.

This idea, modeled on consensus – that many opinions and contributions can be
filtered through in order to come to the best possible decision – is what drives critical thinking and decision-making in open source culture.

According to Fogel (2005), it is the project leader’s role to manage consensus, to make sure that no one opinion is treated as more important than the next (including his own) (56). As a teacher, this may mean often leaving your own ego at the door; you can provide guidance and suggestions for change, but ultimately the decision for revision is up to the student and the class community. This, I believe, helps avoid Faigley’s (1989) concerns that grading writing is at times too subjective and that we are often unable to determine what makes successful or ‘good’ writing, because it allows for that determination to be made not just by the instructor alone but by the entire class community – or writing group – as a whole. Fogel suggests several ways in which open source projects can and should nurture this idea of consensus. The first is to “avoid private discussions... No serious volunteer would stick around for long in an environment where a secret council makes all the big decisions” (22). In the classroom setting, this means making assignment expectations clear to everyone and if an issue or question arises, discussing it with the entire class.

Another suggestion is for writing teachers to adopt the role of what Fogel calls a “benevolent dictator”: “benevolent dictators commonly do not dictate much. Instead, they let things work themselves out through discussion and experimentation whenever possible” (57). This is often a difficult role for
instructors, who are used to acting as the primary source of knowledge in a traditional classroom. However, there is a major benefit to taking on the role of the ‘benevolent dictator’ in the Open Source Composition Space: It further encourages students to take ownership of their own expertise. Teachers often can and do act as the primary source for answering questions and providing classroom feedback, but open concepts of learning assume that students are often capable of stepping into that role for each other, as well. A prime example of this is, once again, through the use of class writing groups, wherein each student has been assigned an area of expertise. As a ‘benevolent dictator,’ an instructor can help foster discussion and problem-solving by calling on the assistance of ‘experts’ in each of the writing groups to step forward and help form solutions.

As Fogel describes, once team members learn to operate under the leadership of a benevolent dictator, the open source community will often transform itself into a system of democracy: “The details of how these systems work vary widely, but there are two common elements: one, the group works by consensus most of the time; two, there is a formal voting mechanism to fall back on when consensus cannot be reached” (58). Thus, our roles as instructors can ultimately morph from gentle team leader and discussion facilitator to that of mediator and implementer of democratic learning. We can shift from being judge and jury to our students’ writing processes and instead adopt the role of coach and mentor, while gently guiding students to take responsibility for and interest in their own learning.
In other words, it can help us adopt Freire’s (1988) notion of democracy in the classroom: “a democracy which does not fear the people, which suppresses privilege, which can plan without becoming rigid, which defends itself without hate, which is nourished by a critical spirit rather than irrationality” (409). By embracing consensus and moving toward democracy in our classroom environments, we can learn to “avoid a rote, mechanical process” and instead “make it possible for [students] to achieve critical consciousness so that they can teach themselves” (Freire 408).

Once again in this discussion, we can see a link not only to Berthoff’s (1984) ‘pedagogy of knowing’ but also to Berlin’s (1989) New Rhetoric writing pedagogy: a model based on the ideology that “truth is probabilistic, and it provides students with techniques – heuristics – for discovering it, or what might more accurately be called creating it... In teaching writing, we are not simply offering training in a useful technical skill that is meant as a simple complement to the more important studies of other areas. We are teaching a way of experiencing the world, a way of ordering and making sense of it” (Berlin 58). In a democratic open learning process, instructors provide heuristics for assignments and learning goals and expectations, while students themselves provide the majority of the legwork in getting there.
Tools and Resources for Open Revision

Open revision should be about exploring issues of power and knowledge construction, about exploring the value in conflict and consensus – all things that focus, and rightly so, on the people rather than the tools and technologies provided. Even then, it’s often useful to have some ideas for launching points in our own classroom models. The following constitute a short list of ideas for encouraging ‘open revision’ in your own composition space.

The Cut-Up Technique: A revision approach first created by Burroughs and Gysin (1982), this activity – which experiments with writing as collage – can be modified to suit almost any in-class revision process. The original cut-up technique asks writers to print their work and then cut out each sentence – or even word – separately. Then, using tape, glue, or by simply moving pieces around on a table, it has writers rearrange their words and phrases into something entirely new, much like a visual art collage (The Lazarus Corporation).

I have used this technique on larger research papers, by having students bring a hard copy of their paper, a pair of scissors, and a roll of tape with them to class. Students cut up their papers by paragraph, using the tape to combine pieces of paragraphs together that may have strayed from one page to the next. Once all paragraphs are cut out and taped together as necessary, I have them put their names or initials on the back of every paragraph (so they don’t get mixed up with their fellow students’ work). Then, I have them shuffle the pieces together, like a
puzzle, so that they aren't in the original order. Once that is done, they hand the pieces to a classmate, whose job it is to put the paper back together in the order that makes the most sense to them. Very rarely does the new interpretation match the original author’s organizational method, which helps introduce new viewpoints for substantive and developmental editing processes. In particular, I've found that this helps with organization, clarity, and transitions. One student even reported that it helped her see places in her essay where she was being repetitive in her writing.

This, however, is only one suggestion for the cut-up technique; there are many ways in which you can incorporate this into an ‘open revision’ process. The Lazarus Corporation website, at http://www.lazaruscorporatin.co.uk/cutup/links has an expansive list of other ideas for cut-out projects, including links to many online and digital tools that can be used to similar effect.

ShiftSpace: As previously discussed in this chapter, this Firefox browser plug-in allows for collaborative revision on any web page. It also encourages class discussion, offers practice in consensus building, critical thinking, and online knowledge creation, and even acts as a way of incorporating fun and play into the composition space. Class work could revolve around analyzing and discussing a common site, making revisions and changes based on the consensus of the class. Or, you could create an interactive assignment wherein students could write on a class website and then give feedback and make revisions to each other’s work using the ShiftSpace interface. In addition, one of the ShiftSpace features, Cutups, “allows
users to explore the recombination of existent text on a webpage so that new meanings and uses may be discovered and articulated” (“Cutups”; see Figure 4.1). That is, it is an online tool that could be used to implement Burroughs‘ and Gysin’s cut-up technique but on any online website of your choice, while helping students articulate new forms of knowledge creation and meaning-making. To learn more, or to download the plug-in for your own browser, you can visit http://www.shiftspace.org.

Figure 4.1: A screenshot of ShiftSpace’s Cutups interface (“CutUps”).

Wikis: Although primarily discussed in Chapter 3 as a method for encouraging collaborative composition, wikis can also be used as a way to emulate open revision. Whether it’s an assignment wherein students write wiki pages and then revise one another’s work – or whether your class experiments with creating, revising, and being part of an ongoing page on a site such as Wikipedia
(http://en.wikipedia.org), wikis can be an engaging way to illustrate the power of community-based revision. It can also provide opportunities for exploring conflict management and team-building consensus throughout the revision process. In addition, Wikipedia has a sister project entitled “Wikiversity,” wherein educators collaborate to create and provide “open educational resources and collaborative learning communities” (Wikiversity). To get involved, simply visit: http://en.wikiversity.org/.

Audio/Video Remix: The remixing of videos, music, and so on doesn’t have to be limited to fine arts studios; it can be done in composition spaces as well, as a way of experimenting with organization, audience, and style. Having classes remix their own audio or video productions is a fun way to get students interested in the power of editing, and to begin the process of creating joy about revision.

One way to accomplish this is to provide students with up to 20 minutes of select video footage and then ask each student to create a unique 3-5 minute film
using only the footage provided. Free to use audio/video editing tools include Windows Movie Maker or iMovie; both tools provide easy-to-understand drag and drop technology that will ensure that the exercise remains about the revision process itself rather than the technology used to implement it (and will help instructors avoid having to use precious class time to teach technological tools). The end results will often be drastically different films, which shows students how new interpretations of composition can be made simply by rearranging preselected parts into a newer, greater whole.

Another way of experimenting with audio/video revision in the composition space is through a class-based remix project, such as Remix Rats, an ongoing project created by David Bailey at Georgia Southern University. Bailey fell in love with remix culture while in graduate school and has since become fascinated with the role that copyright law plays in revision (Bailey). Inspired by the work of scholars such as Lawrence Lessig and Ian Bogost, Bailey has “started snatching up anything [he can] find about net generation learners and their constant conflict with copyright” (Bailey). As an experiment, he released a self-produced video to an existing remix group called YouTube Poops, and then sat back and waited to see what would happen (Bailey). The result was more than 1,000 emails in his inbox, linking to various videos that the kids of YTP remixed, revised, and redistributed on YouTube (Bailey). "YouTube Poops, abbreviated YTP, and commonly misspelled Youtube Poop, are videos composed of sentence mixing, sound distortion, repetition, and
other strange techniques” (Wikutubia). YTP currently has 1,568 registered members and 66 active users who continually subvert traditional copyright law in order to make new meaning of multimodal texts (YouChew).

Remix Rats was created as a way of encouraging creativity in composition, and also as a means of teaching college students – such as those involved in YTP – about copyright law (Bailey); however, there are clearly many ways in which similar techniques can be used to promote ‘open revision.’ For starters, brave instructors may provide students with a short video of themselves and then ask for any or all reinterpretations, re-edits, and remixes that they could come up with. Like other audio/video remix assignments, this would provide students with a way to explore creativity and fun throughout the revision process, while also providing opportunities for class discussions about remix culture and copyright law. Another way of experimenting with open revision might be the opposite: as a class, create a video that you agree will be made available for remix. Then, send it to an organization such as Remix Rats or YTP and see what the individual composers come up with. As a class, you could then analyze the results and discuss the various ways that different texts and meanings were created from a single, original text. Like Bailey, you may be amazed with the results – and it will yet again provide opportunities for discussion about how revising common content can result in a multitude of new meanings, as well as provide new methods for constructing knowledge, through revision, in a collaborative platform. All are welcome to join and
contribute to the project. For more information about Remix Rats, including sample videos and remixes, visit http://remixrats.tumblr.com.

Moving from Theory to Action

Up to this point, the three-step, non-linear model of the Open Source Composition Space has been established. We have seen how open source culture can help us build innovation through trust, collaboration through community, and revision through the value of conflict and consensus in the critical thinking process. Composition, then, has the potential to become a way of teaching students how to navigate their own ways in the world, a method not only of teaching writing but also of teaching students how to learn. In the upcoming final chapter, we will specifically look at the teacher’s role in this process. We’ll investigate what all of this means for writing pedagogy and what, exactly, instructors can do to be a part of the learning process while also encouraging a sense of community and self-empowerment within our students as they invent, create, and compose as members of an Open Source Composition Space.
CHAPTER 5

Conclusion

The Importance of Building an Open Source Composition Space

So far, I have attempted to outline three specific steps toward building an Open Source Composition Space: open invention, open collaboration, and open revision. Each of these steps is important to the overall goals of creating an open learning environment, but what is most important is how all of these ideas come together and, perhaps more importantly, why we should even care. This chapter will begin to outline specific ways in which the Open Source Composition Space can make a difference in writing instruction, and will also provide real world examples of open source learning in action. In other words, if you’re not yet convinced that an open source learning model can exist, hopefully this chapter will begin to assure you that not only is it possible, but it is also necessary toward building a positive and productive learning environment.

The concept of the Open Source Composition Space matters because of the impact it will have on determining how – and why – our students learn. If we make students a part of the learning process, as active contributors to the knowledge-producing process, then we can gain valuable insights into how to improve our teaching and curriculum in ways that will help them learn. In other words, we can find out the best ways that students learn by simply asking them. By involving students in the dialogue about their own education, we are also incorporating
ourselves into the learning process. We step away from the role as judge and instead allow ourselves and our views to be changed as part of the collaborative learning-making process, as well. In that regard, we can become both teacher and learner; we can help students see that knowledge is in fact socially constructed because we are constructing knowledge in our own classrooms, together. No class we teach will ever be exactly like the next because the knowledge we create and the meaning we make is different from class to class, depending on the unique skills and desires that each student brings to the learning process. In the end, our lives are enriched along with our students; we learn and build, create and imagine, invent and revise together.

This can be scary for instructors, as it implies that we inform our own composition pedagogies with no small amount of flexibility and innovation. It also means that we have to leave our egos at the door. We must reconsider notions of power in the classroom and reposition ourselves as facilitators for learning rather than the sole source of information. This won’t work for everyone – but what I hope is that enough people will begin to question current classroom ideologies, which are often based around a one-way communicative model of teacher as expert, and move toward a new trajectory that embraces teaching the skills that our students will need to know to thrive in the digital era. In today’s technological age, when news stories are created, revised, and remarked upon in Twitter, when personal journal entries are read and commented upon in blogs, and when life’s most important
events are posted on Facebook walls as community-wide ‘status updates,’ it’s crucial that we reconsider our own ideas of composition and collaboration for our classrooms. Otherwise, if we remain out of touch as to how our students compose – whether through online social media, cell phone texting, audio/video creation, online journaling, or any other medium – we risk being left behind as our students move forward; we risk becoming irrelevant to our students’ learning processes. By embracing an open source model of collaborative and dialogic learning, we remain firmly entrenched as a necessary part of the classroom culture while also helping students discover perhaps the most important lesson of all: that learning, knowledge-creation, and making meaning is something that they do for themselves.

The beautiful part about embracing an open source ideology for teaching writing is that there is no single model for building an Open Source Composition Space; in fact, I would prefer that this idea grow based off of the collaborative (dare I say, open) ideas and pedagogical values of many. But the few things that I believe can and should be consistent from space to space are concepts of: trust; collaboration; and the identification of skill and desire, both in ourselves and in our students. With these three elements we can form classrooms, build knowledge, and make meaning using all of the power and expertise that can be gained from open source communities. The basis for creating these elements of trust, collaboration, and identification of skill and desire has been outlined in previous chapters; here in
this final chapter, I hope to bring all of the concepts together to illustrate how and why open source learning can make the difference in any composition space.

Focusing on the Process and the People

Although this thesis has thus far delineated subtle differences among the various aspects of composition: invention, collaboration, and revision, the Open Source Composition Space is meant to be a means for integrating all three areas of composition into one cohesive pedagogical model. As most writers know, composition is about the *process* – from invention to final revision; and it is that process that I hope can be influenced by taking lessons from open source culture. Therefore, by adopting concepts of open invention, open collaboration, and open revision into our own composition spaces, we can begin to reinvent the *process* of writing pedagogy itself.

As a *process*, the Open Source Composition Space is relatively simple. First, with *open invention*, it’s about building trust in our classrooms and teaching students how to problem-solve and create. It’s about identifying – and helping students learn to self-identify – students’ desires and skills so that they can learn to play a valuable role in team-building and knowledge creation. Next, *open collaboration* helps us build communities in our classrooms, so that our students can forge their own identities, and begin to learn how knowledge creation is inextricably linked with the creation of self. It begins the process of teaching that knowledge and
meaning is socially constructed, and it helps students discover their place in the classroom, which is the start of gaining that ever-elusive ‘student engagement’ and motivation that so many educators seek to find. During this time, teachers also begin to forge new identities for themselves: as facilitators and coaches rather than judges. Finally, open revision is when students learn valuable skills in critical thinking, as well as conflict resolution and the power of collective knowledge. They learn that change is good, revision is powerful, and begin to explore issues of consensus and democracy. Yes, all of these things are about writing; when we compose, we invent, we collaborate, we revise. But this is also about teaching a greater skill set and embarking upon a greater educational mission that transcends any one field. Throughout the Open Source Composition Space process, we help students learn how to navigate life – as scholars, as community members, and as human beings – so that they can be better prepared for the demands of the future.

Another emphasis I’d like to make is that, whereas I have taken time in previous chapters to discuss many tools and resources for building an Open Source Composition Space, the most important aspect is not in the technologies we use but rather in the ideologies we embrace as writing instructors. Technology is a tool that can be used to improve our everyday lives and our teaching methodologies, but it shouldn’t be the primary focus of how we approach an open source pedagogy. By now it seems clear that technology will forever be linked with the future; many of us cannot imagine a world without the Internet, our computers, and our smart phones.
Composition has found its place in technology; we invent, collaborate, and revise using a variety of tools every day. And yet, that is the point: If we use technology as a means for educating our students about composition, as well as a way to connect with students and help them build literacies through platforms they already (sometimes unconsciously) understand, then technology can help act as the bridge; technology can and should be a helpful tool for navigating and creating knowledge, but it’s not the end result. The focus can and should remain on the process and the people involved in building writing spaces (the students and instructors, those composing and helping facilitate the compositions), not on the technologies themselves – just as the focus in successful open source cultures doesn’t look solely at code or software products but instead remains firmly situated on the life and enhancement of the community itself.

Yet just as I don’t think that technology should be the center of the composition space, few of us could argue that technology doesn’t play a large part in education, even our own. As Gee (2007) points out, “thinking and reasoning are inherently social. But they are also inherently distributed, and more and more so in our modern technological world. By this I mean that each of us lets other people and various tools and technologies do some our thinking for us. Even in my own field… I certainly do not need to know everything” (Gee 196). Why then do we still insist that our students memorize formulas and rules, and avoid tools like automatic bibliography generators or Microsoft Word’s autocorrect feature? The answer, I
think, is that educators want students to engage in critical thinking. But, as the model for the Open Source Composition Space shows, critical thinking, problem solving, and knowledge creation can occur alongside the use of technology – not separate from it. In fact, by teaching students how to best use technology, to question, for instance, what the program is suggesting every time Microsoft Word presents us with a green or red squiggly line, then we can help students use the tools and technologies that can best aid them, while also teaching that critical thinking is always a part of creating knowledge, regardless of the resources used to help in the process.

A perfect example of this people over process ideology is Connexions, a non-profit open format website that educators can use to contribute and utilize various learning modules for the classroom, including textbooks, course content, and even an open source content management system (CMS) that allows educators to customize options based on individual learning objectives (Connexions). Started in 1999 by Rice University, Connexions’s philosophy is based around the following ideals:

“Create – in Connexions, everyone is free to create educational materials and contribute them to the repository;

Rip – in Connexions, everyone is free to copy the material and customize it;

Mix – in Connexions, everyone is free to mix the material together into new books and courses; [and]
Burn – in Connexions, everyone is free to create finished products like e-learning web courses, CDroms, and even printed books” (Connexions).

Rice University professor Richard Baraniuk likens the Connexions project to the digital music remix culture, which has allowed artists to “create, rip, mix, and burn” compositions through collaborative knowledge production (Baraniuk). This open, collaborative notion of building knowledge is what Baraniuk refers to as his “dream” of a “knowledge ecosystem,” wherein “anyone in the world could be their own educational DJ,” free to invent, collaborate, revise, and distribute anything, anywhere, at any time (Baraniuk).

According to the Connexions’s project website (http://cnx.org), all of this is made possible through “using open-access software tools and free-use material through the Creative Commons Attribution license” (Connexions). That is, individuals from around the world are inventing, collaborating, and revising together, online, to help further educational goals – and Connexions is tapping into this collective knowledge to create an educational resource that can be used in many applications, including within the Open Source Composition Space. Connexions has
become an open source community that educators can join before even entering the classroom; it’s where instructors can collaboratively learn amongst themselves, as a way to innovate for class activities, learning objectives, curriculum building, and more. It is the perfect example of being able to use technology as a resource for open source learning objectives – but not relying upon it as the primary method. In this case, technology allows Connexions to provide spaces for educators to collaborate, yet doesn’t require those same instructors to use technologies in their own classrooms. In other words, the tool is one of the many means, but not simply just an end to all educational goals. And educators that use Connexions understand that it is the people behind that are creating the collaborative repository of knowledge; the technology merely helps distribute, collect, and organize it.

If It Works for Them... Why Not Us?

Establishing an open source pedagogical model may seem outrageous for some educators, but programs around the world are beginning to see the value in incorporating open learning in composition spaces. Instructors and researchers are starting to use open source learning models not only to educate each other but to educate their students as well, and to great success. In a 2003 study of a primary school in Germany called Gemeinschaftsgrundschule Kirchstraße, students in reading and writing classrooms were allowed the freedom to invent and collaborate upon their own learning model (Lingnau et al). The study, which involved almost
400 students between the ages of six and seven, was based upon a simple concept: “the teacher organizes the learning environment, but the structuring of activities (i.e. what has to be done when) originates from the children themselves. The teachers act, most of the time, as moderators and they decide what line of work will be for the school day” (Lingnau et al 188). In the study, technology was a major part of facilitating the open source learning environment; participants used a central repository to “easily pass data to others, share data with others, move, print, send or delete their data” (Lingnau et al 188). Yet the researchers were clear to point out that the technology wasn’t the focus of their research; the people were. The main goal “was to provide different means for a wide range of experiences with literacy” through a pedagogy developed by Reitchen (1991) “called ‘Lesen durch Schreiben’ (Reading through Writing)”:

The most important benefit of this method is that children acquire reading and writing skills at their own pace and can freely apply their pre-existing knowledge. Each child can immediately start writing words or even small sentences independent of their stage of cognitive development. Reading emerges spontaneously from this synthetic writing experience. It may happen after a week or after five months and it is not specifically triggered by the teacher (Lingnau et al 188-189).

Students in the study collaborated using both asynchronous and synchronous features of the technological platform and were able to share, read, and write on
each other’s work sometimes without even knowing what they were reading; in other words, they created knowledge and meaning together (Lingnau et al 189). One of the results of the study was that students learned more together than they did individually, and most often than not didn’t seek attention or help from their teachers when problem-solving and collaborating (Lingnau et al 192). Just like in open source culture, the researchers noted that at times students would disagree; but again, just like in a collaborative open source culture, “[d]isagreement was seldom settled in a destructive or dominating way” (Lingnau et al 192). That is, the students learned not only how to trust, collaborate, and define their own skills and desires in order to work together toward making common knowledge and meaning, but they also gained valuable skills in problem-solving and conflict resolution.

Now, I’ll let that sink in for a second. Nearly 400 students, six to seven years of age, learned how to read and write based off a collaborative open model – with very little intervening from adults and instructors. I can’t help but wonder, then: if this concept has been proven to work in writing classrooms for elementary school students, why wouldn’t a similar approach be useful in teaching college level composition? The answer, I think, is clear: not only would it work, but it would be successful, as many of us who have tried it in our own classrooms can attest. The key, I believe, is continuing the work of what Lingnau et al (2003) and others have begun: create an open source learning model that retains the focus on the process and the people.
We can then, of course, identify a common link to open source culture, which places the emphasis on the people and the process, yet uses technology to build a collaborative learning environment. As Himanen (2002) says, “It seems quite strange that we expect scholastic teaching methods to be able to produce modern individuals capable of independent thought and the creation of new knowledge” (78). This is because of the power of collaborative learning, which plays a key role in open source content creation; members of open source culture find the idea of individualized learning and teacher/student power relations completely foreign and even counterintuitive to the composition process. To that end, Himanen envisions a new model for teaching, which he terms the “Net Academy”:

In the Net Academy, every learning event would permanently enrich all other learners. Alone or in the company of others, the learner would add something to the shared material. This differs from our present mode of disposable learning, in which every student starts from the beginning, passes the same exams isolated from everyone else, and never gets to benefit from the insights of others. Worse, after the exam the examiner basically tosses all those individual insights into the wastebasket. This is as absurd a procedure as would be the decision of each generation of researchers to finally toss all their results away (‘I see, E= mc2; so what – toss!’) and let the next generation start over” (Himanen 78).
Thus, not only is learning in a collaborative environment more conducive to student engagement and knowledge creation, but it helps future generations of students as well, by providing a continuous, recursive dialogue for which future students can engage in past dialogue and continue to contribute to the overall meaning-making process. As Himanen (2002) and Weber (2004) both point out, the joy in coding comes not just from the work itself but also in the power of community and collaborative learning, which is often based off of critical thinking and problem solving. That is, in open source culture, community members find satisfaction in their work but also in helping each other, the end goal being to gain respect and recognition from their peers, as well as contribute to the overall knowledge-building in the community. They realize that the power remains with the people and the process, rather than within the end product or the technology itself.

Open Source Composition in Action

“If there’s a change you want made, and you aren’t participating in making it happen,

then you aren’t doing it the open source way.” – David Nalley

Even despite some very obvious successes with open learning-based pedagogies, some people remain skeptical that a collaborative culture would survive in composition, a field wherein authorship is often rigid and tied to intense personal stakes, such as publishing deals and (in the case of academia) tenureship. Yet some
individuals and organizations are proving that open, collaborative composition is indeed possible.

Just one example is Writing Spaces, “an open textbook project for college-level writing studies courses” (“Writing Spaces”). Published by Parlor Press, Writing Spaces volumes are made up of “peer-reviewed collections of essays – all composed by teachers for students – with each volume freely available for download under a Creative Commons license” (“About Writing Spaces”). That is, although the content of Writing Spaces volumes isn’t open source in the sense where you can physically revise the content, it is open source in concept and spirit, as it makes high-quality learning materials and texts available to anyone, without restriction, under the Creative Commons license (“About Writing Spaces”).

For the past few terms, I’ve used several readings from the Writing Spaces volumes in my courses, as the articles are consistently high-quality, interesting, and relevant to first-year composition students. Furthermore, using resources from the Writing Spaces project provides an opportunity to discuss with the class issues of copyright, authorship, power, and knowledge creation through using hands-on artifacts of open source composition in action. Writing Spaces has become an invaluable resource for writing instructors seeking easy and low-cost texts. The inspiration here is that all it takes is one person to make a difference, to work
toward being a part of the open source educational community, in order to truly make a change – even in a field that at first may seem somewhat resistant to the idea.

Another inspiring example of open composition in action comes from the professional writing field, by way of a collaborative writing event called “The Novel: Live!” Sponsored by the writing group Seattle7Writers, as well as the Richard Hugo House and Amazon.com, the first The Novel: Live! event occurred in October 2010 for six consecutive days (Seattle7Writers). During that time, 36 authors from the Northwest took turns collaborating on a single novel. The writing took place in two-hour shifts, with composition happening in real time, online, from the event website (http://www.thenovellive.org) where readers could see the composition happening on the screen, as well as watch a webcam of the authors as they composed. A chat interface was also set up so that viewers could ask questions, as well as make suggestions for invention and revision – which meant that readers could play an active, collaborative part in the composition. Each assigned writer penned approximately one chapter of the 35

Figure 5.3: The official poster for The Novel: Live!
chapter, 60,000 word novel, which was continually available to read at the event website (Seattle7Writers). Viewers were also given the opportunity to submit artwork for a cover design contest, write ‘fan fiction’ supplements, or even purchase the rights to name characters (Stein & Shortridge 1). Even more inspiring is that this entire event was done for charity; once the book has been published, all proceeds will be donated to ongoing literacy projects and organizations throughout the Northwest (Seattle7Writers). What The Novel Live! proved perhaps above all else was the power in collective action; here, authors were willing to set issues of ego and authorship aside to collaboratively compose with each other as well as their readers. They used available technologies not as the sole purpose but as a catalyst for introducing a new methodology for collaborative composition. And they did it all for a cause that they believed in.

Overall Implications for Teaching Writing

As writing instructors, we can take lessons learned from open source culture, as well as from projects like Writing Spaces and The Novel Live!, from instructor-driven collaborative projects like Connexions, and from educational studies like that at the Gemeinschaftsgrundschule Kirchstraße, and work toward building our own open source pedagogical model. One of the steps toward achieving that is to understand past and present composition pedagogies so that we can define a new model for ourselves. Throughout this thesis I urge for change in composition
pedagogy – but in order to create change we must first learn how and where change can be made. By reviewing established composition pedagogies, we can start to see where the ideals of the Open Source Composition Space may find their own place.

One of the conflicts that the Open Source Composition Space faces is the notion that writing must be individualized and insular. This follows Berlin’s (1982) Neo-Platonist description of teaching writing, which views dialectic as the one and only way to create and compose (54). This same internalized view of teaching writing would have us focus on correcting the errors of others, to view instructors and individuals as the only source of ‘true’ writing inspiration (Berlin 53). With regard to issues of power in the classroom, this methodology also implies that teachers should serve as sources of knowledge rather than as part of the knowledge-making process itself. Clearly, the Open Source Composition Space defies this methodology. Instead of correcting error and establishing the teacher as judge, open composition pedagogy instead embraces Faigley’s (1989) description of instructor as coach, as mediator throughout the writing process, and the notion that knowledge, discourse, and formations of the self are socially constructed (396). As Berlin writes, “In teaching writing, we are not simply offering training in a useful technical skill that is meant as a simple complement to the more important studies of other areas. We are teaching a way of experiencing the world, of ordering and making sense of it” (58). The model proposed by the Open Source Composition Space thus focuses on a socially constructed, communally-based environment that
provides students the freedom to create their own compositions within a framework of dialectic learning. “It [is] not the teacher’s task to inculcate the students with preestablished knowledge but to help them give birth to things from their own starting points” (Himanen 76).

In recent years, researchers are beginning to perform empirically-based studies to prove just this: that knowledge in composition spaces is best acquired through collaborative and dialogic learning models.

Recent developments in instructional psychology suggest that literacy is best taught within interactive learning environments that stimulate problem solving in conjunction with reading and writing... Indeed, results of several studies demonstrate students’ understanding and generating of texts to be enhanced through collaborative instructional interventions that include social interaction and strategic awareness (Alfassi 541).

In 2009, Alfassi performed a study made up of 115 seventh-grade students, using a model of dialogic learning as a means for teaching reading and writing (544). Her approach, which she called the Reading to Learn and Writing to Communicate (RLWC) methodology, used “problem-based instructional design” to encourage collaborative, dialogic learning in the composition space: “Students read to learn and engage in understanding texts collaboratively, thereby promoting comprehension monitoring. They write to clarify their ideas and communicate their knowledge to their fellow students. Teachers guide and orchestrate students’
collaborative inquiry processes while providing guided assistance tailored to the needs of individual students” (Alfassi 543, 555). In her research, Alfassi discusses that reading and writing are socially constructed activities, fostered and learned only in a collaborative and dialogic environment wherein students can learn from each other, with instructors acting as guides (541). At the end of her study, her results pointed to problem-solving and critical thinking skills as being most important when developing knowledge in reading and writing, and that students were in fact more successful at both of these things when learning in a collaborative environment (555-556).

This discussion can be further informed by research in user-centered and participatory design, a discipline that places focus on the audience and user as part of knowledge-creation. If we think of ourselves as knowledge ‘designers’ and our students as the ‘users’ of that knowledge, this metaphor makes perfect sense. Think of this: Salvo (2001) presents a concept for “[establishing] democratic workplaces where users are recognized as experts in their job while the expertise of designers is seen as a separate but equal expert knowledge” (273). His research indicates that professionals (in our case, educators) have an “ethical responsibility... to maintain a dialogic relationship between technology producers and consumers” (Salvo 276). That is, as educators in composition spaces, we have an obligation – an “ethical responsibility” – to foster dialogic methodologies of learning with our students, to include them in on the dialogue of learning, so that their learning experience
becomes more valuable to them and their ultimate educational goals. As Salvo points out, this also plays no small part in Katz’s (1992) ethics of expediency. That is, when “the focus is on expediency, on technical criteria as a means to an end,” when we place technology above the people and the process, when teaching becomes about helping students pass an exam rather than build knowledge and meaning, then we are violating some of the most basic ideals of human ethics (Katz 257). If we don’t include students in the learning-making process, then how can we honestly say that we are acting within their own best interests?

Ultimately, the way in which I feel that we will achieve collaborative, open learning, and move toward a pedagogical model that is compassionate, ethical, and productive in teaching writing, is to first embrace what Berlin has termed the “New Rhetorician” pedagogy, wherein writer and audience (developer and user) work together to build meaning as a cohesive community (58). I believe that a composition space can be defined by writing happening as a community effort, as a movement toward achieving common educational goals. It is about identifying student strengths and helping foster skill and desire. It’s about teaching students how to use critical thinking, problem solving, and conflict management to navigate their future worlds. It’s about nurturing a sense of pride in learning, in knowledge-creation, in meaning-making, and self-discovery. And yes, it’s about writing; it’s about teaching students that composition isn’t an insular process (or at least, it doesn’t have to be); it’s about composing and creating in a variety of media for a
variety of audiences and for a variety of rhetorical purposes. This, after all, is what the open source culture has mastered: the ability to invent, compose, and revise as individuals working toward the benefit of a larger community. “The popular image of an open source hacker as a lone ranger emphasizes the self-reliant attitude that is certainly present but misses the deep way in which that self-reliance is known to be made possible through its embedding in a community. The belief is that the community empowers the individual to help himself” (Weber 145). Our ultimate goal as composition instructors, I believe, should be to help students learn how to build knowledge for themselves.
Works Cited

123

