
 64

CHAPTER SIX

LABORATORY TESTING RESULTS

This chapter will present laboratory testing of the VFS as well as discuss the

results of each test. The test results are broken down into two types of testing: the first

set is to verify that the compensation margin is being met by the VFS and the second set

will demonstrate the compensation level as implemented. For the purposes of testing and

verifying the VFS’s performance, three typical residential air conditioners were acquired.

The three units provide a cross section of the equipment that could be found at VFS

installations, including: auxiliary heat, package units, multistage units, and units equipped

with torque assist devices.

The first unit is a Heil 2.5-Ton package unit heat pump, equipped with 10kW of

auxiliary electric heat. The second unit is a 4-Ton Carrier split system air conditioner.

The final unit is a 5-Ton Carrier two stage split system air conditioner that is has a

factory equipped torque assist device. For each unit, eight tests were run in consecutive

order to demonstrate the VFS’s ability to tune itself and maintain repeatability of voltage

correction for several tests.

There are two distinct design limitations that have been mentioned in previous

sections that are expected in the laboratory results. The first limitation of the VFS is

directly related to the fact that the device is triggered from the compressor current and

must wait, at most a half-cycle, before compensation can begin. Thus it is expected to

see a half-cycle of voltage drop when the compressor initially starts.

 65

The second limitation deals with the switch design used. Since the switches used

to insert and remove the capacitors are based on a TRIAC semiconductor device, it is

required that the capacitor current move through a zero crossing before the device will

actually turn off. Thus the VFS may remove the capacitor at the correct half-cycle

voltage measurement, but the switch will not turn off until the peak of the voltage. Thus

the expected results also include a slight voltage swell as the capacitors are to be

removed. It was found through experimentation that a cutout voltage of 100.7% yielded

the best performance in terms of minimizing both premature removals and this removal

overvoltage.

A sliding window root mean square (RMS) method is used to convert the raw

captured waveforms into an easily identifiable waveform, as is common with many

power system waveforms. There are several issues that arise from using this method that

are discussed in this chapter.

The units are powered from a step-down transformer rated for 480V/240V at 37.5

kVA with an impedance of 6.5%. The high side of the transformer is connected line to

line on a dedicated 480V bus rated for 500 kVA. The units and the VFS are connected to

the step-down transformer through a main disconnect switch fused for 100 A and a 40 A

circuit breaker. The 100 A fuses are used as backup protection in case the 40 A circuit

breaker operates incorrectly. During lab testing, the 100 A disconnect was used to mimic

The Test Setup

 66

a false breaker panel and the 40 A circuit breaker represents the exterior pull disconnect

for a typical residence. For all tests, the 40 A breaker never operated, even given the

higher feeder currents created by the VFS. For comparison with the system impedances

used for the initial calculation of required capacitance, Table 6.1 outlines the calculated

impedances at the false breaker panel.

Table 6.1 Calculated Impedances at the False Breaker Panel

Low Average High
0.0545 + i0.1003 Ω 0.0621 + i0.0942 Ω 0.0658 + i0.0960 Ω

For the compensation margin testing of each unit, the test runs are broken down

into tuning runs followed by consecutive runs to demonstrate stability. The VFS voltage

and current as well as the compressor current are measured. The feeder current is simply

the point by point addition of the VFS current and the compressor current waveforms.

For the purposes of compensation level testing, 16 feet of #14 AWG Romex was

used to approximately simulate 100 feet of #6 AWG branch circuit conductors between

the false panel and the compensation point. The simulation of the branch circuit

conductors does not adequately account for the inductance of the branch circuit, but

because the X/R ratio of such conductors is rather small, 0.1, it will have a negligible

effect on the results.

The compensation level testing was performed on the 2.5 Ton and 4 Ton units to

gauge the panel voltage estimation scheme. Only the voltage at the VFS and the voltage

at the panel are presented, as the currents are expected to be similar to those in the

 67

compensation margin testing. Again, the results demonstrate an eight run tuning cycle,

with several cycles showing the device tuned to what it believes is the correct capacitance

according to the estimated panel voltage.

Two parallel runs
of 330 MCM

480V
Disconnects

Lab 3 Phase
Busway

False Breaker Panel
(Fused 100A)

Air Handler
Connection

Compressor
and
VFS

40A Circuit
Breaker

Secondary
Conductors

Branch Circuit Conductors
(Comp. Level Added Z)

12.47 kV / 480V
%IZ = 5.2

480 V / 240 V
%IZ = 6.5

12.47 kV
Campus

Distribution

Figure 6.1. The Laboratory Testing Connection Diagram.

 The voltage and current measurements captured during lab testing were taken

using a four channel digital oscilloscope to allow for the synchronization of all

measurements. For the voltage measurements, Tektronix P5200 High Voltage

Differential Probes were used to isolate the oscilloscope from the measurement point.

These probes allow for a maximum voltage of 1300 VRMS and have a rated bandwidth of

25 MHz for 3 dB of attenuation. Current measurements were made with two AEMC

Measurements and Data Analysis

 68

SD661 AC Current Probes, which are rated for 1000 ARMS with a bandwidth of 100 kHz

for 3 dB of attenuation.

 These probes were connected to a Tektronix TDS 3034B digital oscilloscope

rated for a bandwidth of 300 MHz with a maximum sampling frequency of 2.5 GS/s. For

each test run on the VFS, the oscilloscope time scale was set for 40 ms/div, yielding a

waveform capture of 400 ms long. To record the raw waveform data, the RS232 port was

used on the oscilloscope, which allows for ten thousand points per waveform spaced over

the waveform capture length. This yields raw waveform data that is sampled every 40

µs, 25 kHz sampling frequency, for the entire fourth of a second capture.

 To aid in the analysis of the waveform captures, a sliding window RMS

calculation was performed on point by point representation of each captured waveform to

yield a continuous RMS waveform. Each RMS voltage waveform was then normalized

against the initial steady state value of that waveform to give an RMS waveform that is

representative of the percent voltage drop as it relates to the initial steady state voltage.

While this type of RMS analysis is very common within power system literature, there is

a disadvantage that arises when adapting it to the analysis of the VFS’s compensation

ability. Figure 6.2 represents a voltage waveform capture that has been rectified for ease

of comparison and the corresponding calculated RMS waveform normalized against the

steady state voltage.

 69

Figure 6.2. A Comparison of the Sliding Window RMS Waveform versus the
Corresponding Rectified Waveform.

 By using a full-cycle sliding window RMS calculation, voltage changes that are

significant in length with respect to a single cycle will appear longer in time than the

actual event. On the left hand side of Figure 6.2, a half-cycle voltage drop on the

captured waveform bleeds into what appears to be a one and a half cycle long event. This

is due to the fact that the half-cycle long event is observed by both the leading and

trailing edges of the continuous sliding window RMS calculation. The same result can be

observed for the subsequent voltage rise seen during capacitance removal. The effects of

both of these events on the perceived light flicker are discussed later in this chapter.

 70

2.5 Ton Package Unit Compensation Margin

 The following graphs depict a base line run, in which no compensation was

offered, followed by eight consecutive runs on the 2.5 Ton package unit. It took the unit

four runs to finish tuning to the correct capacitance needed by the unit for the lab

impedance. This capacitance ended up being 1200 µF. Figures 6.3, 6.4, 6.5, and 6.6

show the RMS voltage, compressor current, capacitor current, and feeder circuit current

respectively. A brief discussion of the results continues after the figures.

 For the first set of figures in this section, specific runs have been labeled above

the corresponding waveform to clarify them for discussion purposes. The soft copy of

this document should be consulted for all colored legends and waveforms.

Figure 6.3. 2.5-Ton Package Unit Voltage Measurements.

 71

Figure 6.4. 2.5-Ton Package Unit Compressor Current Measurements.

Figure 6.5. 2.5-Ton Package Unit Capacitor Current Measurements.

 72

Figure 6.6. 2.5-Ton Package Unit Feeder Current Measurements.

 As expected, the initial half-cycle voltage drop is present as well as the removal

overvoltage. This overvoltage is limited to a 2% rise for a half-cycle to one full cycle.

 The compressor current graph demonstrates a side effect of the VFS that is

expected when applying voltage compensation to the compressor. Since the starting

torque is proportional to the square of the voltage, by compensating the voltage, the

effective starting torque of the motor is increased. This can be seen as the starting time of

the compressor is reduced by a couple of cycles when the voltage is compensated to

within the 1% margin.

A promising result is seen in the feeder currents, which show the actual

magnitude of the current drawn through the circuit breaker from the distribution system

remains relatively unchanged for this unit.

 73

4 Ton Split System Unit Compensation Margin

The following graphs depict a base line run, in which no compensation was

offered, followed by eight consecutive runs on the 4 Ton split system unit. It took the

unit three runs to finish tuning to the correct capacitance needed by the unit for the lab

impedance. The final tuned capacitance is 2100 µF. Figures 6.7, 6.8, 6.9, and 6.10 show

the RMS voltage, compressor current, capacitor current, and feeder circuit current

respectively. A brief discussion of the results continues after the figures.

Figure 6.7. 4-Ton Split System Unit Voltage Measurements.

 74

Figure 6.8. 4-Ton Split System Unit Compressor Current Measurements.

Figure 6.9. 4-Ton Split System Unit Capacitor Current Measurements.

 75

Figure 6.10. 4-Ton Split System Unit Feeder Current Measurements.

The results of the 4-Ton unit are similar to those of the 2.5-Ton with two

noticeable differences. The removal overvoltage is now a 2% rise for a definite full

cycle, and the compressor starting time significantly lower for this unit when the voltage

is compensated. Again, the feeder current is about the same magnitude as the compressor

inrush current alone.

 76

5 Ton Two Stage Unit Stage 1 Compensation Margin

The following graphs depict a base line run, in which no compensation was

offered, followed by eight consecutive runs on the 5 Ton split system unit running in its

lower capacity stage, stage 1. It took the unit 4 runs to finish tuning to the final

capacitance the VFS thought was required by the unit for the lab impedance. Figures

6.11, 6.12, 6.13, and 6.14 show the RMS voltage, compressor current, capacitor current,

and feeder circuit current respectively. A brief discussion of the results continues after

the figures.

Figure 6.11. 5-Ton Split System Unit Running in Stage 1 Voltage Measurements.

 77

Figure 6.12. 5-Ton Split System Unit Running in Stage 1 Compressor Current
Measurements.

Figure 6.13. 5-Ton Split System Unit Running in Stage 1 Capacitor Current
Measurements.

 78

Figure 6.14. 5-Ton Split System Unit Running in Stage 1 Feeder Current Measurements.

 The 5 Ton stage 1 results are very similar to the 2.5 Ton results, but with a couple

of distinctive differences. Since the 5 Ton unit has a factory equipped torque assist

device that is sized for the higher capacity stage, it is somewhat over sized for the lower

stage. This yields a very quick starting time with a relatively unstable removal period.

Because both the VFS and the torque assist device are being removed from the circuit at

relatively the same time, it is difficult for the VFS to determine when it should start

removing capacitance because the torque assist device represents a step change in motor

torque and inrush current. Nevertheless, the VFS is able to meet the compensation

margin.

 79

5 Ton Two Stage Unit Stage 2 Compensation Margin

The following graphs depict a base line run, in which no compensation was

offered, followed by eight consecutive runs on the 5 Ton split system unit running in its

higher capacity stage, stage 2. It took the unit four runs to finish tuning to the correct

capacitance needed by the unit for the lab impedance. Figures 6.15, 6.16, 6.17, and 6.18

show the RMS voltage, compressor current, capacitor current, and feeder circuit current

respectively. A brief discussion of the results continues after the figures.

Figure 6.15. 5-Ton Split System Unit Running in Stage 2 Voltage Measurements.

 80

Figure 6.16. 5-Ton Split System Unit Running in Stage 2 Compressor Current
Measurements.

Figure 6.17. 5-Ton Split System Unit Running in Stage 2 Capacitor Current
Measurements.

 81

Figure 6.18. 5-Ton Split System Unit Running in Stage 2 Feeder Current Measurements.

 The voltage correction as well as starting time is in line with the 2.5 and 4 ton

units and the desired results. It is interesting to note that the VFS offers shorter start

times even with a unit already equipped with a torque assist device. Again, it is noticed

that the feeder current drawn through the branch circuit is still in the general range of the

original compressor current. It can also be seen that given more starting time, the VFS

responds better to the 5 Ton unit starting in stage 2.

 82

5 Ton Two Stage Unit Alternating Stages

 To demonstrate the VFS’s compatibility with multistage units, a set of tests were

run on the 5-Ton split system unit in which the VFS was initially allowed to tune to the

higher stage, stage 2. Then the stage in which the unit started was alternated between

stage 1 and stage 2 for several consecutive runs. Since the typical operation of a two

stage unit is to allow the lower capacity, more efficient stage to run most of the time with

the higher capacity stage used for backup, it is expected that this test is the worst case

scenario that the VFS might face in the field. Figure 6.19 shows the RMS voltage

measurements from the set of runs.

Figure 6.19. 5-Ton Split System Unit Alternating Stages Voltage Measurements.

 83

 In a real world application of a multistage unit, it is expected that the unit will

start and run in the lower stage most of the time, utilizing the higher stage for

emergencies such as an extremely hot afternoon or chilly night. With respect to the

operation of the VFS, this means that it will normally be tuned to the most likely stage to

start next, which should be stage 1.

Compensation Level Estimation on the 2.5 Ton Unit

 The compensation level estimation test results on the 2.5 Ton unit were obtained

by first determining the compensation level according to the worksheet. Table 6.2

contains the measurements and calculation results to obtain the compensation level,

which is the estimated feeder voltage drop.

Table 6.2 2.5-Ton Compensation Level Data

Panel Voltage 241.1 V
VFS Voltage 240.0 V

Inrush Current 72 A
Steady State Current 13.5 A
Compensation Level 2.40%

 The dip switches are set according to the work sheet, and the actual compensation

level used by the controller for this is 2% voltage drop on the branch feeder circuit.

 Figures 6.20 and 6.21 show the voltage at the VFS terminals and the false breaker

panel, respectively, for an eight run set that allowed for tuning.

 84

Figure 6.20. 2.5-Ton Voltages at the VFS Terminals Given Added Branch Impedance.

Figure 6.21. 2.5-Ton Voltages at the Breaker Panel Given Added Branch Impedance.

 85

Compensation Level Estimation on the 4 Ton Unit

 Similarly to the 2.5 Ton test, the compensation level estimation test results on the

4 Ton unit were obtained by first determining the compensation level according to the

worksheet. Table 6.3 contains the measurements and calculation results to obtain the

compensation level, which is the estimated feeder voltage drop.

Table 6.3 4-Ton Compensation Level Data

Panel Voltage 238.7 V
VFS Voltage 237.6 V

Inrush Current 109 A
Steady State Current 20.5 A
Compensation Level 2.40%

 The resulting compensation level is exactly the same as the 2.5 Ton unit, and it is

expected that this might not quite be enough to account for the actual voltage drop. The

dip switches are set according to the work sheet, and the actual compensation level used

by the controller for this is 2% voltage drop on the branch feeder circuit.

 Figures 6.22 and 6.23 show the voltage at the VFS terminals and the false breaker

panel, respectively, for an eight run set that allowed for tuning.

 86

Figure 6.22. 4-Ton Voltages at the VFS Terminals Given Added Branch Impedance.

Figure 6.23. 4-Ton Voltages at the Breaker Panel Given Added Branch Impedance.

 87

 It is clear from these results that the tests on the 4 Ton unit demonstrate the

estimated voltage drop used for the compensation level is slightly too small. It should be

the next higher level, 2.5% to 2.99%, which would give the controller a level of 2.5% and

bring down the slight voltage rise seen at the panel. Nonetheless, it shows that the

control scheme works, but a better form of estimation may be required.

Laboratory Testing Discussion

 The laboratory testing has shown that the VFS can meet the design goals given

the known limitations of the design, including: the initial voltage drop while triggering,

the over-voltage as capacitance is removed, and the compensation level estimation

scheme. As explained previously, the method of using a full-cycle sliding window RMS

calculation to create the representative voltage drop waveforms lends itself to

exaggerating the length of short voltage disturbances with respect to a full cycle. The

apparently lengthened events lead to a question of whether or not the actual half-cycle

voltage drop and removal voltage rise are visible. The question that must before this is

addressed is, do the two events compound upon each other to make the entire

compensation interval more visible?

 In [7], a study was conducted to determine if positive and negative flashes of light

negate or complement each other for a given amount of separation in time. The results of

[7] state that the interaction of flashes near threshold that are separated in time compound

maximally near 65 ms to twice the individual threshold and the threshold decreases as

 88

interval between the flashes increases. The study also provides evidence that the

threshold differences between positive and negative flashes are negligible near the

threshold. It can then be concluded that the interaction between the two voltage changes

allowed by the VFS during a compensation event will not have a significant

compounding effect because the length of the starting event, over 100 ms, is greater than

the maxima. Thus it is possible to address the starting voltage drop and the removal

voltage rise as individual events.

To address the question of how visible each individual voltage fluctuation is, the

differences between the two must be examined. The initial voltage drop while the VFS is

triggering is known to be a half-cycle event or 8.3 ms long. From [7], the threshold

intensity of a single rectangular flash of this length can be extrapolated to nearly 4 times

the calculated threshold in the previously discussed flicker study. This would mean that a

voltage drop of 4 % would be nearing the threshold of visibility, with the actual threshold

of irritability being well below that. In the worst case scenario from lab testing, the initial

voltage drop was found to be around 6 %. This lies near the boundary and it is expected

that only the most observant individual could identify this event. Because the initial

voltage drop must be present for the VFS to be a nonintrusive device, this cannot be

corrected.

In the case of the voltage rise created during the capacitor removal process, the

event could possibly be a two and a half cycle or 42 ms long. If this were a continuously

modulated event, it would have a frequency of 24 Hz. The IEC/IEEE 1453 standard

states that the irritation threshold, Pst = 1, for sinusoidal and rectangular modulation have

 89

percent allowable voltage fluctuations of 1.365 and 1.072, respectively. Given the worst

case scenario seen during compensation margin testing in the lab, the highest routinely

seen percent voltage rise was 3 % peak, meaning the voltage rise is over twice that of

recommended in [4].

However, the event is not continuously modulated and it is highly unlikely that a

flicker meter would register a Pst value remotely close to one because averaging the

single 42 ms long event over seconds, much less minutes, would significantly reduce its

contribution. To further negate the effects of the voltage rise created by the VFS, the

results of compensation level testing shows that the added impedances of the branch

circuit will create a voltage division effect between the VFS terminals and the actual

point of common coupling, the breaker panel. Consequently, the higher the impedance of

the branch circuit, the lower the apparent voltage rise seen at the breaker panel.

 The compensation level estimation scheme will continue to be improved through

either software updates or a better estimation method as the VFS moves into field

demonstrations. This is considered continuing work at the time of publication of this

thesis.

 90

Summary

 In this chapter, the results from laboratory testing were relatively promising in

terms of the VFS’s ability to correct for voltage flicker. The short comings of the data

analysis method and design limitations of the VFS were discussed in detail. There is

clearly some remaining work to better estimate the panel voltage during field trials.

 91

CHAPTER SEVEN

CONCLUSIONS

 Almost everyone has experienced the annoyance of voltage flicker at some point

or another in their life and some live with it every day. For the majority of residences,

the voltage flicker created by a heat pump compressor starting is hardly visible, but for a

few, the voltage drop can be quite significant. The presently commercially available

flicker suppression technology, used to alleviate the problem, does not correct for the

problem at the root cause. The voltage flicker suppression device has shown that it has

the ability to almost completely eliminate visible voltage flicker created by a compressor

starting event.

 In this thesis, the various aspects of a residential power service associated with

voltage flicker are discussed to demonstrate that the VFS’s use of shunt capacitance is a

viable solution to voltage flicker due to a starting compressor. The usage of small

increments of capacitance allows for the VFS to easily adapt its self to nearly any

combination of residential heat pump and power service characteristics. The simple but

reliable control scheme has proven through lab testing that it is capable of effectively

compensating for the voltage flicker while not interfering with the existing HVAC

equipment.

Even though there is work to be continued on making the VFS even more reliable

and flexible, the present state of the VFS demonstrates that the technology is clearly a

feasible solution. The one design goal that the VFS has missed is the total price of the

 92

device, which has come in at over $500 per unit in small quantities, not including the

printed circuit board or the capacitors. The main reason for not meeting the target price

is the addition of several costly items to meet NEC® and UL® requirements. The device

is not currently UL approved and plans are in motion to have it reviewed by UL®

engineers. However, it is hoped that the final VFS, produced on a larger scale, will give

power utilities a more cost effective option to address customers’ concerns when it comes

to voltage flicker.

 93

APPENDICES

 94

Appendix A

Flicker Study Visual Basic Source Code and Screenshots

Figure A.1. Screenshot of the Startup Screen for the Flicker Study.

Figure A.2. Screenshot of the Run Cases Screen for the Flicker Study.

 95

Figure A.3. Screenshot of the Case Selection Screen for the Flicker Study.

 96

‘---
‘ frmMain
‘
‘ Written by: Curtiss Fox
‘
‘ Last Updated: 2/11/08
‘
‘ Description: These subroutines perform form manipulation, while
‘ all calculations are called from the module Sequences.bas
‘__

Private Sub cmdCaseA_Click()

CorrectAns False

cmdRun.Enabled = True
cmdCaseA.Enabled = False
cmdCaseB.Enabled = False
fraNextStep.Visible = True
cmdRun.Visible = True
fraChoose.Visible = False
cmdCaseA.Visible = False
cmdCaseB.Visible = False

End Sub

Private Sub cmdCaseB_Click()

CorrectAns True

cmdRun.Enabled = True
cmdCaseA.Enabled = False
cmdCaseB.Enabled = False
fraNextStep.Visible = True
cmdRun.Visible = True
fraChoose.Visible = False
cmdCaseA.Visible = False
cmdCaseB.Visible = False

End Sub

 97

Private Sub cmdExample_Click()

cmdExample.Enabled = False

StartGPIB

StartLights

runExample

StopLights

StopGPIB

End Sub

Private Sub cmdRun_Click()

cmdRun.Enabled = False

RunSequence

fraChoose.Visible = True
cmdCaseA.Visible = True
cmdCaseB.Visible = True
cmdCaseA.Enabled = True
cmdCaseB.Enabled = True

fraNextStep.Visible = False
cmdRun.Visible = False

End Sub

Private Sub cmdStart_Click()

' Ensure Duration Time Selected
If cboDuration.ListIndex = -1 Then
 MsgBox ("Please Select a duration time for this test.")
 Exit Sub
ElseIf optIncand.value = False And optCFL.value = False Then
 MsgBox ("Please Select a bulb type for this test.")

 98

 Exit Sub
ElseIf optStep.value = False And optRamp.value = False Then
 MsgBox ("Please Select a Sequence Type for this test.")
 Exit Sub
ElseIf txtTestName.Text = """Your User Name""" Then
 MsgBox ("Please Enter the Test Identifier as indicated.")
 Exit Sub
Else ' Good To GO!

 'Disable start button and option changes mid Test
 cmdStart.Enabled = False
 optIncand.Enabled = False
 optCFL.Enabled = False
 optStep.Enabled = False
 optRamp.Enabled = False
 cboDuration.Enabled = False
 txtTestName.Enabled = False

 frmMain.MousePointer = vbHourglass

 'Startup the GPIB and ELGAR
 StartGPIB
 StartLights

 'Initialize Variables in Flicker Module
 StartTest

 'Show Case start Frame
 fraNextStep.Visible = True
 fraExample.Visible = False
 cmdRun.Visible = True

 frmMain.MousePointer = vbDefault

 frmMain.SetFocus

End If

End Sub

Private Sub cmdStop_Click()

StopTesting False, True

 99

End Sub

Private Sub Form_Load()

'Load up the duration combo box
cboDuration.AddItem "5 cycles"
cboDuration.AddItem "10 cycles"
cboDuration.AddItem "15 cycles"
cboDuration.AddItem "20 cycles"

'Ensure all radio buttons are false
optIncand.value = False
optCFL.value = False
optStep.value = False
optRamp.value = False

'Hide Appropriate Items
fraNextStep.Visible = False
fraExample.Visible = True
cmdRun.Visible = False
fraChoose.Visible = False
cmdCaseA.Visible = False
cmdCaseB.Visible = False
txtTestName.Enabled = True
optIncand.value = True
optStep.value = True

End Sub

Private Sub Form_Terminate()

StopLights

StopGPIB

End Sub

Private Sub Form_Unload(Cancel As Integer)

 100

StopLights

StopGPIB

End Sub

Private Sub txtTestName_GotFocus()

txtTestName.SelStart = 0
txtTestName.SelLength = Len(txtTestName)

End Sub

 101

‘---
‘ Sequences.bas
‘
‘ Written by: Curtiss Fox
‘
‘ Last Updated: 2/12/08
‘
‘ Description: This module contains the initialization and sequence
‘ instructions for communicating with the ELGAR through the GPIB
‘ port. It will also time the cases and contains the code to determine
‘ if the correct case was chosen. All required return information is
‘ set directly to frmMain from this module.
‘__

'Declare Global subroutines
Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
Declare Sub Beep Lib "kernel32" (ByVal dwFreq As Long, ByVal dwDuration As Long)

'Declare Global Constants
Const GPIB0 = 0 'Interface Card Number
Const ELGAR = 25 'GPIB Address for Elgar
Const gblNomVolts = 120 'Set the nominal voltage level
Const SaveDir = "D:\PQIA\GPIB\Flicker\Data\" 'Save data Dir

Const intNumReverses = 5 'Add one for the total number of reverses

'Declare Global Variables

Dim ApExcel As Object 'To open Excel
Dim intSeqNumber As Integer 'The number of Sequences or Steps run
Dim blCase As Boolean 'The boolean that controls which case is correct (A = false and B
= true)
Dim dblInitStep As Double 'The value of the initial steps
Dim dblFinalStep As Double 'The value of the later steps
Dim blIncandescent As Boolean 'Set if the bulbs used are incandescent, else they are
CFL's
Dim blStep As Boolean 'determines if step or ramp sequence type is chosen
Dim intReverses As Integer 'The number of reverses in the staircase method
Dim blCorrect As Boolean 'Indicates if the last choice was correct
Dim dblCurrentVoltage As Single 'The value of the current step Voltage
Dim strDateTime As String 'Current date and Time MM-DD-hh-mm
Dim dblDeltaV As Double 'The change from the norm of the last lower reverse

 102

Sub StartTest()

'Set Current Date and Time of Test for Records
strDateTime = DateTime.Date$ & "_" & DateTime.Hour(Now) & "-" &
DateTime.Minute(Now)

intSeqNumber = 0

'Set Step sizes In Per Unit
dblInitStep = 0.1
dblFinalStep = 0.02

'Set Initial Starting Point as 5% below Nominal Voltage
dblCurrentVoltage = 0.98 * gblNomVolts
dblDeltaV = gblNomVolts - dblCurrentVoltage

'Pull booleans from main form
blStep = frmMain.optStep.value
blIncandescent = frmMain.optIncand.value

'Initialize global variables
intReverses = 0
blCorrect = False
blCase = False

' Initialize Excel
Set ApExcel = CreateObject("Excel.application") 'Creates an object
ApExcel.Visible = False ' So you can see Excel
ApExcel.workbooks.Add 'Adds a new book.
ApExcel.cells(1, 1).formula = frmMain.txtTestName
ApExcel.cells(2, 1).formula = DateTime.Now

ApExcel.cells(4, 1).formula = "Duration:"
ApExcel.cells(4, 2).formula =
frmMain.cboDuration.List(frmMain.cboDuration.ListIndex())

ApExcel.cells(5, 1).formula = "Step or Ramp:"
If blStep Then
 ApExcel.cells(5, 2).formula = "Step"
Else
 ApExcel.cells(5, 2).formula = "Ramp"

 103

End If

ApExcel.cells(6, 1).formula = "Bulb Type:"
If blIncandescent Then
 ApExcel.cells(6, 2).formula = "Incandescent"
Else
 ApExcel.cells(6, 2).formula = "CFL"
End If

ApExcel.cells(9, 1).formula = "Step #"
ApExcel.cells(9, 2).formula = "Correct Case"
ApExcel.cells(9, 3).formula = "Seq Voltage"
ApExcel.cells(9, 4).formula = "Answer Given"
ApExcel.cells(9, 5).formula = "Correct"
ApExcel.cells(9, 6).formula = "Reverse Number"

ApExcel.Columns("A:F").EntireColumn.AutoFit

End Sub

Sub StartGPIB()

 ‘================================
'
' INITIALIZATION SECTION
'
' ================================

' Your board needs to be the Controller-In-Charge in order to find all
' listeners on the GPIB. To accomplish this, the subroutine SendIFC
' is called. If the error bit EERR is set in ibsta, call GpibErr with
' an error message.

 Call SendIFC(GPIB0)
 If (ibsta And EERR) Then
 GpibErr ("Error sending IFC.")
 End If

' DevClearList will send the GPIB Selected Device Clear (SDC) command
' message to all the devices on the bus. If the error bit EERR is set in
' ibsta, call GpibErr with an error message.

 Call DevClear(GPIB0, ELGAR)

 104

 If (ibsta And EERR) Then
 GpibErr ("Error in clearing the devices. ")
 End If

End Sub

Sub StopGPIB()

 ilonl GPIB0, 0
 If (ibsta And EERR) Then
 'GpibErr ("Error putting board offline.")
 End If

End Sub

Sub StartLights()

 'Set Default source voltage to gblNomVolts

 Call Send(GPIB0, 25, "Source:Volt " & CStr(gblNomVolts), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage' To Start Lights. ")
 End If

 'Turn the output of the Elgar ON and keep it on

 Call Send(GPIB0, 25, "Output ON", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Output ON'. ")
 End If

End Sub

Sub StopLights()

 'Turn the output of the Elgar Off and keep it on

 Call Send(GPIB0, 25, "Output OFF", NLend)

 105

End Sub

Sub RunSequence()

'Declare local Variables
Dim dblStepSize As Double
Dim intCase As Integer
Dim dblCaseAvolts As Double
Dim dblCaseBvolts As Double
Dim intCycles As Integer

' ### Setup Case Voltages ###################

'Determine the step size for this sequence
'If intReverses < 2 Then
' dblStepSize = dblDeltaV * (1 - Exp(intSeqPerRev / dblTauL))
'Else
' dblStepSize = dblFinalStep
'End If

'Determine if we should be moving up or down for this sequence
'If intReverses Mod 2 > 0 Then
' 'Moving Down
' dblStepSize = -dblDeltaV * (1 - Exp(-intSeqPerRev / dblTauL))
'Else
' 'Movin' On Up
' dblStepSize = dblDeltaV * (1 - Exp(-intSeqPerRev / dblTauL))
'End If

'Normalize dblStepSize to Nominal Voltage
'dblStepSize = dblLastRevVolt + dblStepSize

'Calculate Voltage for this Step
'dblCurrentVoltage = dblCurrentVoltage + dblStepSize

dblCurrentVoltage = gblNomVolts - dblDeltaV

'Randomize which case gets the voltage drop
Randomize
intCase = CInt(Int((2 * Rnd()) + 1)) - 1

 106

'If Case A
If intCase = 0 Then

 'Set the boolean to False = Case A
 blCase = False

 'Set Voltages for both Cases
 dblCaseAvolts = dblCurrentVoltage
 dblCaseBvolts = gblNomVolts

Else 'Case B

 'Set the boolean to True = Case B
 blCase = True

 'Set Voltages for both Cases
 dblCaseAvolts = gblNomVolts
 dblCaseBvolts = dblCurrentVoltage

End If

' ### Determine Sequence Length ##########

Select Case frmMain.cboDuration.ListIndex

 Case 0
 intCycles = 5
 Case 1
 intCycles = 10
 Case 2
 intCycles = 15
 Case 3
 intCycles = 20
 Case Else
 MsgBox ("Error in selecting Cycles")

End Select

' ### Run Sequences ######################

'If Step Sequences

 107

If blStep Then

 StepSeq intCycles, dblCaseAvolts, True
 Sleep 1500
 StepSeq intCycles, dblCaseBvolts, False

Else 'Ramp Sequences

 RampSeq intCycles, dblCaseAvolts, True
 Sleep 1500
 RampSeq intCycles, dblCaseBvolts, False

End If

'Increment Sequence Number
intSeqNumber = intSeqNumber + 1

‘Set Text Box Values for Tester Feedback ++++++++++++++++++++++++++++++++
frmMain.optCase.value = blCase
frmMain.txtCurVolt = dblCurrentVoltage

End Sub

Sub CorrectAns(ByVal blAnswer As Boolean)

'See if this answer is CORRECT
If blAnswer = blCase Then

 'If moving down and was correct before Reverse directions
' If intReverses Mod 2 > 0 And blCorrect Then
' intReverses = intReverses + 1
' intSeqPerRev = 1
' dblLastRevVolt = dblCurrentVoltage
' dblDeltaV = gblNomVolts - dblCurrentVoltage
' Else
' intSeqPerRev = intSeqPerRev + 1
' End If

 'Tell them they are correct
 frmMain.txtCorrect.Text = "Your last answer was: CORRECT."

 108

 If blCorrect Then
 'check to reverse
 If intReverses Mod 2 > 0 Then
 intReverses = intReverses + 1
 End If

 If intReverses < 2 Then
 dblDeltaV = dblDeltaV * (1 - dblInitStep)
 Else
 dblDeltaV = dblDeltaV * (1 - dblFinalStep)
 End If
 'Reset Correct Counter Since that is two in a row
 blCorrect = False

 Else
 'Set correct counter to one
 blCorrect = True
 End If

Else 'Answer is INCORRECT

 'If moving up and was incorrect last time Reverse Directions
' If intReverses Mod 2 = 0 And Not blCorrect Then
' intReverses = intReverses + 1
' intSeqPerRev = 1
' dblLastRevVolt = dblCurrentVoltage
' Else
' intSeqPerRev = intSeqPerRev + 1
' End If

 'Check to reverse
 If intReverses Mod 2 = 0 Then
 intReverses = intReverses + 1
 End If

 'Tell them and set it incorrect
 frmMain.txtCorrect.Text = "Your last answer was: INCORRECT."
 blCorrect = False

 If intReverses < 2 Then
 dblDeltaV = dblDeltaV / (1 - dblInitStep)

 109

 Else
 dblDeltaV = dblDeltaV / (1 - dblFinalStep)
 End If

End If

'Write This Sequence Data to Excel
WriteToExcel blAnswer

'Determine if we are done with the test
If intReverses > 5 Then
 MsgBox "The test is complete. THANKS FOR PLAYING!!! Please Record the Date
and Time as: " & DateTime.Date$ & " " & DateTime.Hour(Now) & ":" &
DateTime.Minute(Now)
 StopTesting False, False
End If

End Sub

Sub StepSeq(ByVal cycles As Integer, ByVal dblNewVoltage As Double, ByVal
blCaseA)

 'Clear the sequence scratch pad

 Call Send(GPIB0, 25, "Edit:seq:clear", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Clearing Seg Scratchpad'. ")
 End If

 '### Create Segment 0 #########################
 'Buffer Segment to get around the ELGAR Glitch

 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles 120", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Buffer Seg Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(gblNomVolts)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Buffer Seg'. ")

 110

 End If

 '### Create Segment 1 #########################
 'Contains actuall voltage step

 'Insert segment 1
 Call Send(GPIB0, 25, "Edit:seq:insert 1", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 1'. ")
 End If
 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles " & CStr(cycles), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 0 Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(dblNewVoltage)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 0'. ")
 End If

 '### Create Segment 2 #########################
 'Will be used as the ending point of the case

 'Insert segment 2
 Call Send(GPIB0, 25, "Edit:seq:insert 2", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 2'. ")
 End If
 'Set segment 1 cycles
 Call Send(GPIB0, 25, "Edit:seq:cycles 1", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 1 Cycles'. ")
 End If
 'Set segment 1 voltage 'Back to standard voltage'
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(gblNomVolts), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 1'. ")
 End If

 '### Create Segment 3 #########################
 'Buffer Segment to get around the ELGAR Glitch

 111

 'Insert segment 3
 Call Send(GPIB0, 25, "Edit:seq:insert 3", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 3'. ")
 End If
 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles 120", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 3 Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(gblNomVolts)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 3'. ")
 End If

 'Set mode to run sequence once and stop
 Call Send(GPIB0, 25, "Source:seq:mode:run single", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Seq Run Mode Single'. ")
 End If
 'Set mode to keep voltage at last that of the last segment when sequence is done
 Call Send(GPIB0, 25, "Source:seq:mode:stop segment", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Seq Stop Mode Segment'. ")
 End If
 'Load the sequence from the scratch pad into the buffer
 Call Send(GPIB0, 25, "Source:seq:load ""SCRATCH""", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Loading Seq from Scratch Pad'. ")
 End If

 'Execute the Sequence
 Call Send(GPIB0, 25, "Source:seq run", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Running Sequence'. ")
 End If

 If blCaseA Then

 Sleep 1200
 Beep 1900, 300

 112

 Sleep 1500
 Beep 1800, 300

 Else

 Sleep 1200
 Beep 1900, 150
 Sleep 50
 Beep 1900, 150
 Sleep 1400
 Beep 1800, 150
 Sleep 50
 Beep 1800, 150

 End If

End Sub

Sub RampSeq(ByVal cycles As Integer, ByVal dblNewVoltage As Double, ByVal
blCaseA)

 'Clear the sequence scratch pad

 Call Send(GPIB0, 25, "Edit:seq:clear", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Clearing Seg Scratchpad'. ")
 End If

 '### Create Segment 0 #########################
 'Buffer Segment to get around the ELGAR Glitch

 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles 120", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Buffer Seg Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(gblNomVolts)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Buffer Seg'. ")
 End If

 113

 '### Create Segment 1 #########################
 'Contains actuall voltage step

 'Insert segment 1
 Call Send(GPIB0, 25, "Edit:seq:insert 1", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 1'. ")
 End If
 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles " & CStr(cycles - 3), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 0 Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(dblNewVoltage)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 0'. ")
 End If

 '### Create Segment 2 #########################
 'Will be used as the ending point of the case

 'Insert segment 2
 Call Send(GPIB0, 25, "Edit:seq:insert 2", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 2'. ")
 End If
 'Set segment 2 cycles
 Call Send(GPIB0, 25, "Edit:seq:cycles 3", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 1 Cycles'. ")
 End If
 'Set segment 2 to RAMP UP
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl:ramp on", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 1 Cycles'. ")
 End If
 'Set segment 3 voltage 'Back to standard voltage'
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(dblNewVoltage), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 1'. ")
 End If

 114

 '### Create Segment 3 #########################
 'Will be used as the ending point of the case

 'Insert segment 3
 Call Send(GPIB0, 25, "Edit:seq:insert 3", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 3'. ")
 End If
 'Set segment 3 cycles
 Call Send(GPIB0, 25, "Edit:seq:cycles 1", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 3 Cycles'. ")
 End If
 'Set segment 3 voltage 'Back to standard voltage'
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(gblNomVolts), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 1'. ")
 End If

 '### Create Segment 4 #########################
 'Buffer Segment to get around the ELGAR Glitch

 'Insert segment 3
 Call Send(GPIB0, 25, "Edit:seq:insert 4", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Insert Seg 4'. ")
 End If
 'Set length of voltage drop in 'cycles'
 Call Send(GPIB0, 25, "Edit:seq:cycles 120", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Setting Seg 4 Cycles'. ")
 End If
 'Set depth of voltage drop
 Call Send(GPIB0, 25, "Edit:seq:sour1:ampl " & CStr(CCur(gblNomVolts)), NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Source Voltage for Seg 4'. ")
 End If

 'Set mode to run sequence once and stop
 Call Send(GPIB0, 25, "Source:seq:mode:run single", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Seq Run Mode Single'. ")

 115

 End If
 'Set mode to keep voltage at last that of the last segment when sequence is done
 Call Send(GPIB0, 25, "Source:seq:mode:stop segment", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Seq Stop Mode Segment'. ")
 End If
 'Load the sequence from the scratch pad into the buffer
 Call Send(GPIB0, 25, "Source:seq:load ""SCRATCH""", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Loading Seq from Scratch Pad'. ")
 End If

 'Execute the Sequence
 Call Send(GPIB0, 25, "Source:seq run", NLend)
 If (ibsta And EERR) Then
 GpibErr ("Error Sending 'Running Sequence'. ")
 End If

 If blCaseA Then

 Sleep 1200
 Beep 1900, 300
 Sleep 1500
 Beep 1800, 300

 Else

 Sleep 1200
 Beep 1900, 150
 Sleep 50
 Beep 1900, 150
 Sleep 1400
 Beep 1800, 150
 Sleep 50
 Beep 1800, 150

 End If

End Sub

Sub StopTesting(ByVal blcritical As Boolean, ByVal blUserReset)

 116

'Determine if an error was thrown by GPIB or ELGAR and ask them to record message
If blcritical Then
 MsgBox "An Error has occured and the Test will be Reset. Please Record the
following Error Messages for me.", vbCritical
Else 'Else it was a correct termination
 If blUserReset Then
 SaveExcel True
 Else
 SaveExcel False
 End If
End If

'Unload and reload main form to reset test
Unload frmMain
Load frmMain
frmMain.Visible = True

End Sub

Sub WriteToExcel(ByVal blAnswer As Boolean)
'Local Variable to index excel rows
Dim index As Integer
index = intSeqNumber + 9

'Fill in the columns on the excel sheet
ApExcel.cells(index, 1).formula = intSeqNumber

If Not blCase Then
 ApExcel.cells(index, 2).formula = "A"
Else
 ApExcel.cells(index, 2).formula = "B"
End If

ApExcel.cells(index, 3).formula = CStr(CCur(dblCurrentVoltage))

If Not blAnswer Then
 ApExcel.cells(index, 4).formula = "A"
Else
 ApExcel.cells(index, 4).formula = "B"
End If

If blCase = blAnswer Then
 ApExcel.cells(index, 5).formula = "X"

 117

End If

ApExcel.cells(index, 6).formula = intReverses

End Sub

Sub SaveExcel(ByVal blInComplete)
'Save Excel sheet and release excel
If blInComplete Then

 ApExcel.activeworkbook.saveas SaveDir & frmMain.txtTestName.Text & " " &
strDateTime & "_NC.xls"
 ApExcel.activeworkbook.Close

Else

 ApExcel.activeworkbook.saveas SaveDir & frmMain.txtTestName.Text & " " &
strDateTime & ".xls"
 ApExcel.activeworkbook.Close
End If

ApExcel.quit
Set ApExcel = Nothing

End Sub

Sub runExample()

'Declare local Variables
Dim dblStepSize As Double
Dim intCase As Integer
Dim dblCaseAvolts As Double
Dim dblCaseBvolts As Double
Dim intCycles As Integer
Dim dblExampleVolts As Double

' ### Setup Case Voltages ###################

dblExampleVolts = 0.98 * gblNomVolts

 118

'Randomize which case gets the voltage drop
Randomize
intCase = CInt(Int((2 * Rnd()) + 1)) - 1

'If Case A
If intCase = 0 Then

 'Set the boolean to False = Case A
 blCase = False

 'Set Voltages for both Cases
 dblCaseAvolts = dblExampleVolts
 dblCaseBvolts = gblNomVolts

Else 'Case B

 'Set the boolean to True = Case B
 blCase = True

 'Set Voltages for both Cases
 dblCaseAvolts = gblNomVolts
 dblCaseBvolts = dblExampleVolts

End If

' ### Determine Sequence Length ##########

intCycles = 15

' ### Run Sequences ######################
'Step Sequences

 StepSeq intCycles, dblCaseAvolts, True
 Sleep 1500
 StepSeq intCycles, dblCaseBvolts, False

Sleep 1000

frmMain.cmdExample.Enabled = True
End Sub
Private Sub GpibErr(msg$)

 119

 'Start StopTesting
 StopTesting True, False

 'Throw the error message hopefully someone will pay attention to
 msg$ = msg$ + AddIbsta() + AddIberr() + AddIbcnt() + Chr(13) + Chr(13) + "I'm
quitting!"
 MsgBox msg$, vbOKOnly + vbExclamation, "Error"

 ' Take the board offline.

 ilonl GPIB0, 0

 End
End Sub

Private Function AddIbcnt() As String
 AddIbcnt = Chr$(13) + Chr$(10) + "ibcnt = 0x" + Hex$(ibcnt)
End Function

Private Function AddIberr() As String

 If (ibsta And EERR) Then
 If (iberr = EDVR) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EDVR <DOS
Error>"
 If (iberr = ECIC) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ECIC <Not
CIC>"
 If (iberr = ENOL) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ENOL <No
Listener>"
 If (iberr = EADR) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EADR
<Address Error>"
 If (iberr = EARG) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EARG <Invalid
argument>"
 If (iberr = ESAC) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ESAC <Not Sys
Ctrlr>"
 If (iberr = EABO) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EABO <Op.
aborted>"
 If (iberr = ENEB) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ENEB <No
GPIB board>"
 If (iberr = EOIP) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EOIP <Async
I/O in prg>"
 If (iberr = ECAP) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ECAP <No
capability>"

 120

 If (iberr = EFSO) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EFSO <File sys.
error>"
 If (iberr = EBUS) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = EBUS
<Command error>"
 If (iberr = ESTB) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ESTB <Status
byte lost>"
 If (iberr = ESRQ) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ESRQ <SRQ
stuck high>"
 If (iberr = ETAB) Then AddIberr = Chr$(13) + Chr$(10) + "iberr = ETAB <Table
overflow>"
 Else
 AddIberr = Chr$(13) + Chr$(10) + "No error, iberr = " + Str$(iberr)
 End If
End Function

Private Function AddIbsta() As String

 sta$ = Chr$(13) + Chr$(10) + "ibsta = &H" + Hex$(ibsta) + " <"
 If (ibsta And EERR) Then sta$ = sta$ + " ERR"
 If (ibsta And TIMO) Then sta$ = sta$ + " TIMO"
 If (ibsta And EEND) Then sta$ = sta$ + " END"
 If (ibsta And SRQI) Then sta$ = sta$ + " SRQI"
 If (ibsta And RQS) Then sta$ = sta$ + " RQS"
 If (ibsta And CMPL) Then sta$ = sta$ + " CMPL"
 If (ibsta And LOK) Then sta$ = sta$ + " LOK"
 If (ibsta And RREM) Then sta$ = sta$ + " REM"
 If (ibsta And CIC) Then sta$ = sta$ + " CIC"
 If (ibsta And AATN) Then sta$ = sta$ + " ATN"
 If (ibsta And TACS) Then sta$ = sta$ + " TACS"
 If (ibsta And LACS) Then sta$ = sta$ + " LACS"
 If (ibsta And DTAS) Then sta$ = sta$ + " DTAS"
 If (ibsta And DCAS) Then sta$ = sta$ + " DCAS"
 sta$ = sta$ + ">"
 AddIbsta = sta$
End Function

 121

Appendix B

NEC Installation Requirements and Panel Voltage Estimation

Example Normalized Inrush Voltage Drop Estimation Worksheet

Instructions: Before beginning, ensure that safe points of measurement are available on
the 240V circuit at both the breaker panel and HVAC exterior pull disconnect. With the
compressor running, measure both the breaker panel voltage and the voltage at the
disconnect. Record these values in the space provided.

VBreaker Panel = ______________ VDisconnect = ______________

Determine the normalized voltage drop by dividing the disconnect voltage by the breaker
panel voltage and subtracting the result from 1. The result must be less than 1. Record
this value in the space below.

 = ______________

From the nameplate of the compressor, record the ratings for the compressor’s RLA and
LRA in the space provided.

IRLA = ______________ ILRA= ______________

Find the ratio of the inrush current by dividing the LRA by the RLA. The result must be
larger than 1. Record this value in the space provided.

 = ______________

To find the final normalized inrush voltage drop on the branch circuit, multiply the
normalized voltage by the inrush ratio. Find this value in the table below.

 = ______________

 122

Normalized Inrush Voltage Drop Table

Calculated
Inrush

Voltage S1 S2 S3 S4

Calculated
Inrush

Voltage S1 S2 S3 S4

0 - 0.49 OFF OFF OFF OFF 4 - 4.49 OFF OFF OFF ON

0.5 – 0.99 ON OFF OFF OFF 4.5 – 4.99 ON OFF OFF ON

1 - 1.49 OFF ON OFF OFF 5 - 5.49 OFF ON OFF ON

1.5 – 1.99 ON ON OFF OFF 5.5 - 5.99 ON ON OFF ON

2 - 2.49 OFF OFF ON OFF 6 - 6.49 OFF OFF ON ON

2.5 – 2.99 ON OFF ON OFF 6.5 - 6.99 ON OFF ON ON

3 - 3.49 OFF ON ON OFF 7 - 7.49 OFF ON ON ON

3.5 – 3.99 ON ON ON OFF 7.5 - 8 ON ON ON ON

Use the sequence for the given voltage drop range to set the corresponding dip switches
on the VFS.

 123

Figure B.1. The NEC® Installation Requirements.

 124

Appendix C

VFS Bill of Materials

Printed Circuit Board (Active)

Item MFG MFG Part #
Quantity /
Unit

Cost /
Unit

Microcontroller Microchip DSPIC30F3013-30I/SP 1 $7.75

Power TRIAC Teccor Q4040K7 6 $40.98

Pilot TRIAC Fairchild FOD420 6 $14.28

5V DC Regulator Fairchild LM7805CT 1 $0.45

Printed Circuit Board (Passive)

Item MFG MFG Part #

Quantity /
Unit

Cost /
Unit

Transformer (240 / 2 x 18V) Tamura PL5.0-36-130B 1 $7.30

Current Transformer CR Magnetics CR8349-2500-N 1 $11.20

Rectifier Diodes (Schottky 1A 40V Axial) ON Semi 1N5819G 12 $5.16

Zener Diodes (5.1 V at 3 W Axial) ON Semi 1N5338BG 2 $0.00

Resistors (10 Ohms 1/4 W Axial) 2 $0.00

Resistors (18 Ohms 1/4 W Axial) 1 $0.00

Resistors (240 Ohms 1/4 W Axial) Standard Stocked Items 1 $0.00

Resistors (1 k Ohms 1/4 W Axial) All 1/4 W Resistors are 4 $0.00

Resistors (1.1 k Ohms 1/4 W Axial) assumed 0.3" pitch 1 $0.00

Resistors (1.5 k Ohms 1/4 W Axial) 7 $0.00

Resistors (10 k Ohms 1/4 W Axial) 6 $0.00

Resistors (380 Ohms 1/2 W Axial) Vishay SFR16S0003900FR500 6 $1.31

Resistor (3.3 k Ohms 2 W Axial) Bleeders Vishay PR02000203301JR500 6 $3.62

Capacitor (100 uF 50V Radial) Panasonic EEU-FC1H101 1 $0.44

Capacitor (10 uF 50V Radial) Panasonic ECA-2AHG100 1 $0.30

Capacitor (0.33uF 50V Radial) CDE 167334J63A 1 $0.66

Capacitor (0.1uF 50V Radial) Kemet C320C104K5R5TA 7 $1.47

MOV (240V) Littelfuse TMOV20R275E 1 $1.66

MOV (120V) Littelfuse TMOV20R150EP 2 $3.44

 125

PCB Connectors

Item MFG MFG Part #
Quantity /
Unit

Cost /
Unit

Power Connector (3 pin socket) Molex 10-84-4030 1 $0.83

Power Connector (3 pin plug) Molex 50-84-1030 1 $0.28

Screw Terminals Keystone 8197 12 $4.48

CT Connector Male Molex 22-03-2031 2 $0.70

LED and Reset Connector Male Molex 22-03-2021 2 $0.38

CT Connector Female (3 pin 0.1" space) Molex 22-01-2037 2 $0.40

LED and Reset Connector Female Molex 22-01-2027 2 $0.26

Connector Terminals 22-30AWG Molex 08-50-0114 10 $1.24

Connector Terminals 14-20AWG Molex 02-08-1002 3 $0.26

28 Pin Dip Socket (PIC) 3M 4828-3004-CP 1 $0.33

8 Pin Dip Socket (Dip switches) Assmann A08-LC-TT-R 1 $0.32

6 Pin Dip Socket (Pilot Triacs) Assmann A06-LC-TT-R 6 $3.54

Enclosure and Disconnect

Item MFG MFG Part #

Quantity /
Unit

Cost /
Unit

Enclosure Non-metallic (14 x 12 x 6) Hubbell HW-J141206CHQR 1 $75.00

Backplane (Aluminum) Hubbell HW-MP1412A 1 $11.25

Disconnecting Switch SquareD QOU200 1 $68.69

Switch Mounting Feet SquareD QOUMF2B 2 $2.84

Switch Rain-proof cover SquareD BCV 1 $22.17

Push Button Reset Switch SPST-NO Tyco MSPS103C0 1 $2.39

PCB Standoffs (1/2 ") Keystone 1893 10 $4.35

900 uF Mounting Bracket CDE VR10A 4 $10.04

300 uF Mounting Bracket CDE VR8 3 $6.81

 126

Terminal Blocks and Wiring

Item MFG MFG Part #
Quantity /
Unit

Cost /
Unit

Screw Clamp Terminal Block Phoenix Contact 3006043 10 $46.60

Term Block Separating Plate Phoenix Contact 3003224 3 $3.03

Term Block Fixed Bridges Phoenix Contact 0203454 1 $12.92

Term Block End Brackets Phoenix Contact 1201442 4 $4.36

Ring Crimp Terminals (10 AWG 1/4" ring) Tyco 35110 24 $6.96

Ring Crimp Terminals (16 AWG 1/4" ring) Tyco 31894 12 $2.76

14 AWG Quick Disconnect Molex 19007-0021 4 $1.32

18 AWG Quick Disconnect Molex 19007-0001 4 $1.00

10 AWG Red (3 feet)

10 AWG Black (3 feet) Minimum Supply On Hand

14 AWG Red (3 feet) High strand count

14 AWG Black (3 feet) to increase flexibility

14 AWG Green (3 feet)

CT, Reset Switch, and LED Indicator (28 AWG) Standard Stocked Item

Protection

Item MFG MFG Part #

Quantity /
Unit

Cost /
Unit

30 A 11/32' Fuse Clips Keystone 3566 80 On Hand $0.00

10 A 5x20mm Fuse Clips Keystone 3519 90 On Hand $0.00

15 Amp Slo-Blow Fuses Ferraz Shawmut TRM15 2 $5.80

30 Amp Slo-Blow Fuses Ferraz Shawmut TRM30 4 $12.40

Total / Unit $413.73

 127

Figure C.1. Initial VFS Enclosure Layout Full View.

Figure C.2 Top View of the VFS PCB and Terminal Blocks.

 128

Figure C.3. Final Enclosure Layout Front View.

Figure C.4. Final Enclosure Layout Open View.

 129

Appendix D

Microcontroller Source Code

//--
//
// VSD Controller Code for the dsPIC30F3013
//
// Written by: Curtiss Fox
//
// Last Updates: 9/17/08
//
// Description: This program will allow for the specified microcontroller
// to operate the VSD within a 1% correction margin.
// The set points are for a 70A trigger current used with a classic ‘doughnut’
// style CT. The cutoff voltage is set to 100.5%
//
//--

#include "p30F3013.h"
#include <libpic30.h>

//PIC specific Setups
_FWDT(WDT_OFF); //WatchDog OFF
_FOSC(CSW_FSCM_OFF & FRC & FRC_PLL16); //Fast internal RC clk at 16x (~30 Mhz)
_FBORPOR(MCLR_DIS & PBOR_ON & BORV_27 & PWRT_OFF); //Disable Master Clear and set Brown-out voltage

// ++++++++++ CONSTANTS +++++++++++

//Set a Placeholder for EEPROM Data by initializing a row vector up front
long _EEDATA(32) fooArrayInDataEE[] = {0,0,0,0,0,0,0,0};

//Stage Definitions w/ 1/3 stages
const int StageB[16] =
{0x0000,0x0000,0x0000,0x0080,0x0080,0x0080,0x00C0,0x00C0,0x00C0,0x01C0,0x01C0,0x01C0,0x03C0,0x03C0,0x03C0,0x03C0
};
const int StageF[16] =
{0x0000,0x0020,0x0010,0x0000,0x0020,0x0010,0x0000,0x0020,0x0010,0x0000,0x0020,0x0010,0x0000,0x0020,0x0010,0x0030};

//Current Constants
const int OnCurrentPos = 411; // 70 Amps (1100 on CR8348-2000)
const int OffCurrentPos = 30; // 5 Amps averaged over a half cycle (80 on
CR8348-2000)

//Cutout Voltage gain constant
const float TurnOffGain = 1.007; //Turn off at 100.7% Voltage

//Tuning Constants
const float switchCompGain = 0.0003; //The voltage drop for each switch is 0.3%
const float compLevelGain = 0.005; //The level gain is 0.5% per step

// ++++++++++ VARIABLES +++++++++++

//Declare Variables : Controller
signed int ADResultC = 0; //Current Sample
unsigned int ADResultV = 0; //Voltage Sample
unsigned long ADSumC = 0; //Current Sum
signed long LastSumC[3] = {0,0,0}; //Last two Current Sums

unsigned long ADSumV = 0; //Voltage Sum
unsigned long LastSumV[3] = {0,0,0}; //Last two Voltage Sums

 130

unsigned long PreVoltage[3] = {0,0,0}; //PreStart Voltage
unsigned long TurnOffVoltage[3] = {0,0,0}; //PreStart Voltage

unsigned long PostVoltage[3] = {0,0,0}; //PostStart Voltage
unsigned long InVoltage[3] = {0,0,0}; //Insert Voltage
unsigned long InCurrent[3] = {0,0,0}; //Insert Current
unsigned long InitCurrent[3] = {0,0,0}; //Initial Current

unsigned int EvenCycle = 0; //Holds the even/odd cycle counter
unsigned int samples = 0; //Samples during this half cycle
unsigned int OnCycle = 0; //Number of cycles caps are on

unsigned int OnCycleSet = 40; //Number of desired cycles caps are on in HALFCYCLES (40 = 20 full cycles)
unsigned int OutputB = 0x0000; //PortB output
unsigned int OutputF = 0x0000; //PortF output

unsigned int Control = 0x0000; //Control register to signify events during starting
unsigned int OnCurrentSamples = 0; //Sample number to eliminate dv/dt current spikes

unsigned int StartUpTimer = 0;
unsigned int DelayTimer = 0;

unsigned long fooArrayinRAM[8] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
unsigned int StartCycles = 0;

//Declare Variables : TuneUp
double PreStartV = 0;
double InStartV = 0;
double deltaVi = 0; //Used to Calculate the Stages needed

int switchComp = 0;
int compLevel = 0;
double compCurrent = 0;

double VswitchComp = 0;
double VcompLevel = 0;
double VdiffActual = 0;

unsigned long TotalStages = 0; //Used to Hold the Total stages
unsigned int WorkingStages = 0; //Used to Hold the Working stages
unsigned int TuneStages = 0; //Used to Hold the Current Tune Stages stages

int main(void)
{

//Initialize the Controller===

//Input Initialization

ADPCFG = 0b1111111111001111; //Make AN4 and AN5 analog, rest digital

//Note to self, read and set LATCH before TRIS

LATB = 0x0000; //Latch PortB at 0 before turn on
TRISB = 0xC3F; //Turn PortB 6-9 to output, use the rest as inputs (A/D and DI)

LATF = 0x0000; //Latch PortF at 0 before turn on
TRISF = 0x0000; //Turn all of PortF output

LATD = 0x0100; //Latch RB8 high LED
TRISD = 0x0200; //Turn RB9 to input

//RESET OPTION +++++++++++++++++++++++++++++++++++++++

 131

//Declare pointer for EEPROM data
_prog_addressT EE_addr;
//Initialize the variable to represent the Data EEPROM address */
_init_prog_address(EE_addr, fooArrayInDataEE);

if (PORTDbits.RD9 == 1) {

 // RESET +++++++++++++++++++++++++++++++++++++

 //Set Working variables to initial states (zero)
 TotalStages = 0;
 InitCurrent[0] = 0;
 InitCurrent[1] = 0;

 //Set Working Variables for capacitor stages
 WorkingStages = TotalStages;
 TuneStages = TotalStages % 3;

 //Copy To working Variables into the Array to write to EEPROM
 fooArrayinRAM[0] = TotalStages;
 fooArrayinRAM[1] = InitCurrent[0] ;
 fooArrayinRAM[2] = InitCurrent[1];

 /*Erase a row in Data EEPROM at array "fooArrayinDataEE" */
 _erase_eedata(EE_addr, _EE_ROW);
 _wait_eedata();

 /*Write a row to Data EEPROM from array "fooArray1inRAM" */
 _write_eedata_row(EE_addr, (int *)fooArrayinRAM);
 _wait_eedata();

 //Timer Setup for Delay (30 Seconds)
 TMR2 = 0; // Clear timer 2 regester
 TMR3 = 0; // Clear timer 3 regester
 PR2 = 0x5A4E; // Least Significant Period
 PR3 = 0x0003; // Most Significant Period
 IFS0bits.T3IF = 0; // clr interrupt flag
 IEC0bits.T3IE = 1; // set interrupt enable bit
 T2CON = 0x8038; // Fosc/4, 1:256 prescale, 32 bit, start TMR2

 LATD = 0x0100; //Turn off RB8 LED

 //Flash for waiting
 TMR1 = 0; // clear timer 1
 PR1 = 0x3938; // Set Period for 2 seconds
 IFS0bits.T1IF = 0; // clr interrupt flag
 IEC0bits.T1IE = 1; // set interrupt enable bit
 T1CON = 0x8030; // Fosc/4, 1:256 prescale, start TMR1

 //Wait for 30 second timeout
 while(DelayTimer == 0);

 //Reset Delay Flag
 DelayTimer = 0;

 //Turn off RB8 LED
 LATD = 0x0100;

 //Clear Timers
 T1CON = 0x0000;
 T2CON = 0x0000;

}else { //Copy over the data from the EEPROM

 // RESTART +++++++++++++++++++++++++++++++++++++

 132

 //Copy array "fooArrayinDataEE" from DataEEPROM to "fooArrayinRAM" in RAM*/
 _memcpy_p2d16(fooArrayinRAM, EE_addr, _EE_ROW);

 //Copy To working Variables in the program space
 TotalStages = fooArrayinRAM[0];
 InitCurrent[0] = fooArrayinRAM[1];
 InitCurrent[1] = fooArrayinRAM[2];

 //Set Working Variables for capacitor stages
 WorkingStages = TotalStages;
 TuneStages = TotalStages % 3;

}

// AD CONFIGURATION

//AD config reg 1
ADCON1bits.FORM = 0; //Set integer output
ADCON1bits.SSRC = 7; //Start Conversion automatically
ADCON1bits.ASAM = 1; //Start on Sample Bit being set

//AD config reg 2
ADCON2bits.VCFG = 0;
ADCON2bits.CSCNA = 1;
ADCON2bits.SMPI = 1;
ADCON2bits.BUFM = 0;
ADCON2bits.ALTS = 0;

//AD config reg 3
ADCON3bits.SAMC = 12;
ADCON3bits.ADCS = 1;
ADCON3bits.ADRC = 0;

//AD channel select register
ADCHS = 0x0000;

//AD Channel scan select register
ADCSSL = 0b0000000000110000; //Sample AN4 and AN5 (V and I respectively)

//Turn AD ON
ADCON1bits.ADON = 1;

while(1) { //Loop Endlessly%%%

 //Ready State While Loop
 while((Control & 0xFFFF) != 0x0FFF){

 //Check on A/D
 while(!IFS0bits.ADIF);

 //Increase samples this time
 samples++;

 //Get A/D buffer data: Classic CT
 ADResultC = ADCBUF1;
 ADResultV = ADCBUF0;

 //Add to the half cycle sums
 ADSumC = ADSumC + ADResultC;
 ADSumV = ADSumV + ADResultV;

 //Set to Turn on the caps if the current is high enough
 if ((ADResultC > OnCurrentPos) && (Control & 0x00FF) == 0x0000) {

 133

 //Do only if we are over the number of samples to eliminate dv/dt current spikes for striking
 if (OnCurrentSamples > 30) {
 //Compressor is now ON and set caps to TURN ON at next HALF CYCLE
 Control = Control | 0x000F;

 //Check for cold load pickup by making sure both half cycle voltages are greater than
setpoint
 if (StartCycles >= 3) {
 //Get PreVoltages
 PreVoltage[0] = LastSumV[0];
 PreVoltage[1] = LastSumV[1];
 PreVoltage[2] = LastSumV[2];
 //Set Turn off Gains : Moved Calculation to InVoltage
 //TurnOffVoltage[0] = LastSumV[0] * TurnOffGain;
 //TurnOffVoltage[1] = LastSumV[1] * TurnOffGain;
 } // Else use EEPROM Values
 } else {
 OnCurrentSamples++;
 }
 }

 //Half Cycle Loop
++
 if (ADResultV < 0x0200 && samples > 60){

 //Update Average Voltage and Clear Averages
 LastSumV[EvenCycle] = ADSumV/samples;
 LastSumC[EvenCycle] = ADSumC/samples;
 LastSumV[2] = samples;

 //Know that the compressor is OFF, RESET CONTROL, and turn off TMR1
 if ((Control & 0x00FF) == 0x00F0) {
 if (LastSumC[EvenCycle] < OffCurrentPos) {
 Control = 0x0000;
 T1CON = 0x0000;
 }
 } else {
 LATD = LATD ^ 0x0100;
 }

 //Increment Start Cycles
 if (StartCycles <= 3) {
 StartCycles++;
 }

 //Clear Half Cycle Variables
 samples = 0;
 ADSumV = 0;
 ADSumC = 0;

 //Switch Control : Turn ON ++
 if (((Control & 0x00FF) == 0x000F) && (OnCycle < OnCycleSet)) {
 //Set Compressor On Flag leave fired ON
 Control = 0x00FF;
 //Increment On Cycle Counter
 OnCycle++;
 //Set Output
 LATB = StageB[WorkingStages];
 LATF = StageF[WorkingStages];

 } else if ((Control & 0x00FF) == 0x00FF) {
 OnCycle++;
 }

 // Turn OFF ++++++++++++++++++ Controlled ++++++++++++++++++++++++++

 134

 if ((Control & 0x00FF) == 0x00FF && LastSumV[EvenCycle] > TurnOffVoltage[EvenCycle] &&
OnCycle >=6) {

 //Remove Tuning Stages : Remove Tuning and first Full stage
 if(TuneStages > 0 && WorkingStages > 3) {
 WorkingStages = WorkingStages - TuneStages;
 //WorkingStages = WorkingStages - 3;
 LATB = StageB[WorkingStages];
 LATF = StageF[WorkingStages];
 TuneStages = 0;
 //Remove Full Stages
 }else if (WorkingStages >= 3) {
 //if (WorkingStages >= 3) {
 WorkingStages = WorkingStages - 3;
 LATB = StageB[WorkingStages];
 LATF = StageF[WorkingStages];
 //Remove Last Stage
 }else if (WorkingStages < 3){
 LATB = StageB[0];
 LATF = StageF[0];
 Control = 0x0FFF;
 }
 }

 // Turn OFF ++++++++++++++++++ STOP ALL ++++++++++++++++++++++++++
 if ((Control & 0x0FFF) == 0x00FF && OnCycle >= OnCycleSet) {
 //Set Output Low
 LATB = 0x0000;
 LATF = 0x0000;
 //Set Control to POST and leave compressor ON
 Control = 0x0FFF;
 }//If Switch Control END

 //Capture The Starting Voltage and Current
 if (OnCycle == 4){
 //Copy Starting Current
 InVoltage[0] = LastSumV[0];
 InVoltage[1] = LastSumV[1];
 InVoltage[2] = LastSumV[2];

 //Set Turn off Gains ++++++++++++++++++++
 TurnOffVoltage[0] = LastSumV[0] * TurnOffGain;
 TurnOffVoltage[1] = LastSumV[1] * TurnOffGain;

 //Copy Starting Voltage
 InCurrent[0] = LastSumC[0];
 InCurrent[1] = LastSumC[1];
 InCurrent[2] = LastSumC[2];
 }

 //Increment Cycle
 EvenCycle = EvenCycle ^ 0x0001;

 }//If Half Cycle End +++

 }//End While ===

 //CleanUp Control Variables on EXIT
 OnCycle = 0;
 Control = 0x00F0; //Compressor is still on
 LastSumV[2]=0;
 LastSumC[2]=0;
 ADSumV = 0;
 ADSumC = 0;

 135

//Stages tuneup ==

//If no capacitance inserted, record starting current

 //If no Caps inserted, recapture the initial current
 if (TotalStages == 0) {
 InitCurrent[0] = InCurrent[0];
 InitCurrent[1] = InCurrent[1];
 }

 //If not a cold load pickup, take it as a useful run
 if(PreVoltage[0] > 0 && PreVoltage[1] > 0) {

 //Calculate the voltage difference seen by the VFS
 PreStartV = PreVoltage[0] + PreVoltage[1];
 InStartV = InVoltage[0] + InVoltage[1];
 VdiffActual = InStartV/PreStartV;

 //Calculate the switch offset voltage
 //====================================
 //One switch for each full stage
 switchComp = TotalStages / 3;
 //Check if a tuning stage is present, then add 1
 if (TotalStages % 3 > 0) {
 switchComp = switchComp + 1;
 //Check for the all six stages on condition
 } else if (TotalStages == 15) {
 switchComp = (TotalStages / 3) + 2;
 }

 VswitchComp = switchComp * switchCompGain;

 //Calculate the Compensation level voltage drop
 //==
 //Clear Compensation Level
 compLevel = 0;
 //Set Compensation level based on DIP Switches
 if (PORTBbits.RB3 == 0){
 compLevel = compLevel + 1;
 }
 if (PORTBbits.RB2 == 0){
 compLevel = compLevel + 2;
 }
 if (PORTBbits.RB1 == 0){
 compLevel = compLevel + 4;
 }
 if (PORTBbits.RB0 == 0){
 compLevel = compLevel + 8;
 }
 //Calculate the current ratio of the apparent voltage drop
 if (InitCurrent[0] > 0 && InitCurrent[1] > 0) {
 compCurrent = (InCurrent[0] + InCurrent[1]) / (InitCurrent[0] + InitCurrent[1]) ;
 } else {//Should Never Happen, but used as a catch all
 compCurrent = 1;
 }

 //Calculate the compensation level voltage based on the desired gain
 VcompLevel = compLevel * compLevelGain * compCurrent;

 //Calculate the final effective estimate of the panel voltage
 deltaVi = 1 - (VdiffActual + VswitchComp + VcompLevel);

 136

 //Set new TotalStages based on deltaVi
 if (deltaVi > 0.030) { //Accelerated Gain
 TotalStages = TotalStages + 3;
 } else if (deltaVi > 0.0125) { //Simple Gain
 TotalStages++;
 } else if (deltaVi < 0.000) { //Negative Gain
 TotalStages--;
 }

 //Ensure TotalStages is within practical limits
 if (TotalStages > 15) {
 TotalStages = 15;
 } else if (TotalStages < 0) {
 TotalStages = 0;
 }

 //Set Working Variables for capacitor stages
 WorkingStages = TotalStages;
 TuneStages = TotalStages % 3;

 //Copy To working Variables into the Array to write to EEPROM
 fooArrayinRAM[0] = TotalStages;
 fooArrayinRAM[1] = InitCurrent[0] ;
 fooArrayinRAM[2] = InitCurrent[1];

 /*Erase a row in Data EEPROM at array "fooArrayinDataEE" */
 _erase_eedata(EE_addr, _EE_ROW);
 _wait_eedata();

 /*Write a row to Data EEPROM from array "fooArray1inRAM" */
 _write_eedata_row(EE_addr, (int *)fooArrayinRAM);
 _wait_eedata();

 }//End if real correction attempt or just cold start

 //Set Working Variables for capacitor stages
 WorkingStages = TotalStages;
 TuneStages = TotalStages % 3;

 //End Stages TuneUp

 //Timer Setup for Delay after Compressor Starting (30 Seconds)
 TMR2 = 0; // Clear timer 2 regester
 TMR3 = 0; // Clear timer 3 regester
 PR2 = 0x5A4E; // Least Significant Period
 PR3 = 0x0003; // Most Significant Period
 IFS0bits.T3IF = 0; // clr interrupt flag
 IEC0bits.T3IE = 1; // set interrupt enable bit
 T2CON = 0x8038; // Fosc/4, 1:256 prescale, 32 bit, start TMR2

 LATD = 0x0100; //Turn off RB8 LED

 //Flash for waiting
 TMR1 = 0; // clear timer 1
 PR1 = 0x3938; // Set Period for 2 seconds
 IFS0bits.T1IF = 0; // clr interrupt flag
 IEC0bits.T1IE = 1; // set interrupt enable bit
 T1CON = 0x8030; // Fosc/4, 1:256 prescale, start TMR1

 //Wait for 30 second timeout
 while(DelayTimer == 0);

 //Reset Delay Flag
 DelayTimer = 0;

 137

 //Turn off RB8 LED
 LATD = 0x0100;

 //Clear Timers
 T1CON = 0x0000;
 T2CON = 0x0000;

} //Return to Ready State %%
return 0;
}

//Interrupt for Timer 1 (StartUp Timer)
void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void)
{
 IFS0bits.T1IF = 0; // clear interrupt flag

 LATD = LATD ^ 0x0100;

 StartUpTimer = 1;

}

//Interrupt for Timer 3 (Delay Timer)
void __attribute__((interrupt, no_auto_psv)) _T3Interrupt(void)
{
 T2CON = 0x0000;
 IFS0bits.T3IF = 0; // clear interrupt flag
 DelayTimer = 1;
}

 138

REFERENCES

[1] A. Stanley, C. W. Williams, A. Domijan, “The Effect of Distribution System

Parameters on Air-Conditioning Motor Start-up Flicker,” ASHRAE Transactions,
vol. 104, Pt. 1, 1998.

[2] R. Langley, “Incompatibility Between Residential HVAC Systems and the

Electric Power Distribution System Caused by Motor Inrush Current,” EPRI,
Knoxville, Tennessee, An EPRI Tailored-Collaboration Project, 2003.

[3] IEEE Std 141-1993, IEEE Recommended Practice for Electric Power Distribution

for Industrial Plants –Red Book.

[4] IEEE Std 1453-2004, IEEE Recommended Practice for Measurement and Limits

of Voltage Fluctuations and Associated Light Flicker on AC Power Systems.

[5] N. A. Macmillan, C. D. Creelman, Detection Theory: A User’s Guide,

Cambridge: Cambridge University Press, 1991.

[6] dsPIC30F Family Reference Manual, Microchip Technology Inc., 2006.

[7] C. Rashbass, “The Visiblity of Transient Changes of Luminance,” The Journal of

Physiology, 210, pp. 165-196, Feb. 1970.

