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ABSTRACT 
 
 

The human cortex is the seat of learning and cognition. Biological scale 

implementations of cortical models have the potential to provide significantly more 

power problem solving capabilities than traditional computing algorithms. The large 

scale implementation and design of these models has attracted significant attention 

recently. High performance implementations of the models are needed to enable such 

large scale designs. This thesis examines the acceleration of the spiking neural network 

class of cortical models on several modern multicore processors. These include the 

Izhikevich, Wilson, Morris-Lecar, and Hodgkin-Huxley models. The architectures 

examined are the STI Cell, Sun UltraSPARC T2+, and Intel Xeon E5345. Results 

indicate that these modern multicore processors can provide significant speed-ups and 

thus are useful in developing large scale cortical models. 

 The models are then implemented on a 50 TeraFLOPS 336 node PlayStation 3 

cluster. Results indicate that the models scale well on this cluster and can emulate 108 

neurons and 1010 synapses. These numbers are comparable to the large scale cortical 

model implementation studies performed by IBM using the Blue Gene/L supercomputer. 

This study indicates that a cluster of PlayStation 3s can provide an economical, yet 

powerful, platform for simulating large scale biological models. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

The human brain can perform complex cognitive tasks at a much faster rate than 

silicon based processors, despite the fact that neurons are much slower than the 

transistors used to design the processors. This is primarily because of the massive parallel 

processing employed in the neocortex, which is the main part of the brain dealing with 

learning and cognition. This is the outer layer of the human brain and is approximately 

the size of a large unfolded dinner napkin. It is estimated to consist of approximately 1011 

neurons and 1014 connections between the neurons. Each neuron is connected to a large 

set of neurons through extensions called dendrites and axons. Neurons communicate with 

each other by sending electrical pulses. These pulses are generated by the exchange of 

ions between the neurons.  

There has been a strong interest amongst researchers to develop large parallel 

implementations of neuron models on the order of animal or human brains. At this scale, 

the models have the potential to provide much stronger inference capabilities than current 

generation computing algorithms [1]. A large domain of applications would benefit from 

the stronger inference capabilities including speech recognition, computer vision, textual 

and image content recognition, robotic control, and data mining.  

Large scale models however require significant computing power to implement. 

Several research groups are currently examining large scale implementations of neuron 

based models [25] [23] and cortical based models [17] [42]. Such large scale 

implementations require high performance resources to run the models at reasonable 
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speeds. Lansner et. al. [2] has shown that mouse sized cortical models developed on a 

cluster of commodity computers are computationally bound rather than communication 

bound. Thus the acceleration of neuron models on modern multicore architectures could 

provide significant benefits for the development of large scale cortical models. Multicore 

processors are currently the norm in the computing industry because it is difficult to 

increase the performance gain of single core processors as we have reached the limits on 

frequency scaling. However, the implementation of several recent cortical models on 

clusters of multicore processors has not yet been investigated.  

This thesis examines the acceleration of spiking neural network models on 

modern multicore processors. Spiking neural network models are the third generation of 

neural networks and are considered to be one of the most biologically accurate models. 

Izhikevich compares a set of 11 spiking neuron models [3] in terms of their biological 

accuracy and computational load. He shows that four of the more biologically accurate 

models include (in order of biological accuracy) the Hodgkin-Huxley [4], Izhikevich [5], 

Wilson [6], and Morris-Lecar [7] models. Of these, the Hodgkin-Huxley model is the 

most computationally intensive, while the Izhikevich model is the most computationally 

efficient. 

The four spiking neural networks examined are based on a character recognition 

model. The character recognition model was taken from [15]. This model was adapted 

from the two layer spiking neuron network model developed by Gupta and Long [8]. 

While Gupta utilized the integrate and fire model, this work utilizes the four more 

biologically accurate spiking models identified by Izhikevich [3]. Izhikevich points out 
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that the commonly used Integrate and Fire model is one of the least biologically accurate 

spiking neuron models. He states that “the model cannot exhibit even the most 

fundamental properties of cortical spiking neurons, and for this reason it should be 

avoided by all means” [3]. The models utilize pulse coding to mimic the high speed 

recognition taking place in the mammalian brain [9] and spike timing dependent 

plasticity (STDP) for training [10]. The models are trained to recognize a set of 48 

images of characters. 

The multicore architectures examined in this study include the 8+1 core 

Sony/Toshiba/IBM (STI) Cell broadband engine [11], the Intel Xeon E5345 processor, 

and the Sun UltraSPARC T2+ processor [12]. The platform used to examine the Cell was 

a Sony PlayStation 3. In case of the Xeon, the platform used was a dual socket × quad-

core Intel Xeon E5345. The UltraSPARC T2+ platform used was a dual-socket × eight-

core UltraSPARC T2+ T5140 server. 

IBM is currently utilizing a 32,768 processor Blue Gene/L to simulate a spiking 

network based model [25], while EPFL and IBM are utilizing an 8,192 processor Blue 

Gene/L system to simulate a sub-neuron based cortical model [23]. The PetaVision 

project announced in June 2008 is utilizing the Roadrunner supercomputer to model the 

human visual cortex [13].  

The Air Force Research Laboratory (AFRL) in Rome, NY has set up a 336 STI 

Cell multicore processor based Sony PlayStation 3’s (PS3s) primarily to examine the 

large scale implementations of neuromorphic models [40]. This cluster is capable of 

providing a performance of 51.5 TF and cost about $361K to set up (of which only 37% 
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is the cost of PS3s). This is significantly more cost effective than an equivalently 

performing cluster based on Intel Xeon processors [40]. This thesis also examines the 

scaling and performance of the spiking neural models on this cluster. 

The main contributions of this work are: 

1. A study of the parallelization of four biologically accurate neuron models. 

Both thread and data level parallelization are examined.  

2. An evaluation of the multicore implementations of the models. The 

performance of the models on three multicore platforms (a Cell based Sony PS3, a Sun 

dual-socket × eight-core UltraSPARC T2+ T5140 server, and a dual socket × quad-core 

Intel Xeon E5345) is examined. Several network sizes were implemented to examine the 

effect of scaling the models. 

3. A study of the scalability of these models on the AFRL PS3 cluster. 

 

Results indicate that optimized parallel implementations of the models can 

provide significant speed-ups on multicore architectures. The highest speed-ups were 

observed for the Hodgkin-Huxley and Morris-Lecar models. For the largest size 

implemented, these were 7.87 and 8.08 on the Intel Xeon platform utilizing 8 cores, 7.01 

and 5.74 on the PS3 utilizing 6 cores, and 1.48 and 2.66 on Sun UltraSPARC T2+ T5140 

utilizing 15 cores. The speed-ups are with respect to a vectorized single thread 

implementation on the Intel Xeon. Please note that [14] [15] present preliminary versions 

of the results in the thesis. The speed-up on all the processing platforms increased and 

saturated as the network size was increased for the Morris-Lecar and Hodgkin-Huxley 
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models. For the Izhikevich and Wilson models, the speed-up decreased with the increase 

in network size. This was due to the fact that the models were memory intensive and had 

a low compute-to-I/O ratio. 

Large scale implementation results indicate that the models scale almost linearly 

on the PS3 cluster. Equivalents of 108 neurons were modeled along with about 1010 

synapses. A mouse cortex in comparison contains about 1.6 × 107 neurons and 1.6 × 1011 

synapses [17]. The Blue Gene was able to simulate a rat cortex (55×106 neurons and 

4.42×1011 synapses) at near real time. However the cost of AFRL cluster is significantly 

lower than the one used in [25]. This indicates that the 336 node PS3 cluster provides a 

highly economical, yet powerful, platform for neuromorphic simulations. 

This thesis is organized in the following manner: chapter 2 discusses the related 

work, chapter 3 and 4 discuss the spiking models and the multicore architectures 

considered. Chapter 5 and 6 discuss the network, parallelization techniques and 

optimizations used. Chapter 7 describes the experimental set up. Chapter 8 presents the 

results for individual multicore architectures. Chapter 9 describes the cluster 

implementation in detail and presents the results and its biological relevance. Chapter 10 

concludes the thesis. 
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CHAPTER TWO 

RELATED WORK 

 

Several groups have examined the acceleration of applications on multicore 

processors. Williams et. al. [27] examined the acceleration of several scientific 

computing kernels on the Cell processor and found good performance gains over other 

non-multicore architectures. Other studies have also shown that the Cell processor can 

provide high performance as well [28], [29]. Williams et. al. have also compared the 

performance of some recent multicore architectures for sparse matrix-vector 

multiplication applications and have found that the Cell and Sun UltraSPARC T2+ 

processors provide good speed-ups [30]. Khan et. al. [31] describes simulations of an 

ARM based multicore processor for the acceleration large scale spiking neural network 

models. Till date, there has been no study examining the acceleration of spiking network 

models on various multicore processors.  

Several groups are currently developing biological scale implementations of 

spiking networks, but are generally not examining the applications of these systems 

(primarily as they are modeling large scale neuronal dynamics seen in the brain). The 

Swiss institution EPFL and IBM are developing a highly biologically accurate brain 

simulation [23] at the sub neuron level. They have utilized the Hodgkin Huxley and the 

Wilfred Rall [24] models to simulate up to 100,000 neurons on an IBM BlueGene/L 

supercomputer. At the IBM Almaden Research Center, Ananthanarayanan and Modha 

[25] utilized the Izhikevich spiking neuron models to simulate 55 million randomly 
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connected neurons (equivalent to a rat-scale cortical model) on a 32,768 processor IBM 

BlueGene/L supercomputer. Johansson et. al. simulated a randomly connected model of 

22 million neurons and 11 billion synapses using an 8,192 processors IBM BlueGene/L 

supercomputer [2]. Izhikevich developed a very large model of the thalamocortical 

system and studied its behavior [26]. The neural connections in these studies are random 

and the networks do not identify any patterns. 

Several groups have studied image recognition using spiking neural networks. In 

general, these studies utilized integrate and fire model. Johansson and Lansner developed 

a large cluster based spiking network simulator of a rodent sized cortex [17]. They tested 

a small scale version of the system to identify 128×128 pixel images. Baig [18] 

developed a temporal spiking network model based on integrate and fire neurons and 

applied them to identify online cursive handwritten characters. Gupta and Long [8] 

investigated the application of spiking networks for the recognition of simple characters. 

Other applications of spiking networks include instructing robots in navigation and 

grasping tasks [19], recognizing temporal sequences [20][21], the robotic modeling of 

mouse whiskers [22]. Thorpe developed SPIKENET [16], a large spiking neural network 

simulation software. The system can be used for several image recognition applications 

including identification of faces, fingerprints, and video images. 
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CHAPTER THREE 

MODELS EXAMINED 

Spiking neural models capture neuronal behavior more accurately than traditional 

neural models. A neuron consists of three functionally distinct parts called dendrites, 

axons, and a soma. Each neuron is typically connected to over 10,000 other neurons [32]. 

The dendrites of a neuron collect input signals from other neurons, while the axons send 

output signals to other neurons. Signals coming in along dendrites cause changes in the 

ionic levels within the soma, which in turn causes the neuron’s membrane potential to 

change. If this membrane potential crosses a certain threshold, the neuron is said to have 

“fired” or “spiked”. In these events the membrane potential rises rapidly for a short 

period of time (a spike) and causes electrical signals to be transmitted along the axons of 

the neuron to other neurons connected to it [33]. Spiking is the primary mechanism by 

which neurons send signals to each other. Over the last 50 years, several models have 

been proposed that capture the spiking mechanism within a neuron. 

In this paper, four of the more biologically accurate spiking neuron models (as 

listed by Izhikevich [3]) are examined. These are the Hodgkin-Huxley [4], Izhikevich [5], 

Wilson [6], Morris-Lecar [7] models. The Hodgkin–Huxley model is considered to be 

one of the most biologically accurate spiking neuron models. All four of the models can 

reproduce almost all types of neuron responses that are seen in biological experiments. 

All but the Izhikevich model are based on biologically meaningful parameters (such as 

activation of Na and K currents, and inactivation of Na currents). Table 3.1 compares the 

computation properties of the four models. The Hodgkin–Huxley model utilizes 
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exponential functions, while the Morris-Lecar model uses hyperbolic functions. These 

contribute to the higher flops needed for these two models. Note that the four models are 

not tuned to replicate one specific type of neuron. Thus the number of simulation cycles 

for the models do vary. This however does not impact the inference carried out by the 

models in this study. 

Table 3.1. Spiking Network Properties 

Model Differential 
Equations 

Variables 
updated 

each 
cycle 

Flops / 
neuron 
(Euler) 

Flops / 
neuron 
(Runge-
Kutta) 

Cycles / 
recognition 

Izhikevich 2 2 13 70 12 
Wilson 4 7 37 152 29 
Morris-
Lecar 

2 5 187 297 15 

Hodgkin-
Huxley 

4 16 265 442 373 

  

Two common methods to implement the differential equations in these models 

include the Euler and the Runge-Kutta approaches. While the Runge-Kutta approach 

provides more accurate results, the Euler method is the most common approach for 

implementing the differential equations as it has a significantly lower computational load. 

This study primarily utilizes the Euler approach, although the Runge-Kutta approach is 

examined as well. The flop counts for both the Euler and the Runge-Kutta approach are 

listed in Table 3.1. These values are based on the implementations of the four models. 
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Izhikevich Model 

Izhikevich proposed a new spiking neuron model in 2003 [5] that is based on only 

two differential equations (eq. 1, 2). This model requires the least computations of all the 

models examined, because it needs fewer flops per neuron update and requires fewer 

neuron updates to be carried out per simulation run time (since the simulation time step is 

higher). However the model can still reproduce almost all types of neuron responses that 

are seen in biological experiments. The four constant parameters (a, b, c and d) can be 

initialized differently to allow modeling of various neural responses. A time step of 1 ms 

was utilized (as was done by Izhikevich in [5]). Figure 3.1 shows the spikes produced 

with this model. 

20.04 5 140
dV

V V u I
dt

= + + − +  (1) 

( )
du

a bV u
dt

= −  (2) 

if 30 mV, then 
V c

V
u u d

←
≥ 

← +
  

 

 
 

Figure 3.1. Spikes produced with the Izhikevich Model 
 
 

The following parameters were used for the Izhikevich model: Excitatory 

neurons: a = .02, b = 0.2, c = -55, d = 4;  Inhibitory neurons: a = 0.06, b = 0.22, c = -65, d 

= 2, time step = 1 ms. 
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Wilson Model 

The Wilson model [6], proposed in 1999, requires four differential equations 

(equations 3 to 6). The model has more number of parameters than the Izhikevich model. 

Tuning these parameters allow the model to exhibit almost all neuronal properties. Three 

of the parameters in the differential equations (T∞, R∞, and m∞) also need to be 

evaluated each cycle, thus adding a set of three more equations. A time step of 0.01 ms 

was utilized to update the four differential equations. Figure 3.2 shows some typical 

spikes produced with this model. 

 

(1 / 45)( 3 )
dH

H T
dt

= − +  (3) 

(1/14)( )
dT

T T
dt ∞= − +  (4) 

(1 / )( )R

dR
R R

dt
τ ∞= − +

 
 

(5) 

1
( )( ( ) 26 ( ) ( )

( ) )

Na K T Ca

H K

dV
m V E R V E g T V E

dt C
g H V E I

∞= − − − + − − −

+ +

 (6) 

 
 

 

Figure 3.2. Spikes produced with the Wilson model 
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 The following parameters were used for the Wilson model: g_T = 0.1 

seimen, gH = 5 seimen, τR = 4.2 ms, C = 1 micro farad, ENa = 0.5, EK = 0.95, ECa = 1.2, V 

= -0.6 mV, R = 0, T = 0, H = 1, time step = 0.01 ms. 

 

Morris-Lecar Model 

Cathy Morris and Harold Lecar proposed a two dimensional conductance-based 

spiking model in 1981 [7]. The model consists of two differential equations (eq. 7, 8). 

Three of the parameters in the differential equations (m∞, w∞, and τw) need to be evaluated 

each cycle, thus adding a set of three more equations. These three equations involve 

hyperbolic functions, thus making it computationally more expensive than the Izhikevich 

and Wilson models. This computational load is lower than the Hodgkin-Huxley model 

however, thus making it popular in neuro-computation communities. A time step of 0.01 

ms was utilized to update the two differential equations. Figure 3.3 shows some typical 

spikes produced with this model. 

 
1

( )( ( ) ( )

( ))

Ca Ca K K

Leak Leak

dv
I g m V V g w V V

dt C
g V V

∞= − − − −

− −  

 

(7) 

1
( )( )

w

dw
w w

dt
φ

τ ∞= −  (8) 
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Figure 3.3. Spikes produced with the Morris-Lecar model 

 

 The following parameter values were used for the Morris-Lecar model: C = 7, VK 

= -84 mV, gK = 8 mV, VCa = 120 mV, gCa = 4.4 seimen, VLeak = -60, gLeak = 2 seimen, 

V_1 = -1.2, V_2 = 18, V_3 = 2, V_4 = 30, φ = 0.04, Time step = 0.01 ms. 

 

Hodgkin-Huxley Model 

The Hodgkin–Huxley model [4] was a seminal work in neuron modeling. It 

consists of four differential equations (eq. 9-12). A set of 10 more equations have to be 

evaluated each cycle to update parameters used in the differential equations. Four of these 

equations utilize exponential functions. This makes the Hodgkin-Huxley model the most 

complex of the four models studied. A time step of 0.01 ms was utilized to update the 

four differential equations as this is the most commonly used value. Figure 3.4 shows the 

spikes produced with this model. This model has also been used in the detailed large 

scale neural simulations being carried out by IBM and EPFL [23]. 
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4 31
( ){ ( ) ( ) ( )}K K Na Na L L

dv
I g n V E g m h V E g V E

dt C
= − − − − − −  (9) 

( ( ) ) / ( )n

dn
n V n V

dt
τ∞= −  (10) 

( ( ) ) / ( )m

dm
m V m V

dt
τ∞= −  (11) 

( ( ) ) / ( )h

dh
h V h V

dt
τ∞= −  (12) 

 

 

Figure 3.4. Spikes produced with the Hodgkin-Huxley model 

 

The following parameter values were used for the Hodgkin-Huxley model: gK = 

36 seimen, gNa = 120 seimen, gL = 0.3 seimen, EK = -12 mV, ENa = 115 mV, EL = 10.613 

mV, V = -10 mV, VK = 0 mV, VNa = 0 mV, VL = 1 mV, time step = 0.01 ms. 
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CHAPTER FOUR 

MULTICORE ARCHITECTURES EXAMINED 

Due to microelectronics constraints, such as wire delays and power densities, 

modern processors are increasing performance by exploiting parallelism rather than 

increasing clock frequencies. As a result, multicore processors have become widespread. 

It is expected that in the future, processors with hundreds of cores will become available. 

In addition to multiple cores, some processors are exploiting vector parallelism to 

improve performance. 

This thesis examines three of the leading chip multicore processor (CMP) designs 

in context of neuromorphic algorithms – in particular biologically inspired spiking neural 

networks. This chapter briefly describes the processors and platforms with their 

individual architectural features: the dual socket × quad-core Intel Xeon E5345 

(Clovertown); the dual socket × eight core hardware multithreaded Sun UltraSPARC T2+ 

T5140 (Victoria Falls); and the heterogeneous single socket × eight-SPE Cell processor 

ased Sony PlayStation 3. Overviews of the configurations and characteristics appear in 

Table 4.1. 
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Table 4.1. Architectural summary of evaluated platforms. Top: per core 

characteristics. Bottom: SMP characteristics 

Core Architecture Intel Core2 

Sun 
UltraSPARC 
T2+ 

IBM   
PPE SPE 

Type 
Superscalar 
out-of-order 

MT dual 
issue 

MT dual 
issue 

SIMD dual 
issue 

Clock (GHz) 2.33 1.16 3.2 3.2 
Local store - - - 256 KB 

L1 Data Cache per core 32 KB 8 KB 32 KB - 

L2 Cache per core - - 512  KB - 
     

System 
Xeon E5345 
(Clovertown) 

UltraSPARC 
T2+ T5140 
(Victoria 
Falls) 

Sony 
PlayStation 
3   

# Sockets 2 2 1 

Cores per Socket 4 8 1 8 
DRAM Capacity 12 GB 64 GB 2 GB 
DRAM bandwidth 
(GB/s) 21.33 (read) 42.66 (read) 25.6 
 10.66 (write) 21.33 (write)   
Threading Pthreads Pthreads Libspe2 
Compiler gcc cc Gcc spu-gcc 

 

Intel Xeon E5345 (Clovertown) 

Two dual-core Xeon chips are paired onto a single multi-chip module. Each core 

is based on Intel’s Core2 micro-architecture (Woodcrest). It utilizes lower voltage and is 

more power efficient. Each core thus runs at a lower frequency (2.33 GHz). The 
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individual cores can fetch and decode up to four instructions per cycle, and can execute  

six micro-ops per cycle. Each core has a 128b adder and a 128b multiplier. This enables 

Xeon to support Single Instruction Multiple Data (SIMD). Streaming SIMD Extensions 3 

(SSE3) instructions make use of the 128b registers. Its peak double precision 

performance is 9.3 GFlops/s. Each core includes a 32 Kb, 8-way L1 cache, each chip 

(two cores) has a shared 4MB, 16 way L2 cache.  

This thesis evaluates the performance of Clovertowns’ available on the Palmetto 

Cluster at Clemson University. This Xeon platform is a two processor based platform. 

Thus, the platform can use up to eight cores (four from each processor) for computation. 

A simplified version of the Clovertown architecture as seen in [41] is shown in Figure 

4.1. 

 

Figure 4.1. Dual-socket × quad-core Intel Xeon E5345 (Clovertown) processor 
architecture 
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Sun UltraSPARC T2+ T5140 (Victoria Falls) 

Being the industry’s first “system-on-a-chip” (SoC), the UltraSPARC T2 Plus 

[12] packs the most cores and threads available on any general purpose processor. The 

processor has eight cores, each capable of supporting two groups of four hardware thread 

contexts (referred to as Chip Multi-Threading or CMT). Thus each core can support up to 

eight threads. Unlike other architectures which improve performance by utilizing larger 

registers, this processor scales its performance through multi-threading. The SoC has 10 

GB Ethernet networking.  

The UltraSPARC T2+ has a dedicated Floating Point Unit (FPU) for each core 

(shared among eight threads). The FPU does not have a fused multiply add (FMA) 

functionality. Per-core and per-socket performance is 1.16 GFlops/s and 9.33 GFlops/s. 

Each core has 8kB write-through L1 cache, 16 KB of instruction cache and is connected 

to a 4MB shared L2 cache via an on-chip crossbar switch. The UltraSPARC T2+ has no 

hardware pre-fetching. Also, software pre-fetching places the data in L2 cache. The 

platform utilized for experimentation was a Sun Enterprise T5140 server. It consists of 

two UltraSPARC T2+ processors each operating at 1.2 GHz. Thus, the system has 16 

available cores (eight from each processor). A simplified version of the Sun UltraSPARC 

T2+ T5140 architecture as seen in [41] is shown in Figure 4.2. 
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Figure 4.2. Dual-socket × eight-core Sun UltraSPARC T2+ T5140 (Victoria 
Falls) processor architecture 

 

STI Cell 

The STI Cell Broadband Engine [11] processor is the heart of the Sony 

PlayStation 3 (PS3) video gaming console. The architecture is heterogeneous. It consists 

of a Power Processing Element (PPE) and eight Synergistic Processing Elements (SPEs). 

Of the eight SPEs, only six are enabled on the PlayStation 3 platform. The PPE handles 

the operating system and administrative functionalities. The SPEs each use a disjoint 

software controlled local memory. Each SPE has 256 KB of local memory. 

The software controlled DMA (Direct Memory Access) engine is efficient and 

helps fetch data asynchronously from DRAM into the local store. As fetching the data is 

software controlled, programming the Cell architecture is more complex than 
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conventional architectures. This approach eliminates conflict misses and write fills, but 

capacity misses must be handled by the programmer due to the limited amount of local 

store space available.  
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Figure 4.3. STI Cell processor architecture 

 

Each SPE has 128b wide registers. This enables the Cell to take advantage of 

vector processing as well. The PPE and SPE operate at 3.2 GHz. Each SPE is capable of 

processing up to four instructions in parallel each cycle (eight if considering FMA). The 

SPEs utilize in-order execution and have no branch prediction hardware. High compute-

to-I/O ratios are needed to achieve the full potential of the Cell processor [34]. 

One of the key features of the cell processor is to transfer complexity from 

hardware to software. Thus the cores utilize in-order execution with no branch prediction 

hardware. Instead of a processor controlled cache, the local store is programmer 

managed. This ensures that only necessary data is brought in. The Cell platform used in 

this study is a Sony PlayStation 3 cluster available at the Arctic Region Supercomputing 

Center (ARSC). A simplified version of Cell processor architecture is shown in Figure 

4.3. 
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CHAPTER FIVE 

NETWORK DESIGN 

Gupta and Long [8] presented a character recognition network based on the 

integrate-and-fire neuron model [35]. That network was adapted in this thesis to evaluate 

the four spiking neuron models under consideration. Four versions of the image 

recognition network were developed (corresponding to the four spiking models studied) 

where the main difference was in the equations utilized to update the potential of the 

neurons. The parameters utilized in each case are specified in chapter three. 

 The network consisted of two layers, where the first layer acted as input neurons 

and the second layer as output neurons. Input images were presented to the first layer of 

neurons, with each image pixel corresponding to a separate input neuron. Thus the 

number of neurons in the first layer is equal to the number of pixels in the input image. 

Binary input images were utilized in this study. The number of output neurons was equal 

to the number of training images. Each input neuron was connected to all the output 

neurons. A prototype of this network is shown in Figure 5.1. 

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

 

Figure 5.1. Network used for testing spiking models 

Each neuron has an input current that it uses to evaluate its membrane potential. If 

the membrane potential crosses a certain threshold during a cycle, the neuron is 

considered to have fired or spiked. In case of a level one neuron, the input current is zero 

if the neuron’s corresponding pixel in the input image is “off”. If the pixel is “on”, a 
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constant current is supplied to the input pixel. A level two neuron’s overall input current 

is the sum of all the individual currents received from all the level one neurons connected 

to it. This input current for a level two neuron is given by equation 13 below: 

∑=
i

j )i(f)j,i(wI  (13) 

where  

w is a weight matrix where w(i,j) is the input weight from level one neuron i to 

level two neuron j. 

f is a firing vector where f(i) is 0 if level one neuron i does not fire, and is 1 is the 

neuron does fire. 

The elements of the weight matrix w are determined through a training process 

where a set of training images are presented sequentially to the input neurons. The weight 

matrix elements of each output neuron are updated using the STDP rule each cycle. The 

weight matrix thus obtained is used to determine the input current to each of the output 

neuron.  

In the testing phase, an input image is presented to the input neurons and after a 

certain number of cycles, one output neuron fires, thus identifying the input image. 

During each cycle, the level one neurons are first evaluated based on the input image. As 

and when a level one neuron fires, its weight corresponding to each output neuron is 

added to the current of each of the output neurons it is connected to. At the end of the 

cycle, the input current for two level neurons is the sum of the weights from the level one 

neurons that have fired the current cycle. This input current is used in the following cycle 

to evaluate the neuron membrane potentials of the level two neurons. This process is 
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described in detail in algorithm 1. This thesis studies the acceleration of the recognition 

phase of each network on multicore processors. 

 

Algorithm 1:  The testing phase for the spiking neuron image recognition model 
1.   Repeat till a level two neuron fires: 
2.    For all level one neurons: 
3.     Read input current 
4.     Calculate neuron membrane voltage 
5.     If neuron fires, upgrade the level 2 input current 
    —Barrier— 
6.    For all level two neurons: 
7.     For each non zero number of firing from level one (from previous cycle), 
8.      Calculate total level 2 input current 
9.  Calculate neuron membrane voltage 

 10.    If neuron fires, output is produced 
        —Barrier— 
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CHAPTER SIX 

PARALLELIZATIONS AND OPTIMIZATIONS 

Network Parallelization 

All four models studied in this paper are evaluated using the network developed 

in chapter five. In general one thread was created for each core at the start of the program 

on the different multicore architectures examined (STI Cell, Intel Xeon E5345, and Sun 

UltraSPARC T2+). Since the UltraSPARC T2+ supported multiple threads per processor 

it was tested it with multiple threads per core. Each thread was assigned tasks 

intermittently by the master thread and was terminated only at the end of the program. 

Creating threads only once and letting them run for the lifetime of the program 

significantly reduces the thread creation overhead; this issue has been discussed at great 

length in several recent papers including [11] [36]. 

Since all the nodes in each layer are independent of each other, they can be 

evaluated in parallel. Individual threads were created for each core on all the processors 

studied. The neurons in the first layer (input layer) were distributed evenly across the 

threads generated. Since all the neurons utilize the same set of computations, processors 

with SIMD support available (Cell and Xeon) exploited data level parallelism by 

evaluating sets of four neurons simultaneously. As the level two neurons are only 48 in 

number, they were evaluated on the PPE in case of Cell and on the first thread in case of 

Xeon and UltraSPARC T2+. This improved the scalability of the model.  

As shown in Algorithm 1, two barriers were utilized to allow all the threads to 

complete the nodes in each layer of the network.  A firing vector was used in the 
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preliminary implementations. It stored the indices of the level one neurons fired in the 

previous cycle. This was later used to calculate the current for the level two neurons. This 

approach required the sharing of the firing vector among all the threads. While migrating 

to a large scale cluster implementation, this approach was a lot harder to implement. Thus 

this approach was discarded.   

In the current approach, if a level one neuron fired, its corresponding weights 

were added to the level two current data structure for the corresponding thread. At the 

start of the next cycle, the currents from all the threads are summed by which ever 

processor was evaluating the level two neurons. This eliminated the need for having an 

extra data structure like the firing vector and eliminated concurrency issues. It also 

improved the scalability of the implementation.  

The Cell implementation used mailboxes for synchronization while the Sun and 

Intel implementations used pthread barriers.  

Optimizations 

This section explains the optimizations that were considered and the order in 

which they were considered. The optimizations are designed to be effective both on 

conventional cache-based multicore processors and the Cell architecture. The techniques 

implemented include multi-threading, vectorization, double buffering, software 

pipelining, pre-fetching and loop optimizations.  
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Multi-Threading 

 The first technique in the optimization process utilizes the fact that all the 

processors are multicore by exploiting thread-level parallelism. The neurons at level one 

are distributed evenly across the threads. This ensures that each thread is fairly load 

balanced. The implementation does this dynamically depending on the size of the input 

image. Threading reduces the instruction latency thus improving the performance. The 

threads are created using the POSIX thread library on the UltraSPARC T2+ and Xeon 

architectures while the Cell implementation utilized the libspe2 library. 

Vectorization 

The Cell SPE and the Xeon architectures have 128b registers. This enables them 

to exploit any data-level parallelism present in the application. Four single precision 

floating point operations or two double precision floating point operations can be 

evaluated with a single instruction on these registers. All the loads are 16 bytes and must 

be 16 byte aligned. It is to be noted that it takes 6 cycles for a single precision floating 

point operation and 13 cycles for a double precision floating point operation on the Cell. 

Thus the implementations used single precision floating point values. The Cell can 

perform a fused multiply-add (FMA). 

On the Intel, SSE3 instructions were used for vectorizing the operations. On x86 

architectures, SSE3 provides an unaligned load but adds some performance penalty. Thus 

all the data structures were 16 byte aligned. The Morris-Lecar and the Hodgkin-Huxley 

models make use of hyperbolic and exponential functions. As the SSE3 library did not 
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have exponential functions, the implementation made use of the Universal SIMD Library 

developed by Helmut Dersch [37].  

Loop Optimization 

Maximizing in-core performance is essential. The Cell processor does not have 

branch prediction hardware. In order to minimize the branch prediction on the Cell, the 

loops were unrolled by a factor of eight. This technique is useful for the Cell as it utilizes 

in-order execution, but is of little use in case of out-of-order superscalar processors. This 

also meant that the function calls had to be in-lined. The code on the Cell was further 

optimized by minimizing unnecessary branches.  

 

Figure 6.1. Assembly code for the Wilson model on Cell after loop unrolling, 
data pre-fetching and software pipelining.  

On the Cell, it takes 6 cycles to fetch data into the register. This meant that 

utilizing indexed data structures would lead to a high percentage of stalls in the 

instruction pipeline. Thus, the required data was pre-fetched. Software pipelining was 
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used in combination with loop unrolling to minimize these stalls. Figure 6.1 shows a 

snippet of the assembly code for the Wilson model after data pre-fetching, loop unrolling 

and software pipelining. It can be seen from the figure that after these optimizations, 

there are no stalls in the instruction pipeline. 

Memory optimizations 

Data transfer on the Cell is explicitly managed by the programmer as opposed to 

the operating system. The local store’s memory is limited to 256 KB. On an average, 16 

bytes of memory is required to store the state of a neuron. Thus when evaluating a 

network of neurons, we need to explicitly DMA in the required data, evaluate the neuron 

equations, and DMA out the data. If we are to wait for the data to be brought in before we 

start performing computations, we are limited by the DMA. Thus double buffering was 

implemented to hide I/O latency with computation. In this process, once the data required 

for the first iteration has been obtained, the first iteration of the loop can be evaluated 

simultaneously with DMA data transfer for the second iteration of the loop. This ensures 

that one is not waiting on data to perform computations. 
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CHAPTER SEVEN 

EXPERIMENTAL SETUP 

Three hardware platforms were utilized in this study: one was Intel Xeon E5345 

based, one was STI Cell based, and one was Sun UltraSPARC T2+ based. The Intel 

platform had two quad-core Xeon E5345 processors, used 12 GB of DRAM and was 

running RedHat 4.1.2-44. Thus, the platform was capable of utilizing eight cores. The 

STI platform utilized was a Sony PlayStation 3 cluster available at the Arctic Region 

Supercomputing Center (ARSC), Alaska. The PlayStation 3 has one Cell processor on 

which six of the eight cores are available for use and contains 256 MB of DRAM. This 

platform was running Fedora Core 9 with IBM Cell SDK 3.1. The Sun UltraSPARC T2+ 

platform utilized was a Sun SPARC Enterprise T5140 running Solaris 10. This system 

contained two UltraSPARC T2+ processors and used 64 GB of DRAM. This system is 

thus capable of utilizing 16 cores (eight from each processor) and each core supports up 

to a maximum of eight threads.  All the programs were compiled with –O3 optimizations. 

On the UltraSPARC platform, one core was used for running the operating system while 

the remaining cores were used to run the spiking neuron models. Each thread was bound 

to a specific core to ensure process affinity thereby ensuring optimum performance. 

Seven networks with varying input image sizes were utilized to examine each of 

the spiking neural network models. The sizes of level 2 and level 1 neurons for different 

input sizes are shown in Table 7.1. The overall network structure was kept similar to the 

design mentioned in Figure 5.1 with two layers of nodes per network. Each of the level 2 

neurons was connected to all of the neurons from level 1. The number of input (level 1) 



 30

neurons was equal to the number of pixels in the input image. The number of output 

(level 2) neurons was equal to the number of training images categories. 

Table 7.1. Spiking Network Configurations Evaluated 
 

Input image 
size 

Level 1 
neurons 

Level 2 
neurons 

Total 
neurons  

480 × 480  230,400 48 230,448 
720 × 720 518,400 48 518,448 
960 × 960 921,600 48 921,648 

1200 × 1200 1,440,000 48 1,440,048 
1680 × 1680 2,822,400 48 2,822,448 
2160 × 2160 4,665,600 48 4,665,648 
2400 × 2400 5,760,000 48 5,760,048 

 
 
 
 

      
Figure 7.1. Training images utilized. There are 48 24 × 24 pixel images 
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In this study all the spiking networks of different sizes were trained with to 

recognize the same number of images. A set of 48 24×24 pixel images were generated 

initially and were then scaled linearly to the different network sizes. The images 

represented the 26 upper case letters (A-Z), 10 numerals (0-9), 8 Greek letters, and 4 

symbols. Figure 7.1 shows the training images used. The four models were initially 

developed and tested and trained in MATLAB before being converted to C. 
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CHAPTER EIGHT 

RUN TIME PERFORMANCE 

All the models were implemented on the three computing platforms to evaluate 

the performance of one processor per platform. Unless mentioned, the Euler method was 

utilized to evaluate the differential equations for each of the models. A vectorized single 

thread version of the program was developed and tested on the Intel Xeon E5345. The 

speed-up of the four models running on each of the three computing platforms is shown 

in Figure 8.1. These speed-ups are relative to the single thread SSE3 implementations of 

the models on the Intel Xeon E5345.  

The Izhikevich and Morris-Lecar models require fewer parameters than the 

Wilson or Hodgkin-Huxley models to store the state of a neuron (see Table 3.1). Thus, 

the memory requirement for the former models is less when compared to the latter 

models. As a result, on the PS3, the largest network implemented for the Izhikevich and 

Morris-Lecar models had 5,760,048 neurons (2400 × 2400), while the largest network 

implemented using the Wilson and Hodgkin-Huxley models had 4,665,648 neurons 

(2160 × 2160). This was due to insufficient virtual memory on the PPE of the PS3. The 

largest size implemented for each of the models on Xeon and UltraSPARC T2+ platforms 

had 5,760,048 neurons (2400 × 2400). 

Table 8.1 gives the compute-to-I/O ratios for all the models on the PS3. This 

indicates the number of flops performed per byte of data fetched. It is 0.45 and 0.77 for 

Izhikevich and Wilson models and 4.6 and 5.52 for Morris-Lecar and Hodgkin-Huxley 

models. Low compute-to-I/O ratios hinder the performance of multicore processors. 
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Table 8.1. Compute to I/O ratios (flops per data byte fetched) for models on the 
PlayStation 3 

Model Euler 
Runge-
Kutta 

Izhikevich 0.45 2.37 
Wilson 0.77 3.15 

Morris-Lecar 4.60 7.30 
Hodgkin-Huxley 5.52 9.21 

 

 

 

 
(a) (b) 

 
(c) (d) 

 
Figure 8.1. Speed-up for Intel Xeon E5345 platform (8 threads), Sony PS3 (6 threads), 

Intel Xeon E5345 platform (4 threads), Sun UltraSPARC T2+ T5140 (120 and 64) 
threads over vectorized Intel Xeon single thread for the (a) Izhikevich, (b) Wilson, (c) 

Morris-Lecar, and (d) Hodgkin-Huxley models. 
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Figures 8.1 a and 8.1 b show the speed-ups of the Izhikevich and Wilson models 

on all the platforms with the increase in input image size (network size). On the Cell (6 

threads) and UltraSPARC T2+ platforms (64 and 120 threads), the speed-up increases 

and eventually saturates. In case of the Wilson model, the speed-up decreases only for the 

2160 × 2160 (4,665,648 neurons) network on the Cell platform. This probably might be 

due to hard disk access or excessive cache misses. The Xeon platform speed-up for these 

models increases initially but eventually decreases.  It is to be noted that these models are 

more memory intensive as they have a low compute-to-I/O ratio (less than one). It has 

been shown that for similar applications, the Xeon chipset’s capabilities limit multi-

socket scaling on memory intensive applications [41]. The speed-up declines faster in 

case of the Wilson model on the Xeon platform as it requires more data to store the state 

of each neuron. As expected, for these models, maximum speed-up obtained for the 

largest size was on the Xeon platform using 8 threads while the least speed-up obtained 

was on the UltraSPARC T2+ platform using 64 threads (eight cores). 

 Figures 8.1 c & 8.1 d show the speed-ups for the Morris-Lecar and Hodgkin-

Huxley models on all the platforms. These models have a high compute-to-I/O ratio 

(greater than one). The speed-up increases with size and saturates on all the platforms. It 

is seen that for larger network sizes, these models give the highest performance gain. As 

expected, for these models, the performance gain is close to 4 and 8 in case of the Xeon 

platform running 4 and 8 threads.  Similarly, the gain on the Cell platform (PS3) is close 

to 6 for the Morris-Lecar model while it is close to 7 for the Hodgkin-Huxley model. The 

performance is higher in case of the Hodgkin-Huxley model as it has more equations 



 35

making use of the fused multiply add functionality available on the Cell platform. On the 

other hand, the gain observed  on UltraSPARC T2+ platform for Hodgkin-Huxley is 

lower than that of Morris-Lecar inspite of having the highest compute-to-I/O ratio. This is 

primarily due to the limited number of dedicated FPUs (one per core shared among eight 

threads) available on the UltraSPARC T2+. Thus on this platform, the Hodgkin-Huxley 

model has the least performance gain amongst all the models.   

(a) 

 

(b) 

(c) 

 

(d) 

Figure 8.2. Per-core efficiency of (a) Izhikevich, (b) Wilson, (c) Morris-Lecar, and (d) 
Hodgkin-Huxley models with network size 1200 × 1200 on the Xeon, Cell and 

UltraSPARC T2+ platforms. 
 

Figure 8.2 shows the per-core efficiency of the platforms for a network with 

1,440,048 neurons (1200 × 1200) of all the models. This network size was chosen as this 



 36

was the largest network implemented on a single core on each of the platforms. On the 

UltraSPARC T2+ platform, note that there are always eight threads per-core.  

Figures 8.2 a and 8.2 b show the per core efficiency of all the platforms for the 

Izhikevich and Wilson models. For these models, a single core on the Cell (PS3) platform 

is faster than that on the Xeon platform. The per-core efficiency on all the platforms 

declines with the increase in the number of cores for these models. In case of the Sun 

platform, the decline is fairly gradual. But in case of Xeon and Cell platforms, the decline 

in performance is very steep. It is seen that the per-core efficiency on the Cell platform 

declines much faster than on the Xeon platform. This indicates that memory intensive 

applications with a low compute-to-I/O ratio, do not achieve significant gains with the 

increase in the number of cores. This also explains why there is a decline in performance 

gain with the increase in network size for Izhikevich and Wilson models as observed in 

Figures 8.1 a and 8.1 b. 

Figures 8.2 c and 8.2 d show the per core efficiency of all the platforms for the 

Morris-Lecar and Hodgkin-Huxley models. These models have a high compute-to-I/O 

ratio. As expected, the per-core efficiency remains almost constant on all the platforms 

for these models. Such models can make use of all the cores to achieve the best 

performance. For these models, the I/O overhead is a lower fraction of the overall 

runtime for these models.  
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(a) 
 

 

(b) 

  

(c) 
 

Figure 8.3. Variation in speed-up of the 1200×1200 network with the number of 
threads for the (a) Sun UltraSPARC T2+, (b) Intel Xeon, and (c) Cell platforms. 
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Figure 8.3 shows how the speed-up varies as the number of threads is increased 

on the different platforms. On Sun, Intel and Cell platforms, the speed-up increases with 

the number of threads for all the models. On the Cell platform, the performance gain with 

the increase in threads is less or almost negligible for the Izhikevich and Wilson models. 

This is primarily because the short runtimes of the code allow the extra DMAs from six 

cores to cause contentions. Figure 8.4 shows how the overall DMA time varies with the 

number of SPEs on the Cell processor based Sony PlayStation 3 for the 480 × 480 

Wilson model. As expected, the computation time decreases with the increase in the 

number of SPEs, but the time for DMA does not decrease. Thus, these models are limited 

by DMA contentions. 
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Figure 8.4. Variation in the runtime of the 480 × 480 Wilson model on the Cell processor 
based PlayStation 3. 
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The Runge-Kutta approach provides a higher level of accuracy in resolving the 

differential equations in the models, but requires significantly higher runtime. Table 3.1 

compares the flops needed per neuron under two different approaches. Table 8.1 provides 

the compute-to-I/O ratio for each of the models when using this model to evaluate 

differential equations. As shown in Figure 8.5, the Runge-Kutta approach generally 

provided a higher speed-up over the Euler approach. This is primarily due to a higher 

compute-to-I/O ratio in this approach. The speed-up is over a PPE serial implementation. 
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Figure 8.5. Speed-up of the four models over the Cell PPU when using the Euler and 
Runge-Kutta approaches. 
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CHAPTER NINE 

LARGE SCALE IMPLEMENTATION 

The AFRL Cluster 

The AFRL cluster utilized in this study consists of 336 Sony Playstation 3s (PS3s). 

Each PS3 contains 256MB of RDRAM and a 40GB hard drive. As shown in Figure 9.1, 

the 336 PS3s were grouped into 14 sub-clusters, with each sub-cluster consisting of 24 

PS3s, a dual quad-core Xeon head node, and a high speed Ethernet switch. The sub-

clusters were connected through a central high speed Ethernet switch. The peak 

performance of the cluster is 51.5 TF. The cluster uses openMPI 2.4.1 for communication 

between the PS3s. Each PS3 was running on Fedora 7 equipped with IBM Cell SDK 3.1. 

A detailed description of the cluster is presented in [40]. 
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Figure 9.1. AFRL Cluster PS3 organization  
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Implementation 

 The testing phase of the network described in chapter five was implemented on 

the PS3 cluster. Since all four spiking network models were implemented using the same 

image recognition network structure, the parallelization approach and optimizations for 

all the models were the same. All the neurons at any particular level of the model run in 

parallel and are independent of each other. This allows the neurons of a given level to be 

split evenly across all the available SPEs in the full set of PS3s used. Additionally, since 

all the neurons utilize the same set of computations, vectorization was used to evaluate 

four neurons at a time on each SPE. 

Eleven networks with varying input image sizes were developed in order to 

examine the performance and scalability of the four models on the AFRL cluster. Table 

9.1 shows the input image size, number of level one and level two neurons and the 

corresponding number of synapses for the networks. The number of output neurons is 

equal to the number of training categories. In this study, all the networks are trained to 

recognize the same set of input images (scaled to appropriate sizes). The set of 48, 24x24 

images which were generated initially [15] were scaled linearly depending on the 

required input image size. 
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Table 9.1. Networks used for Cluster Implementation of Spiking Neural Network Models  

Size of Input 
Image 

Level 1 
neurons 

Level 2 
neurons 

Synapses 

1200 × 1200 1,440,000 48 69,120,000 
2400 × 2400 5,760,000 48 276,480,000 
3600 × 3600 12,960,000 48 622,080,000 
4800 × 4800 23,040,000 48 1,105,920,000 
8160 × 8160 66,585,600 48 3,196,108,800 
8400 × 8400 70,560,000 48 3,386,880,000 

12000 × 12000 144,000,000 48 6,912,000,000 
14400 × 14400 207,360,000 48 9,953,280,000 
16800 × 16800 282,240,000 48 13,547,520,000
18000 × 18000 324,000,000 48 15,552,000,000
20400 × 20400 416,160,000 48 19,975,680,000

  

 

Experimental Setup 

 On the AFRL Cluster utilized, approximately 300 out of 336 PS3s were available 

for use. The studies utilized only the PS3s on the cluster and did not run any code on the 

Xeon headnodes. In the runs performed, no impact was seen in using the PS3s from 

different sub-clusters on the overall runtime. This indicates that the MPI overhead for 

using PS3s in different sub-clusters and within one sub-cluster were similar. 
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Results 

This section considers the scalability of the four spiking neural network models with 

variations in the number of PS3s. All the runs utilized the two layer configuration 

described in chapter five. Figure 9.2 shows the performance of the cluster with a fixed set 

of neurons assigned to each PS3. Thus varying the number of PS3s would proportionately 

change the overall number of neurons in the networks modeled. The results show that the 

neurons per second throughput for the cluster scaled up almost linearly with the number 

of PS3s. The four models have different flop counts per cycle. Additionally, as mentioned 

in chapter three, the four models do not simulate the same type of neuron; thus the 

number of simulation cycles needed for the four models to generate an inference is 

different. These contribute to the difference in the neurons per second throughput of the 

four models. The Izhikevich model required the least runtime and so had the highest 

neurons per second throughput. The Hodgkin-Huxley model was at the other end of the 

throughput scale.  
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Figure 9.2. Runtime for varying number of PS3 and network size for same number of 
neurons/PS3 (1,440,000). 
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(d) 

Figure 9.3. Runtime for the Spiking Neural Models for varying number of PS3s a) 
Hodgkin-Huxley b) Morris c) Wilson and d) Izhikevich 

 

The scalability of networks with fixed numbers of neurons was examined with 

variations in the number of PS3s. Figure 9.3 shows the change in runtime for networks of 

three sizes for the four spiking neuron models. The three networks examined had the 

following number of level 1 neurons: 12,960,000 (3600×3600), 70,560,000 (8400×8400), 

and 144,000,000 (12000×12000). The number of level 2 neurons was always fixed at 48. 
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In all cases it is seen that the runtime decreases with the number of PS3s utilized. As 

expected, smaller networks reached a saturation point with fewer PS3s than the larger 

networks 

The Cell processor contains eight SPEs, of which six are available on the PS3. The 

effect of changing the number of SPEs on the overall runtime was investigated with 

variations in the number of PS3s. Figure 9.4 shows the results of this study for the four 

spiking neuron models. As expected, in both the Hodgkin-Huxley and Morris-Lecar 

models (Figures 9.4 a and 9.4 b respectively), the runtime decreases proportionately with 

the number of SPEs utilized. This indicates that these two models were able take full 

advantage of all the SPEs available on the PS3s.  

As shown in Figures 9.4 c and 9.4 d, the Wilson and Izhikevich models respectively 

reach saturation points at three SPEs – there is no significant improvement in 

performance by increasing the number of SPEs utilized. Chapter eight discusses this issue 

in detail. This is primarily due to limitations in the DMA bandwidth of the SPEs. A 

similar DMA saturation effect is seen in [38] [39]. Thus with these two models, it may be 

useful to run other (non-memory intensive) tasks on three of the SPEs on each Cell 

processor in the cluster. 
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Figure 9.4. Runtimes of the Spiking Neural Models with varying number of SPEs on 
the PS3s a) Hodgkin-Huxley b) Morris-Lecar c) Wilson d) Izhikevich 
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Figure 9.5. Maximum neurons and synapses processed for varying number of PS3s 

The human cortex contains approximately 1011 neurons [23] and 1.5×1014 synapses 

whereas a mouse cortex has 1.6×107 neurons and 1.6×1011 synapses [17].  Figure 9.5 

shows the maximum number of neurons and synapses that were modeled with the spiking 

network models for varying numbers of PS3s. With 300 PS3s, up to 4.16×108 neurons 

and 2×1010 synapses were modeled. Table 9.2 summarizes these results.  

 

Table 9.2. Components of different systems 

System Neurons Synapses 
Human cortex 1011 1.5×1014 
Mouse cortex 1.6×107 1.6×1011 
Spiking neuron models 4.16×108 2×1010 

 

Although the number of neurons (or equivalent neurons) modeled is close to 

biological scales, it is important to note that several biological properties were not 

captured in the models implemented. The models implemented considered only the 

“recognition phase”, and thus did not model spike-timing-dependent plasticity (STDP). 
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Additionally, the two layer spiking network models were far removed from the highly 

interconnected neural structure seen in the cortex. However the results do indicate that 

large clusters of PS3s can provide a good platform for biological scale cortical models.  
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CHAPTER TEN 

CONCLUSION 

An image recognition model was utilized to analyze the performance acceleration 

of four spiking network models on modern multicore processors. The spiking network 

models were parallelized using both data and thread level parallelism.  

The results of this work show that modern multicore processors can provide 

significant speed-ups for spiking neural network models. Results show that the 

architectures scale well and provide significant speed-ups for models with high compute-

to-I/O ratio. The Sun UltraSPARC T2+ platform provided a lower performance 

improvement than both the Cell and Intel Xeon processors. This is likely to be due to the 

lack of SIMD operations on the Sun UltraSPARC T2+. Of the four models examined the 

Hodgkin Huxley and Morris-Lecar models provided the highest speed-ups for the larger 

models, while the Izhikevich and Wilson model provided the lowest speed-up. This was 

due to the low compute-to-I/O ratio in the latter. 

From the scaling study on the cluster, it can be seen that the 336 PS3 cluster 

provides a highly economical, yet powerful, platform for neuromorphic simulations. The 

system is capable of producing up to 50 TFlops. The four models under study were scaled 

up on a cluster of 336 PS3s at the AFRL facility in Rome, NY. Results indicate that the 

models were fully scalable across the cluster. Additionally, two of the four models were 

scalable across the six SPEs available on each Cell processor in the cluster.  

The largest spiking network model implemented contained 4.16×108 neurons and 

2×1010 synapses. Given that the human brain contains about 1011 neurons, this is a large 
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number of components that the cluster was capable of modeling. As a simplistic 

comparison, image recognition (for the largest image size tested) required about 227ms in 

the spiking network, and about 100ms in the human brain.  

In a recent study [2], a 32,768 processor IBM BlueGene supercomputer was able 

to simulate a rat scale cortex (55×106 neurons and 4.42×1011 synapses) at near real time. 

This model did implement learning and was more biologically accurate than the models 

implemented in the study. However the cost of the BlueGene system is significantly 

higher (approximately 2-3 orders more) than the system we utilized. The AFRL cluster 

cost $337k, of which the PS3s cost about $133k. Since we were able to model a similar 

scale cortical system (although our model was much simpler) it indicates that a cluster of 

PS3s can be an economical platform for simulating large scale neuromorphic models. 

It is important to note that the networks implemented are extremely simplistic. 

Possible future work in this area could be to examine implementations of more 

biologically realistic networks and include learning in the implementations. Additionally, 

the application of similar large cortical models to different domains could be examined. 

Also, the effect of various compilers on the performance of the models on each of the 

architectures could be studied. In particular, the effect of icc compiler on the performance 

of the Intel architectures could be investigated for each of the models. 
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