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ABSTRACT 

Currently soldiers are being exposed a much higher number of improvised 

explosive devices (IEDs) and the resulting shockwaves.  These shockwaves can cause 

traumatic brain injuries (TBIs) even without the occurrence of ballistic impact.  The focus 

of this research was to reduce the amount of shockwaves soldiers are exposed to by 

inserting fibers and woven fabrics into a foam padding system.  These fibers and fabrics 

facilitate the dissipation of the shockwave energy before it is able to penetrate the 

padding and cause TBIs.   

 The sound velocity of high-performance fibers, commodity fibers and woven 

fabric was measured using a Dynamic Modulus Tester.  There was a significant 

difference between the sound velocities of the high-performance and commodity fibers.  

The instrument was also used to investigate the effect of crimping, denier, twist and 

multiple fiber system on the sound velocity.  Tensile testing was conducted to find 

mechanical properties and predict the sound velocity theoretically.  The comparison of 

the theoretical and experimental sound velocities showed small error.  The acoustic 

impedance of the fibers was also calculated. 

 The sound velocity of various viscoelastic foams was also measured which 

showed certain foams would be more appropriate for the application at hand.  Tensile 

testing of reticulated foam was performed to find the Poisson’s ratio of the foams to 

predict their behavior.  The energy absorption of various foams (viscoelastic and 
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reticulated) was observed by using an Indentation/Rebound Drop Test and damping 

information.  Optical images were obtained to visually evaluate the various foams.  

Thermal and infrared spectroscopy analysis was done to help characterize the foams. 

 Two tests were developed to investigate the energy absorption properties of 

fiber/foam composite padding systems.  Various samples of foam with layers of woven 

Kevlar® fabric were evaluated using a Helmet Drop Test and Rebound Drop Test.  In 

these tests rebound heights were related to the energy absorption of the samples.  Using 

this method differentiation between the energy absorption of foams was seen and the 

behavior of viscoelastic and reticulated foams were observed.  The effect of ball size and 

shape was also observed.   
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INTRODUCTION 

1.1 - Significance of the Research Problem 

 For most of history the biggest concern soldiers had during battle was avoiding 

ballistic impact of bullets, shrapnel or any other high-velocity projectile.  Only recently 

did it come to attention that a significant amount of damage can be caused by non-

ballistic impact; namely from shockwaves propagating from nearby improvised 

explosive devices (IEDs).  Helmets and other body armor has been improved over the 

years as better technology was developed to give better ballistic protection but 

protection from shockwaves has never been a priority.  However, in the recent wars in 

Iraq and Afghanistan there have been more cases of traumatic brain injuries (TBIs) than 

have ever been recorded before.  As stated by Dr. Deborah Warden in the Journal of 

Head Trauma Rehabilitation one explanation is that the improvements in ballistic armor 

have been so significant that injuries people would have died from before are now not as 

severe[1].  The soldiers remain alive and therefore we are seeing more long-term effects 

that would not have been seen if they perished.   

Also, the use of IEDs has greatly increased due to the ease and ability of 

production and the high amount of damage they are capable of.  In 2003 it was 

estimated that there were approximately 10 million IEDs planted underground in Iraq[2].  

It has also been estimated that currently 75% of deaths in Afghanistan are due to IEDs 

which is an increase from 50% in 2007.  According to the Joint IED Defeat Organization, 
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estimates show that in the past two years between 40% and 60% of casualties in Iraq 

have been caused by IEDs[3].   

 An important consequence of the large number of IEDs soldiers are being 

confronted with is the subsequent increase in traumatic brain injuries.  One cause of 

TBIs is ballistic impact from bullets or other high-velocity projectiles.  Until recently 

projectile impact was seen as the main reason for brain injuries.  However, the 

appearance of TBIs in soldiers that were not exposed to ballistic impact has dramatically 

risen with our conflicts in Afghanistan and Iraq.  This led to many inquiries as to the 

nature of the injuries.  It was found that shockwaves from explosive devices alone could 

cause TBIs without any actual ballistic impact[4].   

The number of cases of TBIs is so high from the Iraq war that is has been dubbed 

the “signature wound” of the conflict[4].  The Walter Reed Army Medical Center in 

Washington D.C. treated over 450 patients with TBIs in roughly a two year span from 

2003 to 2005.  According to Walter Reed records and medical staff it has been estimated 

that about 59% of all soldiers admitted were diagnosed with a TBI of varying degree: of 

these 44% are considered mild while 56% are either moderate or severe[5].  The 

occurrence of TBIs is becoming a common ailment seen in veterans and is a long-term 

problem that will have to be addressed and treated for possibly the rest of the victim’s 

life.  According to an article in Journal of Trauma Nursing it was estimated in 2000 that 

the United States has to spend $60 million each year to take care of victims who have 

received TBIs[6]. 
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1.2 - Description of Improvised Explosive Devices and Shockwaves 

1.2.1 - Improvised Explosive Devices (IEDs) 

Improvised explosive devices (IEDs) are weapons which have been used in wars 

for a long period of time.  A simple definition describes them as any explosive device 

which is produced by any means and used for bodily harm.  The more stringent 

definition that is used by the Department of Defense describes an IED as: 

“A device placed or fabricated in an improvised manner incorporating destructive, lethal, 

noxious, pyrotechnic, or incendiary chemicals and designed to destroy, incapacitate, harass, or 

distract.  It may incorporate military stores, but is normally devised from nonmilitary 

components[7].” 

Although IEDs have been used throughout history they have gained popularity 

in the recent war in Iraq and are often used in terrorist attacks against the United 

States[8].  This is due to the fact that they are not difficult to produce but are known to 

cause a lot of destruction[9].  These two reasons alone are the main motivation as to the 

increased use of IEDs, although the low cost of producing an IED is also an important 

reason[10].  Currently IEDs are the biggest threat to soldiers located in both Iraq and 

Afghanistan[11].  One reason why IEDs are so dangerous to soldiers is due to their very 

nature; they are produced in a low technology, makeshift way and therefore can be 

housed in random items.  This makes them difficult to locate prior to detonation[9].  
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The devices can be detonated in two main ways: by using a person willing to lose 

his/her life while detonating the explosion or by placing the device in a specific area and 

setting it off remotely when the time is optimal.  Improvements in detonator technology 

have decreased the number of suicide bombings but increased the ability to use remote 

detonators.  In addition to the detonator (where copper wire and cellular technology are 

commonly used to transmit the detonation signal) other components that are needed to 

make an IED are the initiator and explosive[9].  Figure 1.1 shows a diagram of an IED and 

its components.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Schematic of the various components of an IED[12] 
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All of these components are readily available in the war-stricken areas in which we are 

currently fighting and can be assembled by hand into usable and dangerous IEDs[9].  It is 

also possible to use an IED with biological or chemical warfare, although no records 

have shown instances of this[13]. 

     There are current initiatives being launched and developed to help locate and 

immobilize IEDs before they are detonated and able to cause any destruction (in either 

property or human form).  These efforts are described as counter-IEDs (CIEDs) and a lot 

of money and resources have been directed toward the initiatives.  Knowing where IEDs 

are located greatly increases the safety of the soldiers in the immediate area and 

improves their ability to perform their respective jobs without being concerned about 

surprise explosions[10].  During a Hearing before the Committee on Armed Services 

within the House of Representatives it was mentioned that estimates show 

approximately 40% to 60% of IEDs are now being found prior to the explosion occurring 

due to the CIED efforts[14].   

A large CIED initiative was launched in 2006 and $3.63 billion was allocated for 

the effort.  Even though it was started and conducted in 2006, progress was not seen 

until July 2007 due to the in depth nature of the CIED.  According to Commander John 

Moulton of the U.S. Navy in the Military Review, once the initiative was completed 

there was a significant decrease in the number of IED attacks; they reduced from 100 to 

60 per day[9].   
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1.2.2 - Shockwaves Caused by Improvised Explosive Devices 

 One of the reasons why IEDs are extremely dangerous is due to the shockwaves 

that propagate from the detonation point.  These shockwaves are caused by an extreme 

increase in pressure in a short amount of time which spreads out over a large area at 

high speeds[15, 16].  Shockwaves also result in an increase in temperature and density.  

Thermodynamically, the wave system is irreversible and the total wave system nets a 

loss in pressure[17].  To be defined as a shockwave, the wave must be moving faster than 

the speed of sound, 340 m/s at sea level.  It has been estimated that shockwaves travel at 

a speed of at least 1,600 ft/s (490 m/s) from the detonation point[16].   

Figure 1.2 shows a shockwave caused by a bullet moving faster than the speed of 

sound.  A shockwave can be described as occurring in two separate parts: the initial high 

pressure as described before, and then a “secondary wind” when the displaced air 

returns back to its normal position[18].  

 

 

 

 

 

 

 

 

Figure 1.1: Shockwaves illustrated by a bullet 

moving faster than the speed of sound[19] 
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The large displacement of air due to the increase in pressure travels and carries 

energy until the pressure is fully dissipated, which can occur a long distance from the 

epicenter of the explosion.  Estimates show that the pressure of a shockwave can reach 

almost 1,000 times normal atmospheric pressure[18].  This high amount of energy can 

greatly affect the objects that the shockwave comes in contact with.  The wave will 

eventually dissipate until it is simply a sound wave[15].  

There is a difference between shockwaves and sound waves.  Although both 

propagate energy, sound waves only move at the speed of sound or below and 

shockwaves travel faster than the speed of sound.  Even more importantly, sound waves 

travel and leave the medium they are moving through unaffected while shockwaves 

cause a great disturbance through the area.  A shockwave is also described as nonlinear 

due to the discontinuous nature of the pressure increase[20]. 

1.3 - Traumatic Brain Injuries 

The number of traumatic brain injuries (TBIs) has greatly increased in the conflict 

in Iraq and Afghanistan.  However, the occurrence of TBIs itself is not new; they have 

been witnessed in previous military conflicts but not in the amount they are currently 

being seen.  In Iraq and Afghanistan approximately 59% of soldiers are diagnosed with a 

TBI but a number as high as 20% was seen in Operation Desert Storm in the early 

1990s[1,5].  The improvement in ballistic protection is one reason for the increase in TBIs 

but even more relevant is the increased use of IEDs.  More IEDs are being detonated 

during battle and therefore soldiers are exposed to more explosions than in previous 
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conflicts.  According to Veterans Affairs director of physical medicine Barbara Sigford 

veteran soldiers from Iraq and Afghanistan came in contact with 6 to 25 explosions 

during their terms[4].  It was once discussed to remove soldiers from conflict situations 

once they had come in contact with a specific number of explosions, but no regulation 

was ever put into place.  Scientists have been having difficulties deciding on exactly 

what occurs in the brain during a TBI and therefore the ability to develop precautions 

has been limited[4].   

1.3.1 - Description of TBI 

 A TBI is a very general name for any type of injury that occurs within the head.  

It usually occurs when an outside entity is able to disrupt the brain and its normal 

patterns in such a way that the brain is not able to remain unharmed[6].  This type of 

trauma is normally severe enough to cause lifelong problems.   

 Brain injuries can be divided into two separate groups: blast-induced traumatic 

brain injuries (BTBI) and impact-induced traumatic brain injuries (ITBI).  ITBIs occur 

when an object physically comes in contact with the head and have been studied to 

further understand the mechanism by which they occur.  BTBIs are TBIs that are caused 

by being near an explosion and occur without the head being struck.  They have only 

become a significant problem in recent years and therefore are not as well researched[21].   

 BTBIs can be further broken down into other categories based on how they occur.  

Primary BTBIs are caused only by the extreme change in pressure from a shockwave 

while secondary BTBIs are caused by an object that has been moved by the explosion 
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striking a person.  A tertiary BTBI is defined as a brain injury caused by a person shifting 

due to an explosion and hitting a stationary object[1]. This thesis will address TBIs 

formally defined as primary BTBIs and will be referred to as simply TBIs.      

 TBIs can also be divided into clinical categories that reflect the severity of the 

injury.  The least severe TBI is described as mild and refers to an injury which has a loss 

or alteration of consciousness (LOC/AOC) of less than 30 minutes.  A moderate TBI has 

an LOC/AOC of between 30 minutes and 24 hours while a severe TBI has an LOC/AOC 

of more than 24 hours[6].   

1.3.2 - Proposed Mechanism of TBI 

 The mechanism by which a TBI occurs is a subject that has been researched 

heavily in recently years due to the lack of understanding behind the injury.  The 

investigations have brought forth different possible traumas that could be occurring 

inside the head during and following exposure to explosions.  The most common 

explanation attributes the injury to the rapid compression of organs in the body due to 

the high pressure and high velocity shockwave[6].   

However, finding out exactly what effect this compression has on the brain tissue 

is more difficult.  One investigation was conducted using a Lagrangian-Eulerian finite 

code at the Lawrence Livermore National Laboratory which simulated a head being 

exposed to an explosion.  The head was represented by an ellipsoid which housed 

viscoelastic brain material and cerebral fluid.  The simulated explosion produced a 

shockwave moving at 450 m/s and had a pressure of nearly double atmospheric 
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pressure.  This extreme pressure puts a force of approximately 80 G’s of acceleration on 

the simulated head which causes the skulls to flex both inwardly and outwardly[21].  This 

leads to ripples within the brain as illustrated in Figure 1.3.   

 

 

 

 

 

 

 

 

 

Another study conducted by Dr. Amy Courtney and Dr. Michael Courtney 

showed that the above mechanism (high pressure wave transmitted through the skull) 

was indeed a possibility as to what occurs during an explosion, and also suggested an 

alternative: blast waves transferred to the skull from the thoracic cavity.  When a 

shockwave comes in contact with the thorax it does not slow down enough to impede 

the movement of the shockwave through the body.  The wave continues to move and is 

transmitted to the brain with enough pressure to still cause neural damage[22]. 

 The effects of a TBI on the components of the brain have also been examined 

from a medical/biological standpoint with the use of animal testing and were discussed 

 

Figure 1.2: Blast TBI simulated using Lagrangian-Eulerian finite 

code from the Lawrence Livermore National Laboratory which 

shows ripples within the skull upon exposure to explosion[21] 
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in the American Association of Occupational Health Nurses.  Rats were exposed to 

explosion blasts and significant changes were seen in the hippocampus, both structural 

and chemically.  These changes included but were not limited to: increased cytoplasmic 

vacuoles, formation of laminal body and increase in malondialdehyde and superoxide 

dismutase[23].   

With similar medical investigation, electroencephalograms (EEGs) were 

conducted on people complaining of possible TBIs after being exposed to explosions and 

abnormal brain activity was observed, such as dysfunction in the cortex[23].  However, 

the nature of these injuries makes it possible that the effects will not be seen immediately 

and diagnosis is delayed[24].  

1.3.3 - Diagnosis, Symptoms and Treatment 

 Diagnosis of a TBI can be difficult based on the still confusing nature and lack of 

understanding of the exact mechanism of the injury.  However, if the person has an LOC 

or AOC of at least 30 minutes then the injury should be visible using magnetic resonance 

imaging (MRI)[6].  Some of the common symptoms of a mild TBI include headaches, 

fatigue, difficulty sleeping and vision problems while symptoms of a moderate TBI 

include forgetfulness, speech problems and decision-making issues[25,26].  Rehabilitation 

can include treatment at a trauma center where a course of action is specific to the 

patient and their situation.  Treatment commonly involves sessions with a psychologist 

and therapist along with possibly a neuropsychologist[6].  
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1.4 - Helmet and Padding System Description 

1.4.1 - Brief History of Helmet Models 

1.4.1.1 - Early Development of Helmets 

Various models of combat helmets have been used through the years and are 

routinely updated as better technology and ballistic protection are achieved.  Early 

Greeks fashioned makeshift helmets out of bronze but they did not give the wearer 

much room to view their surroundings[27].  Historically the first use of head protection 

by the modern-day military occurred during World War I and was developed in France.  

They were produced out of steel[28].        

This led to the development of the M1-Helmet which was used for a significant 

period of time and also was comprised of steel.  The M1-Helmet did have an inner liner 

to help provide more comfort and a better fit for the wearer; however, even with these 

improvements the comfort and fit were still causing substantial issues with the model.  

Other problems included lack of protection in key areas of the head and weight of the 

helmet[27].  Steel helmets also did not provide an adequate amount of ballistic protection 

to combat the velocity of projectiles they come in contact with[28]. 

1.4.1.2 - Development of PASGT Helmet 

In the 1970s development on a new helmet model was conducted to try and 

improve the problems seen in the M1-Helmet.  The Personnel Armor System Ground 

Troops (PASGT) helmet was produced.  Unlike the M1-Helmet which was only 
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manufactured in one size, the PASGT helmet came in five different sizes to 

accommodate multiple head sizes and shapes.  It covered and protected more of the 

head and came with a suspension system which provided extra comfort and prevented 

the shell from sitting directly on the wearer’s head[27,29].   

The helmet shell was made of a para-aramid Kevlar® conjugate and provided 

better ballistic protection than its steel predecessor.  Kevlar® was chosen for use due to 

its improved properties, most notably its high strength and toughness even when faced 

with high velocity projectile impact[27]. 

1.4.1.3 - Development of ACH 

Even with the improved performance of the PASGT helmet, another initiative 

was launched in the late 1990s to create an even better helmet option.  This led to the 

production of the Advanced Combat Helmet (ACH) in 2003.  The ACH has been slowly 

replacing the PASGT helmet and was loosely based on the Modular Integrated 

Communication Helmet (MICH) which is used by the Special Operations Force.  Figure 

1.4 shows each of the helmet models.  The ACH weighs less than the PASGT helmet and 

provides even better ballistic protection along with improved vision, the ability to attach 

night vision goggles and other necessary attachments and improved head mobility.  

Another improvement that was made which was well-received by the wearers was 

better comfort[30].   

 

 



14 

 

 

 

 

 

 

 

 

 

 

 

 

The ACH design allowed the use of a padding suspension system.  This provides 

more comfort to the wearer than previously shown with the sling suspension system 

used in the PASGT helmet[33].  Also, the upgrade to the ACH was based primarily on the 

need for increased ballistic protection which was the high priority at the time of 

development.  The addition of the padding system was used to specifically increase 

comfort and protection of the head from nearby blasts or explosions.  With the sling 

suspension the helmet sits directly on the wearer’s head which can cause injury while 

the padding system leaves room between the helmet shell and the head. The use of the 

padding suspension system has become important recently as the number of TBIs has 

Figure 1.4: Four helmet models: a) M1-Helmet, b) PASGT 

helmet, c) MICH, d) ACH[31,32] 
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dramatically risen[34].  Soldiers who are still using the PASGT helmet can replace the 

sling suspensions with a padding suspension upgrade kit. 

1.4.2 - Structural and Performance Specifications for Padding Suspension 

Systems 

There are many specifications that a helmet system needs to meet before it can be 

approved for military use.  Some of the specifications refer directly to the helmet shell or 

other components and must be tested by the appropriate standards such as the 

Department of Defense Specifications and the Department of Defense Standards.  Other 

non-governmental specifications can be found in American Society for Testing and 

Materials (ASTM), American Association of Textile Chemists and Colorists (AATCC), 

Department of Transportation Federal Motor Vehicle Safety and other publications and 

standards[35].  This section will focus on the specifications of the padding system and not 

the rest of the helmet system. 

The following are important structural aspects of the padding system that need to be 

achieved: 

 Pad system must come in multiple pieces 

 Pads must be easy to connect and disconnect from the helmet to allow the wearer 

to personalize for comfort 

 Normally contain one circular, two trapezoidal pads and four oval pads 

 Pads must be manufactured in two thicknesses:  ¾ and 1 inch 
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 Pads need to serve three functions: inner fabric layer to come in contact with 

wearer’s head and wick moisture, padding layer for comfort and protection, and 

outer fabric layer to connect to the helmet 

 Padding must provide “standoff, comfort, protection and stability” 

 “Hook discs” are attached to the inside of the helmet with adhesive to create a 

medium that the outer fabric layer can attach to 

 An adequate number of “hook discs” is necessary to allow pad movement to 

personalize pad placement and at least ½ of the inside of the helmet shell must 

be covered with discs 

 Each pad must have a permanent label of the pad thickness and other 

manufacturing descriptions 

The following performance specifications must also be achieved:  

 Outer fabric layer should be made of a material to connect to the inside of the 

helmet shell and must have a certain peel strength (3.5 lbs/inch of width) 

 Padding material must have the ability to be compressed numerous times 

without failing 

 Padding material cannot absorb liquid 

  “Hook discs” must be strong enough to not be easily removed from the inside of 

the helmet shell and must have a certain peel strength (3.5 lbs/inch of width) 

 Pads cannot disconnect from helmet while conducting a buoyancy test 

 Inner and outer fabric layers must achieve certain colorfastness results 
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 Pads must exhibit integrity and show no structural reduction at temperatures of  

-60°F and 130°F 

 Pads must also exhibit integrity and show no structural reduction at pressures at 

sea level and 15,000 feet 

 Pads must not be compromised when subjected to vibrations 

These must be met for the padding system to be approved for use[35].  Helmet testing is 

done on the entire system as opposed to testing individual components. 

1.4.3 - Helmet Padding Systems Currently on the Market 

There are currently five different helmet padding systems that are in use by 

soldiers: Oregon Aero® Ballistic Helmet Pads, SKYDEX® Military Ballistic Helmet Pads, 

Zorbium™ Action Pads (ZAP) by Team Wendy, Mine Safety Appliances (MSA) Pad 

Suspension and GENTEX Adjustable Pad Suspension.  Each has passed the appropriate 

military specifications to be available for use and possess different materials and desired 

padding properties they sought to emphasize and improve.  

1.4.3.1 - Oregon Aero® Ballistic Helmet Pads 

The Oregon Aero® Ballistic Helmet Pads padding system are produced by 

Oregon Aero, Inc. in Scappoose, Oregon.  The company focuses on the intelligent use of 

foams to make products safer and more comfortable for the user for a wide range of 

applications.  The padding is comprised of two different viscoelastic polyurethane 

foams of different colors (blue and pink) and properties[36].  The foams used in Oregon 
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Figure 1.5: Cross-sectional view of Oregon Aero® padding[37]  

Aero® padding are produced by EAR Specialty Composites: Aero Technologies (a 3M 

company) and are named CONFOR® foams.  The product names of the blue and pink 

foams are CF-45 and CF-42 respectively.  Figure 1.5 shows the cross-section of an 

Oregon Aero® pad.   

 

 

 

 

 

 

The foams soften and become slightly more pliable with increased temperature 

which gives the wearer increased comfort and helmet support.  However, the foams also 

show very high impact absorption even with this softening (reaching as high as 97% of 

the impact).  The combination of properties from both of the foams gives the Oregon 

Aero® pads very good performance and also comfort.  The stiffer, stronger CF-45 foam 

has a tensile strength of 0.154 MPa and an indentation force deflection (ASTM D3574 

Test B1 modified) of 34 N while the weaker CF-42 foam has a tensile strength of 0.125 

MPa and an indentation force deflection of 26 N.  Additional properties of the 

CONFOR® foams are shown in Table A.2 in Appendix A[38].  The padding system also 

gives good water resistance properties due to the proprietary coating which surrounds 
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the CONFOR® foams.  It was developed to have good air permeability but still be 

moisture resistant.  These characteristics are essential to keep the wearer cool but not 

allow moisture to ruin the integrity and impact absorption of the foams.  Increased 

moisture retention also increases the weight of the padding which can cause 

uncomfortable fit.   

Oregon Aero® pads can be used in many different helmets including ACH, 

PASGT, MICH and United States Marine Corp Lightweight Helmet (LWH).  The pads 

come in three different thicknesses to better fit the specific helmet the wearer is using 

and increase comfort level: size 4 pads (½ inch thick), size 6 pads (¾ inch thick) and size 

8 pads (1 inch thick).  The Oregon Aero® padding system comes with seven pads: one 

circular crown piece, two trapezoidal front and back pieces and four oval side pads[36, 39].  

The configuration of these pads within the helmet is illustrated in Figure 1.6.   
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