12-2009

MODELING THE COOLING PHASE OF THE LENS MOLDING PROCESS

Saravanan Kannan

Clemson University, saravanan4u@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Engineering Mechanics Commons

Recommended Citation

https://tigerprints.clemson.edu/all_theses/705

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
MODELING THE COOLING PHASE OF THE LENS MOLDING PROCESS

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Mechanical Engineering

by
Saravanan Kannan
December 2009

Accepted by:
Dr. Vincent Y. Blouin, Committee Chair
Dr. Paul F. Joseph
Dr. Richard S. Miller
Dr. Kathleen A. Richardson
Dr. Xiangchun Xuan
ABSTRACT

The lens molding process is a relatively new technique used to manufacture lenses, in particular, high precision aspheric lenses. In order to achieve the desired size and shape of the lens, the cooling process after pressing must be controlled precisely because of the time and temperature dependent viscoelastic behavior of glass near and below the molding temperature. This thesis gives a detailed description of a three-dimensional computational model for analyzing the cooling phase of the lens molding process. Conduction, convection and radiation are considered in the model by coupling a computational fluid dynamics analysis of the flow of nitrogen through the system and a transient heat transfer finite element analysis of the assembly. An iterative process between the fluid flow analysis and the thermal analysis is used to account for their interdependency. The model is calibrated and validated by direct comparison with the experimental results. Various parametric studies are performed to study the effect of several unknown parameters and design parameters on the accuracy of the numerical model. It was found that the model depends significantly on the unknown properties such as thermal contact conductance values and radiation properties, which should therefore be the subject of further investigation. This three-dimensional model can be used to extract the boundary conditions for a parallel study involving a more detailed two-dimensional axisymmetric sub-model of the lens and molds. The validity of two-dimensional axisymmetry assumption is verified from the results obtained through the three-dimensional model’s simulations.
DEDICATION

This thesis is dedicated to my parents Mr. Kannan Arunachalam and Mrs. Thenmozhi Kannan.
ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Vincent Blouin for his continuous support and guidance throughout my Masters program. His advice and constant encouragement helped me in finishing my thesis in numerous ways.

I would also like to thank Dr. Paul Joseph, Dr. Kathleen Richardson, Dr. Richard Miller and Dr. Xiangchun Xuan for their valuable inputs and their suggestions.

I would also like to thank Edmund Optics, the lens manufacturer for their financial support.

Last but not least, I would like to thank my parents Kannan Arunachalam and Thenmozhi Kannan and my brothers Karthikeyan and Siva and all my friends for their support and love throughout my life.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. COMPRESSION MOLDING PROCESS</td>
<td>10</td>
</tr>
<tr>
<td>3. FINITE ELEMENT NUMERICAL MODEL</td>
<td>18</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Literature Study</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Thesis Outline</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Description of the Molding Process</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Detailed Description of the Cooling Process</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Model Description</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Material Properties</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Analysis procedure</td>
<td>20</td>
</tr>
<tr>
<td>3.4 Initial Conditions</td>
<td>21</td>
</tr>
<tr>
<td>3.5 Input Heat Fluxes</td>
<td>22</td>
</tr>
<tr>
<td>3.6 Radiation</td>
<td>23</td>
</tr>
<tr>
<td>3.7 Meshing</td>
<td>25</td>
</tr>
<tr>
<td>3.8 Assumptions and Limitations</td>
<td>26</td>
</tr>
<tr>
<td>3.9 Thermal Contact Conductance</td>
<td>26</td>
</tr>
<tr>
<td>3.10 Example Simulation results</td>
<td>27</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

4. **COMPUTATIONAL FLUID DYNAMICS MODEL** 29

 4.1 Background .. 29
 4.2 CFD Model of a Single Cooling Channel 30
 4.2.1 Geometry of the Channel... 30
 4.2.2 Properties of the Fluid ... 31
 4.2.3 Initial and Boundary Conditions ... 31
 4.2.4 Solution Parameters .. 32
 4.2.5 Results ... 33
 4.2.6 Analytical Validation ... 35
 4.3 CFD Model of the Entire Fluid Domain .. 36
 4.3.1 Geometry ... 36
 4.3.2 Example Simulation Results .. 37
 4.3.3 Design of Experiments ... 39

5. **COUPLING FEA AND CFD** ... 40

 5.1 Introduction .. 40
 5.2 Interaction between FEA and CFD .. 40
 5.3 Coupled Solver for ABAQUS and FLUENT 41
 5.4 Example Simulation Results .. 44

6. **PARAMETRIC STUDIES** ... 46

 6.1 Parametric Study on Contact Conductance value ‘h’ 46
 6.2 Parametric Study on Emissivity and Ambient Temperature 51
 6.3 Effect of Nitrogen (coolant) Temperature 54
 6.4 Parametric study on Number of Increments between FLUENT and ABAQUS .. 55

7. **EXTRACTION OF BOUNDARY CONDITIONS** 58

 7.1 Transferring Data from the 3D Model to the 2D Axisymmetric Model ... 58
 7.2 Heat Flux Results throughout the Assembly 64

8. **CONCLUSION AND FUTURE WORK** .. 67

 8.1 Conclusion .. 67
 8.2 Future Work .. 68
Table of Contents (Continued)

APPENDICES…………………………………………………………………………………………….. 70

A: MATLAB code for interacting between ABAQUS and Fluent…………………………………….. 71

REFERENCES…………………………………………………………………………………………… 83
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Material properties</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of the coolant nitrogen</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Boundary types at first increment</td>
<td>32</td>
</tr>
<tr>
<td>6.1</td>
<td>Contact conductance (h) values for various contact surfaces and pressures</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Spherical aberration in a lens</td>
</tr>
<tr>
<td>1.2</td>
<td>No aberration in an aspheric lens</td>
</tr>
<tr>
<td>2.1</td>
<td>Toshiba Molding Machine</td>
</tr>
<tr>
<td>2.2</td>
<td>Molding Machine Assembly</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic model of the molding assembly during cooling</td>
</tr>
<tr>
<td>2.4</td>
<td>Different Stages of Lens molding process</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematics of four stages of a glass lens molding process</td>
</tr>
<tr>
<td>2.6</td>
<td>Two different stages of cooling phase in the molding process</td>
</tr>
<tr>
<td>3.1</td>
<td>One-quarter ABAQUS model of the Molding Assembly</td>
</tr>
<tr>
<td>3.2</td>
<td>See-through model of the one-eighth model of the molding assembly in ABAQUS</td>
</tr>
<tr>
<td>3.3</td>
<td>Cooling Plate</td>
</tr>
<tr>
<td>3.4</td>
<td>Surfaces where convection and radiation condition are defined</td>
</tr>
<tr>
<td>3.5</td>
<td>Figure 3.5: Simulation output, temperature distribution through the assembly at various times of the cooling phase</td>
</tr>
<tr>
<td>4.1</td>
<td>Nitrogen flow inside the assembly with their flow rates</td>
</tr>
<tr>
<td>4.2</td>
<td>Cooling channel with boundary conditions in GAMBIT</td>
</tr>
<tr>
<td>4.3</td>
<td>Contour of heat flux along the length of the channel</td>
</tr>
<tr>
<td>4.4</td>
<td>Heat flux along the channel length for channel</td>
</tr>
<tr>
<td>4.5</td>
<td>Model used by Benet Lab for heat flux calculation</td>
</tr>
<tr>
<td>4.6</td>
<td>Contour of surface heat transfer coefficient</td>
</tr>
</tbody>
</table>
4.7 Streamlines throughout and around the assembly ..38

5.1 Schematic representation of the interaction between CFD and FEA41

5.2 Schematic representation of the MATLAB code as a coupled
 solver between FEA and CFD ...42

5.3 Algorithmic representation of the interaction between CFD and FEA by
 Matlab ..43

5.4 Simulation output, temperature distribution through the assembly
 at various times of the cooling phase ..44

5.5 Temperature profile at the end of 300 seconds45

6.1 Temperature as a function of time for different h values with an
 emissivity of 0.55 and ambient temperature of 250 deg C49

6.2 Temperature after 300 seconds of cooling at the location of the
 thermocouple for different h values ...50

6.3 Temperature as a function of time at Thermocouples with respect
 to various emissivities for a constant ambient temperature
 of 200 deg C ..51

6.4 Temperature as a function of time at Thermocouples with respect
 to various emissivities for a constant ambient temperature
 of 250 deg C ..52

6.5 Temperature as a function of time at Thermocouples with respect
 to various emissivities for a constant ambient temperature
 of 300 deg C ..53

6.6 Temperature along the length of the cooling channel for various
 incremental procedures ...55

6.7 Heat flux along the length of the channel for the five increments in a five
 incremental procedure ...56

6.8 Temperature at a point in the cooling channel for various incremental
 Procedures ..57
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>3D model and boundary of the 2D axisymmetric model showing the upper and lower tools and lens</td>
</tr>
<tr>
<td>7.2</td>
<td>Tool showing the edges for which the temperatures are plotted in Figure 7.3</td>
</tr>
<tr>
<td>7.3</td>
<td>Temperature as a function of time for various edges in the tool shown in Figure 7.2</td>
</tr>
<tr>
<td>7.4</td>
<td>Tool and lens showing the edges in yz-plane for which the temperatures are plotted in Figure 7.5</td>
</tr>
<tr>
<td>7.5</td>
<td>Temperature as a function of time for various edges in the tool and the lens shown in Figure 7.4</td>
</tr>
<tr>
<td>7.6</td>
<td>Tool and lens showing the points where heat fluxes are plotted in Figure 7.7</td>
</tr>
<tr>
<td>7.7</td>
<td>Heat flux per area as a function of time for various elements in the tool and the lens shown in Figure 7.6</td>
</tr>
<tr>
<td>7.8</td>
<td>7.8: Tool and lens showing the points where heat fluxes are plotted in Figure 7.9</td>
</tr>
<tr>
<td>7.9</td>
<td>Heat flux per area as a function of time for various nodes (points) in the tool and the lens shown in Figure 7.8</td>
</tr>
<tr>
<td>7.10</td>
<td>Heat flux vector in the whole model</td>
</tr>
<tr>
<td>7.11</td>
<td>Heat flux vectors on a section on the xz-plane</td>
</tr>
<tr>
<td>7.12</td>
<td>Heat flux vectors on a section cut on a plane rotated 30 degrees about the z-axis from the xz-plane (through the cooling channels)</td>
</tr>
<tr>
<td>7.13</td>
<td>Heat flux vectors for a section on a plane parallel to the yz-plane through the middle of the lens (a) after 10 seconds</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background

Glass lenses have been used in the field of high resolution digital cameras, DVD players and recorders. Spherical lenses are the most common type of lenses. Spherical surfaces are generally created by polishing the lens preform between convex and concave parts of intended radius of curvature. The word “preform” refers to the initial glass work piece that is then formed into the final lens either through machining, grinding and polishing or molding.

One of the major drawbacks of spherical lenses is spherical aberration, i.e., they cannot focus the light into a single point as illustrated in Figure 1.1. Parallel rays that pass through the central region of a spherical lens focus farther away than the light rays that passes through the edges of the lens. The result is a focal region, which may produce a blurry image. In most applications, this problem is corrected by having multiple spherical lenses placed in series to compensate for the error introduced by a single lens. This multiple-lens assembly, however, results in alignment and mounting complexities, higher cost and higher weight.

Aspheric lenses have one or both surfaces that do not conform to a sphere and can theoretically focus all the incoming light rays on to a single point on the lens axis as illustrated in Figure 1.2. Aspheric lenses are therefore more efficient, since they do not need addition corrective lenses making devices lighter, smaller and potentially cheaper.
High precision lenses find their application in medical and military equipments, scientific testing devices and collision avoidance devices.

Figure 1.1: Spherical aberration in a lens

Figure 1.2: No aberration in an aspheric lens

Lens molding technology was developed to mass-produce aspheric lenses for larger lens systems, from 2 to 60 mm in diameter. Aspherical lenses can also be manufactured by precision ground method whereby the glass surface is directly grounded
with a grinding device. Molded aspheres are produced by heating the preform until it becomes soft and then pressing it between aspheric dies. To manufacture a molded asphere, a tool (i.e., mold) must be created, which involves a complex and expensive iterative process. High cost of manufacturing aspheric elements has prevented their common use by lens designers and optical engineers.

Compression molding offers a promising approach for large volume, cost effective manufacturing of precision aspheric lenses which otherwise is difficult to make using conventional lens fabrication techniques. One of the problems the manufacturers are facing is that after making a few hundred lenses, cracks appear at the surface of the molds (mold coating degradation).

Edmund Optics partnered with Clemson University and Benet Laboratories, a U.S. Army research facility, to develop assembly technology for molded aspheric systems. The goal of this project was to minimize the time and cost of producing aspheric lenses. Several research teams worked in parallel on this project to address several aspects of the glass molding process such as the use of finite element analysis (FEA) models to predict the lens final size and shape, and identify the material parameters critical to a successful interaction of the glass and mold. As part of this project, Ananthasayanam [1] developed a two-dimensional (2D) axisymmetric Finite Element model of on the lens and dies for the entire molding process including all stages, namely, heating, soaking, pressing, cooling, and release. The research presented in this thesis focuses on the development of a three-dimensional (3D) Finite Element model of the entire assembly during the cooling stage governed by the flow of nitrogen through
cooling channels within the assembly. The overarching goal was to use the output of the 3D model, namely, temperature boundary condition and heat fluxes of the cooling stage, as input to the 2D model.

1.2 Research Objectives

The objectives of the research reported in this thesis are:

- Develop a three-dimensional transient heat transfer numerical model of the cooling stage using an incremental procedure coupling Finite Element Analysis (FEA) for the temperature analysis and Computational Fluid Dynamics (CFD) for the analysis of the fluid flow of nitrogen;

- Perform parametric studies to investigate the influence of parameters related to the numerical process (such as partitioning of the cooling channels and number of increments) and parameters for which we have low confidence (such as input nitrogen temperature, thermal contact conductance values and radiation parameters);

- Extract information such as heat fluxes and temperature boundary conditions needed for the parallel two-dimensional axisymmetric numerical study focused on the prediction of the final size and shape of the lens.

1.3 Literature Study

Numerical modeling of molding processes

Compression molding offers a promising approach for large volume, cost effective manufacturing of precision aspheric lenses which otherwise is difficult to make using conventional lens fabrication techniques. Yana et al. [2] have modeled the high temperature glass lens molding process by coupling heat transfer and viscous
deformation analysis. In their study a two-step pressing process is proposed according to the non-linear thermal expansion characteristics of glass. The results concluded that incomplete heating of glass not only increases the pressing load at the beginning of pressing, but also leads to non-uniformity in viscous deformation and geometrical error of the glass component. Molding process simulations were carried out using a FEM program DEFORM – 3D. A computational model for the cooling phase of the injection molding process was developed by Smitha and Wrobela [3]. The whole geometry was created in I-DEAS and then imported into GAMBIT where all the initial and boundary conditions were applied and then exported to FLUENT for analysis. The use of computational model allows the monitoring of maximum and minimum temperatures and temperature contour plots on any surface. The results generated through the model can be used to evaluate a potential mold cooling configuration in advance of tool manufacture.

Sridhar and Nahr [4] studied the effect of temperature dependent thermal properties on process parameter prediction in injection molding. The results obtained from the simulations are compared with those of constant thermal properties such as contact thermal conductance and specific heat. Based on the simulation results it is found that the bulk temperature, defined as the velocity weighted average temperature calculated based on variable thermal conductivity and specific heat will give a shorter cycle time than those based on constant values.

As mentioned earlier, Ananthasayanam [1] developed a two-dimensional axisymmetric coupled temperature-displacement model of the glass molding process using ABAQUS to simulate the whole process of lens forming and to predict the final
shape/size of the lens. The results showed that the primary cause of the deviation of the lens profile was due to structural relaxation of the glass, time-temperature dependence of viscoelastic behavior of glass and thermal expansion behavior of the molds.

Modeling Fluid-structure-thermal interactions

Bilgen [5] conducted a numerical and experimental study of a conjugate heat transfer problem by conduction and natural convection on a heated vertical wall. The author made an assumption that the wall is subjected to a uniform heat flux on one side and cooled on both sides by natural convection of surrounding air. The equations of mass, momentum and energy conservations are solved by a control volume method – Simpler algorithm. The results obtained showed that the interaction of conduction with natural convection on a heated vertical wall results in reducing the wall temperature and in making it nearly isothermal along the wall.

Zhou and Li [6] developed a computer simulation for three-dimensional mold heat transfer of the television panel pressing process. Two analyses were done in this simulation, one three-dimensional boundary element method for the mold region and a finite-difference method with a variable mesh for the melt region. These two analyses were iteratively coupled so as to match the temperature and heat flux at the mold melt interface. The iterative procedure starts with assuming the mold-melt interface temperature distribution and carrying out the part melt analysis to determine the heat flux variation with time along the mold-melt interface. After determining the cycle average flux values using heat flux distribution mold analysis is performed to obtain the temperature distribution along the interface. If the interface temperature is in close
agreement with that assumed for the melt analysis the iterative procedure is stopped, otherwise the procedure is repeated again. The authors found that the simulation package is very suitable as a tool in the optimization of mold and processing design, and is currently used to optimize a production line.

Lanoye et al. [7] studied the interaction between blood flow and the vessel wall while studying the vascular blood flow. A set of solutions was obtained through the implementation of a fluid-structure-interaction scheme. They established a coupling between fluid solver software Fluent 6.2 and structural solver software Abaqus 6.5 similar to the coupling presented in this thesis.

Lin et al. [8] studied a fully 3D simulation of mold temperature variations based on FEA and Finite Volume Method (FVM) implemented in a parallel computation scheme for lens molding. The mold temperature and melt temperature are solved in a coupled manner and obtained simultaneously. Combined space and time parallelization offer the possibility of adapting to characteristics of the parallel computer used, which results in high efficiency. They concluded that the FEA-FVM combined approach with parallel scheme compares well with measured experimental values. The parallel scheme offers much less computational cost than the standard analysis on a single computer.

Experimental characterization of cooling processes

Peng and Wang [9] experimentally investigated the heat transfer characteristics and cooling performance of rectangular shaped microgrooves machined into stainless steel plates. The influence of liquid velocity, sub-cooling, property variations and micro channel geometric configuration on the heat transfer behavior and cooling performance
were analyzed experimentally. The results of their study concluded that the heat transfer performance and the cooling characteristics were enhanced as the channel number increased and size of the micro channels approached an optimum geometry.

Zhu et al. [10] investigated experimentally the forced convection of low temperature Nitrogen gas flowing through rectangular channels with hydraulic diameters of 0.513–1.814 mm and aspect ratios of 0.013–0.048. The results from their study show that for the channel size used in the experiment, the transition from laminar to turbulent was not obvious and the transition was dependent upon channel depth and heat addition. Thermal clogging is suggested to be the primary mechanism for the heat transfer and flow characteristics in micro channels.

1.4 Thesis Outline

Chapter 2 describes the compression lens molding process in general and discusses in detail the various steps involved including the cooling process, which is the focus of this research. In chapter 3, the ABAQUS Finite Element Model of the molding machine, material properties, mesh details, type of analysis, boundary conditions and a few sample results obtained from the analysis are presented.

In chapter 4, the FLUENT Computational Fluid Dynamics model of the cooling channel is discussed. Along with the model, the type of solver used, coolant properties and the domain considered for the analysis are explained in this chapter. Chapter 5 explains how the interaction between FEA software ABAQUS and CFD software FLUENT is done using MATLAB. It also explains the algorithm used in the MATLAB code for the incremental procedure. Chapter 6 is a parametric study on various
parameters and their effects on the cooling rate. Results obtained from the studies are discussed in detail. Chapter 7 explains how the temperature as well as heat flux can be given as boundary conditions to the parallel study discussed in section 1.1. In chapter 8 the research study is summarized with important conclusions based on the simulations and recommendations for future work are made.
CHAPTER TWO
COMPRESSION MOLDING PROCESS

2.1 Description of the Molding Process

Compression molding is a form of molding process in which the material to be molded is generally preheated and then placed in a heated mold cavity. The compression molding machine consists of a cylindrical assembly made of several parts as shown in Figures 2.1 and 2.2. The lens (i.e., glass preform) is compressed between the upper and lower sub-assemblies, both of which consist of a die holder, a mold, a zinc plate separator (only in lower sub-assembly), and a cooling plate.

Figure 2.1 shows the GMP–311VA Toshiba molding machine owned by Edmund Optics for manufacturing aspherical lenses.
Figure 2.2: Molding Machine Assembly
Figure 2.3: Schematic model of the molding assembly during cooling
The glass forming process is decomposed into the following five stages:

1. Heating: Infrared (IR) lamps are used to heat the entire assembly from room temperature to 587 deg C. This stage generally takes two to three minutes.

2. Soaking: Once the temperature sensors placed near the molds indicate the target temperature (587 deg C), the temperature control strategy (turning the heater on and off) is started to maintain the temperature constant. The soak time is generally less than two minutes.

3. Forming: After the pre-defined soak time (which is assumed to be sufficient to reach a uniform temperature through the assembly and the lens), a compressive force is applied to the lower mold to form the softened glass material that takes the shape of the molds. Pressing takes place under a constant force of 1.5 kN until a specified displacement is achieved. A load cell located below the bottom assembly controls the pressing force.

4. Cooling: The cooling phase occurs in two stages based on different nitrogen flow rates detailed later in this chapter. First, Nitrogen gas is passed through the cooling channels located away from the lens for a period of 300 seconds. Then nitrogen is passed through the cooling channels located near the lens for a period of 600 seconds.

5. Release: Finally the formed lens is detached from the molds and freely cooled to room temperature.
The process data obtained from the manufacturer is shown in the Figure 2.4.

Figure 2.4: Different Stages of Lens molding process
The schematic model of the molding process is shown in Figure 2.5.

Figure 2.5: Schematics of four stages of a glass lens molding process: (a) heating, (b) forming (with a constant force of 1.5 kN), (c) cooling (nitrogen gas) and (d) release.
2.2 Detailed Description of the Cooling Process

During the cooling process, the heat is removed by the three main heat transfer mechanisms, i.e., conduction, convection and radiation. The heat is removed from the glass mainly by conduction of heat into the tools and mold dies. Heat is removed from the mold dies by convection through the cooling channels and radiation to the environment. By controlling the nitrogen flow rate through the cooling channels, initial slow cooling is performed to lower the glass temperature below its transformation temperature followed by fast cooling. A constant load is maintained on the formed lens during this step. The lens is finally released from the molds close to room temperature and is allowed to cool to the ambient.

The cooling channels closer to the lens (hereafter referred to as upper cooling channels) are formed by the gap between the mold dies and the cooling plate. The cooling channels away from the lens (hereafter referred to as lower cooling channels) are formed by the gap between the cooling plates and die holders. More details about the cooling channels are given in Chapter 3.
As explained earlier, there are two stages of cooling, slow cooling and rapid cooling. During slow cooling the nitrogen flows around the assembly in addition to the lower cooling channels. The rapid cooling occurs in the second stage of the cooling phase where the entire assembly is cooled down with nitrogen in approximately 10 minutes. In this stage the nitrogen flow around the assembly is turned off and only the upper cooling channels are turned on at a high rate.
CHAPTER THREE

FINITE ELEMENT NUMERICAL MODEL

3.1 Model Description

Numerical Finite Element Method (FEM) has routinely been used in the manufacturing industry to study, analyze, develop, improve and optimize manufacturing process performance. With the advent of the advanced commercial FEM codes and computing hardware it is possible to realistically simulate and observe process variables that are difficult or even impossible to measure from experiments, for example in case of lens molding it includes among others: temperature distribution in glass, residual stress distribution, etc.

The 3D model of the molding assembly was done in ABAQUS, a commercial software package for Finite Element Analysis [11]. Symmetry is taken into account to first reduce the size of the model to a quarter of the assembly as shown in Figure 3.1. The model was then reduced further to an eighth of the assembly by assuming vertical symmetry. That is the shape of the lens and the thermal behavior are assumed symmetric about the middle XY-plane. The quarter model of Figure 3.1 shows the molding assembly which is made up of different parts as follows:

- Lens
- Spacer
- Tools (lower and upper)
- Cooling Plates (lower and upper)
- Die Holders (lower and upper)
- Mold Dies
- Nitrogen Tubes
Separators

Figure 3.1: One-quarter ABAQUS model of the Molding Assembly and materials in parentheses
3.2 Material Properties

Table 3.1 shows the properties of all the materials used in the modeling of the molding machine.

Table 3.1: Material Properties (Refer to Figure 3.1)

<table>
<thead>
<tr>
<th>Property</th>
<th>Glass</th>
<th>J05</th>
<th>M45 (Nickel Binder)</th>
<th>FHR96 (Cemented Carbide)</th>
<th>Si$_3$N$_4$ (Silicon nitride)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (W/(m.K))</td>
<td>1.126</td>
<td>63</td>
<td>42</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>Density (kg/m3)</td>
<td>2000</td>
<td>14650</td>
<td>14400</td>
<td>17600</td>
<td>3200</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>0.25</td>
<td>0.2</td>
<td>0.22</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>Expansion Coefficient (/C)</td>
<td>8.1x10$^{-6}$</td>
<td>4.6 10$^{-6}$ at 400 C</td>
<td>5.5 10$^{-6}$ at 400 C</td>
<td>5.4 10$^{-6}$ at 400 C</td>
<td>1.8 10$^{-6}$ at 400 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8 10$^{-6}$ at 600 C</td>
<td>5.9 10$^{-6}$ at 600 C</td>
<td>5.5 10$^{-6}$ at 600 C</td>
<td>2.1 10$^{-6}$ at 600 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young’s Modulus (N/m2)</td>
<td>1.0e1E+11</td>
<td>6.5E+11</td>
<td>5E+11</td>
<td>3.5E+11</td>
<td>2.91E+11</td>
</tr>
<tr>
<td>Specific Heat (J/(kg-K))</td>
<td>200</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>711</td>
</tr>
</tbody>
</table>

3.3 Analysis procedure

In ABAQUS, a transient heat transfer analysis was done for all the simulations. This analysis is used to model the solid body heat conduction and temperature-dependent conductivity, convection and radiation boundary conditions. In this simulation the forced convection part was done using FLUENT, a 3D Computational Fluid Dynamics (CFD) based tool from ANSYS [12].
3.4 Initial Conditions

The initial temperature field is defined as 587 deg C everywhere in the model. This is the temperature that is maintained through the whole model during the pressing phase just before the cooling starts. During the starting of the cooling phase, the top and bottom molds of the assembly are in a closed position and is maintained in that position for the first phase of cooling (300 seconds).

Figure 3.2: See-through model of the one-eighth model of the molding assembly in ABAQUS
The red arrows in Figure 3.2 indicate the path of nitrogen flow through the lower cooling channels between the cooling plate and the die holder. The cooling channels closer to the lens are formed by the gap between the mold dies and the cooling plates. The cooling channels away from the lens are formed by the gap between the cooling plates and the die holders.

3.5 Input Heat Fluxes

Heat transfer analysis is done in ABAQUS by defining heat fluxes as negative thermal loads on specific surfaces and running the simulation for the first cooling period of 300 seconds. The thermal loads are negative since they draw the heat out of the assembly to cool. Heat fluxes defined on the cooling channels were found out by taking the fluid domain in the cooling channels alone into the account (detailed explanation is given in chapter 4), whereas heat fluxes defined on the surfaces other than the cooling channels, such as the outer surfaces of the die holders and cooling plates are calculated by Dan Cler, from Benet Laboratories, a research partner in this project.

In order to account for the temperature-dependency of the heat fluxes during the transient heat transfer, the fluxes are updated at predefined specific times during the simulation. For instance, the 300-second simulation can be divided into 5 increments of 60 seconds with an update at the start of each increment.
Figure 3.3: Cooling Plate

Figure 3.3 shows the cooling plate with the cooling channels highlighted in red. The cooling plates include cooling channels on both sides.

3.6 Radiation

Cooling takes place through convection as well as radiation heat transfer. In the molding process the assembly is enclosed inside a translucent quartz tube (shown in Figure 2.1) placed between the assembly and the surrounding heater coils. In the simulation the radiation is modeled as an interaction between the outer surfaces of the assembly and the environment.

The geometry and thermo-physical properties of the quartz tube, heating coils and the rest of the surrounding environment are too complex to be accurately incorporated into the model. Therefore, the radiation emitted from the assembly to the surrounding
environment is defined by an effective environment temperature, \(\theta \), referred to as the non-reflective environment temperature or the ambient temperature. Since this effective temperature and the emissivity of the materials are unknown a parametric study, described in the next section, was performed to determine the appropriate values to match the experimental measurements.

In ABAQUS, the radiation heat flux per unit area \(q \) (W/m\(^2\)) is defined as

\[
q = \left[\sigma \varepsilon (\theta - \theta_0) + (1 - \varepsilon) \theta \right]
\]

where \(\sigma \) is the Stefan-Boltzmann constant, \(\varepsilon \) is the emissivity of the surface of interest, \(\theta \) is the ambient temperature (also referred to as the temperature of the non-reflecting environment), \(\theta \) is the temperature of the surface of interest and \(\theta \) is the absolute zero temperature.

The surfaces shown in Figure 3.4 have different thermal loads. Radiation is defined on all external surfaces of the assembly and convection is defined on specific surfaces based on the nitrogen flow around the assembly.
3.7 Meshing

The finite element mesh includes linear tetrahedral and hexahedral elements. The entire assembly consists of about 53,000 elements (clock time for a single simulation ranges from 1 hour to 2.5 hours). To study the effect of meshing on the results a finer mesh of 100,000 elements was tested. The results of both cases were matching within 1.0 deg C in temperature after 300 seconds of simulation. Therefore, in order to maintain the computation time as low as possible, the coarser mesh (53,000 elements) was assumed to be sufficient for all simulations.
3.8 Assumptions and Limitations

i. The xz-plane and yz-plane are considered as planes of symmetry in order to reduce the size of the sample to one-quarter of the assembly.

ii. Differences between the top and bottom halves of the assembly are neglected taking the xy-plane as a plane of symmetry to further reduce the model to one-eighth of the assembly (shown in Figure 3.2).

iii. Non-uniformity of pressure in the radial direction is neglected. Therefore, surface conductance values are assumed uniform throughout the assembly (discussed in the next section).

iv. In defining radiation, although the heating elements (coils and support) cool down during the cooling period of 300 seconds, the ambient temperature of the radiation model, which represents the inside surface of the heating elements is maintained constant throughout the cooling period.

3.9 Thermal Contact Conductance

Thermal Contact Conductance (TCC) h, is the ratio of the heat flux (Q/A) to the temperature drop across the interface of two materials in contact. It is recognized that thermal contact conductance is a function of several parameters, the dominant ones being the type of contacting materials, the macro- and micro-geometry of the contacting surfaces, the temperature, the interfacial pressure, the type of lubricant or contaminant and its thickness [13, 14]. In processes involving high temperature, high pressure and various material-material interactions this contact conductance plays a critical role. When two materials are in contact with each other the actual contact takes place only at a few
points where heat transfer takes place. Even if the pressure is increased by several orders of magnitude the actual contact area is generally still much less than the nominal contact area.

In ABAQUS, the TCC values were implemented to define conductive heat transfer between closely adjacent or contacting surfaces through an interaction property. The conductive heat transfer between the contact surfaces is assumed to be defined by

\[
q = k \left(\frac{\theta_A - \theta_B}{\Delta x} \right)
\]

where \(q \) is the heat flux per unit area crossing the interface from point \(A \) on one surface to point \(B \) on the other, \(\theta_A \) and \(\theta_B \) are the temperatures of the points on the surfaces, and \(k \) is the TCC value. As discussed later in Section 6.1 of this thesis, the TCC values were selected as 4500 W/m\(^2\)K for all contact pairs.

3.10 Example Simulation results

Figure 3.5 shows the temperature distribution through the assembly at three different times, one at starting of the cooling period, one at 150 seconds and the other at the end of the first cooling phase, 300 seconds. For these simulations, the radiation is defined by an emissivity of 0.65 and ambient temperature of 200 deg C. In the legend of most figures, “NT11” refers to the “Nodal Temperature”.
Figure 3.5: Simulation output, temperature distribution through the assembly at various times of the cooling phase (a) At the starting (0th second), (b) At 150th second and (c) At 300th second
CHAPTER FOUR
COMPUTATIONAL FLUID DYNAMICS MODEL

4.1 Background

In the ABAQUS FEA model, convection effects are defined as surface heat fluxes, which are computed using a computational fluid dynamics model (CFD) in FLUENT [15]. Figure 4.1 shows the fluid domain throughout and around the solid one-quarter assembly. It shows the nitrogen flow inside the assembly with typical flow rates used on the actual molding machine. In the first phase of cooling the channel U01, L01, U02 and L02 are turned on while U1 and L1 are turned off. In the second stage, U1 and L1 are also turned on for rapid cooling.

Figure 4.1: Nitrogen flow inside the assembly with their flow rates
During the first stage of cooling, U01 and L01 channels have very low nitrogen flow rates in the order of 2-4 liters/minute where as the channels U02 and L02 have a considerably greater flow rate, i.e., 20 liters/minute. Based on this information, it is expected that most of the heat transfer takes place in the cooling channels. Therefore, this research focuses on the CFD analysis of the fluid flow in a single cooling channel as opposed to the whole fluid domain throughout and around the assembly. Another reason for choosing this domain is due to the lack of computational power required to analyze the whole fluid domain.

4.2 CFD Model of a Single Cooling Channel

4.2.1 Geometry of the Channel

![Figure 4.2: Cooling channel with boundary conditions in GAMBIT](image)

Figure 4.2: Cooling channel with boundary conditions in GAMBIT

The cooling channel was designed in GAMBIT [16], a general preprocessor for CFD analysis, and assigned different boundary conditions such as velocity inlet, outlet
pressure and wall, as shown in Figure 4.2. The cooling channel has a length of 0.039 m. The channel is meshed with 20 nodes along the z direction (width) and 30 nodes along the x direction (length) and with 10 nodes along the y direction (height). Meshing along the width and height are shown in the zoomed view of the inlet section in Figure 4.3.

4.2.2 Properties of the Fluid

The fluid here is the coolant Nitrogen (N₂) and the properties are reported in Table 4.1.

Table 4.1: Properties of the coolant Nitrogen [17, 18]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (ρ)</td>
<td>1.123</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>1040.67</td>
<td>J/kg/K</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.0242</td>
<td>W/m/K</td>
</tr>
<tr>
<td>Dynamic viscosity (μ)</td>
<td>178.2e-7</td>
<td>N.s/m²</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>15.86e-6</td>
<td>m²/s</td>
</tr>
</tbody>
</table>

4.2.3 Initial and Boundary Conditions

All the walls were defined with an initial temperature value of 587 deg C. The wall temperatures were updated periodically depending on the incremental procedure adapted (incremental procedure explained in chapter 5). These temperature values were taken from the ABAQUS temperature profile output and updated in FLEUNT.

Table 4.2: Boundary Types at first increment
Assigned Boundary Conditions

<table>
<thead>
<tr>
<th>Surface</th>
<th>Conditions</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet of the Channel</td>
<td>Velocity Inlet</td>
<td>30 m/s</td>
</tr>
<tr>
<td>Outlet of the Channel</td>
<td>Pressure Outlet</td>
<td>-</td>
</tr>
<tr>
<td>All the four walls of the Channel</td>
<td>Temperature Boundary Conditions</td>
<td>587 deg C</td>
</tr>
</tbody>
</table>

Fluent Solver

In FLUENT two solver technologies are available

- Pressure-based
- Density-based

In this simulation we are using the pressure-based solver. Density-based solvers are designed for high speed compressible flows whereas pressure-based solvers are used for incompressible and mildly compressible flows. In our case since the velocity of the coolant is 30 m/sec, we are using pressure-based solver.

Viscous Model

There are various viscous models in FLUENT such as inviscid, laminar, turbulent and large eddy simulation model. Based on the type of flow the appropriate viscous model is selected. Reynolds number is calculated to determine whether the flow is laminar or turbulent.

Reynolds number, \(Re = \frac{V \cdot L}{\nu} = 1056 \)
where \(\rho \) is the density, \(u_m \) is the mean velocity, \(D_h \) is the hydraulic diameter and \(\mu \) is the dynamic viscosity of the nitrogen.

\[
D_h = \frac{2 \times \mu \times W}{(H + \mu)} = 5.5814 \times 10^{-4} \text{ m}
\]

If the Reynolds number is less than 2300 we can consider it to be laminar flow [18]. Hence a laminar flow model is used.

In laminar flows, the fluid side heat transfer at walls is computed using Fourier's law applied at the walls. FLUENT uses its discrete form:

\[
q = k_f \frac{\partial T}{\partial n}
\]

where \(q \) is the heat flux, \(T \) is the temperature of the wall, \(n \) is the local coordinate normal to the wall and \(k_f \) is the thermal conductivity of the fluid.

4.2.5 Results

Figure 4.3 shows the heat flux distribution along the length of the channel when the coolant nitrogen passes through the channel which is at a temperature of 587 deg C. From the result above it can be inferred that most of the heat loss from the channel occurs near the entrance of the channel. As the nitrogen flows along the length of the channel the heat absorption is low and hence the heat flux is getting decreased.
Figure 4.3: Heat flux distribution along the length of the channel

Heat fluxes input into Abaqus are calculated for the partitions, shown in Figure 4.2, by calculating the surface average of Fluent results. The red curve in Figure 4.4 indicates the heat flux along the length of the channel. Figure 4.4 has 20 red curves and each curve corresponds to different locations on the width of the channel as shown in Figure 4.2 (20 nodes on the width) and are superimposed on the plot. The blue lines indicate the nonlinear surface average of the heat fluxes along the length of the channel. A MATLAB program was written to split the XY data for all these curves and calculate the corresponding surface-averaged heat flux.
4.2.6 Analytical Validation

An approximate analytical calculation of the heat flux was done to verify the average heat flux value given by FLUENT.

Length of the channel, \(L \) = 0.04 m
Width of the channel, \(W \) = 0.004 m
Height of the channel, \(H \) = 0.0003 m
Velocity, \(u_m \) = 30 m/sec
Hydraulic Diameter, \(D_h = \frac{2HW}{H+W} \)

\[= 5.5814 \times 10^{-4} \text{ m} \]

Reynolds Number, \(Re = \left(\frac{\rho \, u_m \, D_h}{\mu} \right) \)

\[= 1055.75 \]

\[= 1056 \]

Nusselt Number, \(Nu = \left(\frac{h \, D_h}{k} \right) \)

Nusselt Number and friction factor values are taken from Table 8.1 from reference [19] using the cross section of the tube through which the fluid is flowing. Nusselt Number for \(W/H = 13.33 \), \(Nu = 5.8126 \).

Assuming fully developed flow

Heat transfer coefficient, \(h = \frac{k \, Nu}{D_h} \)

\[= 269.83 \text{ W/m}^2\text{K} \]

Heat Flux, \(Q = h \theta \)

\[= 269.73 \times (860 - 300) \]

\[= 1.5105e5 \text{ W/m}^2 \]

The heat flux value from the analytical calculation is estimated as \(1.51e5 \text{ W/m}^2 \) compared to \(1.85e5 \text{ W/m}^2 \) computed by Fluent. The difference in the values is due to several approximations such as the Nusselt Number value.

4.3 CFD Model of the Entire Fluid Domain

4.3.1 Geometry

As explained earlier in the chapter the whole domain of the fluid is not considered in this research study. However Benet Lab, a research partner in this project, considered
the whole fluid domain to calculate the heat fluxes. Figure 4.5 shows the model used by Benet Lab for the heat flux calculation. The whole domain consists of around 60 surfaces and for each surface the heat fluxes are calculated.

![Figure 4.5: Model used by Benet Lab for heat flux calculation](image)

4.3.2 Example Simulation Results

Few sample simulation results from FLUENT done by Benet Lab are shown below. Figure 4.6 and 4.7 show the contour plot of the surface heat transfer coefficient for the flow of nitrogen through the cooling and the streamlines throughout and around the assembly, respectively.
Figure 4.6: Contour of surface heat transfer coefficient

Figure 4.7: Streamlines throughout and around the assembly
4.3.3 Design of Experiments

Benet Lab calculated the heat fluxes for all the surfaces using a Design Of Experiments (DOE) approach, which allows a parametric representation of the heat fluxes based on a limited sampling of the parametric space. DOE combines several process variables in one study instead of creating a separate study for each variable. Hence the amount of testing required will be drastically reduced and greater process understanding will result [20]. The parameters considered while formulating DOE are nitrogen flow rate in the channels, nitrogen temperature and the mold temperature. In this research the heat fluxes defined on the surfaces other than the cooling channels, such as outer surfaces of the die holders and cooling plates and other non-negligible surfaces are taken from the data provided by the DOE results.
CHAPTER FIVE
COUPLING FEA AND CFD

5.1 Introduction

There are three general methods for solving the fluid-heat transfer problem. The first method consists of solving the fluid flow problem and the transient heat transfer analysis problem simultaneously using multi-physics software such as ANSYS [12]. The complexity and size of the fluid domain prevents the use of this method given the computational resources available. The second method consists of using the conjugate heat transfer capability of Fluent, which can solve the heat transfer problem in the solid domain in addition to the fluid flow problem. However, the solid domain is limited in geometry and contact conductance values cannot be defined between solid faces. The third method, used in this research, consists of decomposing the whole problem into the fluid flow problem and the heat transfer problem and coordinating them in an incremental procedure. This method allows a detailed definition of the solid domain with different materials properties and surface conductance values at interfaces.

5.2 Interaction between FEA and CFD

This interaction study investigates the sensitivity of the solution to the frequency of coupling or data exchange between the FEA and CFD solvers.
Figure 5.1: Schematic representation of the interaction between CFD and FEA

5.3 Coupled Solver for ABAQUS and FLUENT

In this study the heat fluxes are calculated first by Fluent and input into Abaqus at the start of the transient heat transfer analysis. The wall temperatures computed by Abaqus after a time increment ΔT are used as input into Fluent. The heat fluxes are then recalculated by Fluent and updated in ABAQUS for the next increment of the transient heat transfer analysis. Each ABAQUS transient analysis is started from the temperature field computed at the end of the previous increment (stored in ODB file). This interaction between FLUENT and ABAQUS is repeated for every increment ΔT. The number of increments (defined by ΔT) has an effect on the results. All these interactions are done by a MATLAB code automatically. A parametric study has been done on how the delta t affects the final simulation results.
Figure 5.2: Schematic representation of the MATLAB code as a coupled solver between FEA and CFD
Figure 5.3: Algorithmic representation of the interaction between CFD and FEA by Matlab

- \(t = 0 \)

Run FLUENT for a steady state analysis of given wall temperature

Get Heat fluxes from FLUENT and update ABAQUS input file

Run ABAQUS for a transient heat transfer analysis from \(t \) to \(t + \Delta t \) seconds

Get the wall temperature values from ABAQUS results. Update FLUENT input file.

If \(t > 300 \), then \(t = t + \Delta t \)

No

Yes

Stop the iteration after 300 seconds

Stop the iteration after 300 seconds
5.4 Example Simulation Results

The following figures represent the temperature profile of the whole model at different time intervals. This is the output of the simulation for a 30 increments procedure, the data exchange between ABAQUS and FLUENT takes place for every 10 seconds (total simulation period is 300 seconds).

Figure 5.4: Simulation output, temperature distribution through the assembly at various times of the cooling phase (a)At the starting (0th second), (b) At 10th second and (c) At 300th second
Figure 5.6 shows the temperature at the point where the thermocouple is placed in the molding machine (shown in figure 3.4 in chapter 3), as a function of time for a 3 increment procedure (data coupled for every 100 seconds).

![Temperature profile at the end of 300 seconds](image)

Figure 5.5: Temperature profile at the end of 300 seconds
CHAPTER 6
PARAMETRIC STUDIES

In this chapter various parametric studies are presented to understand the effect of these parameters on the cooling rate. Forced convection by nitrogen in the cooling channels alone does not account for the entire cooling taking place in the molding machine. Radiation and as well as conduction are involved in the cooling phase (radiation is explained in detail in section 3.5). Hence it is important to study their effect on the cooling. In this study of the cooling phase there are two sets of unknown parameters:

a. Thermal contact conductance values, and

b. Radiation parameters (emissivity and ambient temperature).

These two sets were varied individually to match the experimental data.

6.1 Parametric Study on Contact Conductance Value ‘h’

In general, when two surfaces which are parallel and flat are pressed together, they actually touch only at a limited number of discrete points. The contact is imperfect and the real heat transfer area is only a small fraction of the apparent contact area [21]. H. Yuncu did an experimental study of the thermal conductance of contact as a function of apparent contact pressure. The author obtained data experimentally for steel, brass, copper and aluminum test pieces having different surface roughness over a wide range of contact pressures. The results obtained revealed good agreement of trend with theoretical predictions, however numerical values vary widely. The values the author obtained for all the test pieces were in the order of 1000 W/m²K.
CoCoE is an open source program that estimates the contact conductance, h, between two surfaces under various conditions. CoCoE contains many empirical, lab-tested credible data of different configurations of contact, collected from engineering literature [22]. In CoCoE one has to input the contact materials, material in the gap, surface roughness, temperature, and contact pressure. The program then extrapolates the h value from the experimental and engineering literature database.

CoCoE was used to provide an estimation of the h values for the molding process. Since the materials of interest are not available in the database, similar materials and conditions were considered and reported in Table 6.1 for different contact pairs with different pressures and surface finishes.

Table 6.1: Contact conductance (h) values for various contact surfaces and pressures.

<table>
<thead>
<tr>
<th>Material 1</th>
<th>Material 2</th>
<th>Surface Finish</th>
<th>Material in Gap</th>
<th>Pressure (N/m²)</th>
<th>Temp. (deg C)</th>
<th>Relevancy (%)</th>
<th>h Contact Conductance Value (W/m².K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten</td>
<td>Graphite</td>
<td>Unknown</td>
<td>Air</td>
<td>1000</td>
<td>133</td>
<td>88</td>
<td>1834</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Graphite</td>
<td>Unknown</td>
<td>Air</td>
<td>10000</td>
<td>133</td>
<td>88</td>
<td>1868</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Ground</td>
<td>Air</td>
<td>1000</td>
<td>32</td>
<td>44</td>
<td>14786</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Ground</td>
<td>Air</td>
<td>10000</td>
<td>32</td>
<td>44</td>
<td>14791</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Milled</td>
<td>Air</td>
<td>1000</td>
<td>32</td>
<td>44</td>
<td>1726</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Milled</td>
<td>Air</td>
<td>10000</td>
<td>32</td>
<td>44</td>
<td>1731</td>
</tr>
<tr>
<td>Copper</td>
<td>Copper</td>
<td>Milled</td>
<td>Air</td>
<td>1000</td>
<td>47.2</td>
<td>44</td>
<td>5962</td>
</tr>
<tr>
<td>Copper</td>
<td>Copper</td>
<td>Unknown</td>
<td>Vacuum</td>
<td>1000</td>
<td>47.2</td>
<td>22</td>
<td>7086</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Ground</td>
<td>Air</td>
<td>1000</td>
<td>32</td>
<td>33</td>
<td>3651</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Milled</td>
<td>Air</td>
<td>1000</td>
<td>Unknown</td>
<td>77</td>
<td>18988</td>
</tr>
</tbody>
</table>

(1) Relevancy indicates the extent of extrapolation used in calculating the h value. The higher the relevancy, the more confidence is the h value.
From this table we can infer the h values are in the order of thousands and the values do not change very much when the pressure is increased by a factor of 10.

Materials used in the molding assembly such as silicon nitride, nickel binder, cemented carbide are not available in the CoCoE database. However, all surfaces of the assembly are very smooth (very low roughness), which will lead to large conductance values. In terms of pressure, the fitting between parts is very tight and the pressure from the compression during the molding process leads to large contact pressure between surfaces. This will also result into large conductance values. From these considerations and the CoCoE values shown in Table 6.1, the h values between all contact pairs in the model are taken as 4500 W/m²K in all simulations in this research, except in the parametric study presented in the next section.

Figure 6.1 shows how the temperature varies with time at the location of the thermocouple (which experimentally measures the temperature of the assembly) in the mold dies with respect to different h values for a constant emissivity and ambient temperature. The trend shows that as the h value increases between the contact pairs the cooling rate increases.
Figure 6.1: Temperature as a function of time for different h values with an emissivity of 0.55 and ambient temperature of 250 deg C.
Figure 6.2: Temperature after 300 seconds of cooling at the location of the thermocouple for different h values.

Also from the Figure 6.2, it is clear that when the h value is greater than 4500 W/m²K, the temperature remains almost the same. If the value is lower than the assumed value then there may be difference between the predicted temperature and the actual value. Since the h value is expected to be large due to the reasons stated in section 6.1 it is assumed to take a higher value. As stated earlier h value of 4500 W/m²K was given for all the contact pairs including the one between lens (glass) and tool. When compared to all the contact pairs this interface might have a lower thermal contact of conductance, however it is also given the same h value. It is due to the fact that this assumption might affect the cooling of the lens alone, but the cooling of molding assembly as a whole.
6.2 Parametric Study on Emissivity and Ambient Temperature

A parametric study was done on the emissivity and the ambient temperature and compared with the experimental data. Since the heaters surrounding the molding machine are turned off during the cooling phase, the ambient (heaters) temperature was varied between 200 and 300 deg C. Emissivity values of 0.55, 0.65 and 0.75 were considered for three different ambient temperatures 200, 250 and 300 deg C. The following plots show the temperature as a function of time at a point in the model where the thermocouple (TC) was placed (shown in Chapter 3, figure 3.4).

Figure 6.3: Temperature as a function of time at Thermocouples with respect to various emissivities for a constant ambient temperature of 200 deg C.
Figure 6.4: Temperature as a function of time at Thermocouples with respect to various emissivities for a constant ambient temperature of 250 deg C.
Figure 6.5: Temperature as a function of time at Thermocouples with respect to various emissivities for a constant ambient temperature of 300 deg C.

From the Figure 6.3 – 6.5 it is clear that as the emissivity increases the temperature goes down whereas it is vice versa in the case of ambient temperature. It can also be inferred that experimental data does not match for any of the values of emissivity when the ambient temperature is 300 deg C.

The experimental data shows that the temperature at the thermocouples after the 300 second cooling period is 464 deg C. The table 6.2 summarizes the temperature at the thermocouples for different combinations of emissivity and ambient temperature.
Table 6.2: Temperature at the thermocouples for various emissivity and ambient temperature combinations. The target temperature is 464 deg C (from experiment).

<table>
<thead>
<tr>
<th>Emissivity</th>
<th>Temperature</th>
<th>0.55</th>
<th>0.65</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>480</td>
<td>471</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>481</td>
<td>476</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>490</td>
<td>482</td>
<td>475</td>
</tr>
</tbody>
</table>

6.3 Effect of Nitrogen (coolant) Temperature

In FLUENT different nitrogen (coolant) temperatures were used to study the effect of temperature on heat flux values. Two different temperatures were considered, 30 deg C and -100 deg C. From the values in the table 6.3 it can be seen that heat fluxes are almost doubled for coolant temperature of -100 deg C when compared to that of 30 deg C.

Table 6.3: Surface-average heat fluxes for two different temperatures of input Nitrogen for non-linear partitions (Chapter 4, figure 4.3 for nonlinear partitions)

<table>
<thead>
<tr>
<th>Nitrogen temperature</th>
<th>30 deg C</th>
<th>-100 deg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition 1</td>
<td>1.85e5 W/m²</td>
<td>2.69e5 W/m²</td>
</tr>
<tr>
<td>Partition 2</td>
<td>1.00e5 W/m²</td>
<td>1.56e5 W/m²</td>
</tr>
<tr>
<td>Partition 3</td>
<td>7.13e4 W/m²</td>
<td>1.24e5 W/m²</td>
</tr>
<tr>
<td>Partition 4</td>
<td>3.57e4 W/m²</td>
<td>8.67e4 W/m²</td>
</tr>
</tbody>
</table>
6.4 Parametric study on Number of Increments between FLUENT and ABAQUS

As explained in Chapter 5 a coupled solver for ABAQUS and FLUENT is written using MATLAB. Figure 6.6 shows the temperature along the length of the cooling channel for different incremental procedures. The trend here shows that as the number of increments between the ABAQUS and FLUENT increases the temperature goes up along the length of the channel. This is due to the fact that heat fluxes for a single-increment procedure will be higher whereas the heat flux for a thirty-increment procedure will decrease as the wall temperature gets updated at each increment and this results in slightly lower heat fluxes and hence higher temperature.

Figure 6.6: Temperature along the length of the cooling channel for various incremental procedures.
Figure 6.7 shows the value of heat fluxes that will be updated in the cooling channels in ABAQUS for a five incremental procedure. For example, in the second iteration, for 60 – 120 seconds interval of the total 300 seconds cooling period, a heat flux of 1.32e5 W/m² is applied to the first partition of the channel, 0 – 0.01 m. It can be observed from the plot that the heat fluxes for a selected partition decreases in successive iterations due to the reason that the temperature updated in FLUENT for successive iterations reduce each time.

Figure 6.7: Heat flux along the length of the channel for the five increments in a five incremental procedure.
Figure 6.8 shows the effect of the increments on the temperature at a point near the entrance of the cooling channels with respect to time. A difference of 6.8 deg C is observed at that point between a single increment and thirty incremental procedures.

Figure 6.8: Temperature at a point in the cooling channel for various incremental procedures.
CHAPTER SEVEN
EXTRACTION OF BOUNDARY CONDITIONS

This chapter describes how the results obtained from the simulations performed in this research can be used as boundary conditions for a parallel study, which is done using a FEA 2D axisymmetric model of the molding process schematically represented in Figure 7.1. In addition the heat flux output vectors through the whole model, tool and lens are shown to discuss the validity of the axisymmetric assumption.

7.1 Transferring Data from the 3D Model to the 2D Axisymmetric Model

The red lines in Figure 7.1 indicate the boundary of the 2D axisymmetric model used in the other study. One of the goals of this research is to determine whether the axisymmetric assumption made in the 2D model is valid.

Figure 7.1: 3D model and boundary of the 2D axisymmetric model showing the upper and lower tools and lens
To validate the axisymmetric assumption made in the 2D model, the temperatures were plotted for the first phase of the cooling period for various edges on the tool and the lens on either side of the XZ-axis as shown in Figure 7.2.

Figure 7.2: Tool showing the edges for which the temperatures are plotted in Figure 7.3
Figure 7.3: Temperature as a function of time for various edges in the tool shown in Figure 7.2

From Figure 7.3 it is clear that the temperature plots follow the same trend on any given edge. There is a maximum of 2.4 deg C difference in temperature between the left and right sides. The temperature along the edges was calculated as an average of several nodal temperatures along corresponding edges. The same conclusion can be drawn from Figures 7.4 and 7.5 on the perpendicular section.
Figure 7.4: Tool and lens showing the edges in yz-plane for which the temperatures are plotted in Figure 7.5

Figure 7.5: Temperature as a function of time for various edges in the tool and the lens shown in Figure 7.4
Figures 7.6 to 7.9 show various elements on the lens and tools and their corresponding heat fluxes plotted for the 300 second cooling period.

Figure 7.6: Tool and lens showing the points where heat fluxes are plotted in Figure 7.7

Figure 7.7: Heat flux per area as a function of time for various elements in the tool and the lens shown in Figure 7.6
Figure 7.8: Tool and lens showing the points where heat fluxes are plotted in Figure 7.9

Figure 7.9: Heat flux per area as a function of time for various nodes (points) in the tool and the lens shown in Figure 7.8
Figures 7.7 and 7.9 show that there is a significant difference in heat fluxes for the elements on different sides indicating that, since the heat fluxes are not axisymmetric, they should not be used as boundary condition for the 2D axisymmetric model unless a proper measure is considered.

7.2 Heat Flux Results throughout the Assembly

Figures 7.10 to 7-12 show the heat flux vectors in the whole molding machine assembly. It can be seen that the heat flux vectors are more concentrated near the cooling channels and the cooling plates than elsewhere in the model, stressing the fact that most of the cooling takes place through the cooling channels.

![Figure 7.10: Heat flux vector in the whole model](image.png)
Figure 7.11: Heat flux vectors on a section on the xz-plane (a) after 10 seconds and (b) after 300 seconds

Figure 7.12: Heat flux vectors on a section cut on a plane rotated 30 degrees about the z-axis from the xz-plane (through the cooling channels) (a) after 10 seconds and (b) after 300 seconds

Figure 7.11 and 7.12 shows the heat flux vectors on a section cut on a xz-plane and a section cut on the plane rotated 30 degrees about the z-axis from the xz-plane
respectively at different time steps. It can be observed from the figures heat flux vectors are more concentrated and oriented towards the cooling channels at the end of 300 seconds when compared to 10 seconds. Moreover the heat flux vectors on the outer surface of the mold dies at the end of 10 seconds of cooling are more likely to be horizontal indicating heat loss due to radiation is more during this period due to the higher temperature difference between the molding assembly and the ambient temperature, whereas at the end of 300 seconds, this difference is less and the heat flux vectors are not horizontal.

Figure 7.13: Heat flux vectors for a section on a plane parallel to the yz-plane through the middle of the lens (a) after 10 seconds (b) after 300 seconds

From Figure 7.3 it can be inferred that heat flux vectors at the end of the 300 seconds are higher than that of 10-second period.
CHAPTER EIGHT

CONCLUSION AND FUTURE WORK

8.1 Conclusion

A 3D numerical model was developed to study and simulate the cooling phase of the lens molding process. Various parametric studies were performed to study the effect of several unknown and design parameters on the cooling rate. The assumption of axisymmetry used in a 2D model of a parallel study is found to be relatively valid, since there is only a small difference (i.e., 2.4 deg C) in temperature along the periphery of the lens and tools during the first stage of cooling. From the 3D model developed in this research, the temperature values can be provided as boundary conditions to the 2D model. However, the heat fluxes vary significantly along the same boundary, which should be considered if heat flux boundary conditions are used in the 2D model.

An iterative coupled procedure between the FEA and CFD models has been successfully completed in MATLAB to take into account the effect of time-dependent heat flux values during the cooling phase. Since the heat fluxes in the cooling channels and temperature of the coolant are interdependent it is important to have such a coupling between them. Moreover it is found that a five incremental procedure is sufficient for the 300-second cooling period. The MATLAB program is written in a generic form and can be adapted to similar problems involving both solid and fluid interactions.

Thermal contact conductance values between surface pairs in contact in the model have a significant effect on the cooling rate. In this research the TCC values between the contact pairs are taken as 4500 W/m²K based on information available in the literature. It
is also inferred from the results that a higher value does not have a significant effect on the cooling.

Radiation is taken into account by defining the emissivity of the material and the ambient temperature. It is concluded that radiation also plays a significant role in the cooling phase.

8.2 Future Work

i. In order to increase the fidelity of the model, accurate values of the contact conductance at surface pairs should be determined. An experimental procedure must be conducted to predict these values accurately for the specific materials of the assembly under various contact pressures.

ii. In order to account for the potential pressure gradient in the radial direction of the assembly, the 3D FEA model can be adapted to conduct a thermo-mechanical analysis in ABAQUS to determine the stress distribution and a more accurate temperature distribution through the lens and other parts of the molding machine.

iii. The model can be made more realistic by focusing on the radiation model. More specifically, the heater coils and casing surrounding the assembly should be included as part of the model and provide time-dependent ambient temperature values. Note that the emissivity of the various materials would still be unknown unless experimentally measured.

iv. Given more computational power, this numerical model can be used to simulate all four stages of the lens molding process. A current simulation of the thermal analysis with multiple CFD intermediate analyses runs for about one hour on a
single processor. A thermo-mechanical analysis would take several hours and including the viscoelastic behavior of the glass material would certainly require intensive parallel processing.
APPENDICES
Appendix A

MATLAB code for interacting between ABAQUS and Fluent

This MATLAB code makes the interaction between ABAQUS and Fluent and transfer the heat flux and temperature values back and forth between the two solvers.

function ReadFLUABQ

clear all
close all
clc
temparray = [0 0 0 0];
heat_flux_val = [0 0 0 0 0 0 0 0];
timeinc = 9;
modulus = 0;
iter = 0;

RunFluent();
ReadFluentOutput();
ModifyAbaqusInput(heat_flux_val);
RunAbaqus();
ReadAbqsta();
ReadAbqOutput();
ModifyFluentInput();
%
%
for iter = 2:5
fprintf('Iteration Number %d\n',iter);
RunFluent1();
ReadFluentOutput();
delFiles();
ModifyAbaqusInput1(heat_flux_val);
RunAbaqus();
ReadAbqsta();
ReadAbqOutput();
cd C:\FLU-ABQIntCheck
dos('del Batch1-1.jou');
ModifyFluentInput();
end

function delFiles
%---
cd C:\FLU-ABQIntCheck
dos('del TestFLUABQ2-1.dat');
dos('del TestFLUABQ2-1.com');
dos('del TestFLUABQ2-1.log');
function RunFluent1
%--
 % Change the Working Directory to run the FLUENT
 cd C:\Fluent.Inc\ntbin\ntx86
 % Dos command for executing the Batch file in FLUENT 3d
 dos('fluent 3d -i "C:\FLU-ABQIntCheck\Batch1-1.jou"');
 disp('FLUENT Job Started............');
 pause(75);
 disp('FLUENT Job Finished.');
 fprintf('
');
 % Wait for 14 secs, so that the FLUENT job gets completed
end

%---------------Function Implementations--

%--

function RunFluent
%--
 % Change the Working Directory to run the FLUENT
 cd C:\Fluent.Inc\ntbin\ntx86
 % Dos command for executing the Batch file in FLUENT 3d
 dos('fluent 3d -i "C:\FLU-ABQIntCheck\Batch1.jou"');
 disp('FLUENT Job Started............');
 pause(75);
 disp('FLUENT Job Finished.');
 fprintf('
');
 % Wait for 14 secs, so that the FLUENT job gets completed
end

%--

function ReadFluentOutput
% Changing the working directory to the path where the output file is
% C:\Fluent.Inc\ntbin\ntx86
% Reading the Output (bot_1_wall.out) file generated by FLUENT
% to get the Heat Flux after 45 iterations

disp('Reading Fluent Output File...')
files = {'bot_1'; 'bot_2'; 'bot_4'; 'left_1'; 'left_2'; 'left_3'; 'left_4'};
heat_flux_val = [1;2;3;4;5;6;7;8];
for i = 1:1:8
 fid = fopen([char(files(i)),'.out'],'r');
done = 0;
 while ~done
 tline = fgetl(fid);
 if ~ischar(tline)
 done = 1;
 else
 if ((strcmp(tline(1:3),'125')) ==1) % Number 125 denotes the last iteration
 heat_flux_val(i) = abs(str2double(tline(4:length(tline))));
 done=1;
 end
 end
 end
 fclose(fid);
end
fprintf('Fluent Output -- Heat Flux Value bot_1 = %d W/sq.m \n', heat_flux_val(1));
fprintf('Fluent Output -- Heat Flux Value bot_2 = %d W/sq.m \n', heat_flux_val(2));
fprintf('Fluent Output -- Heat Flux Value bot_3 = %d W/sq.m \n', heat_flux_val(3));
fprintf('Fluent Output -- Heat Flux Value bot_4 = %d W/sq.m \n', heat_flux_val(4));
fprintf('Fluent Output -- Heat Flux Value Left_1 = %d W/sq.m \n', heat_flux_val(5));
fprintf('Fluent Output -- Heat Flux Value Left_2 = %d W/sq.m \n', heat_flux_val(6));
fprintf('Fluent Output -- Heat Flux Value Left_3 = %d W/sq.m \n', heat_flux_val(7));
fprintf('Fluent Output -- Heat Flux Value Left_4 = %d W/sq.m \n', heat_flux_val(8));
end

function ModifyAbaqusInput(heat_flux_val)
% Reading the ABQ .inp file and changing the Dsflux value to the value
% obtained from the FLUENT monitor-2.out file

disp('Modifying ABQ .inp File...')
fid1 = fopen('TestFLUABQ2.inp','r'); % original file
fid2 = fopen('TestFLUABQ2-1.inp','w'); % new file
done = 0;
while ~done
 tline = fgetl(fid1); % read each line
 flag = 0;
 if ~ischar(tline) % if "tline" is a number (ie, not a character), then reached the end of the file
 done = 1;
 else
...
if length(tline) > 30
% Update flux value in the cooling channel
if ((line(1:30)=="zInCP-2.wall_chn_u02_bot_16_xz'')) % Look for "*Dsflux section"
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_16_xz, S, -1,heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_16_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_16_yz, S, -1,heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_25_xz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_25_xz, S, -1,heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_25_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_25_yz, S, -1,heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_35_xz'))==1) % Look for "*Dsflux section"
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_35_xz, S, -1,heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_35_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_35_yz, S, -1,heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_45_xz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_45_xz, S, -1,heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:30),"zInCP-2.wall_chn_u02_bot_45_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_bot_45_yz, S, -1,heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:31),"zInCP-2.wall_chn_u02_side_16_xz'))==1) % Look for "*Dsflux section"
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_16_xz, S, -1,heat_flux_val(5));
 flag = 1;
end
if ((strcmp(tline(1:31),"zInCP-2.wall_chn_u02_side_16_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_16_yz, S, -1,heat_flux_val(5));
 flag = 1;
end
if ((strcmp(tline(1:31),"zInCP-2.wall_chn_u02_side_25_xz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_25_xz, S, -1,heat_flux_val(6));
 flag = 1;
end
if ((strcmp(tline(1:31),"zInCP-2.wall_chn_u02_side_25_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_25_yz, S, -1,heat_flux_val(6));

flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chn_u02_side_35_xz'))==1) % Look for "*Dsflux section"
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_35_xz, S, ',heat_flux_val(7));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chn_u02_side_35_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_35_yz, S, ',heat_flux_val(7));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chn_u02_side_45_xz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_45_xz, S, ',heat_flux_val(8));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chn_u02_side_45_yz'))==1)
 fprintf(fid2,'%s%d
','zInCP-2.wall_chn_u02_side_45_yz, S, ',heat_flux_val(8));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_16_xz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_16_xz, S, ',heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_16_yz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_16_yz, S, ',heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_25_xz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_25_xz, S, ',heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_25_yz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_25_yz, S, ',heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_35_xz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_35_xz, S, ',heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_35_yz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_35_yz, S, ',heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_45_xz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_45_xz, S, ',heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chn_u02_top_45_yz'))==1)
 fprintf(fid2,'%s%d
','zInDH-1.wall_chn_u02_top_45_yz, S, ',heat_flux_val(4));
 flag = 1;
if ~flag
 fprintf(fid2,'%s
',tline); % write the line in new file
end
end
fclose('all');
disp('End of Processing .inp File')
fprintf('ABQ .inp File Heat Flux Value Modified\n');
end

function RunAbaqus
 cd C:\FLU-ABQIntCheck;
dos('run32.bat')
disp('Abaqus job is running.......')
checkLCK('TestFLUABQ2-1')
disp('Abaqus job completed.')
fprintf('\n');
end

function ModifyFluentInput()
 cd C:\FLU-ABQIntCheck
 disp('Modifying Batch1.jou FLUENT File....')
 fid1 = fopen('Batch1.jou','r'); % original file
 fid2 = fopen('Batch1-1.jou','w'); % new file
 done = 0;
i = 0;
while ~done
 tline = fgetl(fid1); % read each line
 flag = 0;
 if ~ischar(tline) % if "tline" is a number (ie, not a character), then reached the end of the file
 done = 1;
 else
 if length(tline) > 4
 tline(1:5) == ';Temp' % Look for "Temperature section"
 i = i + 1;
 fprintf(fid2,'%s
',tline);
 end
 end
end

% Running ABAQUS .INP file from command prompt
% Reading the Batch1.jou and changing the Temp value to the value
% obtained from the ABQ o/p FLU-ABQ1.dat file
else
 modulus = mod(i,4);
end
fprintf(fid2,'%d\n',(temparray(modulus)+273)); % Update temp value in the coolingchannel
 flag = 1;
end
if ~flag
 fprintf(fid2,'%s\n',tline); % write the line in new file
end
fclose('all');
disp('End of Modifying .jou File')

%---
function checkLCK(filename)
%--
 done = 0;
 flag = 0;
 while ~done
 lck = dir([filename,'.lck']);
 if flag == 0
 if ~isempty(lck) % lck file was created
 flag = 1;
 end
 else
 if isempty(lck) % lck file was removed
 done = 1;
 disp('lck removed')
 end
 end
 pause(2)
 end
end

function ReadAbqsta
%---
 cd C:\FLU-ABQIntCheck
 fid = fopen('TestFLUABQ2-1.sta','r);
 done = 0;
 disp('Processing STA to find Inc Number....')
 while ~done
 tline = fgetl(fid);
 if ~ischar(tline)
 done = 1;
 else
if length(tline) > 30
 if ((strcmp(tline(35:37),'60.')) == 1) % 100.0 denotes the final simulation time
timeinc = str2double(tline(8:10));
 end
end
fclose(fid);
fclose('all');
disp('Processing of STA file finished.');
fprintf('Number of increments for the 60 second simulation is: %d',timeinc);
fprintf('n');
end
%--
function ReadAbqOutput
%--
fid = fopen('TestFLUABQ2-1.dat','r');
done = 0;
disp('Processing ABQ .dat Output File....')
while ~done
 tline = fgetl(fid);
 string1 = ' INCREMENT ';
 if(timeinc<10)
 space = {' '};
 else
datachange
 space = {' '};%can change
 end
 if(timeinc>10 && timeinc<100)
 space = {' '};%can change
 end
 string2 = strcat(string1,space,num2str(timeinc));
 if ~ischar(tline)
done = 1;
else
 if length(tline) > 50
 if ((strcmp(tline(1:47),string2)) == 1)
 for i=1:19% can change
 tline = fgetl(fid);
 end
 Bot_1 = str2double(tline(19:length(tline)));
 tline = fgetl(fid);
 Bot_2 = str2double(tline(19:length(tline)));
 tline = fgetl(fid);
 Bot_3 = str2double(tline(19:length(tline)));
 tline = fgetl(fid);
 Bot_4 = str2double(tline(19:length(tline)));
 end
 end
end
fclose(fid);
fclose('all');
temparray = [Bot_1 Bot_2 Bot_3 Bot_4];
disp('Processing of .DAT file finished.');
fprintf('Temp value for the first partition is: %d K', Bot_1);
fprintf('Temp value for the second partition is: %d K', Bot_2);
fprintf('Temp value for the third partition is: %d K', Bot_3);
fprintf('Temp value for the fourth partition is: %d K', Bot_4);
fclose('n');
end

%%
function ModifyAbaqusInput1(heat_flux_val)

cd C:\FLU-ABQIntCheck
%Reading the ABQ .inp file and changing the Dsflux value to the value
%obtained from the FLUENT monitor-2.out file
disp('Modifying ABQ.inp File....')
fid1 = fopen('TestFLUABQ2.inp', 'r'); % original file
fid2 = fopen('TestFLUABQ2-1.inp', 'w'); % new file
done = 0;
while ~done
tline = fgetl(fid1); % read each line
flag = 0;
if ~ischar(tline) % if "tline" is a number (ie, not a character), then reached the end of the
 done = 1;
else
 if length(tline) > 12
 if (tline(1:10) == '** Name: P')% checking for Predefined Field Definition
 fprintf(fid2, '%s
', tline);
 tline = fgetl(fid1);
 % Update flux value in the coolingchannel
 str = '*Initial Conditions, type=TEMPERATURE, file=C:/FLU-ABQIntCheck/Results';
 str = strcat(str, num2str(iter), '.odb, step=1, inc=');
 fprintf(fid2, '%s%s
', str, num2str(timeinc));
 end
 if tline(1:13) == '_PickedSet211'% Do not write this line
 flag = 1;
 end
 end
end
if length(tline) > 30
 % Update flux value in the coolingchannel
 if ((tline(1:30) == 'zInCP-2.wall_chn_u02_bot_16_xz')) % Look for "*Dsflux section"
fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_16_xz, S, -1, heat_flux_val(1));
flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_16_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_16_yz, S, -1, heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_25_xz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_25_xz, S, -1, heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_25_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_25_yz, S, -1, heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_35_xz'))==1) % Look for "*Dsflux section"
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_35_xz, S, -1, heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_35_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_35_yz, S, -1, heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_45_xz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_45_xz, S, -1, heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:30), 'zInCP-2.wall_chn_u02_bot_45_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_bot_45_yz, S, -1, heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:31), 'zInCP-2.wall_chn_u02_side_16_xz'))==1) % Look for "*Dsflux section"
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_side_16_xz, S, -1, heat_flux_val(5));
 flag = 1;
end
if ((strcmp(tline(1:31), 'zInCP-2.wall_chn_u02_side_16_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_side_16_yz, S, -1, heat_flux_val(5));
 flag = 1;
end
if ((strcmp(tline(1:31), 'zInCP-2.wall_chn_u02_side_25_xz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_side_25_xz, S, -1, heat_flux_val(6));
 flag = 1;
end
if ((strcmp(tline(1:31), 'zInCP-2.wall_chn_u02_side_25_yz'))==1)
 fprintf(fid2, '%s%d
', 'zInCP-2.wall_chn_u02_side_25_yz, S, -1, heat_flux_val(6));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chu02_side_35_xz'))==1) % Look for "*Dsflux
 fprintf(fid2,"%s%d\n","zInCP-2.wall_chu02_side_35_xz, S, -',heat_flux_val(7));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chu02_side_35_yz'))==1)
 fprintf(fid2,"%s%d\n","zInCP-2.wall_chu02_side_35_yz, S, -',heat_flux_val(7));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chu02_side_45_xz'))==1)
 fprintf(fid2,"%s%d\n","zInCP-2.wall_chu02_side_45_xz, S, -',heat_flux_val(8));
 flag = 1;
end
if ((strcmp(tline(1:31),'zInCP-2.wall_chu02_side_45_yz'))==1)
 fprintf(fid2,"%s%d\n","zInCP-2.wall_chu02_side_45_yz, S, -',heat_flux_val(8));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top16_xz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top16_xz, S, -',heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top16_yz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top16_yz, S, -',heat_flux_val(1));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top25_xz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top25_xz, S, -',heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top25_yz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top25_yz, S, -',heat_flux_val(2));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top35_xz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top35_xz, S, -',heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top35_yz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top35_yz, S, -',heat_flux_val(3));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top45_xz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top45_xz, S, -',heat_flux_val(4));
 flag = 1;
end
if ((strcmp(tline(1:30),'zInDH-1.wall_chu02_top45_yz'))==1)
 fprintf(fid2,"%s%d\n","zInDH-1.wall_chu02_top45_yz, S, -',heat_flux_val(4));
 flag = 1;
end
end
if ~flag
 fprintf(fid2,'%s
',tline); % write the line in new file
end
end
close('all');
disp('End of Processing .inp File')
fprintf('ABQ.inp File Heat Value Modified\n');
end
end
REFERENCES

[14] *Thermal Contact Conductance* - NASA Technical Memorandum 110429

