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Abstract

Over the past decades, a number of mathematical models and solution techniques have

been developed to preserve reserve sites for species and their natural habitats. Two optimization

models for designing spatially compact ecological reserve systems are addressed here as zero-one

integer programming problems. These formulations have a bicriteria objective function that is a

combination of both boundary length and distance. The two formulations cluster the sites into a

relatively small number of compact groups while preserving a required number of sites that contain

a certain species using a given amount of resources. Two general types of approaches have been

developed to solve the resulting mathematical models: exact and heuristic algorithms.
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Chapter 1

Introduction

Methods for designing reserve systems for ecological species have been considered in several

papers in the past decade. In general, the problem statement is to find a subset of reserve sites that

minimizes the cost of establishing reserve sites containing a given set of species or that maximizes

the number of species present under a given budget constraint. Both of these types of reserve site

selection problems can be formulated as integer programming (IP) problems and represented as

either a set covering problem (SCP) or a maximal covering problem (MCP).

In the set covering formulation, given a set of target species and a set of potential sites, we

wish to determine the least-cost reserve system that satisfies a specified minimum representation for

each species. In the maximal covering formulation, with a limited conservation budget, the objective

is to determine a reserve system that includes the maximum number of species. These aspects have

been considered in several papers [12, 17].

In practice reserve design problems need to consider more than just species coverage and

budget limitations. Other spatial characteristics such as the distance between selected reserve sites

and the shape of the reserve system should be considered as well. Several mathematical models that

consider spatial optimization have been proposed to address the important issues of representation

of species within reserve systems [9, 10]. Such approaches make it possible to design a better spatial

arrangement for a reserve system by considering attributes such as contiguity and the shape of the

selected sites.

Because the SCP and MCP formulations do not consider spatial relationships between the

sites selected for the reserve system, the resulting reserve system may be highly fragmented. The
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meaning of fragmentation depends on the specific objectives of the conservation programs. For

example, if a reserve system consists of many small habitat areas, it may not facilitate the movement

of species between habitat areas. In this way small disconnected reserve systems may be harmful to

the survival of the species within the reserve. Moreover the contiguity of a reserve may be important

to species survival within the reserve. For example, a contiguous reserve system helps species to

roam freely within the system without leaving the space.

More compact reserve systems help to reduce the edge effects of the system such as invasion

of predators. Also compact reserve systems help to improve the buffering effects by absorbing the

disturbances and other adverse impacts. A variety of shape measures have been proposed in reserve

selection models to represent compactness. Some of the proposed measures are the boundary length

of the reserve, the ratio of boundary length to area, and the average distance between the sites in

the reserve system.

Therefore contiguity and compactness can be important in modeling reserve site selection

problems. A variety of formulations have been proposed to address these contiguity and compactness

attributes. Some formulations have explicitly considered both contiguity and compactness together

(using a linear combination) while others have considered only one attribute. Now we briefly discuss

some of these studies.

Shirabe [18] proposed a new exact formulation for structural contiguity that can be incor-

porated into any mixed integer programming model. According to this model, the resulting system

enforces contiguity regardless of the other included criteria such as compactness. Graph theory ap-

proaches have also been proposed to control the contiguity of reserve systems. Onal and Briers [14]

developed a linear IP formulation that uses a graph theory approach to obtain a connected reserve

system. Although this formulation ensures contiguity, it contains some sites named as gap sites that

are to be excluded in the final solution. Therefore their objective was to minimize the total number

of gap sites. They used additional variables and constraints explicitly to avoid cycle formation. Onal

and Wang [15] developed an improved linear IP formulation, also using a graph theory approach.

Their objective was again to minimize the total number of gap sites. The main difference between

these two formulation is the method used to avoid cycle formation. Although the model in [14] ex-

plicitly uses additional constraints and variables to avoid cycles, the improved model [15] does not.

Rather, if cycles are present in the solution, new cuts are added and the model is solved again. The

authors of the improved model [15] mentioned that their model is computationally more efficient
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because of its reduced size. Both of these formulations focus on the structural contiguity of a reserve

system. Hof and Flather [7] developed a different nonlinear IP model that preserves the contiguity

of the system by controlling the shape, requiring reserves to be either circular or rectangular.

Several mathematical models have been proposed to group disconnected sites together into

compact reserves. A collection of adjacent reserve sites is called a cluster. In these models [4, 5, 9,

10, 11, 13] such reserves of compact shapes are generated as clusters. In an ecological sense clusters

might correspond to as different habitats. Separated clusters (habitats) may be desirable because

such a separation will preserve the species in the face of natural disasters such as destruction of

the habitat by fire. Also clustering adjacent sites improves the opportunities for multiple biological

interactions among the given species.

Onal and Briers [13] developed two integer programming approaches to the problem of

reserve selection to obtain compact reserve systems. In the first approach, they minimized the sum

of the distances between all pairs of sites included in the reserve system. In the second approach,

an alternative formulation minimizes the largest distance between selected sites instead of the total

distance. Fischer and Church [4] presented a linear IP formulation for minimization of the boundary

length to promote reserve aggregation and compactness.

Fischer and Church [5] developed a bi-objective formulation by considering both the bound-

ary length and the site selection cost. McDonnell et al. [9] developed a bi-objective nonlinear IP

formulation which involves a weighted combination of the boundary length of the selected clusters

and the area of selected sites. They mentioned that minimizing the area of the selected sites is

equivalent to minimizing the cost of the selected sites. Nalle et al. [10, 11] developed a nonlinear

formulation which explicitly addresses the compactness and shape of the selected reserve sites. This

model minimizes a weighted combination of two measures: the boundary length of selected clusters

and the distance between all pairs of selected sites (even those in disjoint clusters).

The purpose of the current study is to develop a bi-objective mathematical model for select-

ing reserve sites which clusters the sites into a relatively small number of compact groups. The main

difference between this new formulation and those given in [10, 11] is the way we measure distance

between selected sites. We measure the distances within each cluster, whereas the models in [10, 11]

measure the distances between all selected sites whether such sites are in the same cluster or different

clusters. In some situations consideration of distance within clusters rather than the total distance

between all sites may be more useful. Since each cluster might be treated as a different habitat, in

3



general it is not important to consider the distance between different habitats. Typically, there are

reduced biological interactions among geographically separated clusters. For example if one habitat

represents a mountain and the other habitat represents a swamp, there is no need to measure the

distance between these two habitats to obtain compact clusters. Thus if an optimum distance can

be maintained between all the sites within a given cluster, this will assure maximum interactions

among different sites within the cluster. Therefore it is important to minimize the distance within

clusters in order to produce compact clusters.

When creating a cluster the boundary length of the selected cluster is especially important.

For example, Figure 1.1(a) and Figure 1.1(b) illustrate two possible clusters each containing four

sites. Assuming that each site is a unit square, the cluster in Figure 1.1(a) has ten boundary edges

while the cluster in Figure 1.1(b) has eight boundary edges. Since each site is a unit square, the

number of boundary edges is equivalent to the overall boundary length. Visually it is clear that the

cluster in Figure 1.1(b) is more compact than the cluster in Figure 1.1(a). Therefore when compact

clusters are desired, it seems reasonable to pick clusters having a small boundary length relative

to the area. From an economic point of view also, this is important since the cost of management

often depends upon the boundary length of the reserve area, with longer boundaries requiring higher

maintenance cost.

Figure 1.1: Two clusters on four sites with different boundary lengths

In our models we therefore treat boundary length as our primary objective. But simply

minimizing the boundary length does not ensure compact clusters for the system. To illustrate,

Figure 1.2 shows two clusters, each containing three (unit square) sites and each having the same

boundary length eight.

Let us consider the Euclidean distance between the centers of each site in the cluster. The

sum of the Euclidean distances between distinct sites in Figure 1.2(a) is 4 while the corresponding

sum in Figure 1.2(b) is 3.41. Visually it is clear that the cluster in Figure 1.2(b) is more compact
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Figure 1.2: Two clusters on three sites with the same boundary length

than that in Figure 1.2(a). Therefore it seems reasonable to select among clusters with the same

boundary length one having the smaller sum of (Euclidean) distances. This distance measure thus

provides a secondary criterion. As suggested by this example, our strategy for creating a compact

cluster involves two steps. We first consider the boundary length of the cluster and among all such

clusters of minimum boundary length we pick a cluster that minimizes the distance between all pairs

of sites within the cluster.

In general we consider these two aspects in designing a compact reserve system containing

several clusters: minimizing the boundary length of all clusters and minimizing the total distances

between all pairs of sites within each cluster. This should lead to a more compact reserve system.

Thus we formulate the reserve design problem using an appropriate bi-objective optimization model.

To minimize the hierarchical combination of boundary length and then total within cluster

distance, we use a technique from multi-objective programming [3] that weights these two objectives.

The combining weight U is specified in a particular manner to give priority to minimizing the

boundary length as the primary objective. We calculate this weight U by considering the l1 distances

between all possible pairs of sites in the reserve. Details of this calculation are explained in Section

2.2.

Now the objective function of our mathematical model is to minimize U times the boundary

length of all clusters plus the sum of the Euclidean distances between sites within the designated

clusters. This formulation also incorporates the requirements to cover all target species with a

limited conservation budget.

Our initial formulation is a nonlinear integer programming model and therefore solving

the model exactly is time consuming. In order to solve the model more efficiently, we convert the

proposed model into a linear integer program. Details of this conversion are discussed in Chapter 2.
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In Chapter 3 we provide numerical examples to compare computational aspects of the two models

discussed in Chapter 2. Additional data sets are then used to explore more fully the computational

behavior of our linear integer programming model. In Chapter 4 we present a heuristic algorithm

to obtain good feasible solutions to our linear integer model for problems that are too challenging

to solve exactly. Chapter 5 summarizes our work and discusses future research directions.
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Chapter 2

Mathematical Models

For a given conservation area, we are interested in protecting certain species occurring within

the region. It is assumed that the prevalence of existing species does not change with time. Also,

the entire conservation area is considered to be partitioned into a number of potentials sites. Two

sites are said to be adjacent if they share a common boundary.

The model developed below assumes that the study region is partitioned into uniformly

sized sites for simplicity. The region is considered to be an n × m grid of uniform sites and each

site is a 1× 1 unit square. For example Figure 2.1 shows a 5× 6 grid, containing 30 unit sites. The

shaded site shows the site designated (2, 3) in this grid; there are four other sites adjacent to site

(2,3).

Figure 2.1: An example 5× 6 grid
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Let V denote the set of sites (or nodes) in the reserve system and let E denote the set of

edges (adjacencies) in the system. In the given n×m grid, any node v ∈ V can be written as (i, j)

where i = 1, . . . , n and j = 1, . . . ,m. If two nodes v1 = (i, j), v2 = (k, l) ∈ V are adjacent (i.e., their

corresponding sites share a boundary) then the ordered pair (v1, v2) = ((i, j), (k, l)) ∈ E. For a grid

system, each site can be adjacent to at most four other sites. The notation used in the mathematical

model is described below.

S = total number of conservation species present in the reserve system

C = maximum number of possible clusters

As = set of sites inhabited by species of type s where s = 1, 2, . . . , S

ns = required number of sites for species of type s where s = 1, 2, . . . , S

N(i, j) = {(k, l) ∈ V : ((i, j), (k, l)) ∈ E}, the set of nodes adjacent to node (i, j)

D(i, j) = {(k, l) ∈ V : either (k ≥ i and l > j) or (k > i and l ≤ j)}, See Figure 2.2

dij,kl = Euclidean distance between the center of site (i, j) and the center of site (k, l)

bij = budgetary cost of conserving or purchasing site (i, j) ∈ V

B = total budget available for the reserve system

U = upper bound on the total Euclidean distance between all possible pairs of grid sites

The decision variables indicate which sites are included in the reserve and their allocation

to clusters:

Xcij =

 1 if site (i, j) is included in Cluster c;

0 otherwise.

In this model, Cluster 1 denotes the sites not selected for conservation and the remaining

clusters contain those sites that are selected for conservation. The clusters c = 2, 3, . . . , C are called

real clusters since they are the ones containing the protected species. Because Cluster 1 is not

selected for conservation, we actually have at most (C − 1) real clusters.

The 0-1 quadratic optimization model can be written as follows:

8



(P1) Minimize
C∑

c=2

∑
(i,j)∈V

∑
(k,l)∈D(i,j)

dij,klXcijXckl +

U ×

 ∑
(i,j)∈V

∑
(k,l)∈N(i,j)

X1ij(1−X1kl)



Subject to
C∑

c=2

∑
(i,j)∈As

Xcij ≥ ns for all s = 1, 2, . . . , S (2.1)

C∑
c=2

∑
(i,j)∈V

bijXcij ≤ B (2.2)

Xc1ij +Xc2kl ≤ 1 (2.3)

for all (c1 6= c2) and ((i, j), (k, l)) ∈ E and c1, c2 = 2, 3, . . . , C

C∑
c=1

Xcij = 1 for all (i , j ) ∈ V (2.4)

Xcij ∈ {0, 1} for all c = 1, 2, 3, . . . , C and (i, j) ∈ V

2.1 Explanation of the optimization model

Let us consider each part of model (P1) in detail.

1. Let us first discuss the objective function. As mentioned earlier the objective function consists

of two parts. It is the weighted sum of

(a) the distances between sites within the same real clusters and

(b) the boundary length of all real clusters.

(a) The first summation in the objective function calculates the total Euclidean distance

between sites (i, j) ∈ V and (k, l) ∈ D(i, j) within the real clusters. Here the set D(i, j)

contains the distinct sites that occur “after” site (i, j) in a left-right, top-bottom ordering.
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As depicted in Figure 2.2, the shaded area shows the distinct sites occurring after site

(i, j).

Figure 2.2: Explanation of the range D(i, j)

(b) The second summation gives the total number of boundary edges of all real clusters and

thus the boundary length of all selected sites. To explain this summation, consider Figure

2.3(a) illustrating a site (i, j) with four neighbors.

Figure 2.3: Explanation of the calculation of boundary length

If both (i, j) and (k, l) are selected for Cluster 1, then X1ij = X1kl = 1 and the product

X1ij(1−X1kl) = 0

so no edge is counted towards the total boundary length. If (i, j) is in Cluster 1 and (k, l)
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is in a real cluster (as shown in Figure 2.3(b)), then the product

X1ij(1−X1kl) = 1

since X1kl = 0 and thus a 1 is counted towards the total number of boundary edges.

That is, since a real cluster is surrounded by Cluster 1, an edge is counted in the product

above precisely when (i, j) is in Cluster 1 and (k, l) is in a real cluster. Therefore the

second summation of the objective function gives the total number of boundary edges of

all selected real clusters. Counting the total number of boundary edges then gives the

boundary length of all clusters since we assume uniformly sized sites.

In the formulation of model (P1), it is convenient to place a border of Cluster 1 sites

surrounding the reserve system. This ensures that the outermost reserve sites are all

adjacent to Cluster 1. Therefore if we have an n ×m grid we are actually modeling an

(n− 2)× (m− 2) reserve system.

2. Constraint (2.1) is the species representation requirement which states that to protect species

of type s adequately, we must select at least ns sites in which species s is present. Here we

can note that only the selected reserve sites contribute to the species’ representation and of

course we consider only real clusters (c > 1) for this purpose.

3. Constraint (2.2) states that the total cost of selected sites in the real clusters cannot exceed

the conservation budget.

4. Constraint (2.3) enforces that if reserve sites (i, j), (k, l) are included in two different real

clusters then they do not share a boundary. This ensures that real clusters are disjoint from

one another.

5. Constraint (2.4) states that each site is assigned to exactly one cluster c ≥ 1.

2.2 Calculation of the upper bound U

As explained in the introduction we want to give priority to minimizing the boundary length.

To do this we weight the total boundary length by a sufficient large value U . We now explain the
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calculation of a suitable weight U .

One way to define a suitable weight is by using the total Euclidean distance between all

possible pairs of sites (i, j) ∈ V and (k, l) ∈ D(i, j) in the reserve. First let us look at the Euclidean

distance between pairs represented by an n ×m grid of uniform sites. Let dij,kl be the Euclidean

distance between the center of site (i, j) and the center of site (k, l), where (i, j) ∈ V and (k, l) ∈

D(i, j). Then the total Euclidean distance between all pairs of sites is given by

D2 =
∑

(i,j)∈V

∑
(k,l)∈D(i,j)

dij,kl.

Because calculation of the sum D2 is time consuming, we explore an easily calculated upper bound.

Let d11,nm be the Euclidean distance between the center of site (1, 1) and the center of site (n,m).

Assuming that the grid consists of 1× 1 uniform sites, then

d11,nm =
√

(1− n)2 + (1−m)2.

Clearly d11,nm is an upper bound on the Euclidean distance between any other two sites in the

n×m grid. Since there are nm sites in the grid, an upper bound U ′ on the total Euclidean distance

between all possible pairs of distinct sites in the grid is

U ′ =
(
nm

2

)√
(1− n)2 + (1−m)2 = (1/2)nm(nm− 1)

√
(1− n)2 + (1−m)2. (2.5)

Instead of using the Euclidean distance l2, we can consider the l1 distance and obtain a

better upper bound than U ′ on the total distance between all possible pairs of sites in the grid

and one that can be calculated easily. The l1 distance between two pairs of sites (i, j) ∈ V and

(k, l) ∈ D(i, j) is defined as d1
ij,kl = |i− k|+ |j − l|. This is the rectilinear distance between sites

(i, j) and (k, l). Then the total l1 distance between all pairs of sites is given by

D1 =
∑

(i,j)∈V

∑
(k,l)∈D(i,j)

d1
ij,kl.

Graovac and Pisanski [6] give a formula to calculate D1, which is called the Wiener index

of an n×m grid. According to this formula the total l1 distance between all pairs of distinct sites
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in the grid is given by

D1 =
nm(n+m)(nm− 1)

6
.

Now consider the ratio between the exact value of D1 given by the Wiener formula and U ′,

the upper bound (2.5) on D2. This ratio is equal to

(n+m)
3
√

(1− n)2 + (1−m)2
.

It can be shown that the denominator of this fraction is larger than the numerator. Thus we have

D1 ≤ U ′.

Now we obtain a relation between D1 and D2 as follows. Let A ≡ (x1, y1), B ≡ (x2, y2) be

two points in R2. Then the l2 distance between A and B is ||AB||2 =
√

(x1 − x2)2 + (y1 − y2)2 and

the l1 distance between A and B is ||AB||1 = |x1 − x2|+ |y1 − y2|. Consider Figure 2.4(a), in which

the center of the unit circle and the rotated square is denoted O.

Figure 2.4: The relationship between the 1-norm and 2-norm

If we take any point x on the unit circle, the Euclidean distance from the origin to x is

||x||2 = 1. Similarly if we take any point y on the rotated square the l1 distance from the origin to

y is ||y||1 = 1.

As seen in Figure 2.4(a), it is clear that ||x||2 ≤ ||x||1. But if we pick the point A ≡ (x1, y1)

on the unit circle then ||OA||2 =
√
x2

1 + y2
1 and ||OA||1 = |x1|+|y1|. It follows that ||OA||2 ≤ ||OA||1
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always holds.

As we gradually increase the size of the inner rotated square in Figure 2.4(a), we get Figure

2.4(b) in which the outer rotated square touches the unit circle. This occurs when the angle between

segment OA and the x axis is π/4 . Then we have

||OA||1 =
√

2/2 +
√

2/2 =
√

2

and

||OA||2 =
√

(
√

2/2)2 + (
√

2/2)2 = 1

so that

||OA||1 =
√

2(||OA||2).

For any other angle α where 0 ≤ α ≤ π/4, according to Figure 2.4(b) we have
√

2||OA||2 ≥

||OA||1. Since this figure is symmetric for any angle α where 0 ≤ α ≤ 2π we have
√

2||OA||2 ≥

||OA||1.

By combining these results we have

||OA||1/
√

2 ≤ ||OA||2 ≤ ||OA||1.

More generally for any A ∈ R2 we have ||OA||1/
√

2 ≤ ||OA||2 ≤ ||OA||1 which implies that

D1/
√

2 ≤ D2 ≤ D1.

Since D1 ≤ U from the previous discussion we obtain

D1/
√

2 ≤ D2 ≤ D1 ≤ U ′.

This shows that although U ′ provides an upper bound on D2 we have a better set of bounds on

D2 as D2 ∈ (1/
√

2D1, D1) which can be calculated easily. Therefore we weight the total boundary

length by using the calculated value of D1. Table 2.1 shows values of D1, D2, U
′ and D1/

√
2 for a

10 × 10 grid. It can be seen that the value D1 is a reasonable upper bound on the value D2 and
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much better than the crude upper bound U ′.

n m D1√
2

D2 D1 U ′

10 10 23334.5 25934.00 33000 63033.2

Table 2.1: Values of D1, D2, U
′ and D1/

√
2 for a 10× 10 grid

For ease of interpretation we take our upper bound U to be

U = 10dlog D1e (2.6)

where dlogD1e indicates that the value log10D1 is rounded to the next largest integer. The signifi-

cance of using the modification (2.6) is that when the objective function value is displayed, the first

nonzero digits correspond to the boundary length of the selected clusters followed by some zeros and

then the total distance within clusters.

2.3 The size of model (P1)

We first consider the total number of variables in model (P1). Since the reserve system is

represented by an n ×m grid with nm sites and we permit at most C clusters, we have a total of

nmC binary variables Xcij .

There are S constraints of type (2.1) because we have S species and also there is a single

budget constraint (2.2). The inequality (2.3) ensures that real clusters are not adjacent. Although

we have an n×m grid, we actually model an (n− 2)× (m− 2) grid. Thus we have (n− 3)× (m− 2)

common horizontal interior edges shared by the sites and (n− 2)× (m− 3) common vertical interior

edges shared by the sites. Therefore inequality (2.3) generates

(C − 1)(C − 2) [(n− 3)× (m− 2) + (n− 2)× (m− 3)]

= (C − 1)(C − 2)× [2nm− 5(m+ n) + 12]
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constraints. Finally inequality (2.4) generates nm constraints for the system. In total we have

[S + 1 + (C − 1)(C − 2) {2nm− 5(m+ n) + 12}+ nm]

or O(nmC2) constraints for model (P1).

2.4 A linear integer programming model

The objective function for model (P1) is a quadratic function with nmC binary variables.

As mentioned earlier it has two components: the sum of distances between sites within real clusters

and the boundary length of the real clusters. Clearly the second component is not a convex function

of the variables Xcij . In order to model the problem more effectively, we convert all quadratic terms

of the objective function into linear terms by replacing each quadratic term XcijXckl by a new binary

variable Ycijkl :

Ycijkl =

 1 if both (i, j), (k, l) ∈ V are assigned to Cluster c;

0 otherwise.

The following constraints ensure that Ycijkl equals one if and only if sites (i, j) and (k, l)

are both selected for Cluster c:

Ycijkl ≤ Xcij for all (i, j), (k, l) ∈ V and c = 1, 2, . . . , C (2.7)

Ycijkl ≤ Xckl for all (i, j), (k, l) ∈ V and c = 1, 2, . . . , C (2.8)

Xcij +Xckl − Ycijkl ≤ 1 for all c = 1, 2, . . . , C, (i, j), (k, l) ∈ V (2.9)

Ycijkl ≥ 0 for all (i, j), (k, l) ∈ V and c = 1, 2, . . . , C (2.10)

1. Consider constraint (2.7) and constraint (2.8). These two constraints ensure that Ycijkl must

equal zero unless both Xcij and Xckl equal 1.
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2. Constraint (2.9) ensures that if both (i, j) and (k, l) are selected for Cluster c, then Ycijkl must

have value one.

The constraint set (2.7)–(2.9) is summarized in Table 2.2 which shows the possible values for the X

and Y variables. Thus inequalities (2.7)–(2.9) ensure that Ycijkl = XcijXckl always holds and the

new mathematical model does not change the optimal solution of the original quadratic mathematical

model (P1).

Xcij Xckl Ycijkl

0 0 0
1 0 0
0 1 0
1 1 1

Table 2.2: Explanation of the constraints (2.7)–(2.9)

The new integer programming model can be represented as (P2):

(P2) Minimize
C∑

c=2

∑
(i,j)∈V

∑
(k,l)∈D(i,j)

dij,klYcijkl +

U ×

 ∑
(i,j)∈V

∑
(k,l)∈N(i,j)

X1ij − Y1ijkl



Subject to
C∑

c=2

∑
(i,j)∈As

Xcij ≥ ns for all s = 1, 2, . . . , S (2.11)

C∑
c=2

∑
(i,j)∈V

bijXcij ≤ B (2.12)

Xc1ij +Xc2kl ≤ 1 (2.13)

for all (c1 6= c2) and ((i, j), (k, l)) ∈ E and c1, c2 = 2, 3, . . . , C

C∑
c=1

Xcij = 1 for all (i, j) ∈ V (2.14)
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Ycijkl ≤ Xcij for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1 (2.15)

Ycijkl ≤ Xckl for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1 (2.16)

Xcij +Xckl − Ycijkl ≤ 1 for all c = 2, 3, . . . , C, (i, j) ∈ V, (k, l) ∈ D(i, j) (2.17)

Xcij ∈ {0, 1} for all c = 1, 2, 3, . . . , C, (i, j) ∈ V

Ycijkl ≥ 0 for all c = 2, 3, . . . , C, (i, j) ∈ V, (k, l) ∈ D(i, j)

Ycijkl ≥ 0 for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1

Consider constraints (2.14) and (2.15). As explained earlier, Ycijkl ≤ Xcij , Ycijkl ≤ Xckl

and Ycijkl ≥ 0 ensure that Ycijkl must equal zero unless both (i, j) and (k, l) are selected. The first

term in the objective function of model (P2) contains Ycijkl for c > 1 with a positive weight dij,kl.

Thus in this case the objective function forces Ycijkl to be as small as feasibly possible in order to

minimize the objective function value. Therefore it is unnecessary to define (2.14)–(2.15) explicitly

for real clusters. The second term in the objective function contains −Ycijkl with c = 1. In this case

the negative sign of the objective function forces all Ycijkl to be as large as feasibly possible in order

to achieve a minimum value. Since constraint (2.16) ensures that the value of the Ycijkl variable is

equal to one when both sites (i, j) and (k, l) are selected, it is unnecessary to define constraint (2.16)

explicitly for Cluster 1.

We measure the distance within real clusters in order to minimize the total distance. Thus

to measure the distance between two sites (i, j) and (k, l), we need to consider (i, j) ∈ V and

(k, l) ∈ D(i, j). Therefore when c > 1, constraint (2.16) only needs to be defined for (i, j) ∈ V

and (k, l) ∈ D(i, j). To measure the boundary length of a real cluster, we need to consider a site

(i, j) ∈ V and a site (k, l) ∈ N(i, j). Thus constraints (2.14)–(2.15) only need to be defined when

c = 1.

Based on the above factors we define the Y variables for two index sets as (Ycijkl ∈

{0, 1} for all c = 2, 3, . . . , C, (i, j) ∈ V, (k, l) ∈ D(i, j)) and (Ycijkl ∈ {0, 1} for all (i, j) ∈ V, (k, l) ∈

N(i, j) and c = 1). However the nature of the objective function and constraints (2.14)–(2.16) allows
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us to relax the Y variables to be continuous variables: namely Ycijkl ≥ 0.

2.5 The size of model (P2)

We now determine the total number of variables and constraints in the new model (P2).

First consider the objective function. As in the quadratic model this objective function contains two

terms. The first term involves the distance between sites in the same real cluster and the second

term involves the boundary length of each real cluster.

Consider the first term, which contains the variables Ycijkl defined for real clusters (c > 1) of

the objective function. Since the first term of the objective function measures the distance between

each (i, j) ∈ V and each (k, l) ∈ D(i, j) for all real clusters, it generates

(
(n− 2)(m− 2)

2

)
(C − 1) = (C − 1)(n− 2)(m− 2) {(n− 2)(m− 2)− 1} /2 (2.18)

Y variables. Although we have an n×m grid, as mentioned earlier, we actually model an (n− 2)×

(m − 2) grid and have at most (n − 2)(m − 2) sites for real clusters. Thus it is not necessary to

define variables Ycijkl for all n and m since only interior sites are in real clusters. Therefore, out of

the (n− 2)(m− 2) X variables we choose two at a time to define Y variables for each real cluster.

The second term of the objective function measures the boundary length by counting the

number of boundary edges for each real cluster as explained in model (P1). To calculate the total

number of boundary edges we need to consider all vertical and horizontal common interior edges.

Since the total number of interior edges is equal to (n−3)(m−2)+(n−2)(m−3), this part generates

2 {(n− 3)(m− 2) + (n− 2)(m− 3)}

Y variables, as there are two Y variables associated with each interior edge.

As before the number of binary Xcij variables is nmC. In addition the objective function

of model (P2) contains

(C − 1)(n− 2)(m− 2) {(n− 2)(m− 2)− 1} /2 + 2 {(n− 3)(m− 2) + (n− 2)(m− 3)}

or O(n2m2C) continuous variables.
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Now we consider the total number of constraints of the new linear model (P2). Constraints

(2.10)−(2.13) in model (P2) are exactly the same constraints as (2.1)−(2.4) in the original quadratic

model (P1). Therefore, as explained in Section 2.3, these produce

S + 1 + (C − 1)(C − 2) {2nm− 5(m+ n) + 12}+ nm

or O(nmC2) constraints.

In addition, model (P2) contains three types of constraints (2.14)–(2.16). Constraints (2.14)

and (2.15) are only needed for Cluster 1 and for (k, l) ∈ N(i, j). Since the number of interior edges

is equal to (n− 3)(m− 2) + (n− 2)(m− 3), constraints (2.14)–(2.15) together generate

4 {(n− 3)(m− 2) + (n− 2)(m− 3)}

constraints. Constraint (2.16) is needed only for real clusters and for (k, l) ∈ D(i, j). Since there

are (C − 1) real clusters and
(

(n− 2)(m− 2)
2

)
pairs of distinct sites, the number of constraints

generated by (2.16) equals

(C − 1)(n− 2)(m− 2) {(n− 2)(m− 2)− 1} /2

Overall model (P2) contains

S + 1 + (C − 1)(C − 2) {2nm− 5(m+ n) + 12}+ 4 {(n− 3)(m− 2) + (n− 2)(m− 3))}

+ (C − 1)(n− 2)(m− 2) {(n− 2)(m− 2)− 1} /2

or O(n2m2C) constraints.

Table 2.3 compares the total number of variables and constraints in the two models.

model (P1) model (P2)
X variables O(nmC) O(nmC)
Y variables O(n2m2C)
constraints O(nmC2) O(n2m2C)

Table 2.3: Approximate sizes of the two models
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For example if we have a 13×13 grid that contains three types of species with three clusters,

Table 2.4 shows the actual number of variables and constraints for models (P1) and (P2). Clearly,

the second model contains a much larger number of variables and constraints. But if we consider the

efficiency of solving these models, the second model is expected to be computationally preferable

because it is a linear (mixed) integer programming model as opposed to a nonlinear, nonconvex

integer model. This prediction is validated by the computational results presented in Chapter 3.

model (P1) model (P2)
X variables 507 507
Y variables 14961
constraints 613 16017

Table 2.4: Exact sizes of models (P1) and (P2) for a 13× 13 grid
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Chapter 3

Numerical Results

This chapter presents computational results with models (P1) and (P2) on a variety of data

sets. Several software packages have been used to implement these models. Table 3.1 summarizes

the different software components used to handle the interface, input data parameters, and output

solutions, as well as the optimization solver. All experiments were carried out on a Dell Vostro 1400

computer with a Pentium-IV processor and 2 GB RAM.

Interface Input data Output solutions Optimization solver
OPL EXCEL EXCEL CPLEX

Table 3.1: Summary of the implementation characteristics

Each optimization problem was formulated using OPL (Optimization Programming Lan-

guage), a modeling language for Linear and Integer Programming. OPL uses a solver called CPLEX

to solve the mathematical models. OPL and CPLEX are produced by the ILOG Corporation

(www.ilog.com) and are widely used for solving linear and integer problems.

We used CPLEX version 11.0 to solve our minimization models (P1) and (P2). CPLEX

utilizes a variety of standard optimization routines, including branch and bound, to solve integer

mathematical models. After finding a feasible solution, CPLEX either improves it or proves that

it is optimal. To this end, at each step in the solution process, CPLEX tracks two numbers: the

objective function value of the best known solution, and a certain lower bound on the optimal

objective function value. The solution process terminates when the best known objective function

value converges to the lower bound within a user-specified tolerance.
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3.1 Comparison of models (P1) and (P2)

We first study models (P1) and (P2) on a sample study region with grid size 10× 10. The

study region is represented in Figure 3.1. In this example it is assumed that the reserve system

contains three types of known species; S1, S2, and S3 denote species of type 1, type 2 and type 3

respectively. The species present in each site of the grid are indicated using S1, S2, and/or S3, while

a zero indicates that no species are found in that particular site.

Figure 3.1: 10× 10 study region with 100 sites

Suppose that we need to conserve at least 10 sites for species of type 1, 8 for species of

type 2 and 10 for species of type 3. As shown in Figure 3.1, initially the region contains 28 sites

for species of type 1, 29 for species of type 2 and 34 for species of type 3. Also assume that the

budgetary cost of conserving each site is 1. Thus our budget constraint simply becomes an upper

bound on the number of selected sites. The maximum number of allowable clusters for this problem

is set equal to 3.

Table 3.2 shows the total number of variables and constraints generated for the two models

(P1) and (P2). We consider two different scenarios to illustrate this test problem and the results

from the optimization models.

Case I
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model (P1) model (P2)
X variables 300 300
Y variables 4257
constraints 328 4812

Table 3.2: Exact sizes of models (P1) and (P2) for a 10× 10 study region

Here we suppose that the maximum number of selected sites is 10. The optimal solution for

this case given by both models (P1) and (P2) is depicted in Figure 3.2. Since we allowed a maximum

of three clusters (C = 3), the optimal solution contains two real clusters whose sites are denoted 2

and 3 respectively in Figure 3.2. Those sites of cluster 1 (the non-selected sites) are designated with

a 1. In Figure 3.2, the two real clusters are shaded and exactly 10 sites are selected to satisfy the

given species requirements. As mentioned the species coverage requirements for each type are 10,

8, 10 respectively and the selected two real clusters cover 10 of type 1, 10 of type 2, and 10 of type

3. Although we have a surplus for species of type 2, visually it is clear that the two selected real

clusters display ideal compact shapes.

Figure 3.2: Optimal selection for Case I, 10× 10 study region

Case II

Here a maximum of 15 sites can be selected and we use the same species coverage require-
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ments. The optimal solution for this case given by both models (P1) and (P2) is depicted in Figure

3.3. Although 15 sites are allowed, the optimal solution produced used only 14 sites to satisfy all

stipulated species coverage requirements. Here 10 species of type 1, 9 of type 2, and 10 of type 3 are

covered by the optimal solution. Only a single real cluster is created, which is denoted 2 in Figure

3.3. In this case, although a single cluster is created, it displays a compact shape.

Figure 3.3: Optimal selection for Case II, 10× 10 study region

As expected from Chapter 2, models (P1) and (P2) produce the same optimal solutions for

both of the test cases. For Case I, the optimal solution value is displayed as 18000027.96. Here the

first two nonzero digits correspond to the boundary length (18) of the selected clusters; after four

following zeros the total distance (27.96) within the clusters is displayed. For Case II, the optimal

solution value is 16000187.24; the first two nonzero digits correspond to the boundary length (16)

of the selected cluster and after three following zeros the total distance (187.24) within the single

cluster is displayed. Notice that the second optimal solution has a smaller boundary length than the

first optimal solution. This shows that as we increase the number of allowable sites, we can improve

the overall shape of the solution by creating a single compact reserve area. Since our model places

an upper bound C on the number of clusters, this example shows that it may be beneficial to use

fewer than the allowable number of clusters.
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Model (P1) took nearly 9 hours to provide the globally optimal solution whereas model (P2)

took only 4 seconds to provide the optimal solution with zero gap for Case I. For Case II model (P1)

took nearly 7 hours and 40 minutes while model (P2) took 7 seconds. Despite the increased size of

model (P2) compared with model (P1), model (P2) took substantially less time to solve these test

problems. After solving various test problems with different sizes using the two models, we found

that solving model (P2) was consistently and significantly faster than solving model (P1). Thus we

use model (P2) in all our subsequent numerical investigations.

3.2 Varying the number of clusters

In this section we discuss how the optimal solutions behave when the allowable number of

clusters C is changed. We illustrate this by considering a sample reserve system of size 13× 13. We

solve this test problem by specifying C = 2, C = 3, C = 4 and then C = 5. The study region is

shown in Figure 3.4 and it contains three types of known species: S1, S2, S3. As before the species

present in each site of the grid are indicated using S1, S2, S3 and a zero indicates that no species

are found in that particular site. Suppose that we need to protect at least 50 sites for species of

type 1, 52 for species of type 2 and 52 for species of type 3 by using at most 56 sites. The region

initially contains 58 sites with species of type 1, 57 with type 2, and 57 with type 3. Here also it is

assumed that the cost of conserving any site is 1.

Table 3.3 shows the total number of variables and constraints generated for this test problem

by model (P2) for C = 2, C = 3, C = 4, and C = 5. As we increase the number of clusters the

optimal solution values given by model (P2) and the CPU times taken (in seconds) are given in

Table 3.4. The solution time appears to grow modestly with the size of the formulated model.

Number of clusters Number of variables Number of constraints
2 8039 8317
3 15468 16017
4 22897 24157
5 30326 32737

Table 3.3: Number of variables and number of constraints for the 13× 13 grid when the number of
clusters is changed.
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Figure 3.4: Sample conservation region with 169 sites

Number of clusters Optimal solution value CPU time (sec)
2 56008943.30 7
3 56003573.06 27
4 56001243.58 77
5 56001243.58 53

Table 3.4: Optimal solution values and CPU times for the 13× 13 study region

Figure 3.5 shows the optimal solutions produced for this 13×13 test problem, as C is varied.

Here, a 1 denotes those sites selected for Cluster 1, whereas 2-4 denote sites selected for Clusters

2-4, as applicable.

Figure 3.5(a) shows the clusters selected for conservation when C = 2 clusters are allowed.

Out of 169 sites only 56 sites are needed to satisfy the species coverage and the budget constraints.

Here all the selected sites are designated as belonging to Cluster 2. As we can see in Figure 3.5(a),

Cluster 2 consists of three disconnected components. That is, model (P2) as well as model (P1) allows

the possibility of disconnected clusters. This affects our interpretation of the objective function value

56008943.30 shown in the first row of Table 3.4. Here 56 is the overall boundary length of Cluster

2 and 8943.30 is the total distance within Cluster 2. Since Cluster 2 contains three components,

the distance reported is measured between all distinct selected sites including those in different
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Figure 3.5: Clustered 13× 13 sample study region

components. However the actual distance measured within each cluster is 1243.58.

Figure 3.5(b) shows the optimal solution when the number of allowable clusters is C = 3.

As seen in the second row of Table 3.4, the optimal value of the objective function for Figure

3.5(b) is 56003573.06. Although we have the same clusters as before, in this case the total distance

within clusters is reduced from 8943.30 to 3573.06. It should be noted that Cluster 2 has only one

component whereas Cluster 3 has two components. That is, out of the 56 selected sites 21 sites are

selected for Cluster 2 and 35 sites are selected for Cluster 3. However the actual distance measured

within each cluster remains 1243.58.
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Figure 3.5(c) shows the optimal solution when the number of allowable clusters is C = 4.

Here this solution identifies three completely connected real clusters. The third row of Table 3.4

shows the optimal solution value 56001243.58. In this case we have same clusters as before but the

total distance within clusters is reduced from 8943.30 to 1243.58. It should be noted that here 20

sites are selected for Cluster 2, 21 sites are selected for Cluster 3 and 15 sites are selected for Cluster

4.

Finally consider Figure 3.5(d) which shows the optimal solution when the number of allow-

able clusters is C = 5. Figure 3.5(d) shows exactly the same real clusters as Figure 3.5(c) and the

same optimal objective value. This indicates that the optimal solution to this test problem could

not be improved by increasing the value C.

The changes in the reported optimal objective value with C are depicted in Figure 3.6 for

this 13 × 13 test problem. As shown in this graph, the optimal objective value is a nonincreasing

function of the number of clusters. It is also important to note that when C = 2 the optimization

model (P2) produces a reasonable set of clusters — in this case optimal for C = 4. Therefore

in general, even for small values of C, the model can identify a useful clustering of reserve sites.

Moreover, as seen in Table 3.4, it can be computationally advantageous to use C = 2 in our model.

Figure 3.6: Graphical representation of optimal objective values for the 13× 13 test problem

It is also possible to obtain different clusters as the value C increases. We illustrate this by
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considering a sample reserve system of size 16× 16, shown in Figure 3.7. We solve this test problem

by specifying C = 2, C = 3 and C = 4. As we increase the number of allowable clusters for the

16× 16 grid, the optimal solution values given by model (P2) and the CPU times taken (in seconds)

are given in Table 3.5. Again we notice that the CPU times increase only modestly with problem

size.

Figure 3.7: Sample conservation region with 256 sites

Number of clusters Optimal solution value CPU time (sec)
2 56013935.90 16
3 56003483.86 77
4 56003483.86 108

Table 3.5: Optimal solution values and CPU times for the 16× 16 study region

Figure 3.8(a)–(c) shows the clusters selected for conservation when C = 2, C = 3 and C = 4

respectively. Notice that slightly different clusters are produced for C = 2 and C = 3. Namely one

site has migrated between the components of Figure 3.8(a) to yield Figure 3.8(b). That is, site (9, 4)

of Cluster 2 in Figure 3.8(a) has migrated to position (15, 11) of Cluster 3 in Figure 3.8(b). It is
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important to notice, however, that the boundary length (56) remains unchanged, while the reported

distance value is reduced from 9935.90 to 3483.86; see Table 3.5. When C = 2, the actual distance

measured within the two identified components of Cluster 2 is 3509.50, which is slightly larger than

the value 3483.86 for C = 3 and C = 4. In this example, increasing the number of clusters did

decrease the total distance within clusters. However the total boundary length remains the same.

Figure 3.8: Clustered 16× 16 sample study region

These examples suggest that as we increase the number of clusters, the boundary length of

the selected real clusters remains the same. This behavior in general holds.

We first show that the boundary length stays the same as C is varied. Notice that an optimal

solution x(2) for C = 2 is always a feasible solution for C > 2. Since the objective function of model

(P2) has minimization of the boundary length as the primary criterion, the boundary length for x(2)

is at least as large as the boundary length of an optimal solution x(C) for C > 2. But the optimal

solution x(C) for C > 2 is also a feasible solution for C = 2: just set all of the selected sites to belong

to Cluster 2. Therefore the boundary length for x(C) is at least as large as the boundary length of

x(2). This implies that optimal solutions for C = 2 and C > 2 must have the same boundary length.

Now suppose that the optimal solution x(2) for C = 2 consists of (k−1) disjoint components
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(all in Cluster 2). Consider an optimal solution x(k) for C = k. We already know that x(2) and

x(k) have the same boundary length. Since x(2) provides a feasible solution for C = k, and since the

objective function in model (P2) for C = k measures the actual within cluster distances for x(2), we

see that x(2) has a within cluster distance at least as large as that for an optimal solution x(k).

In other words we see that using C = 2 provides a clustering with the optimal boundary

length, but it need not produce the smallest within cluster distance possible for a larger value of k.

(This can occur for example when the components of Cluster 2 are forced to be close to one another

in order to minimize the objective function—based on all sites in Cluster 2 and not simply sites

within components of Cluster 2.)

Since model (P2) produces optimal solutions with the same boundary length for all C ≥ 2

and since the optimal solutions when C = 2 provide reasonable clusters, we prefer solving our models

for C = 2 instead of using higher values of C. This will enable us to reduce the required CPU time

significantly.

3.3 Varying the coverage of species

In this section we discuss how the optimal solution behaves when the number of species

of each type is changed. We illustrate this by considering the data set presented in [16]. In this

example 16 hypothetical species (A through P) are distributed across a reserve system containing

100 sites. The region is shown in Figure 3.9. Since our formulation assumes a border of non-selected

sites, we therefore treat this test problem as a 12× 12 grid. We now consider two scenarios.

Cover each species at least once

First suppose we need to cover at least one of each species. The optimal solution for this

case when C = 2 is depicted in Figure 3.10. Model (P2) produces a solution with three clusters,

which is the same solution as that reported in [16]. Also, it should be mentioned that increasing the

maximum number of allowable sites from 3 to 30 does not change the optimal solution.

Cover each species at least twice

Now suppose we need to cover at least two of each species. For this case we obtain three

different solutions as the maximum number of allowable sites is changed for C = 2. These optimal
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Figure 3.9: Sample reserve system from [16]

solutions are depicted in Figure 3.11. When the number of allowable sites is 6, Figure 3.11(a) shows

the optimal solution and when the number of allowable sites is 7 or 8, Figure 3.11(b) shows the

optimal solution. Figure 3.11(c) shows the optimal solution when the number of allowable sites is

more than 8. As we increase the number of allowable sites, the clusters become fewer in number

and more compact in shape.

3.4 More extensive computational results

To test the computational performance of model (P2), we created hypothetical sample grids

of various sizes. Three clusters with arbitrarily predefined shapes were created. We generated

problems having three species. For each species type we used a random number generator to assign

random numbers between zero and one for each grid site. For sites within a predefined cluster, we

randomly choose the species to occupy that site with a specific probability p: that is, if the random

number generated for that site was less than p. For sites not within a predefined cluster, we choose
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Figure 3.10: Optimal clustered regions when C = 2 for the data set from [16] with each species
covered at least once

the species to occupy that site with a specific probability q where q < p.

Here we studied two different grids with sizes 16× 16 and 18× 18. For practical reasons the

run time was limited to 1 hour and at most 36 selected sites were allowed in these problems. The

number of variables and the number of constraints appearing in model (P2) are given in Table 3.6

when C = 2.

model 16× 16 model 18× 18
Number of variables 20351 20830
Number of constraints 24249 34892

Table 3.6: Exact sizes of 16× 16 and 18× 18 models when C = 2

Also, three predefined clusters were created having boundary length 48 and total within

cluster distance 387.28. Figure 3.12 displays for the 16× 16 grid the predefined clusters, which are

shown as shaded.

Table 3.7 displays the findings of 10 experimental runs for the 16× 16 grid and the 18× 18

grid when C = 2. As shown in Table 3.7, the 16× 16 problems and the 18× 18 problems could be

solved exactly within the given time requirement. Throughout we set p = 0.7 and allowed q to vary

as shown in the first column of Table 3.7. The second column shows the required CPU times in

seconds. The last two columns show the optimum boundary length BL and the distance DIS within

selected clusters.

The optimal solutions for the 16× 16 and 18× 18 test problems when q varies are depicted
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Figure 3.11: Optimal clustered regions when C = 2 for the data set from [16] with each species
covered at least twice

in Figure 3.13 and Figure 3.14 respectively. In these figures, the shaded cells indicate those sites

selected for the real clusters. Note that as q increases, the number of species outside the predefined

clusters in Figure 3.12 will generally increase. As a result some clusters merge together and this is

verified in Figure 3.13. For example Figure 3.13(c) and Figure 3.13(d) have two real clusters while

Figure 3.13(e) has only one real cluster. Also Table 3.7 shows that for all these cases the optimal

boundary lengths are smaller than the predefined boundary length 48.

We use the same predefined clusters for the 18 × 18 test problems except that a border of

non-selected cells is placed around the 16 × 16 grid. Here also we notice that clusters can merge

together for higher values of q. Also Table 3.7 shows that for all these cases the optimal boundary

lengths are smaller than the predefined boundary length 48.

In all cases, the clusters obtained tend to be fairly compact and reasonable (even though

we only specified C = 2 in solving our models). In summary, the computational results for the

16 × 16 and 18 × 18 grids show that even with C = 2 we can obtain reasonable clusters in an
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Figure 3.12: Predefined clusters for a 16× 16 grid

q CPU time Optimal BL Optimal DIS
16× 16 with zero gap

0.20 72 46 364.73
0.25 81 46 387.74
0.30 190 38 751.39
0.35 248 40 794.99
0.40 298 34 2649.80

18× 18 with zero gap
0.20 141 46 368.58
0.25 1140 40 881.49
0.30 1041 44 392.46
0.35 241 44 680.08
0.40 480 36 740.38

Table 3.7: Computational results for 16× 16 and 18× 18 grids

acceptable amount of computational time. These results indicate that model (P2) can reproduce

compact solutions that tend to conform to our predefined clusters, given the statistical uncertainty

associated with the generation method.
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Figure 3.13: Optimal clusters for the 16× 16 grid when C = 2 and q varies
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Figure 3.14: Optimal clusters for the 18× 18 grid when C = 2 and q varies
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Chapter 4

A Heuristic Solution Method

Two general types of approaches have been devised to solve reserve design problems: exact

algorithms and heuristic (non-exact) algorithms. Although exact algorithms can identify an optimal

solution, for large reserve design problems it is difficult (and often impossible) to find an optimal

solution in a reasonable amount of time. Heuristics, on the other hand, can provide a number of

good, near-optimal solutions, and can these also be generated very quickly. As a result heuristics

are generally preferred over exact algorithms for realistic-sized problems.

Several heuristics have been developed for reserve design problems [2, 8]. Here we develop

a heuristic solution method by using three procedures based on the proposed model (P2). In the

following sections we explain these three procedures.

4.1 Linear programming relaxation – Procedure 1

Relaxation problems give us useful information in an attempt to solve integer programming

problems. We can directly obtain lower bounds for minimization integer programming problems

by examining their associated relaxations. Specifically, the linear programming relaxation of model

(P2) is obtained by replacing the binary constraints Xcij ∈ {0, 1} with 0 ≤ Xcij ≤ 1. That is,

we relax the integer variables Xcij to continuous variables. Optimization software typically needs

much less time to find optimal solutions to relaxed problems, which are then linear programming,

as opposed to integer programming problems. To illustrate, the third and fifth columns of Table

4.1 show the CPU times (in seconds) to solve the relaxed model for (P2) and the original model
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(P2), using the test problems discussed in Section 3.4 (with C = 2). Table 4.1 clearly shows that

the relaxed problems require substantially less solution time than the integer problems. The second

and fourth columns of Table 4.1 show the optimal solution values for the relaxed problems and the

integer problems respectively. As expected the optimal solution values for the relaxed problems

provide lower bounds on the optimal solution values for the corresponding integer problems.

q Optimal relaxed CPU time (sec) Optimal integer CPU time (sec)
solution value for relaxed problem solution value for integer problem

16× 16 grids
0.20 45004188.58 0.12 46003966.42 72
0.25 43696085.49 0.07 46003936.92 81
0.30 35646686.40 0.11 38002697.62 190
0.35 37158013.12 0.09 40003516.93 248
0.40 31095384.02 0.11 34002649.78 298

18× 18 grids
0.20 44576642.79 0.12 46004952.15 141
0.25 36404423.83 0.15 40004231.15 1140
0.30 39845192.51 0.11 44005443.91 1041
0.35 40719408.07 0.13 44004287.26 241
0.40 34719634.25 0.21 36004012.11 480

Table 4.1: Comparison of CPU times and optimal solution values for 16 × 16 and 18 × 18 grids:
relaxed and integer problems

Although the relaxed optimal objective value provides a valid lower bound on the integer

optimal solution value, the relaxed problems do not in general provide feasible integer solutions to

the original integer mathematical programming problems. For example Figure 4.1 shows the optimal

integer solutions and optimal relaxed solutions for two 10×10 test problems. Here a 1 denotes those

sites selected for Cluster 1 and a 2 denotes those sites selected for Cluster 2. All fractional values

shown are the non-integral values of Xcij in the optimal solution of the relaxed model.

Figure 4.1(a) and Figure 4.1(b) show the integer optimal solution and the relaxed optimal

solution for the first 10 × 10 test problem, while Figure 4.1(c) and Figure 4.1(d) show the integer

optimal solution and the relaxed optimal solution for the second 10×10 test problem. The solutions

in Figure 4.1(a)–(b) are in fact the same. Thus in this case the optimal relaxed solution is equal

to the optimal integer solution. However the solution shown in Figure 4.1(d) is fractional and thus

does not provide a feasible solution to the original model. On the other hand, the sites selected for

Cluster 2 in the relaxed model provide a first-order approximation to the optimal Cluster 2 shown
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in Figure 4.1(c).

Figure 4.1: Integer solutions (a), (c) and relaxed solutions (b), (d) for a 10× 10 grid

Additional testing was conducted on 20 instances of 10× 10 grids, all with same predefined

clusters, p = 0.7, and q = 0.3. We found that 16 of the 20 optimal solutions for the relaxed model

were in fact integer, a fairly surprising result. More generally, however, relaxed problems do not

produce feasible (integer) solutions to model (P2), but often the optimal solution to the relaxed

problem has a number of Xcij variables equal to 1. Thus we can use those sites (i, j) with Xcij = 1

(c > 1) in the relaxed optimal solution as a starting point to obtain a feasible solution to the integer

problem. Using the sites so identified in the optimal solution to the relaxed problem, we have

developed a procedure to obtain a good feasible solution to the given integer problem (P2). This

procedure is discussed in the following section.
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4.2 Obtaining a feasible solution – Procedure 2

Here we start with an infeasible solution given by the relaxed model. Namely, we begin with

sites (i, j) having Xcij = 1 (c > 1) in the relaxed optimal solution. Since the solution is not feasible,

there is at least one species for which the required number of covered sites is not achieved. For

example suppose that we need to conserve at least 5 sites for species of type 1, 8 sites for species of

type 2 and 10 sites for species of type 3. If a relaxed solution restricted to sites with Xcij = 1 (c > 1)

covers only 2 sites for species of type 1, 5 sites for species of type 2 and 8 sites for species of type

3, then we need to cover at least 3 sites for species of type 1, 3 sites for species of type 2 and 2

sites for species of type 3 to obtain a feasible solution to model (P2). Thus the residual value for

each species is 3, 3, 2 respectively, giving the residual vector r = [3, 3, 2]. In order to reduce the

residual values, we start with sites (i, j) having Xcij = 1 that were selected by the relaxed solution.

We then consider all non-selected sites that are adjacent existing clusters as possible candidates to

obtain a feasible solution. These candidates are prioritized based on the following factors, which

will be explained further in subsequent sections:

(1) Mean and variance of the residual vector

(2) Boundary length

(3) Fractional value of the relaxed solution

(4) Distance

4.2.1 Mean and variance of the residual vector

Our first priority is to obtain a feasible solution. When we add to an existing cluster a

non-selected site that is adjacent to a site in the current solution, we first consider the additional

coverage of each species by the non-selected site. If we have several sites which cover the same

maximum number of additional species, then to select a site among them, we consider the following

steps. For each site v determine the additional species that it covers. Namely, let av be the vector

giving the additional sites covered for the various species. Then we select a site v with the most

additional coverage in order to minimize rv = r − av where r is the current residual vector. In the

case of ties, we select a site with minimum residual variance. Recall that for a data set with values

b1, . . . , bn, the variance is given by
∑

(bi)2/n− b
2

where b denotes the mean of the data set and n is
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the number of data values. Since in the case of ties rv is the same for several sites v, minimizing the

variance is equivalent to minimizing the sum of squared components of rv. For example, consider a

reserve that contains three types of known species and suppose that the current solution creates the

residual vector r = [5, 4, 5]. In this vector the first, second and third positions show the residuals for

species of type 1, type 2 and type 3 respectively. Now suppose that we have two non-selected sites

v1 and v2 which cover two additional species: namely av1 = [1, 0, 1] and av2 = [0, 1, 1] respectively.

If we select the site v1, the new residual vector is rv1 = [4, 4, 4] and the sum of squared components

of rv1 is 42 + 42 + 42 = 48. If we select the site v2, the new residual vector is rv2 = [5, 3, 4] and

the sum of squared components of rv2 is 52 + 32 + 42 = 50. In this case we choose the site v1 since

it has the minimum sum of squared values compared with v2.

4.2.2 Boundary length

We have developed our mathematical models for selecting reserve sites so that the selected

sites are clustered into compact groups. As explained in Chapter 1 the boundary length of the

selected clusters is of primary importance. Thus we consider as the next most important factor the

boundary length, following the critical need to achieve feasibility (embodied in reducing the residual

vector). This means that if several sites adjacent to the current clusters all produce minimum

residual mean and variance, we select one that adds the minimum boundary length to its adjacent

cluster.

4.2.3 Fractional value of the relaxed solution

We develop our heuristic based on the linear relaxation solution. Although there is no

definitive theoretical argument, we believe that the linear relaxed value of a site is directly related

to the usefulness of the site in creating a good solution to (P2). For example consider a variable

Xcij which has a fractional value in the linear relaxed solution and suppose the coefficient of the

variable Xcij in the objective function is α. If we increase the variable Xcij from its current value

to 1 (i.e., select site (i, j) for Cluster c), the objective function value will increase by approximately

(1−Xcij) ∗α. Thus a fractional value of Xcij close to one will minimize this increase as it produces

a solution with decreased infeasibility. Therefore if several adjacent sites provide the same minimal

values for the previous two factors, we select one that has the maximum fractional value in the
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relaxed solution.

4.2.4 Distance

In the case that all the above three prioritized criteria are satisfied by several sites, we

consider the effect of potential sites on the overall distance measure DIS. As mentioned in Chapter

1, the distance between sites in a cluster is also important in defining compact clusters. Thus if all

the above three prioritized criteria are satisfied by several sites, we consider how much adding a new

site will increase the overall distance measure DIS. Then among the current candidate sites we pick

one that gives the minimum additional distance within its adjacent cluster.

Choosing at each step a site according to these four prioritized criteria provides a reasonable

method to obtain a feasible solution. The structure of this procedure is summarized by the diagram

in Figure 4.2.

Figure 4.2: Heuristic flow diagram
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4.3 Improving a feasible solution – Procedure 3

Interchange heuristics are commonly used in metaheuristic procedures for finding improved

solutions to discrete optimization problems. In general, interchange heuristics for reserve site se-

lection problems begin with a feasible solution. Here we can use the feasible solution produced by

Procedure 2. Then we define a set of feasible moves, so that we can examine other nearby solutions.

To this end define the set SE = {u: u is a selected site on the boundary of an existing

cluster} and the set NS = {v : v is a non-selected site adjacent to some site u ∈ SE}. Here we

focus on interchange heuristics that swap one site currently in the set SE with another site in the

set NS. Consequently a feasible move muv removes site u from an existing cluster and adds site v to

its adjacent cluster if this modification maintains feasibility. We improve the solution by considering

two criteria. First we consider the reduction in boundary length due to such an interchange. If

several interchanges yield the same reduction in boundary length then we consider the reduction

in total distance by the interchange. We first discuss the reduction in boundary length, using the

algorithm below. This algorithm produces an improvement network H that summarizes all feasible

moves relative to the current system.

Improvement Algorithm

For all sites u ∈ SE and v ∈ NS:

Step 1: Check whether the move muv is feasible. If so calculate the reduction ∆BLuv

in boundary length for the updated system in which the site u is removed from the

system and the site v is added to its adjacent cluster.

Step 2: If the feasible move muv has ∆BLuv ≥ 0, add the edge (u, v) with weight

∆BLuv to the improvement network H. Also calculate the the change in total distance

∆DISuv.

To obtain a improved solution based on interchanges we find a maximum weight bipartite

matching [1] in the improvement network H.

Maximum Weight Bipartite Matching

We first introduce some graph-theoretic terminology. A graph H is bipartite if its vertex
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set can be partitioned into two sets U and V such that no edge of H has both end points in the

same set of the partition. The value on an edge is called the weight of the edge. A matching M

is a collection of edges in H such that every vertex of H is incident to at most one edge of M .

A maximum weight matching is a matching having the largest total weight. The complexity of an

algorithm [1] for finding a maximum bipartite matching is O(NM +N2 logN) where N is the order

of the node set and M is the order of the edge set.

4.4 Numerical example for the heuristic algorithm

To provide an illustrative numerical example, consider the second study region used in

Section 3.2. For that 16× 16 region the relaxed solution for model (P2) is given in Figure 4.3. The

optimal relaxed solution when C = 2 contains two disconnected components containing sites (i, j)

with X2ij = 1. Those sites are shaded in Figure 4.3. The given species coverage requirements for

this test problem are to conserve at least 49 sites for species of type 1, 41 sites for species of type

2 and 44 sites for species of type 3. But the relaxed solution with X2ij = 1 covers only 44 sites for

species of type 1, 37 sites for species of type 2 and 39 sites for species of type 3.

Figure 4.3: Relaxed linear solution for the 16× 16 grid in Section 3.2

To obtain a feasible solution we still need to cover at least 5 sites for species of type 1, 4

sites for species of type 2, and 5 sites for species of type 3. Thus for this relaxed solution defined

by X2ij = 1, the residual vector is [5, 4, 5] and therefore the relaxed solution is not feasible for

model (P2). Therefore starting with the sites having value 1 (Procedure 1) we apply the heuristic
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Procedure 2 to obtain a feasible solution.

The steps of Procedure 2 are explained using Figure 4.4(a)–(h). The first, second, third,

and fourth columns of Table 4.2 show the succession of new sites added, the additional coverage

provided by the new site, the updated residual vectors, and the updated system respectively. Each

new site is selected according to the prioritized procedure explained in Section 4.2.

For example initially the site (14, 6) which is adjacent to (14, 7) is selected and its coverage

is [1, 0, 1]. That is, it covers 1 site for species of type 1 and 1 site for species of type 3. The

updated residual vector is [4, 4, 4] and the updated system is shown in Figure 4.4(a). Then based on

the updated system in Figure 4.4(a), the site (11, 6) which is adjacent to (11, 7) is selected and its

coverage is [0, 1, 1]. The updated residual vector and the updated system are shown in the second

row of Table 4.2 and in Figure 4.4(b) respectively. In a similar manner we end up adding 8 new

sites to the relaxed solution, then achieving feasibility: the current residual vector is r = [0, 0, 0].

This feasible solution, shown in Figure 4.4(h), has boundary length 66 and within cluster distance

3559.42.

New site Additional coverage of the new site New residual Updated system
(14, 6) [1, 0, 1] [4, 4, 4] Figure 4.4(a)
(11, 6) [0, 1, 1] [4, 3, 3] Figure 4.4(b)
(14, 5) [1, 0, 1] [3, 3, 2] Figure 4.4(c)
(15, 10) [1, 1, 0] [2, 2, 2] Figure 4.4(d)
(13, 5) [1, 0, 1] [1, 2, 1] Figure 4.4(e)
(10, 8) [0, 1, 1] [1, 1, 0] Figure 4.4(f)
(12, 5) [1, 0, 0] [0, 1, 0] Figure 4.4(g)
(10, 11) [0, 1, 0] [0, 0, 0] Figure 4.4(h)

Table 4.2: Sites added by Procedure 2 for the 16× 16 test problem

For this test problem, the optimal objective value of the integer model (P2) when C = 3 is

56003483.86. So it is clear that the feasible solution generated by Procedure 2 is not optimal. Thus

in general we attempt to improve the solution given by Procedure 2 by using Procedure 3.

To illustrate, we use the feasible solution in Figure 4.4(h) given by Procedure 2 as the

starting point for Procedure 3. Figure 4.4(h) shows that there are 23 and 21 boundary sites in the

upper left cluster and in the lower right cluster respectively. So the set SE contains 44 sites. Also

Figure 4.4(h) shows that there are 15 available sites adjacent to the boundary sites in the upper

left cluster and 24 sites adjacent to the boundary sites in the lower right cluster. Here it should be

mentioned that we do not consider as available the sites on the outside border of the grid. Therefore
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the set NS contains 39 sites.

For these sets SE and NS, application of the improvement algorithm identifies all feasible

movements that can be used to improve the feasible solution given by Procedure 2. Table 4.3

contains relevant information about these feasible movements. The first and second columns of

Table 4.3 indicate the sites u and v that can be interchanged to improve the current solution. The

third and fourth columns show the changes in boundary length ∆BLuv and the changes in distance

∆DISuv if we interchange the sites u and v. For example if we remove the site u = (10, 8) from its

adjacent cluster and add the site v = (12, 6) to its adjacent cluster, the movement will reduce the

boundary length by 4 and the overall distance by 0.10.

u v ∆BLuv ∆DISuv

(10, 8) (12, 6) 4 0.10
(10, 8) (13, 6) 4 0.99
(10, 11) (12, 6) 4 14.56
(10, 11) (13, 6) 4 15.13
(11, 6) (12, 6) 2 9.37
(11, 6) (13, 6) 4 10.50
(12, 5) (10, 10) 2 30.68
(12, 5) (10, 12) 2 3.44
(12, 5) (15, 9) 2 32.45
(12, 5) (15, 11) 2 18.84

Table 4.3: Feasible movements and effects on BL and DIS for the first iteration

Based on the data in Table 4.3, we construct the bipartite graph H shown in Figure 4.5,

where |U | = 4 and |V | = 6. As seen in Table 4.3, each feasible move muv will reduce the boundary

length ∆BLuv by 4 or 2. The change in distance values ∆DISuv associated with each feasible move

is shown in the last column of Table 4.3. We apply a maximum weight matching algorithm to the

bipartite network H with edge weights ∆BLuv. There are four maximum weight bipartite matchings

for this case and we select the matching with maximum reduction in distance. It is shown in Figure

4.5 using dashed edges.

Figure 4.6 shows the interchanges of sites according to this solution of the maximum match-

ing problem. Figure 4.6(a) shows the interchange of site (10, 11) in Figure 4.4(h) with site (12, 6),

which individually reduces the total boundary length by 4 and the total distance by 14.56 (row 3 of

Table 4.3). Figure 4.6(b) shows that interchanging site (11, 6) in Figure 4.4(h) with site (13, 6) will

individually reduce the total boundary length by 4 and the total distance by 10.50 (row 6 of Table
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4.3). By making both of these feasible movements the resulting solution has boundary length 58

and total distance 3533.60. So we have decreased the boundary length by 8 and the total distance

by 25.82 compared to the feasible solution given by Procedure 2 (Figure 4.4(h)). Thus Procedure 3

has improved the solution given by Procedure 2.

Since there may be further improvements possible, we apply Procedure 3 again to the

solution shown in Figure 4.6(b). For the solution in Figure 4.6(b) there are 42 sites in the set

SE and 37 in the set NS. With these sets SE and NS, a second application of the improvement

algorithm identifies all feasible movements that can be used to improve the feasible solution in Figure

4.6(b). Table 4.4 contains relevant information about these feasible movements. As before the first

and second columns of Table 4.4 indicate the sites u and v that can be interchanged to improve the

current solution. The third and fourth columns show the changes in boundary length ∆BLuv and

the changes in distance ∆DISuv if we interchange the sites u and v. Now based on the entries of

Table 4.4 we see that only one feasible move muv reduces the boundary length but this feasible move

slightly increases the distance. Figure 4.8 shows that interchanging site (10, 8) in Figure 4.6(b) with

site (11, 6) will individually reduce the total boundary length by 2 and will individually increase the

total distance by 5.57 (row 10 of Table 4.4). A maximum weight bipartite matching for this case is

shown in Figure 4.7 using dashed edges.

u v ∆BLuv ∆DISuv

(2, 2) (15, 9) 0 29.37
(2, 2) (15, 11) 0 11.70
(5, 7) (15, 9) 0 19.30
(5, 7) (15, 11) 0 1.63
(9, 4) (15, 9) 0 53.38
(9, 4) (15, 11) 0 35.71
(10, 8) (3, 8) 0 -47.25
(10, 8) (10, 2) 0 -91.45
(10, 8) (10, 11) 0 -13.82
(10, 8) (11, 6) 2 -5.57

Table 4.4: Feasible movements and effects on BL and DIS for the second iteration

By making this feasible movement the resulting solution has boundary length 56 and total

distance 3539.17. So we have decreased the boundary length by 2 and increased the total distance by

05.57 compared to the improved solution given by the first iteration. The improved feasible solution

is shown in Figure 4.8.
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We now apply Procedure 3 again to the solution shown in Figure 4.8. For this solution there

are 42 sites in the set SE and 37 in the set NS. With these sets SE and NS, a third application of

the improvement algorithm identifies all feasible movements that can be used to improve the current

solution in Figure 4.8. Table 4.5 contains relevant information about these feasible movements. As

before the first and second columns of Table 4.5 indicate the sites u and v that can be interchanged

to improve the current solution. The third and fourth columns show the changes in boundary length

∆BLuv and the changes in distance ∆DISuv if we interchange the sites u and v. As seen in Table

4.5 no feasible move muv can reduce the boundary length. Thus based on the entries of Table 4.5 we

construct the bipartite network H using the edge weights ∆DISuv. A maximum weight bipartite

matching is shown in Figure 4.9 using dashed lines.

u v ∆BLuv ∆DISuv

(2, 2) (15, 9) 0 29.47
(2, 2) (15, 11) 0 11.13
(5, 7) (15, 9) 0 19.14
(5, 7) (15, 11) 0 1.06
(9, 4) (15, 9) 0 53.48
(9, 4) (15, 11) 0 35.14

Table 4.5: Feasible movements and effects on BL and DIS for the third iteration

Figure 4.10 shows the resulting interchanges of sites according to this solution of the maxi-

mum matching problem. Figure 4.10(a) shows the interchange of site (9, 4) in Figure 4.8 with site

(15, 9), which individually reduces the total distance by 53.48. Figure 4.10(b) shows that interchang-

ing site (2, 2) in Figure 4.8 with site (15, 11) will individually reduce the total distance by 11.13.

By making both of these feasible movements the resulting solution in Figure 4.10(b) has boundary

length 56 and total distance 3483.86. So we have decreased the total distance by 55.31 compared

to the feasible solution in Figure 4.8. In fact the solution in Figure 4.10(b) is exactly the optimal

integer solution to this particular problem and we can stop applying Procedure 3.

In general when model (P2) does not find a feasible solution, this three-stage heuristic should

give good approximate solutions. Occasionally these may be optimal but in general we expect them

to be feasible solutions that are reasonably close to the optimal solution of model (P2).
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Figure 4.4: Illustration of applying heuristic Procedure 2 to the 16× 16 test problem
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Figure 4.5: Bipartite graph used by Procedure 3 for the 16× 16 grid for the first iteration

Figure 4.6: Applying Procedure 3 to the 16× 16 test problem for the first iteration

Figure 4.7: Bipartite graph used by Procedure 3 for the 16× 16 grid for the second iteration
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Figure 4.8: Applying Procedure 3 to the 16× 16 test problem for the second iteration

Figure 4.9: Bipartite graph used by Procedure 3 for the 16× 16 grid for the third iteration

Figure 4.10: Applying Procedure 3 to the 16× 16 test problem for the third iteration
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Chapter 5

Conclusions and Future Research

In the introduction we discussed the importance of designing spatially compact reserve

systems. The main limitation of the SCP and MCP approaches is that these two formulations

do not consider the spatial relationships among sites selected for the reserve system. Therefore, by

taking such considerations into account we wish to cluster reserve sites into a relatively small number

of compact groups called clusters. To create compact clusters we considered two factors: minimizing

the boundary length of all selected clusters and minimizing the total distance between all pairs of

sites within each cluster. In order to minimize a suitable combination of these two factors we used

a weighting technique to combine these multiple objectives into a single objective function. Also

we argued that when creating compact clusters the boundary length of the selected clusters is more

important than the distance between all pairs of sites within each cluster. Therefore an appropriate

weight U was calculated to give priority to minimizing the boundary length.

In Chapter 2 we introduced our mathematical models and explained each term of the models

in detail. Also we explained the calculation of the upper bound U based on the Wiener index. As

mentioned in the introduction our initial formulation is a nonlinear integer programming problem

and therefore solving the model exactly is time consuming. To solve the model more efficiently we

converted the initial model into a linear model. In Section 2.4 we verified that the linear mathemat-

ical model did not change the optimal solution of the quadratic model. Therefore we used model

(P2) in all our subsequent numerical investigations since it requires less computational time.

In Chapter 3 we presented our computational experience with the above models using various

data sets. We discussed how the optimal solutions behave when the allowable number of clusters
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C is changed. Then we showed that C = 2 provides a clustering with the optimal boundary

length although it may not provide the optimal distance within clusters. Since our first priority is

minimizing the boundary length of the selected clusters we chose to use C = 2 because it provides

reasonable clusters. This was useful in reducing the required CPU time significantly.

Although exact algorithms can identify an optimal solution of model (P2), for large reserve

design problems it is difficult to find an optimal solution in a reasonable amount of time. Conse-

quently, we developed a heuristic procedure in Chapter 4, which is based on a linear relaxation of

model (P2). By using a numerical example we illustrated our three-step heuristic procedure. We

noticed that the heuristic solution and the optimal integer solution to model (P2) for this numer-

ical example were the same. In general we expect this heuristic procedure to obtain good feasible

solutions in cases where solving exactly the mixed integer model (P2) would not be possible.

There are several directions for future research on this topic. We developed a heuristic

procedure based on the relaxed model (P2). We started with sites (i, j) with Xcij = 1 (c > 1) in the

relaxed optimal solution.

1. Improve Procedure 1: It is possible to create several initial solutions from the relaxed

solution by using sites (i, j) with sufficiently large values for Xcij .

2. Improve Procedure 2: To enhance the quality of the first feasible solution, it is possible

to consider more factors in Procedure 2.

3. Improve Procedure 3: We can add more sophisticated interchange strategies to obtain

good feasible solutions.

Moreover, it will be useful to carry out additional and more extensive testing of the heuristic

approach on large test problems.
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