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ABSTRACT

The human cortex is the seat of learning and cognition. Biologicale
implementations of cortical models have the potential to providefiseymly more
power problem solving capabilities than traditional computing algorithbhe large
scale implementation and design of these models has attragteficant attention
recently. High performance implementations of the models are chéedenable such
large scale designs. This thesis examines the acceleratiba spiking neural network
class of cortical models on several modern multicore procesfbese include the
Izhikevich, Wilson, Morris-Lecar, and Hodgkin-Huxley models. Theh#ectures
examined are the STI Cell, Sun UltraSPARC T2+, and Intel XebB4E Results
indicate that these modern multicore processors can provide sighi§paed-ups and
thus are useful in developing large scale cortical models.

The models are then implemented on a 50 TeraFLOPS 336 node faySta
cluster. Results indicate that the models scale well on thigecland can emulate ®.0
neurons and 18 synapses. These numbers are comparable to the large sdial cor
model implementation studies performed by IBM using the Blueskesupercomputer.
This study indicates that a cluster of PlayStation 3s can prandeconomical, yet

powerful, platform for simulating large scale biological models.
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CHAPTER ONE

INTRODUCTION

The human brain can perform complex cognitive tasks at a mueh fage than
silicon based processors, despite the fact that neurons are mudr sham the
transistors used to design the processors. This is primarilydecdthe massive parallel
processing employed in the neocortex, which is the main part diréie dealing with
learning and cognition. This is the outer layer of the humam lanad is approximately
the size of a large unfolded dinner napkin. It is estimated tostmfsapproximately 18
neurons and 16 connections between the neurons. Each neuron is connected to a large
set of neurons through extensions called dendrites and axons. Neurons caterwitic
each other by sending electrical pulses. These pulses aratgenly the exchange of
ions between the neurons.

There has been a strong interest amongst researchers topdrge parallel
implementations of neuron models on the order of animal or human braitigs Atale,
the models have the potential to provide much stronger inference dagmthian current
generation computing algorithms [1]. A large domain of applicatiomsdvbenefit from
the stronger inference capabilities including speech recognitbomputer vision, textual
and image content recognition, robotic control, and data mining.

Large scale models however require significant computing powengtement.
Several research groups are currently examining large scplenm@ntations of neuron
based models [25] [23] and cortical based models [17] [42]. Such Iscgke

implementations require high performance resources to run the matdedssonable



speeds. Lansner et. al. [2] has shown that mouse sized corticalsndesteloped on a
cluster of commodity computers are computationally bound rather tiramgnication
bound. Thus the acceleration of neuron models on modern multicore atckegecbuld
provide significant benefits for the development of large seatécal models. Multicore
processors are currently the norm in the computing industry becaissélifficult to
increase the performance gain of single core processors hawe reached the limits on
frequency scaling. However, the implementation of several reagtitat models on
clusters of multicore processors has not yet been investigated.

This thesis examines the acceleration of spiking neural network Isnode
modern multicore processors. Spiking neural network models are thgé¢niedation of
neural networks and are considered to be one of the most biologicallyate models.
Izhikevich compares a set of 11 spiking neuron models [3] in termsenfhiological
accuracy and computational load. He shows that four of the more ballpgccurate
models include (in order of biological accuracy) the Hodgkin-Hufdgylzhikevich [5],
Wilson [6], and Morris-Lecar [7] models. Of these, the Hodgkind{elynmodel is the
most computationally intensive, while the Izhikevich model is the masiputationally
efficient.

The four spiking neural networks examined are based on a chaezignition
model. The character recognition model was taken from [15]. This|Imadeadapted
from the two layer spiking neuron network model developed by Gupta ang [8].
While Gupta utilized the integrate and fire model, this workizel the four more

biologically accurate spiking models identified by Izhikevich [2hikevich points out



that the commonly used Integrate and Fire model is one of theblelsjically accurate
spiking neuron models. He states that “the model cannot exhibit déaeermost
fundamental properties of cortical spiking neurons, and for this reiassimould be
avoided by all means” [3]. The models utilize pulse coding to milmechigh speed
recognition taking place in the mammalian brain [9] and spikengindependent
plasticity (STDP) for training [10]. The models are trained ¢oognize a set of 48
images of characters.

The multicore architectures examined in this study include the &sre
Sony/Toshiba/IBM (STI) Cell broadband engine [11], the Intel XebB4k processor,
and the Sun UltraSPARC T2+ processor [12]. The platform used tarexéme Cell was
a Sony PlayStation 3. In case of the Xeon, the platform usedhwdaial socket x quad-
core Intel Xeon E5345. The UltraSPARC T2+ platform used was asdohkét x eight-
core UltraSPARC T2+ T5140 server.

IBM is currently utilizing a 32,768 processor Blue Gene/L to sinsugaspiking
network based model [25], while EPFL and IBM are utilizing an 8,192epsur Blue
Gene/L system to simulate a sub-neuron based cortical m@dgel The PetaVision
project announced in June 2008 is utilizing the Roadrunner supercomputer totimeode
human visual cortex [13].

The Air Force Research Laboratory (AFRL) in Rome, NY hasipea 336 STI
Cell multicore processor based Sony PlayStation 3's (PS3s) rpyirta examine the
large scale implementations of neuromorphic models [40]. This clisteapable of

providing a performance of 51.5 TF and cost about $361K to set up (of whicB7%ly



is the cost of PS3s). This is significantly more cost dffecthan an equivalently
performing cluster based on Intel Xeon processors [40]. This thEsisexamines the
scaling and performance of the spiking neural models on this cluster.

The main contributions of this work are:

1. A study of the parallelization of four biologically accuragiron models.
Both thread and data level parallelization are examined.

2. An evaluation of the multicore implementations of the models. The
performance of the models on three multicore platforms (a Cedidb8ony PS3, a Sun
dual-socket x eight-core UltraSPARC T2+ T5140 server, and a duatsequad-core
Intel Xeon E5345) is examined. Several network sizes were inepleh to examine the
effect of scaling the models.

3. A study of the scalability of these models on the AFRL PS3 cluster.

Results indicate that optimized parallel implementations of tloelels can
provide significant speed-ups on multicore architectures. The higpesd-ups were
observed for the Hodgkin-Huxley and Morris-Lecar models. For thgedarsize
implemented, these were 7.87 and 8.08 on the Intel Xeon platformnggi8zcores, 7.01
and 5.74 on the PS3 utilizing 6 cores, and 1.48 and 2.66 on Sun UltraSPARC T2+ T5140
utilizing 15 cores. The speed-ups are with respect to a vectoszgygle thread
implementation on the Intel Xeon. Please note that [14] [15] preselimhinary versions
of the results in the thesis. The speed-up on all the processtfgmkiincreased and

saturated as the network size was increased for the M@ecsrland Hodgkin-Huxley



models. For the Izhikevich and Wilson models, the speed-up decredbdtievincrease
in network size. This was due to the fact that the models weneony intensive and had
a low compute-to-1/O ratio.

Large scale implementation results indicate that the modale abmost linearly
on the PS3 cluster. Equivalents of®Ifeurons were modeled along with about’10
synapses. A mouse cortex in comparison contains about 1.6red®ns and 1.6 x 1o
synapses [17]. The Blue Gene was able to simulate a rat ¢6&e10 neurons and
4.42x16" synapses) at near real time. However the cost of AF&dtel is significantly
lower than the one used in [25]. This indicates that the 336 node PS8 piastides a
highly economical, yet powerful, platform for neuromorphic simulations.

This thesis is organized in the following manner: chapter 2 dissulsserelated
work, chapter 3 and 4 discuss the spiking models and the multicongeatures
considered. Chapter 5 and 6 discuss the network, parallelization qeesnand
optimizations used. Chapter 7 describes the experimental sehapteC 8 presents the
results for individual multicore architectures. Chapter 9 descrithes cluster
implementation in detail and presents the results and its biologieabnce. Chapter 10

concludes the thesis.



CHAPTER TWO

RELATED WORK

Several groups have examined the acceleration of applications ticoneu
processors. Williams et. al. [27] examined the acceleration evkral scientific
computing kernels on the Cell processor and found good performanceogamsther
non-multicore architectures. Other studies have also shown th&teth@rocessor can
provide high performance as well [28], [29]. Williams et. al. hals® compared the
performance of some recent multicore architectures for eparatrix-vector
multiplication applications and have found that the Cell and Sun BP&ARE T2+
processors provide good speed-ups [30]. Khan et. al. [31] describestisinsulaf an
ARM based multicore processor for the acceleration large sgalking neural network
models. Till date, there has been no study examining the aatt@heof spiking network
models on various multicore processors.

Several groups are currently developing biological scale implet@mns of
spiking networks, but are generally not examining the applicationhesfe systems
(primarily as they are modeling large scale neuronal dycsseen in the brain). The
Swiss institution EPFL and IBM are developing a highly biologycalccurate brain
simulation [23] at the sub neuron level. They have utilized theggklodHuxley and the
Wilfred Rall [24] models to simulate up to 100,000 neurons on an IBM Rinek
supercomputer. At the IBM Almaden Research Center, AnanthanaragadaModha

[25] utilized the Izhikevich spiking neuron models to simulate 55 onilllandomly



connected neurons (equivalent to a rat-scale cortical model) on a 32ot@8gar I1BM

BlueGene/L supercomputer. Johansson et. al. simulated a randomly ednmectel of
22 million neurons and 11 billion synapses using an 8,192 processors |IRGdia/L
supercomputer [2]. lzhikevich developed a very large model of thentbatatical

system and studied its behavior [26]. The neural connections in thesss sitglirandom
and the networks do not identify any patterns.

Several groups have studied image recognition using spiking meivebrks. In
general, these studies utilized integrate and fire model. Jaimasd Lansner developed
a large cluster based spiking network simulator of a rodent saréek [17]. They tested
a small scale version of the system to identify 128x128 pixebesiaBaig [18]
developed a temporal spiking network model based on integrate and dnensend
applied them to identify online cursive handwritten characters. GuptaLang [8]
investigated the application of spiking networks for the recogn@f@simple characters.
Other applications of spiking networks include instructing robots in nawgatnd
grasping tasks [19], recognizing temporal sequences [20][21], the raboteling of
mouse whiskers [22]. Thorpe developed SPIKENET [16], a large spikumglneetwork
simulation software. The system can be used for several irraggnition applications

including identification of faces, fingerprints, and video images.



CHAPTER THREE
MODELS EXAMINED

Spiking neural models capture neuronal behavior more accurately ddgiotral
neural models. A neuron consists of three functionally distincs paled dendrites,
axons, and a soma. Each neuron is typically connected to over 10,000 other [g2jrons
The dendrites of a neuron collect input signals from other neurong thkilaxons send
output signals to other neurons. Signals coming in along dendrites daarsges in the
ionic levels within the soma, which in turn causes the neuron’s nagmlpotential to
change. If this membrane potential crosses a certain threiwIdeuron is said to have
“fired” or “spiked”. In these events the membrane potentialsrispidly for a short
period of time (a spike) and causes electrical signals to hentitied along the axons of
the neuron to other neurons connected to it [33]. Spiking is the primaiyamem by
which neurons send signals to each other. Over the last 50 years| sevdels have
been proposed that capture the spiking mechanism within a neuron.

In this paper, four of the more biologically accurate spikingrore models (as
listed by Izhikevich [3]) are examined. These are the Hodgkin-ky#le Izhikevich [5],
Wilson [6], Morris-Lecar [7] models. The Hodgkin—Huxley model isigidered to be
one of the most biologically accurate spiking neuron models. All fotineomodels can
reproduce almost all types of neuron responses that are seen inchiotogperiments.
All but the Izhikevich model are based on biologically meaningful patars (such as
activation of Na and K currents, and inactivation of Na currents)eTahkl compares the

computation properties of the four models. The Hodgkin—Huxley model egtiliz



exponential functions, while the Morris-Lecar model uses hyperliafictions. These
contribute to the higher flops needed for these two models. Notthéhtdur models are
not tuned to replicate one specific type of neuron. Thus the numbenwafson cycles
for the models do vary. This however does not impact the inferemded out by the
models in this study.

Table 3.1.Spiking Network Properties

Model Differential | Variables| Flops/ | Flops/ Cycles /
Equations | updated | neuron | neuron | recognition
each (Euler) | (Runge-
cycle Kutta)
Izhikevich 2 2 13 70 12
Wilson 4 7 37 152 29
Morris- 2 5 187 297 15
Lecar
Hodgkin- 4 16 265 442 373
Huxley

Two common methods to implement the differential equations in theselanode
include the Euler and the Runge-Kutta approaches. While the Rungedfytaach
provides more accurate results, the Euler method is the most comppooach for
implementing the differential equations as it has a signifigdomver computational load.
This study primarily utilizes the Euler approach, although the Riuge approach is
examined as well. The flop counts for both the Euler and the Rundge-&utroach are

listed in Table 3.1. These values are based on the implementations of the four models.



Izhikevich Model
Izhikevich proposed a new spiking neuron model in 2003 [5] that is based on only
two differential equations (eq. 1, 2). This model requires the ¢easputations of all the
models examined, because it needs fewer flops per neuron updategainesréewer
neuron updates to be carried out per simulation run time (since thlatson time step is
higher). However the model can still reproduce almost all tgpeguron responses that
are seen in biological experiments. The four constant paranfatdrsc andd) can be
initialized differently to allow modeling of various neural respengetime step of 1 ms
was utilized (as was done by Izhikevich in [5]). Figure 3.1 shdwsspikes produced

with this model.

%:0.0N% 5% + 140-u+1 (1)
du

—=a(bV -u 2
o =albV -y 2)

. V<«cC
if V>30 mV, then{
u«—u+d

Time

Figure 3.1.Spikes produced with the Izhikevich Model

The following parameters were used for the Izhikevich model:it&rcy
neuronsa = .02,b =0.2,c = -55,d = 4; Inhibitory neuronsa = 0.06,b = 0.22,c = -65,d

=2, time step =1 ms.
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Wilson Model
The Wilson model [6], proposed in 1999, requires four differential equations
(equations 3 to 6). The model has more number of parameterthéhbntikevich model.
Tuning these parameters allow the model to exhibit almostalional properties. Three
of the parameters in the differential equationso,(Rwo, and mo) also need to be
evaluated each cycle, thus adding a set of three more equatianse Atép of 0.01 ms
was utilized to update the four differential equations. Figure 3.2 stsmme typical

spikes produced with this model.

%—T:(1/45)(—H +3) 3)
= W19ET+T) (4)
dR
T -WE)ERR) 5)
av

1
T =MV ~Eu) -26RYV +E)- TV -Eyy)-

gyHV +E)+1)

20
10 B
0 1
10 1

20
30 / 1
40 4
20 25 30 35 4

Time

(6)

Voltage

-
e 5 10 15

Figure 3.2.Spikes produced with the Wilson model
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The following parameters were used for the Wilson model: g O'1=
seimengy = 5 seimentr = 4.2 msC = 1 micro faradEn, = 0.5,Ex = 0.95,Ec, = 1.2, V

=-06mV,R=0,T=0,H=1, time step = 0.01 ms.

Morris-Lecar Model
Cathy Morris and Harold Lecar proposed a two dimensional conductased-ba
spiking model in 1981 [7]. The model consists of two differential equa(ens?, 8).
Three of the parameters in the differential equatians \{.., andz,) need to be evaluated
each cycle, thus adding a set of three more equations. These duegm®res involve
hyperbolic functions, thus making it computationally more expensivettielzhikevich
and Wilson models. This computational load is lower than the Hodgkin-iHuxézlel
however, thus making it popular in neuro-computation communities. Adiepeof 0.01
ms was utilized to update the two differential equations. Figurst®®s some typical

spikes produced with this model.

% = (é)(l - gCamoo(\/ _VCa) - gKW(V _VK)
7)
_gLeak(V _VLeak)) (
d 1
= (C)w, —w)g (8)

w
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1 I I
0 50 100 150 200
Time

Figure 3.3.Spikes produced with the Morris-Lecar model

The following parameter values were used for the Morrisst.ewodel:C = 7, Vg
= -84 mV,gk = 8 mV, Vca = 120 mV,gca = 4.4 seimenY ek = -60, gLeak = 2 SEIMEN,

V. 1=-12,V 2=18,V_3=2,V_4=30=0.04, Time step = 0.01 ms.

Hodgkin-Huxley Model
The Hodgkin—Huxley model [4] was a seminal work in neuron modeling. It

consists of four differential equations (eq. 9-12). A set of 10 mguat®ns have to be
evaluated each cycle to update parameters used in the differential equadionst these
equations utilize exponential functions. This makes the Hodgkin-Humteel the most
complex of the four models studied. A time step of 0.01 ms wasegdtita update the
four differential equations as this is the most commonly used aigere 3.4 shows the
spikes produced with this model. This model has also been used in #ileddktrge

scale neural simulations being carried out by IBM and EPFL [23].
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Figure 3.4.Spikes produced with the Hodgkin-Huxley model

The following parameter values were used for the Hodgkin-Huxlegetngk =
36 seimengna = 120 seimeng, = 0.3 seimenkx = -12 mV,Ena = 115 mV,E. = 10.613

mV,V=-10 mV,Vk=0 mV,Vna=0 mV,V, =1 mV, time step = 0.01 ms.

14



CHAPTER FOUR
MULTICORE ARCHITECTURES EXAMINED

Due to microelectronics constraints, such as wire delays and pmamnsities,
modern processors are increasing performance by exploitindjepana rather than
increasing clock frequencies. As a result, multicore processwes become widespread.
It is expected that in the future, processors with hundreds of cdlée@ome available.
In addition to multiple cores, some processors are exploitingovgirallelism to
improve performance.

This thesis examines three of the leading chip multicore BocéSMP) designs
in context of neuromorphic algorithms — in particular biologicalgpired spiking neural
networks. This chapter briefly describes the processors and platfaith their
individual architectural features: the dual socket x quad-corel IKeon E5345
(Clovertown); the dual socket x eight core hardware multithreadedJ8raSPARC T2+
T5140 (Victoria Falls); and the heterogeneous single socket x®RfhtCell processor
ased Sony PlayStation 3. Overviews of the configurations and ar@gstics appear in

Table 4.1.

15



Table 4.1. Architectural summary of evaluated platforms. Top: per core

characteristics. Bottom: SMP characteristics

Sun
UltraSPARC/ IBM
Core Architecture Intel Core2 | T2+ PPE SPE
Superscalar | MT dual MT dual SIMD dual
Type out-of-order | issue issue issue
Clock (GHz) 2.33 1.16 3.2 3.2
Local store - - - 256 KB
L1 Data Cache per core 32 KB 8 KB 32 KB -
L2 Cache per core - - 512 KB -
UltraSPARC
T2+ T5140 | Sony
Xeon E5345 | (Victoria PlayStation
System (Clovertown)| Falls) 3
# Sockets 2 2 1
Cores per Socket 4 8 1 8
DRAM Capacity 12 GB 64 GB 2 GB
DRAM bandwidth
(GBI/s) 21.33 (read)| 42.66 (read) 25.6
10.66 (write)| 21.33 (write |
Threading Pthreads Pthreads Libspe2
Compiler gcc cc Gcee | Spu-gcc

Intel Xeon E5345 (Clovertown)
Two dual-core Xeon chips are paired onto a single multi-chip modutd. &ae
is based on Intel's Core2 micro-architecture (Woodcrest).lizegilower voltage and is

more power efficient. Each core thus runs at a lower frequen83 (@Hz). The
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individual cores can fetch and decode up to four instructions per cycle, and can execute
six micro-ops per cycle. Each core has a 128b adder and a 128blieruffihis enables
Xeon to support Single Instruction Multiple Data (SIMD). Strean8ilgD Extensions 3
(SSE3) instructions make use of the 128b registers. Its peak doublsigorec
performance is 9.3 GFlops/s. Each core includes a 32 Kb, 8-waypdlieceach chip
(two cores) has a shared 4MB, 16 way L2 cache.

This thesis evaluates the performance of Clovertowns’ availableeoRalmetto
Cluster at Clemson University. This Xeon platform is a two psamebased platform.
Thus, the platform can use up to eight cores (four from eaclegsoQ for computation.

A simplified version of the Clovertown architecture as seen in igtshown in Figure

4.1.

Core
Core
Core
Core
Core
Core
Core
Core

4MB 4MB 4MB 4MB
L2 L2 L2 L2
i i
., FSB ‘ FSB ‘
1066 GB's 1066 GB s

MCH (4 64Dh contrellers)

8 - 667 MH2z FBDMDMNDNIS

Figure 4.1.Dual-socket x quad-core Intel Xeon E5345 (Clovertown) processor
architecture
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Sun UltraSPARC T2+ T5140 (Victoria Falls)

Being the industry’s first “system-on-a-chip” (SoC), the &BPARC T2 Plus
[12] packs the most cores and threads available on any generalepprposssor. The
processor has eight cores, each capable of supporting two growps bafdware thread
contexts (referred to as Chip Multi-Threading or CMT). Thus each can support up to
eight threads. Unlike other architectures which improve performiaynasilizing larger
registers, this processor scales its performance through thmelieing. The SoC has 10

GB Ethernet networking.

The UltraSPARC T2+ has a dedicated Floating Point Unit (FBU¥ach core
(shared among eight threads). The FPU does not have a fused madliplgFMA)
functionality. Per-core and per-socket performance is 1.16 GFlopd/9.83 GFlops/s.
Each core has 8kB write-through L1 cache, 16 KB of instruction caties connected
to a 4MB shared L2 cache via an on-chip crossbar switch. TreSBARC T2+ has no
hardware pre-fetching. Also, software pre-fetching placesdtta in L2 cache. The
platform utilized for experimentation was a Sun Enterprise T51A@sdt consists of
two UltraSPARC T2+ processors each operating at 1.2 GHz. Thusydtenshas 16
available cores (eight from each processor). A simplifiedaersf the Sun UltraSPARC

T2+ T5140 architecture as seen in [41] is shown in Figure 4.2.
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e
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3
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<
4 MB Shared 1.2 (16 way) 3 E 4 MB Shared 1.2 (16 way)
(64b interleaved) o’é ) (64b interleaved)
4 Coherency Hubs 4 Coherency Hubs
2 x 128b controllers 2 x 128b controllers
i)
21.33GB/s 10.66 GB/s 21.33GB/s 10.66 GB/s
667 MIz FBDIMMS 667 MHz FBDIMMS

Figure 4.2.Dual-socket x eight-core Sun UltraSPARC T2+ T5140 (Victoria
Falls) processor architecture

STI Cell

The STI Cell Broadband Engine [11] processor is the heart of tmy S
PlayStation 3 (PS3) video gaming console. The architecture is geteaus. It consists
of a Power Processing Element (PPE) and eight SynerBistcessing Elements (SPES).
Of the eight SPEs, only six are enabled on the PlayStation 3 plaffitre PPE handles
the operating system and administrative functionalities. Thes SREh use a disjoint

software controlled local memory. Each SPE has 256 KB of local memory.

The software controlled DMA (Direct Memory Access) engmeefficient and
helps fetch data asynchronously from DRAM into the local storeetshihg the data is

software controlled, programming the Cell architecture is emapomplex than
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conventional architectures. This approach eliminates conflict snemse write fills, but
capacity misses must be handled by the programmer due to thedliamnount of local

store space available.

spE4 )
PPE

J
—

Ls | NIFC|

SPE1 SPE 2 SPE3
1 Ls | MFC L | Ls | MFC L | Ls | MFC L
Controller ’ t t t

| Element Interconnect Bus le

f’\E*\E*\ 3

—/

|LS|MFC| LS|MFC| LS|N|FC| LS|MFC

T

SPES SPE6 SPE7 SPE 8
(. J J J J

Figure 4.3.STI Cell processor architecture

Each SPE has 128b wide registers. This enables the Cekeamtlvantage of
vector processing as well. The PPE and SPE operate at 3.2 GttzeSPE is capable of
processing up to four instructions in parallel each cycle (éiglunsidering FMA). The
SPEs utilize in-order execution and have no branch prediction harddighecompute-

to-1/0 ratios are needed to achieve the full potential of the Cell prad@ggo

One of the key features of the cell processor is to tramsfeplexity from
hardware to software. Thus the cores utilize in-order executitbnne branch prediction
hardware. Instead of a processor controlled cache, the local istgpeogrammer
managed. This ensures that only necessary data is brought in. Tpéateam used in
this study is a Sony PlayStation 3 cluster available at thecARegion Supercomputing
Center (ARSC). A simplified version of Cell processor astttiire is shown in Figure

4.3.
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CHAPTER FIVE
NETWORK DESIGN

Gupta and Long [8] presented a character recognition network basdake on t
integrate-and-fire neuron model [35]. That network was adaptedsithisis to evaluate
the four spiking neuron models under consideration. Four versions of the image
recognition network were developed (corresponding to the four spikodgls studied)
where the main difference was in the equations utilized to updatgeotential of the
neurons. The parameters utilized in each case are specified in chag#er thr

The network consisted of two layers, where the first laydags input neurons
and the second layer as output neurons. Input images were presentefirso ltheer of
neurons, with each image pixel corresponding to a separate input né&bs.the
number of neurons in the first layer is equal to the number efgir the input image.
Binary input images were utilized in this study. The number of outputons was equal
to the number of training images. Each input neuron was connectédthe autput

neurons. A prototype of this network is shown in Figure 5.1.

Level 2

Level 1

Figure 5.1.Network used for testing spiking models
Each neuron has an input current that it uses to evaluate its nmenplotantial. If
the membrane potential crosses a certain threshold during a dyeleneuron is
considered to have fired or spiked. In case of a level one neuron, theungutt is zero

if the neuron’s corresponding pixel in the input image is “off”.hi¢ tpixel is “on”, a
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constant current is supplied to the input pixel. A level two neuron’s lbugpat current
is the sum of all the individual currents received from all évellone neurons connected
to it. This input current for a level two neuron is given by equation 13 below:
=D Wi, i) (i) (13)
where |

w is a weight matrix where(i,j) is the input weight from level one neurbito
level two neurorn.

fis a firing vector wherd.i) is O if level one neurondoes not fire, and is 1 is the
neuron does fire.

The elements of the weight matnx are determined through a training process
where a set of training images are presented sequentidtlg toput neurons. The weight
matrix elements of each output neuron are updated using the STDdachleycle. The
weight matrix thus obtained is used to determine the input curreacto of the output
neuron.

In the testing phase, an input image is presented to the inpainseamd after a
certain number of cycles, one output neuron fires, thus identifyiagirtput image.
During each cycle, the level one neurons are first evaluated baslee imput image. As
and when a level one neuron fires, its weight corresponding to efoht meuron is
added to the current of each of the output neurons it is connectetl ttee And of the
cycle, the input current for two level neurons is the sum olvisights from the level one
neurons that have fired the current cycle. This input current isimisled following cycle

to evaluate the neuron membrane potentials of the level two neuronsprobess is
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described in detail in algorithm 1. This thesis studies the aatiele of the recognition

phase of each network on multicore processors.

Algorithm 1: The testing phase for the spiking neuron image recognition model

1.  Repeat till a level two neuron fires:
For all level one neurons:
Read input current
Calculate neuron membrane voltage
If neuron fires, upgrade the level 2 input current
—Barrier—
For all level two neurons:
For each non zero number of firing from level one (from previous cycle),
Calculate total level 2 input current
Calculate neuron membrane voltage
If neuron fires, output is produced
—Barrier—

S R

O ©OVWX® N
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CHAPTER SIX
PARALLELIZATIONS AND OPTIMIZATIONS
Network Parallelization

All four models studied in this paper are evaluated using the Hettemeloped
in chapter five. In general one thread was created for eaelatthne start of the program
on the different multicore architectures examined (STI Cekl leon E5345, and Sun
UltraSPARC T2+). Since the UltraSPARC T2+ supported multipleaids per processor
it was tested it with multiple threads per core. Each thread wassigned tasks
intermittently by the master thread and was terminated dnilyeaend of the program.
Creating threads only once and letting them run for the lifetohdhe program
significantly reduces the thread creation overhead; this issuleeleasdiscussed at great
length in several recent papers including [11] [36].

Since all the nodes in each layer are independent of each titgrcan be
evaluated in parallel. Individual threads were created for eaehan all the processors
studied. The neurons in the first layer (input layer) were diged evenly across the
threads generated. Since all the neurons utilize the same g@hpiitations, processors
with SIMD support available (Cell and Xeon) exploited data |gvatallelism by
evaluating sets of four neurons simultaneously. As the level auoons are only 48 in
number, they were evaluated on the PPE in case of Cell and orsthteread in case of

Xeon and UltraSPARC T2+. This improved the scalability of the model.

As shown in Algorithm 1, two barriers were utilized to allowthk threads to

complete the nodes in each layer of the network. A firing vectar wged in the
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preliminary implementations. It stored the indices of the levelraeons fired in the
previous cycle. This was later used to calculate the curretitddevel two neurons. This
approach required the sharing of the firing vector among all thedghrééhile migrating
to a large scale cluster implementation, this approach was a lot harderémenpl Thus

this approach was discarded.

In the current approach, if a level one neuron fired, its correspgpneeights
were added to the level two current data structure for the porrdsg thread. At the
start of the next cycle, the currents from all the threadssamemed by which ever
processor was evaluating the level two neurons. This eliminated ¢deforehaving an
extra data structure like the firing vector and eliminated woBocy issues. It also

improved the scalability of the implementation.

The Cell implementation used mailboxes for synchronization while the Sun and

Intel implementations used pthread barriers.

Optimizations
This section explains the optimizations that were considered anadrter in
which they were considered. The optimizations are designed tofdxivef both on
conventional cache-based multicore processors and the Cell argleitdche techniques
implemented include multi-threading, vectorization, double buffering, asoétw

pipelining, pre-fetching and loop optimizations.
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Multi-Threading
The first technique in the optimization process utilizes the flaat all the
processors are multicore by exploiting thread-level paratieliThe neurons at level one
are distributed evenly across the threads. This ensures thatheeat ts fairly load
balanced. The implementation does this dynamically depending omz¢hefghe input
image. Threading reduces the instruction latency thus improvingetiermance. The
threads are created using the POSIX thread library on theSBIKRC T2+ and Xeon

architectures while the Cell implementation utilized the libspe2 library.

Vectorization

The Cell SPE and the Xeon architectures have 128b registersertikes them
to exploit any data-level parallelism present in the apptinatFour single precision
floating point operations or two double precision floating point operattars be
evaluated with a single instruction on these registers. Allodgs are 16 bytes and must
be 16 byte aligned. It is to be noted that it takes 6 cyclea Bingle precision floating
point operation and 13 cycles for a double precision floating point operatitime Cell.
Thus the implementations used single precision floating point valtles.Cell can

perform a fused multiply-add (FMA).

On the Intel, SSE3 instructions were used for vectorizing the opesatdn x86
architectures, SSE3 provides an unaligned load but adds somerzerée penalty. Thus
all the data structures were 16 byte aligned. The MorrisrLaoa the Hodgkin-Huxley

models make use of hyperbolic and exponential functions. As the S8&3/ Idid not
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have exponential functions, the implementation made use of the Uni8év#alLibrary

developed by Helmut Dersch [37].

Loop Optimization

Maximizing in-core performance is essential. The Cell psoe does not have
branch prediction hardware. In order to minimize the branch predictidheo€ell, the
loops were unrolled by a factor of eight. This technique is usafahe Cell as it utilizes
in-order execution, but is of little use in case of out-of-orderrseptar processors. This
also meant that the function calls had to be in-lined. The code oneth&v&> further

optimized by minimizing unnecessary branches.

Even Pipeline
1545:fma$ 13,$63,$83,$13 |x HIEIEIRIES
1546 fma$ 14,$58,$83,514 | x| x x| x| x| %
1547:1ma$ 15,557,583, 515 | x| x|x FARAR
1548:Tma$ 16,559,583, $16 | x| x|x|x % | x
1550:Tma$ 25,525,876, 542 | x| x|x|x|x X
1552:fms$2,$84,$2,$26 x| xl x| x| x| x
1554:fa$17,$81,$17 x| x| n|x|x
1556:fma$ 18,$ 18,576,543 X x| x| x| x| %
1557 ma$ 19,519,576,544 Xx[ x| x| x|x
1558 Tma$20,520,576,545 LRI AR RS
1559 ™maf21,521,$76,546 X x| x| x| x
1563:fma$22,$22,$76,§47 HMEIEIE RS
1564:fmaf23,$23,§76,548 BRI RIS
1565:fma$24,$24,$76,$49 X x| x| %] x|x
1569:fms$2,$84, 53,527 LRI ARIRARS
1573:ms§4,$84, 54,528 X X| x| x| x|x
1577:.Tms$5,584, 55,529 x| % X x| x| x
1581:fmsE,$84, 6,530 ARARS ARAR
1585:fms$7,$84, 57,531 AEARARS % | %
1589:fms$e,$84,58,$32 X x| %% x

Figure 6.1. Assembly code for the Wilson model on Cell after loop unrolling,
data pre-fetching and software pipelining.

On the Cell, it takes 6 cycles to fetch data into the regiJteis meant that
utilizing indexed data structures would lead to a high percentagdalld s the

instruction pipeline. Thus, the required data was pre-fetched. Sofpi@ekning was
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used in combination with loop unrolling to minimize these stalls. Figuteshows a
snippet of the assembly code for the Wilson model after data tgrerg, loop unrolling
and software pipelining. It can be seen from the figure that #iese optimizations,

there are no stalls in the instruction pipeline.

Memory optimizations

Data transfer on the Cell is explicitly managed by the qanogner as opposed to
the operating system. The local store’s memory is limiteeb®KB. On an average, 16
bytes of memory is required to store the state of a neuron. Thas evaluating a
network of neurons, we need to explicitly DMA in the required dat@uate the neuron
equations, and DMA out the data. If we are to wait for the data to be brought inwefore
start performing computations, we are limited by the DMA. Thus dooiering was
implemented to hide I/O latency with computation. In this proces® the data required
for the first iteration has been obtained, the first iteratiothefloop can be evaluated
simultaneously with DMA data transfer for the second iteratioim@ioop. This ensures

that one is not waiting on data to perform computations.
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CHAPTER SEVEN
EXPERIMENTAL SETUP

Three hardware platforms were utilized in this study: ong Mtel Xeon E5345
based, one was STI Cell based, and one was Sun UltraSPARC T2+ Tasddtel
platform had two quad-core Xeon E5345 processors, used 12 GB of DRAM and wa
running RedHat 4.1.2-44. Thus, the platform was capable of utilizing exgbs. The
STI platform utilized was a Sony PlayStation 3 cluster abkilat the Arctic Region
Supercomputing Center (ARSC), Alaska. The PlayStation 3 has oh@rGetssor on
which six of the eight cores are available for use and contains B6fN\DRAM. This
platform was running Fedora Core 9 with IBM Cell SDK 3.1. The SimraSPARC T2+
platform utilized was a Sun SPARC Enterprise T5140 running Sol@rigHis system
contained two UltraSPARC T2+ processors and used 64 GB of DRAM.syslism is
thus capable of utilizing 16 cores (eight from each processor)aaidcere supports up
to a maximum of eight threads. All the programs were coahgiieh —O3 optimizations.
On the UltraSPARC platform, one core was used for running thetogesystem while
the remaining cores were used to run the spiking neuron models. Esath Was bound
to a specific core to ensure process affinity thereby ensuring optimuaonrparice.

Seven networks with varying input image sizes were utilizeekgomine each of
the spiking neural network models. The sizes of level 2 and level drreetor different
input sizes are shown in Table 7.1. The overall network structuré&epasimilar to the
design mentioned in Figure 5.1 with two layers of nodes per net&adh of the level 2

neurons was connected to all of the neurons from level 1. The numing@ubflevel 1)
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neurons was equal to the number of pixels in the input image. The numbetpat
(level 2) neurons was equal to the number of training images categories.

Table 7.1.Spiking Network Configurations Evaluated

Inputimage| Levell | Level2| Total
size neurons | neurons| neurons
480 x 480, 230,400 48 230,448
720 x 720] 518,400, 48 518,448
960 x 960 921,600 48 921,648
1200 x 1200 1,440,000 48 1,440,048
1680 x 1680 2,822,400 48 2,822,448
2160 x 2160 4,665,600 48 4,665,648
2400 x 2400 5,760,000 48 5,760,048
B B B B B
5 H I 4 k |
i N 8 B 01 B
B "B
y Z 0 | 2 3
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Figure 7.1.Training images utilized. There are 48 24 x 24 pixel images
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In this study all the spiking networks of different sizes weegned with to
recognize the same number of images. A set of 48 24x24 pixel Smage generated
initially and were then scaled linearly to the different nekwesizes. The images
represented the 26 upper case letters (A-Z), 10 numerals (0&eek letters, and 4
symbols. Figure 7.1 shows the training images used. The four modedsimitially

developed and tested and trained in MATLAB before being converted to C.
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CHAPTER EIGHT
RUN TIME PERFORMANCE

All the models were implemented on the three computing platftonevaluate
the performance of one processor per platform. Unless mentiondéljldremethod was
utilized to evaluate the differential equations for each ofbdels. A vectorized single
thread version of the program was developed and tested on the IntelE%845. The
speed-up of the four models running on each of the three computifgmpkiis shown
in Figure 8.1. These speed-ups are relative to the single thré&li®glementations of
the models on the Intel Xeon E5345.

The lzhikevich and Morris-Lecar models require fewer paramedten the
Wilson or Hodgkin-Huxley models to store the state of a neuranTaéle 3.1). Thus,
the memory requirement for the former models is less when cechga the latter
models. As a result, on the PS3, the largest network implementdteftrhikevich and
Morris-Lecar models had 5,760,048 neurons (2400 x 2400), while the largestlnet
implemented using the Wilson and Hodgkin-Huxley models had 4,665,648 neurons
(2160 x 2160). This was due to insufficient virtual memory on the FRIEedS3. The
largest size implemented for each of the models on Xeon and UltraSPAR Catidhps
had 5,760,048 neurons (2400 x 2400).

Table 8.1 gives the compute-to-I/O ratios for all the models orP8® This
indicates the number of flops performed per byte of data fetched045 and 0.77 for
Izhikevich and Wilson models and 4.6 and 5.52 for Morris-Lecar and Hodgkin-Huxley

models. Low compute-to-1/O ratios hinder the performance of multicore porsess
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Table 8.1.Compute to I/O ratios (flops per data byte fetched) for models on the
PlayStation 3

Runge-
Model Euler Kut?a
Izhikevich 0.45 2.37
Wilson 0.77 3.15
Morris-Lecar 4.60 7.30
Hodgkin-Huxley 5.52 9.21

B ——Xeon (8 Threads) 8 R —e—Xeon (8 Threads)

7 /’\\ —m—PS3 (6 Threads) 7 / \ —m—PS3 (6 Threads)

6 & —k—Xeon (4 Threads) 6 / \ ——Xeon (4 Threads)
%‘ > \ —¢—T2+ (120 Threads) % S % 0\ ——T2+ (120 Threads)
E’ 4 o —%—T2+ (64 Threads) Hﬁ 4 fa* ——T2+ (64 Threads)
% 3 ;EI% :% 3 %

1 v 1

0 0

0 2 4 6 0 2 4 6
# of neurons (in millions) # of neurons (in millions)

(@) (b)
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Figure 8.1.Speed-up for Intel Xeon E5345 platform (8 threads), Sony PS3 (6 threads),
Intel Xeon E5345 platform (4 threads), Sun UltraSPARC T2+ T5140 (120 and 64)
threads over vectorized Intel Xeon single thread for the (a) IzhikevicWi{®dn, (c)
Morris-Lecar, and (d) Hodgkin-Huxley models.
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Figures 8.1 a and 8.1 b show the speed-ups of the Izhikevich and Wilsors model
on all the platforms with the increase in input image size @ritwize). On the Cell (6
threads) and UltraSPARC T2+ platforms (64 and 120 threads), the gpardreases
and eventually saturates. In case of the Wilson model, the speed-up e or@gdor the
2160 x 2160 (4,665,648 neurons) network on the Cell platform. This probably might be
due to hard disk access or excessive cache misses. The Xdommpseed-up for these
models increases initially but eventually decreases. Iths twoted that these models are
more memory intensive as they have a low compute-to-1/O flass than one). It has
been shown that for similar applications, the Xeon chipset’'s céapbilimit multi-
socket scaling on memory intensive applications [41]. The speed-lipedetaster in
case of the Wilson model on the Xeon platform as it requires mtadalatore the state
of each neuron. As expected, for these models, maximum speed-up elitairtbe
largest size was on the Xeon platform using 8 threads whilkedisé speed-up obtained
was on the UltraSPARC T2+ platform using 64 threads (eight cores).

Figures 8.1 ¢ & 8.1 d show the speed-ups for the Morris-Lecar anigkiih-
Huxley models on all the platforms. These models have a high ceag@UO ratio
(greater than one). The speed-up increases with size andestumaall the platforms. It
is seen that for larger network sizes, these models givedhedtiperformance gain. As
expected, for these models, the performance gain is close to8liarahse of the Xeon
platform running 4 and 8 threads. Similarly, the gain on the Cefbpia (PS3) is close
to 6 for the Morris-Lecar model while it is close to 7 for Hadgkin-Huxley model. The

performance is higher in case of the Hodgkin-Huxley model &astmore equations
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making use of the fused multiply add functionality available on thiepGtform. On the
other hand, the gain observed on UltraSPARC T2+ platform for HodgkikeiAus
lower than that of Morris-Lecar inspite of having the highest computétealio. This is
primarily due to the limited number of dedicated FPUs (one perstmared among eight
threads) available on the UltraSPARC T2+. Thus on this platformiitagkin-Huxley

model has the least performance gain amongst all the models.
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Figure 8.2.Per-core efficiency of (a) Izhikevich, (b) Wilson, (c) Morris-Leeard (d)
Hodgkin-Huxley models with network size 1200 x 1200 on the Xeon, Cell and
UltraSPARC T2+ platforms.

Figure 8.2 shows the per-core efficiency of the platformsafaretwork with

1,440,048 neurons (1200 x 1200) of all the models. This network size was chdisen as
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was the largest network implemented on a single core on each platfems. On the
UltraSPARC T2+ platform, note that there are always eight threadper-

Figures 8.2 a and 8.2 b show the per core efficiency of alpldtéorms for the
Izhikevich and Wilson models. For these models, a single core on the CRllplB&orm
is faster than that on the Xeon platform. The per-corei@fioy on all the platforms
declines with the increase in the number of cores for these méuease of the Sun
platform, the decline is fairly gradual. But in case of Xeon arldplforms, the decline
in performance is very steep. It is seen that the per-cbegerty on the Cell platform
declines much faster than on the Xeon platform. This indicatesrtéatory intensive
applications with a low compute-to-I/O ratio, do not achieve Bggmt gains with the
increase in the number of cores. This also explains why thardeasline in performance
gain with the increase in network size for Izhikevich and Wilson isaake observed in
Figures 8.1 a and 8.1 b.

Figures 8.2 ¢ and 8.2 d show the per core efficiency of alpldtéorms for the
Morris-Lecar and Hodgkin-Huxley models. These models have a high cotopii
ratio. As expected, the per-core efficiency remains alroogstant on all the platforms
for these models. Such models can make use of all the cores tweathe best
performance. For these models, the I/O overhead is a lowsiofraaf the overall

runtime for these models.
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Figure 8.3.Variation in speed-up of the 12001200 network with the number of
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Figure 8.3 shows how the speed-up varies as the number of threadeased
on the different platforms. On Sun, Intel and Cell platforms, thedsppencreases with
the number of threads for all the models. On the Cell platform, therp@ance gain with
the increase in threads is less or almost negligible forztiikelvich and Wilson models.
This is primarily because the short runtimes of the code alevextra DMAs from six
cores to cause contentions. Figure 8.4 shows how the overall DMA/éings with the
number of SPEs on the Cell processor based Sony PlayStation 3 f48Ghe 480
Wilson model. As expected, the computation time decreases withndrease in the
number of SPEs, but the time for DMA does not decrease. Thusntioelsts are limited

by DMA contentions.
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Figure 8.4.Variation in the runtime of the 480 x 480 Wilson model on the Cell processor
based PlayStation 3.
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The Runge-Kutta approach provides a higher level of accura@solving the
differential equations in the models, but requires significantly nigingime. Table 3.1
compares the flops needed per neuron under two different approadbles3.Tgrovides
the compute-to-1/O ratio for each of the models when usingmniadel to evaluate
differential equations. As shown in Figure 8.5, the Runge-Kutta agprganerally
provided a higher speed-up over the Euler approach. This is prindaelyto a higher

compute-to-1/O ratio in this approach. The speed-up is over a PPE serial imigizome

200

180 +— o Euler, Cell
160 +— O Runge-Kutta, Cell

140 L@ Euler, Intel
| |m Runge-Kutta, Intel

[
n
o

Speedup
=
o
o

@
o

60

22 T]i

Izhikevich Wilson Morris-Lecar  Hodgkin-Huxley

Figure 8.5.Speed-up of the four models over the Cell PPU when using the Euler and
Runge-Kutta approaches
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CHAPTER NINE
LARGE SCALE IMPLEMENTATION
The AFRL Cluster
The AFRL cluster utilized in this study consists of 336 Sony dedipn 3s (PS3s).

Each PS3 contains 256MB of RDRAM and a 40GB hard drive. As showigume 9.1,
the 336 PS3s were grouped into 14 sub-clusters, with each sub-clussesting of 24
PS3s, a dual quad-core Xeon head node, and a high speed Etherrtet Bugtsub-
clusters were connected through a central high speed Etheriteh.sWwhe peak
performance of the cluster is 51.5 TF. The cluster uses openMPI 2.4dnfarunication
between the PS3s. Each PS3 was running on Fedora 7 equipped with IBBDEed!.1.

A detailed description of the cluster is presented in [40].

Switch for Switch for
Sub-cluster 1 Sub-cluster 14
OO+ O (2o OO ++++O (2o
Head node Head node

24 PS3s 24 PS3s

Figure 9.1.AFRL Cluster PS3 organization
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Implementation

The testing phase of the network described in chapter five wasnrmapted on
the PS3 cluster. Since all four spiking network models were mggléed using the same
image recognition network structure, the parallelization approadhoptimizations for
all the models were the same. All the neurons at any partiewa of the model run in
parallel and are independent of each other. This allows the neafrangiven level to be
split evenly across all the available SPEs in the full s€&t@S8s used. Additionally, since
all the neurons utilize the same set of computations, vectoriaaasrused to evaluate
four neurons at a time on each SPE.

Eleven networks with varying input image sizes were developed irr tode
examine the performance and scalability of the four models on FRL Aluster. Table
9.1 shows the input image size, number of level one and level two neurdrhea
corresponding number of synapses for the networks. The number of outpohsés
equal to the number of training categories. In this study, all ttweories are trained to
recognize the same set of input images (scaled to approginasd. The set of 48, 24x24
images which were generated initially [15] were scaledaliyedepending on the

required input image size.
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Table 9.1.Networks used for Cluster Implementation of Spiking Neural Network Models

Size of Input Level 1 |Level 2
Image neurons |neurons
1200 x 1200 | 1,440,000 48 69,120,000
2400 x 2400 | 5,760,000 48 276,480,000
3600 x 3600 | 12,960,000 48 622,080,000
4800 x 4800 | 23,040,000 48 |1,105,920,000
8160 x 8160 | 66,585,600 48 | 3,196,108,800
8400 x 8400 | 70,560,000 48 | 3,386,880,000
D

0]

Synapses

12000 x 12000, 144,000,00048 |6,912,000,00
14400 x 14400 207,360,00048 |9,953,280,00
16800 x 16800 282,240,00048 |13,547,520,000
18000 x 18000 324,000,00048 |15,552,000,000
20400 x 20400/ 416,160,00048 |19,975,680,000

Experimental Setup
On the AFRL Cluster utilized, approximately 300 out of 336 PS3s awaitable
for use. The studies utilized only the PS3s on the cluster and did reniywode on the
Xeon headnodes. In the runs performed, no impact was seen in using th&das3s
different sub-clusters on the overall runtime. This indicatestteatMPI overhead for

using PS3s in different sub-clusters and within one sub-cluster were similar.
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Results

This section considers the scalability of the four spiking neutalanke models with
variations in the number of PS3s. All the runs utilized the two lagerfiguration
described in chapter five. Figure 9.2 shows the performance oluter with a fixed set
of neurons assigned to each PS3. Thus varying the number of PS3s would proportionately
change the overall number of neurons in the networks modeled. The saswitshat the
neurons per second throughput for the cluster scaled up almost lingériyre number
of PS3s. The four models have different flop counts per cycle. Additionally, as mentioned
in chapter three, the four models do not simulate the same typeuobn; thus the
number of simulation cycles needed for the four models to genemnatefeaence is
different. These contribute to the difference in the neuronsgoeind throughput of the
four models. The Izhikevich model required the least runtime and sohbakighest
neurons per second throughput. The Hodgkin-Huxley model was at the thef the

throughput scale.

6.E+09

—o— Izhikevich

—a—Wilson
5.E+00 1 )
—a— Morris-Lecar

——HH
4.E+09 -

3.E+09 A

Neurons/sec

2.E+09

1.E+09 -

1.E+05

PS3s

Figure 9.2.Runtime for varying number of PS3 and network size for same number of
neurons/PS3 (1,440,000).
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Figure 9.3.Runtime for the Spiking Neural Models for varying number of PS3s a)
Hodgkin-Huxley b) Morris ¢) Wilson and d) Izhikevich
The scalability of networks with fixed numbers of neurons was @amwith
variations in the number of PS3s. Figure 9.3 shows the change meuoti networks of
three sizes for the four spiking neuron models. The three netwraksireed had the
following number of level 1 neurons: 12,960,000 (3600%3600), 70,560,000 (8400x8400),

and 144,000,000 (12000x12000). The number of level 2 neurons was always fixed at 48.
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In all cases it is seen that the runtime decreasestigtmumber of PS3s utilized. As
expected, smaller networks reached a saturation point witer fS3s than the larger
networks

The Cell processor contains eight SPEs, of which six are awaitgbthe PS3. The
effect of changing the number of SPEs on the overall runtimeinvastigated with
variations in the number of PS3s. Figure 9.4 shows the results atudig for the four
spiking neuron models. As expected, in both the Hodgkin-Huxley and M@t
models (Figures 9.4 a and 9.4 b respectively), the runtime decprapestionately with
the number of SPEs utilized. This indicates that these two modets able take full
advantage of all the SPEs available on the PS3s.

As shown in Figures 9.4 ¢ and 9.4 d, the Wilson and Izhikevich modelsctesly
reach saturation points at three SPEs — there is no signifiogmmbvement in
performance by increasing the number of SPEs utilized. Chapter eightsdsthis issue
in detail. This is primarily due to limitations in the DMA rizhvidth of the SPEs. A
similar DMA saturation effect is seen in [38] [39]. Thus whikge two models, it may be
useful to run other (non-memory intensive) tasks on three of the 8REeach Cell

processor in the cluster.
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Figure 9.4.Runtimes of the Spiking Neural Models with varying number of SPEs on
the PS3s a) Hodgkin-Huxley b) Morris-Lecar ¢) Wilson d) Izhikevich
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Figure 9.5.Maximum neurons and synapses processed for varying number of PS3s
The human cortex contains approximately*Iifeurons [23] and 1.5x}Dsynapses
whereas a mouse cortex has 1.6xfi6urons and 1.6xibsynapses [17]. Figure 9.5
shows the maximum number of neurons and synapses that were modieltdtespiking
network models for varying numbers of PS3s. With 300 PS3s, up to 4% 6eafbns

and 2x16° synapses were modeled. Table 9.2 summarizes these results.

Table 9.2.Components of different systems

System Neurong Synapses
Human cortex 19 1.5x10"
Mouse cortex 1.6x10 1.6x10"
Spiking neuron models ~ 4.16X1p  2x10°

Although the number of neurons (or equivalent neurons) modeled is close to
biological scales, it is important to note that several biolbgicaperties were not
captured in the models implemented. The models implemented consmdsedhe

“recognition phase”, and thus did not model spike-timing-dependent plagsd DP).
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Additionally, the two layer spiking network models were far rerdofrem the highly
interconnected neural structure seen in the cortex. However thés résuhdicate that

large clusters of PS3s can provide a good platform for biological scale kcortidals.
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CHAPTER TEN
CONCLUSION

An image recognition model was utilized to analyze the perforenanceleration
of four spiking network models on modern multicore processors. The spikimgrk
models were parallelized using both data and thread level parallelism.

The results of this work show that modern multicore processors cand@rovi
significant speed-ups for spiking neural network models. Results ghatv the
architectures scale well and provide significant speed-upaddels with high compute-
to-I/O ratio. The Sun UltraSPARC T2+ platform provided a lowerfopmance
improvement than both the Cell and Intel Xeon processors. This lig idkee due to the
lack of SIMD operations on the Sun UltraSPARC T2+. Of the four ma@mined the
Hodgkin Huxley and Morris-Lecar models provided the highest speetbupise larger
models, while the Izhikevich and Wilson model provided the lowest speebhigowas
due to the low compute-to-I/O ratio in the latter.

From the scaling study on the cluster, it can be seen that th®S3&luster
provides a highly economical, yet powerful, platform for neuromorphialations. The
system is capable of producing up to 50 TFlops. The four models under study were scaled
up on a cluster of 336 PS3s at the AFRL facility in Rome, NYuReadicate that the
models were fully scalable across the cluster. Additionsadly, of the four models were
scalable across the six SPEs available on each Cell processor in the cluster

The largest spiking network model implemented contained 4.f&ei@ons and

2x10" synapses. Given that the human brain contains abodtihéorons, this is a large
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number of components that the cluster was capable of modeling. gimpdistic
comparison, image recognition (for the largest image size tested) ceghoat 227ms in
the spiking network, and about 100ms in the human brain.

In a recent study [2], a 32,768 processor IBM BlueGene supercompeeiiea
to simulate a rat scale cortex (558urons and 4.42x1bsynapses) at near real time.
This model did implement learning and was more biologically ateuhan the models
implemented in the study. However the cost of the BlueGenensyistesignificantly
higher (approximately 2-3 orders more) than the system weeutilithe AFRL cluster
cost $337k, of which the PS3s cost about $133k. Since we were able to nsodih@a
scale cortical system (although our model was much simpledidates that a cluster of
PS3s can be an economical platform for simulating large scale neuromorphic.models

It is important to note that the networks implemented are exlyesmaplistic.
Possible future work in this area could be to examine implementabbnsore
biologically realistic networks and include learning in the impletaigons. Additionally,
the application of similar large cortical models to different dm® could be examined.
Also, the effect of various compilers on the performance of the Is\ateeach of the
architectures could be studied. In particular, the effertcadompiler on the performance

of the Intel architectures could be investigated for each of the models.
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