








 17 

Control options in the home automation market that are not present in CRE could 

include changing the color of lighting by means of LED fixtures, or involve the 

additional control of natural lighting, such as window draperies, standard shades, LCD 

shades, and awnings.  Other popular features include audiovisual switching and 

distribution for multi-zone audio and video, integrated intercom, simulation of presence, 

medical alert, and also assistance to daily living, as explored in [VDC01]. 

Other perhaps more novel or eccentric automation (Fig 2.6) is also found here 

such as houseplant watering, pet feeding and watering, presets for entertaining guests, 

and the use of domestic robots.  Using special hardware, almost any device can be 

  

Figure 2.6: Automated Home Theater GUI Example [guif01] 

monitored and controlled, such as coffee pots, garage doors, pool and spa amenities, and 

inventory monitoring via RFID. 



 22 

“Research is already ongoing with multi-touch surfaces such as the iPad also 

providing orientation data pertaining to acceleration and rotational attributes, such as 

pitch, roll and yaw” [BCTW01].  One such interaction technique implemented on an 

iPhone/iPod Touch was used for navigation tasks in a CAVE virtual environment. “We 

performed a pilot study to measure the control accuracy and to observe how human 

subjects respond to the interaction technique on the iPhone and iPod Touch devices” 

[KGMQ01].  In the mining industry, mining equipment is surrounded by various sensor 

networks that can provide feedback to the interactive display, allowing use of the 

equipment remotely and safely [BCTW01]. 

 

2.7 Graphical User Interface Development 

Development 

Generally speaking, issues addressed in GUI development usually concern 

perception, memory, learning, and problem solving.  Aesthetics and ergonomics are 

covered only briefly.  Closely held beliefs on the topic often involve such interactive 

systems, requiring a commitment and understanding of the entire process by the 

developer in order to be effective. Building a complete system and then spreading the 

interface over it “like peanut butter” [LRB01] rarely yields useful results. 

Avoiding such a destiny requires the involvement of not only the GUI designer, 

but also programmers, quality control personnel, documentation and training personnel, 

and others [LRB01].  These assertions leveled in [LRB01] appear to be backed up by data 

showing that half of the defects are a problem with the code they are interfacing with, be 



 23 

it data manipulation, sequential processing problems or otherwise.  In addition, as much 

as a one in five chance exists that using the GUI will result in a system crash.  In order to 

avoid such errors, graphical user interface design should involve the entire development 

team as early as possible [BRM01]. 

 

Design 

Early concepts for the results of the work presented here focus on the procedural 

nature of camera movement, and how a 3D animated touchscreen GUI might function.  In 

the early phases of this project, which included the concept of a virtual reality experience 

on an Apple iPad, rendering iterations of every possible camera movement from multiple 

start and end points seemed like an interesting problem to solve.  The related work 

presented below is similar, except that the animated object moves about the scene 

procedurally.  A video of the result of this work can be found at [KL02], and is notable 

for its time.  [KL01] notes that a concept used in artificial intelligence research was 

necessary to mitigate the factors of event-driven animation where operational sequences 

were required.  This allowed the computer to decide exactly how to proceed from the 

initial animation state to the goal animation state. 

A necessary tool for the animated interface designer should keep track of the 

requirements built into each start/goal sequence and verify the integrity thereof.  In the 

conceptual AI planning flow chart (Fig 2.10), this function is performed by the Player 

Animation Controller.  Such a concept is certain to play a factor in the work presented 

here, and has been noted for its usefulness.   



 24 

 

Figure 2.10: (a) AI Planning Flow Chart, and (b) Example Implementation [KL01] 

Another eventuality is the concern with not yet (or partially) executed commands 

sent to the animation controller when a new one is received, and deciding which takes 

precedence.  This was solved only by resolving all possible start states to all goal states as 

expressed in event definitions.  As such, the instruction set behaves much like a state 

machine in the end but retains the flexibility of adjusting, manipulating, and expanding 

the code further at another time. 

The emphasis on event handling as a requirement to break out of static interfaces 

is developed further in work by [JW01] who, while concerned with such issues, is more 

concerned with the notion of flow to generate positive affect.  Flow is defined as “a state 

of concentration, deep enjoyment, and total absorption in an activity” [JW01].  Though 

brought from the study of games to the study of ergonomics, the author argues that such a 

concept can “inform the development of non-leisure software for positive effect” [JW01].  

Another notable concept presented in this work is a specific example in which game 

theory contravenes non-leisure software applications. The author notes that games “often 

provide minimal information to the user, they employ context-dependent commands, and 



 25 

they allow the user to make a variety of errors” [JW01].   That is to say if we can make 

learning by error fun, then we stand more of a chance of success that the customer not 

only uses the GUI we designed, but also stands a better chance to use it more fully.  Other 

work as shown in [GQMC01] seems to bear this out empirically.  

The emphasis on flow and affect as a requirement to break out of static interfaces 

is developed further in work by [CU01] investigating other cognitive benefits to the user.  

As such, work presented in [CU01] seeks not to startle the user with unnatural motion of 

digital absolute or linear state, but to relax and amuse the user with analog motion blur 

techniques and cartoon animation.  Such an approach allows moving objects to move 

more comprehensibly if attention to timing, transient detail, dissolves, and 

anticipatory/contrary motion are made. [CU01] argues that the cognitive burden of 

deciphering the interface can be reduced if flashes and sudden changes are eliminated. 

The author concludes with “the animation doesn’t have to be slow, or distracting, or silly; 

on the contrary, with careful tuning, cartoon animation can turn the user interface into an 

understandable, engaging, and pleasurable experience.” 



 26 

CHAPTER THREE 

 

IMPLEMENTATION 

 

 

3.1 Building an Integrated Development Environment 

The implemented system, though developed primarily as a proof of concept, 

shows promise.  Scripts were generated in MEL, Python, and Pymel, and some examples 

will be shown later in this chapter.  MEL scripting proved most useful for situations that 

required quick processing.  Otherwise, it was more of a hindrance, particularly in 

building UI windows in Maya, which were used to aid in internal development, not for 

end user graphical interfaces.  Fast renders and calculations were not mission-critical for 

the project at hand, but ease of comprehending the code and organizing a large number of 

scripts were. 

Multiple tabs in Maya’s script editor are certainly an improved feature in the later 

releases, although developing scripts in the script editor proved to be somewhat unsafe 

due to concerns over data loss.  An external IDE was therefore required for work at this 

level.  IDLE, Wing, and EditPlus IDEs were considered, but Eclipse was ultimately 

chosen.  As an open source alternative running under the Java environment, Eclipse has a 

modular design that subsumes the power of a myriad of plugins.  It also supports all of 

the major operating systems platforms and has a comfortable workspace (Fig 3.1). 



 27 

 

Figure 3.1: A Screenshot of the Project Workspace in the Eclipse IDE 

Complimentary plugins to the Eclipse IDE include a plugin that talks with 

Mayapy and subsequently the script editor (com.myplugin.eclipseMayaEditor_1.0.0), and 

provides syntax highlighting, for all three available scripting languages.   

Eclipse presents a wide variety of tools useful for script development.  Also 

available are open source repositories and version trackers such as Bazaar, Mercurial, and 



 28 

Git that have plugins available for this IDE, which could prove useful if work expands 

beyond a single developer.  Trac and Redmine are examples of bug-tracking software that 

is freely available for Eclipse, and there are several wiki environments for help 

documentation publishing that are available as well (e.g.,  Moin Moin and Zwiki). 

 

3.2 Prototype Development 

Several early prototypes were developed, and the first expressions were written.  

A lamp for lighting controls and a ceiling fan for climate controls were used with 

primitive GUIs built in Maya to simulate off, warm up, on, cool down, and off states.  

The ability to manage all different sorts of lights, fans, speaker zones, and other assets 

representing other control categories, quickly became a concern.  From a scripting 

perspective, importing them to the proper spatial location within the scene, for example, 

or managing the appropriate assets for control system emulation, brought the focus back 

to learning more powerful ways of performing such tasks with Python.  Pymel was 

tapped for its strengths in Maya GUIs, working with node attributes, and making 

sophisticated lines of code easier to read. With Pymel 1.0.0, now shipped with Maya and 

included in the help documentation, an even more potent scripting language for Maya is 

available for the deployment of the developer UI. 

The help documentation tightly couples Pymel and Python, allowing the 

discovery of many useful concepts, including functions and methods for passing 

arguments between them, and ways to gather data from Maya GUI attributes.  Concepts 

explored in this manner spurred improvements in the way Python scripts were sourced 



 29 

and organized, which allowed code to be used, re-used, and tracked more easily.  

Fortunately, in rewriting the core scripts in this new hierarchy, important overarching 

code development concepts were incorporated such that the initial design could more 

realistically be achieved. 

 

3.3 Conceptual Refinement 

 As these development guidelines were advanced, it became more apparent the 

kinds of questions that should be answered as preliminary steps to achieving the initial 

design concept.  Making an audiovisual GUI fluid and fun to use will test many of the 

necessary parts and provide results thereof. 

 

Figure 3.2: Dashboard for Controls Template [BCFG01] 



 30 

By focusing on concepts of application that are more similar in nature to what is 

currently used as an industry standard, a basis is constructed to provide solid data points 

from which to strive and measure against, though concepts investigated are markedly 

different from current practice and are not without possible limitations. 

Key among such limitations is how many frames per second the multi-touch 

device can handle.  This issue is important in selecting from icon-based menus, and 

simulating browsing through them in a multi-touch fashion by spinning through them 

quickly.  The ideal implementation would incorporate a variable frame rate applied to an 

image sequence such that multi-touch input would feel more interactive.  For example, 

consider a spinning selector wheel.  Allowing for a range in playback speed of 24–72 

frames per second could assist in the feeling of immersion or potentially that of cartoon 

animation.  Another potential problem could be multiple select menus or otherwise 

animated items operating at the same time. 

Though each frame in an image sequence is stored locally on the device, they are 

triggered remotely by the control processor.  Care would need to be taken in how this 

transaction occurred over time and over a wireless connection.  Depending on the panel 

device’s use, there is potential for the need of sending hundreds of events per second in 

order to trigger two or three sets of image frames as they are updated simultaneously. 

 



 31 

CHAPTER FOUR 

RESULTS 

 

 

4.1 Standard Approaches 

Though there are ways to use image sequences in Crestron’s VT-ProE and 

AMX’s TPD4 programs, it is a very cumbersome process.  Thankfully, third party 

offerings allow the GUI designer to sidestep this problem while simultaneously granting 

us more general flexibility in how we tie-in to the control system.  Currently there are no 

known GUI editors that are tailored for what we are striving to accomplish, though a few 

at least support multiple brands.   This is an ideal place to start prototyping, however, in 

order to get the best support possible for a multi-touch device and to get the most out of 

the design.  Another benefit is the ability to test the design on as many platforms as 

possible as early as possible, to avoid any pitfalls during deployment.   

Our results will be tested on an Apple iPad (Fig 4.1) once we are in the 

production phase, due to its larger multi-touch surface and 9.7-inch screen.  Though the 

iPhone (Fig 4.2) or iPod Touch will provide a nice range of product to support in the 

future, for now, proofs of concept are the main focus.  To get a visual idea of what the 

end goal might look like, however, the following few examples present a cross-section of 

what is in use.  First, the most up-to-date are shown in Fig. 4.1 and Fig. 4.2.  Both are 

third-party designs that cost from several hundred to several thousand dollars apiece.  

Low level designs are shown in Fig. 4.3.  These are developed from the GUI design 

software provided by some of the larger hardware manufacturers. 



 32 

 

Fig 4.1 Apple iPad With CommandFusion Design [comm02] 

 

Fig 4.2 Apple iPhone With CommandFusion Design [comm02] 

   

Figure 4.3 Left: VT-ProE Style Design, and Right: TPD4 Style Design [cres01] [amx04] 



 33 

4.2 Python Scripting 

 

Fig. 4.4 Creating a Source Selection Wheel 

 One of the principal ways to implement the selection process on a multi-touch 

screen is to use its ability to track finger movements and turn them into vectors.  By 

dragging a finger across an area of grouped source icons, the user cannot only quickly 

make a selection, but also have persistent vision of others in the group that can be 

selected. 

 The script for this process (Fig. 4.4) makes use of Python’s powerful “os” 

module, whereby we gather information from the system to count the number of sources 

by finding the number of icons in the source selection images folder.  This information is 

passed into our main constructor function along with other useful parameters such as the 

button group radius, the two axes to build them around, and the spread distance between 

the buttons around the perimeter.  Another important Python task is gathering all the 



 34 

names of the icon images and calling them one by one each time a new button is built.  

Using a new shader, projection node, and file input node (Fig. 4.5) for every button 

graphic allows for many interesting effects much later in the design process.   

 

Figure 4.5: A Python Script-Generated Shader Network 

 

Figure 4.6: Custom Node Attribute Fields 



 35 

4.3 Python API Scripting 

Also on display is a custom-built Maya node called “scaler” (Figs. 4.7 and 4.8), 

which was built using the Maya Python API.  Previously, only C++ programmers could 

implement the API to great effect, but Python makes this important facet of Maya much 

more approachable.  In the example above, we take scale data from the geometry’s 

transform node, and feed it into the texture placement node by first routing it through the 

scaler node.  Inside, the data is modified to ensure that the placement node is always the 

correct size, no matter how large or how small the geometry becomes (Fig. 4.6).  Each 

button goes through this entire process, and has been tested to function beyond 275 icons 

in one directory.  This should prove useful when selecting from satellite radio channels, 

hundreds of cable or direc-TV channels, or even from a digital music collection.   

 

Figure 4.7: scaler.py Maya Node Script (Part 1) 



 36 

 

 

Figure 4.8: scaler.py Maya Node Script (Part 2) 



 37 

 Aside from handling a large amount of shader and geometry data in short order, 

the script was written such that part of it can become a GUI, allowing for as many 

differing types of selector wheels to be constructed as needed. 

 

4.4 Pymel GUI Window Scripting 

An example of a Maya GUI for manipulating scripts was created when 

developing environmental elements.  In these scripts, focus was placed on gathering data 

from GUIs, automatically setting keyframe animation, and developing initial shader 

assignment tools.  With commands from the Pymel command set, a window was created 

that allowed a camera view, some shading options, important attribute adjustment fields, 

and a color slider (Fig. 4.9).  When the “Make Waves” button at the bottom of the GUI is 

pressed, integer, float, and vector values are sent to a separate function for processing.  

Once there, the time slider updates and keyframes are set so that the user can search for 

the correct animation length, shape factors over time, and shader color.  At any time, the 

user can select the parented geometry stack from the outliner, delete, and start over.  The 

number of waves in the animation depend on how many times the “Make Waves” button 

is pressed before saving out and closing the file or starting over using the above method. 

 Several scripts work together in order to create this workspace: UI.py, 

soundWaves.py, createShader.py, assignShader.py, keyTransparency.py, and 

newShaderColor.py.  Each takes in values from other functions and work in concert to 

achieve the desired effect. 



 38 

 

  

  

Figure 4.9: Sound Wave Maker GUI 

  



 39 

4.5 Python Expressions 

Finally, expressions play a large role moving forward.  Without them, it would be 

difficult to animate from a scripting approach.  Though MEL may be at its best here by 

keeping the playback and rendering times down, Python can be used in expressions, 

boiling down many lines of code in the expression editor by calling a function.  The two 

expressions that were prototyped for this work are called “spin” and “lag.”  Both will 

play an important role in our selection sets of buttons, as they will determine their 

animation as they get spun around from multi-touch input.  The implementation goes as 

follows:  the initial button created has the “spin” expression on it.  It is put into the 

correct spot, and then the next button is made.  The second button and all subsequent 

buttons follow the first one around by means of the “lag” expression.  At every frame, the 

“spin” expression grabs its x and y coordinates from an array, and the “lag” function 

assumes the previous coordinates from the button ahead in the queue. 



 40 

CHAPTER FIVE 

 

CONCLUSION AND FUTURE WORK 

 

 

In the final calculus, great care was taken to leverage production-level computer 

capabilities to address the needs of the audiovisual industry.  The result was an 

environment in which easy-to-use, intuitive, and entertaining multi-touch graphics 

designs could be developed.  Such an endeavor is more feasible in today’s environment 

given the near ubiquitous nature of multi-touch display devices. 

Emerging technology and industry trends show the value of such an endeavor.  As 

discussed, various types of control systems benefit from the research results given here, 

specifically commercial and residential market sectors.  Relevant statistics, facts and 

figures were provided, ranging from AV/IT convergence to standard guidelines for the 

construction of audiovisual touchpanels, facilitating a vision of near-future graphical user 

interfaces for control systems, as well as their immediate practical applications. 

A major contribution of this work is the creation of a graphics lab from which to 

create designs as an AMX /Crestron programmer or for potential future business 

development, which is already generating interest among some industry professionals.  

By positing that graphics design is no longer up-to-date given current hardware 

capabilities, an argument can be made for its usefulness in many existing systems that 

could be up-fitted immediately with such modern graphics via multi-touch display 

products.  The owners of said systems often genuinely want original content for 

themselves, and are willing to pay a premium for it. 



 41 

Currently 44% of American homes have 6 remotes in them [OD01], not to 

mention laptops, PDAs and other gadgets that our current lifestyles embrace.  It is the 

intent that research in this and similar fields will help those who wish to pick one 

platform for as many technological tasks as possible.  The result of such a design 

principle, made possible by AV/IT convergence, would theoretically leave only one 

device to charge, one device to carry, and one device to manage.  In achieving this goal, 

the result would be a single device to simplify life’s daily demands in an ever more wired 

world. 

A chief improvement to the work presented here would be a way to modify and 

customize script attributes and other assets for use in new or existing projects without the 

need of understanding Maya, Python, or Pymel.  [APS01] offers a compelling argument 

here, but aside from laying the most basic of groundwork by selecting a scripting 

language that has such support in the greater programming community, this goal was 

beyond the scope of the current work.  A program named Qt is a possible candidate for 

future directions. 

Another important part of GUI creation indirectly targeted is the audio portion of 

the design and the resultant sound effects.  A re-examining of the “Peedy the Parrot” 

[KL02] video with closer attention paid to the audio component reveals how much more 

effective the graphical user interface experience could be, particularly considering current 

audio production standards. 



 42 

Overall this research brought together background in the audiovisual industry, 

computer programming techniques, and consideration of artistic principles as applied to 

computer graphics, though many challenges remain. 

The actual problem addressed is real and present, and the development of ideas 

presented here may at the very least serve as a set of options, if not guidelines, when 

developing control systems graphical user interfaces for the audiovisual industry.  Other 

recent developments in technology will doubtlessly demand refinement of the ideas 

discussed herein, making additional study not only possible, but likely.  [SH01] describes 

other interfaces such as the “Wiimote” tested for use beyond the Nintendo platform for 

3D UI purposes [BCFH01].  Other developments in the field of ubiquitous computing are 

certain to offer plenty of similar opportunity via work developed in augmented reality 

[BS01].  Even without these amazing new approaches to user interface design, the goal of 

this thesis is to provide pertinent information that would make further solutions to the 

specific problems raised here a worthwhile effort. 



 43 

 

WORKS CITED 

 

[amx02] AMX/ Crestron tie-ins to Apple product, http://www.amx.com/ui/apple.asp,  
August 2010. 

  
[amx04] AMX Touch Panel Design 4 (TPD4), http://www.amx.com/products/TPDesign.asp,  

August 2010. 
  
[APS01] M. Auer, J. Pölz, and S. Biffl, “End-User Development in a Graphical User  

Interface Setting,” ICEIS, 2009, May 2010. 

 

[BS01] István Barakonyi and Dieter Schmalstieg, “Augmented Reality Agents for User  

Interface Adaptation,” Computer Animation and Virtual Worlds Vol/19 No.1, 

2008, Hoboken NJ, USA, 2008. 

 

[BCTW01] T. P. Bednarz, C. Caris, J. Thompson, C. Wesner, and M. Dunn, “Human- 

Computer Interaction Experiments,” 2010 24th IEEE International 

Conference on Advanced Information Networking and Applications, 2010, 

Perth, Australia, April 2010. 

 

[BCFH01] D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Kitamura, K.  

Kiyokawa, and W. Stuerzlinger, “3D User Interfaces: New Directions and 

Perspectives,” IEEE Annals of the History of Computing, 2008, Washington 

DC, USA, 2008. 

 

[BCFG01] G. Bronson, T. Cape, A. Faunce, G. Maderic, R. Nimtz, Jr., H. Nunes, R.  

Remington, and D. Silberstein, “Dashboard for Control Design Guide 

Template,” 2005, Fairfax VA, USA, April 2005. 

 

[BRM01] P. A. Brooks, B. P. Robinson, A. M. Memon, “An Initial Characterization of  

Industrial Graphical User Interface Systems,” 2009 International Conference 

on Software Testing Verification and Validation, 2009, April 2004. 

  

[CU01] B. Chang and D. Ungar, “Animation: From Cartoons to the User Interface,” Sun  

Microsystems, Inc.  Technical Report: TR-95-33, 1995, Mountain View CA, 

USA, 1995. 



 44 

 

[CM01] S. Chien and A. Mahdavi, “Implementation of a User Interface Model for  

Systems Control in Buildings,” Universal Access in Human-Computer 

Interaction. Intelligent and Ubiquitous Interaction Environments, 5th 

International Conference, UAHCI 2009, Held as Part of HCI International 2009, 

2009, San Diego CA, USA, July 2009. 

 

[cisc02] Cisco Connected Real Estate,  

http://newsroom.cisco.com/dlls/2005/whitepaper.pdf, August 2010. 

  

[cisc03] Cisco Systems List of Acquisitions,  

http://www.cisco.com/web/about/doing_business/corporate_development/acqui

sitions/ac_year/about_cisco_acquisition_years_list.html, August 2010. 

  

[comm02] Cross Platform Intermediary example,  

http://www.commandfusion.com/controlsystems, August 2010. 

  

[cres01] Crestron website, www.crestron.com, August 2010. 

  

[dain01] Daintree Networks, “Wireless lighting control saves money and makes sense,”  

Daintree Networks, 2009, Mountain View CA, USA, 2009. 

  

[GQMC01] G. Golovchinsky, P. Qvarfordt, B. van Melle, S. Carter, and T. Dunnigan,  

“DICE: Designing Conference Rooms for Usability,” Conference on Human 

Factors in Computing Systems, 2009, Boston MA, USA, 2009. 

[HWV01] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos, “Software Technology for  

Implementing Reusable, Distributed Control Systems,” Applications of 

Intelligent Control to Engineering Systems Vol 39, 2009, June 2009. 

  

[HLC01] D. H. Huang, Y. Z. Liang, and W. K. Chiou, “The Practices of Usability  

Analysis to Wireless Facility Controller for Conference Room,” Proceedings of 

the 12th international conference on Human-computer interaction, 2007, 2007. 

  

[java01] Interior Design Trends – AV Smart Home Inclusion,  

http://javabali.info/trend/new-trend-interior-smart-home-decorating-ideas.html, 

August 2010. 

  

[JW01] D. Johnson and J. Wiles, “Effective Affective User Interface Design in Games,”  

Ergonomics,” Volume 46, Issue 13 & 14, 2003, October 2003. 

  

[KGMQ01] J. Kim, D. Gracanin, K. Matkovic, and F. Quek, “iPhone/iPod Touch as  

Input Devices for Navigation in Immersive Virtual Environments,” 2009 

IEEE Virtual Reality Conference, 2009, Lafayette LA, USA, March 2009. 

 



 45 

[KL01] D. Kurl and  D. T. Ling, “Planning-Based Control of Interface Animation,”  

Proceedings of CHI ’95 1995, Redmond WA, April 1995. 

  

[KL02] Peedy the Parrot, http://kurlander.net/DJ/Videos/PeedyVideo.shtml 

  

[LRB01] C. Lewis, J. Rieman and J. Bluestein, “Task-Centered User Interface Design,”  

eBook, 2008, Boulder CO, USA, February 2008. 

  

[loni01] Staff Assignment – Central Operations Center for Multiple Campus Buildings,  

http://www.lonix.com/specifications/IBMS_specification.pdf, August 2010. 

  

[MCP01] J. Martocci, D. Chute, and V. Pothamsetty, “Building Automation System Over  

IP (BAS/IP) Design and Implementation Guide,” Johnson Controls Network 

and Information Technology Considerations Technical Bulletin, 2008, 

Milwaukee WI, USA, August 2008. 

 

[MLC01] J. Meskens, K. Luyten, and K. Coninx, “Shortening User Interface Design  

Iterations Through Realtime Visualisation of Design Actions on the Target 

Device,” 2009 IEEE Symposium on Visual Languages and Human-Centric 

Computing, 2009, Corvallis OR, USA, September 2009. 

  

[micr01] Microsoft Surface, http://www.microsoft.com/surface, August 2010. 

  

[MMM01] T. L. T. Mohamed, R. H. A. Mohamed, and Z. Mohamed, “Development of  

Auto Tuning PID Controller Using Graphical User Interface (GUI),” 2010 

Second International Conference on Computer Engineering and Applications, 

2010, Bali Island, Indonesia, March 2010. 

  

[MHP01] B. Myers, S. E. Hudson, and R. Pausch, “Past, Present, and Future of User  

Interface Software Tools,” ACM Transactions on Computer-Human 

Interaction (TOCHI) - Special Issue on Human-Computer Interaction in the 

New Millennium, Part 1, Volume 7 Issue 1, 2000, March 2000. 

  

[OD01] O. Omojokun, P. Dewan, “Automatic Generation of Device User-Interfaces,”  

PERCOM '07 Proceedings of the Fifth IEEE International Conference on 

Pervasive Computing and Communications, 2007, 2007. 

  

[nsca01] AMX/ Crestron tie-ins to Apple product,  

http://www.nsca.org/Portals/0/Documents/IndustryNews/Projects/20100408-

Projects-AMX.pdf, August 2010. 

  

  



 46 

 

[rave01] AMX/ Crestron tie-ins to Apple product,  

http://ravepubs.com/index.php?option=com_content&view=article&id=2287:bo

th-amx-and-crestron-announce-ipad-apps-to-turn-ipad-into-touch-screen-

homeav-interface-&catid=48:media-recording-distribution-a-

control&Itemid=94, August 2010. 

  

[schn01] Schneider Electric, “Wireless Controller Networks for Building Automation,”  

Schneider Electric, North Andover MA, USA, June 2006. 

  

[SHMP01] J. Schöning, J. Hook, N. Motamedi, P. Olivier, F. Echtler, P. Brandl, L.  

Muller, F. Daiber, O. Hilliges, M. Loechtefeld, T. Roth, D. Schmidt, and U. 

von Zadow, “Building Interactive Multi-Touch Surfaces,” Journal of 

Graphics, GPU, & Game Tools, 2010, April 2010. 

  

[SH01] T. Shiratori and J. K. Hodgins, “Accelerometer-Based User Interfaces for the  

Control of a Physically Simulated Character,” ACM Transactions on Graphics 

Vol 27 I.5, 2008, New York NY, USA, December 2008. 

  

[smar01] Smart Home Pre-Wire without component purchase,  

http://www.smarthouse.com.au/Automation/Sound/P9F9R3W2, August 2010. 

  

[THFS01] J. Teichert, M. Herrlich, B. Walther-Franks, L. Schwarten, S. Feige, M.  

Krause, and R. Malaka, “Advancing Large Interactive Surfaces for Use in the 

Real World,” Advances in Human-Computer Interaction Volume 2010, 2010 

Bremen, Germany, 2010 

  

[VDC01] D. Vergnes, S. Giroux, and D. Chamberland-Tremblay, “Interactive Assistant  

for Activities of Daily Living,” From Smart Homes to Smart Care, 2005, 

Sherbrooke, Canada, 2005. 

  

[wiki01] Wikipedia Entry: Microsoft Paint, http://en.wikipedia.org/wiki/Paint(software), 

August 2010. 

  

[wiki03] Wikipedia Entry: Control Systems,  

http://en.wikipedia.org/wiki/Control_systems, August 2010. 

  

[wiki04] Wikipedia Entry: Control Engineering,  

http://en.wikipedia.org/wiki/Control_engineering, August 2010. 

  

[wiki05] Wikipedia Entry: Programmable Logic,  

http://en.wikipedia.org/wiki/Programmable_logic, August 2010. 

  



 47 

 

[wiki06] Wikipedia Entry: Programmable Automation Controller,  

http://en.wikipedia.org/wiki/Programmable_automation_controller, August 

2010. 

  

[wiki07] Wikipedia Entry: Control Theory, http://en.wikipedia.org/wiki/Control_theory,  

August 2010. 

  

[wiki08] Wikipedia Entry: State Variable, http://en.wikipedia.org/wiki/State_variable,  

August 2010. 

  

[wiki09] Wikipedia Entry: PID Controller, http://en.wikipedia.org/wiki/PID_controller,  

August 2010. 

  

[wiki10] Wikipedia Entry: Building Management System,  

http://en.wikipedia.org/wiki/Building_Management_System, August 2010. 

  

[wiki11] Wikipedia Entry: Building Automation System,  

http://en.wikipedia.org/wiki/Building_Automation_Systems, August 2010. 

  

[wiki12] Wikipedia Entry: Home Automation,  

http://en.wikipedia.org/wiki/Home_automation, August 2010. 

  

[wiki13] Wikipedia Entry: AMX, http://en.wikipedia.org/wiki/AMX_LLC, August 2010. 

  

[wiki14] Wikipedia Entry: Crestron, http://en.wikipedia/wiki/Crestron, August 2010. 


