
Clemson University
TigerPrints

All Theses Theses

8-2009

Acceleration of Spiking Neural Networks on
Multicore Architectures
Rommel Jalasutram
Clemson University, rjalasu@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Jalasutram, Rommel, "Acceleration of Spiking Neural Networks on Multicore Architectures" (2009). All Theses. 629.
https://tigerprints.clemson.edu/all_theses/629

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/629?utm_source=tigerprints.clemson.edu%2Fall_theses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

ACCELERATION OF SPIKING NEURAL NETWORKS ON MULTICORE
ARCHITECTURES

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Rommel Jalasutram

August 2009

Accepted by:
Tarek Taha, Committee Chair

Walter Ligon
Mark Smotherman

 ii

ABSTRACT

The human cortex is the seat of learning and cognition. Biological scale

implementations of cortical models have the potential to provide significantly more

power problem solving capabilities than traditional computing algorithms. The large

scale implementation and design of these models has attracted significant attention

recently. High performance implementations of the models are needed to enable such

large scale designs. This thesis examines the acceleration of the spiking neural network

class of cortical models on several modern multicore processors. These include the

Izhikevich, Wilson, Morris-Lecar, and Hodgkin-Huxley models. The architectures

examined are the STI Cell, Sun UltraSPARC T2+, and Intel Xeon E5345. Results

indicate that these modern multicore processors can provide significant speed-ups and

thus are useful in developing large scale cortical models.

 The models are then implemented on a 50 TeraFLOPS 336 node PlayStation 3

cluster. Results indicate that the models scale well on this cluster and can emulate 108

neurons and 1010 synapses. These numbers are comparable to the large scale cortical

model implementation studies performed by IBM using the Blue Gene/L supercomputer.

This study indicates that a cluster of PlayStation 3s can provide an economical, yet

powerful, platform for simulating large scale biological models.

 iii

DEDICATION

This thesis is dedicated to my loving parents, my brother and my friends Ahalya,

Sumod, Archana, Biswa, Achal and Vishrut.

 iv

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the help

and support of many. I would like to acknowledge the members of my committee, and

especially Dr Tarek Taha for his guidance, help and support. Next, I would like to

acknowledge my fellow graduate students who have spent a lot of time discussing about

the work contained herein. I would especially like to thank Sumod Mohan, Pavan

Yalamanchali, Mohammad Ashraf and Kenneth Rice in this regard.

Finally, I would also like to acknowledge Dexter Stowers and Dr Wayne Madison

for the funding support I received that greatly aided me during this research.

 v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

 I. INTRODUCTION ... 1

 II. RELATED WORK .. 6

 III. MODELS EXAMINED ... 8

 Izhikevich ... 10
 Wilson .. 11
 Morris-Lecar .. 12
 Hodgkin-Huxley .. 13

 IV. MULTICORE ARCHITECTURES EXAMINED 15

 Intel Xeon E5345 ... 16
 UltraSPARC T2+ T5140 ... 18
 STI Cell .. 19

 V. NETWORK DESIGN .. 21

 VI. PARALLELIZATION AND OPTIMIZATIONS 24

 Network Parallelization ... 24

 vi

Table of Contents (Continued)
Page

 Optimizations ... 25

 VII. EXPERIMENTAL SETUP .. 29

 VIII. RUN TIME PERFORMANCE .. 32

 IX. LARGE SCALE IMPLEMENTATION .. 40

 AFRL Cluster ... 40
 Implementation .. 41
 Experimental Setup .. 42
 Results .. 43
 Biological Relevance ... 47

 X. CONCLUSION .. 49

REFERENCES .. 51

 vii

LIST OF TABLES

Table Page

 3.1 Spiking Network Properties ... 9

 4.1 Architectural summary of evaluated platforms.. 16

 7.1 Spiking Network Configurations Evaluated .. 30

 8.1 Computer to I/O ratios (flops per data byte fetched) for
 models on the PlayStation 3 ... 33

 9.1 Networks used for Cluster Implementation of Spiking
 Neural Network Models ... 41

 9.2 Components of different systems... 47

 viii

LIST OF FIGURES

Figure Page

 3.1 Spikes produced with Izhikevich Model .. 10

 3.2 Spikes produced with Wilson Model ... 11

 3.3 Spikes produced with Morris-Lecar Model ... 13

 3.4 Spikes produced with Hodgkin-Huxley Model ... 14

 4.1 Dual-socket × quad-core Intel Xeon E5345
 (Clovertown) processor architecture .. 17

 4.2 Dual-socket × eight-core Sun UltraSPARC T2+ T5140
 (Victoria Falls) processor architecture ... 19

 4.3 STI Cell processor architecture .. 20

 5.1 Network used for testing spiking models... 21

 6.1 Assembly code for the on Cell after loop unrolling,
 Data pre-fetching and software pipelining .. 27

 7.1 Training images utilized. There are 48 24 × 24 pixel
 images .. 30

 8.1 Speed-up for Intel Xeon E5345 platform (8 threads),
 Sony PS3 (6 threads), Intel Xeon E5345 platform
 (4 threads), Sun UltraSPARC T2+ (120 and 64) threads
 over vectorized Intel Xeon single thread for
 (a) Izhikevich, (b) Wilson, (c) Morris-Lecar, and
 (d) Hodgkin-Huxley models .. 33

 8.2 Per-core efficiency of (a) Izhikevich, (b) Wilson,
 (c)Morris-Lecar, and (d) Hodgkin-Huxley models with
 network size 1200 × 1200 on the Xeon, Cell and
 UltraSPARC T2+ platforms ... 35

 8.3 Variation in speed-up for 1200 × 1200 network with
 increase in the number of threads for (a) Sun
 UltraSPARC T2+, (b) Intel Xeon, and (c) Cell platforms 37

 ix

List of Figures (Continued)

Figure Page

 8.4 Variation in the runtime of the 480 × 480 Wilson model
 on the Cell processor based PlayStation 3 ... 38

 8.5 Speed-up of the four models over the Cell PPE when
 using the Euler and Runge-Kutte approaches .. 39

 9.1 AFRL Cluster PS3 organization .. 40

 9.2 Runtime for varying number PS3s’ and network size for
 same number of neurons/PS3 (1,440,000) ... 43

 9.3 Runtimes for the Spiking Neural Models with varying
 number of PS3s (a) Izhikevich, (b) Wilson, (c) Morris-
 Lecar, and (d) Hodgkin-Huxley ... 44

 9.4 Runtimes for the Spiking Neural Models with varying
 number of SPEs on PS3s (a) Hodgkin-Huxley,
 (b) Morris-Lecar, (c) Wilson, and (d) Izhikevich .. 46

 9.5 Maximum neurons and synapses processed for varying
 number of PS3s ... 47

1

CHAPTER ONE

INTRODUCTION

The human brain can perform complex cognitive tasks at a much faster rate than

silicon based processors, despite the fact that neurons are much slower than the

transistors used to design the processors. This is primarily because of the massive parallel

processing employed in the neocortex, which is the main part of the brain dealing with

learning and cognition. This is the outer layer of the human brain and is approximately

the size of a large unfolded dinner napkin. It is estimated to consist of approximately 1011

neurons and 1014 connections between the neurons. Each neuron is connected to a large

set of neurons through extensions called dendrites and axons. Neurons communicate with

each other by sending electrical pulses. These pulses are generated by the exchange of

ions between the neurons.

There has been a strong interest amongst researchers to develop large parallel

implementations of neuron models on the order of animal or human brains. At this scale,

the models have the potential to provide much stronger inference capabilities than current

generation computing algorithms [1]. A large domain of applications would benefit from

the stronger inference capabilities including speech recognition, computer vision, textual

and image content recognition, robotic control, and data mining.

Large scale models however require significant computing power to implement.

Several research groups are currently examining large scale implementations of neuron

based models [25] [23] and cortical based models [17] [42]. Such large scale

implementations require high performance resources to run the models at reasonable

 2

speeds. Lansner et. al. [2] has shown that mouse sized cortical models developed on a

cluster of commodity computers are computationally bound rather than communication

bound. Thus the acceleration of neuron models on modern multicore architectures could

provide significant benefits for the development of large scale cortical models. Multicore

processors are currently the norm in the computing industry because it is difficult to

increase the performance gain of single core processors as we have reached the limits on

frequency scaling. However, the implementation of several recent cortical models on

clusters of multicore processors has not yet been investigated.

This thesis examines the acceleration of spiking neural network models on

modern multicore processors. Spiking neural network models are the third generation of

neural networks and are considered to be one of the most biologically accurate models.

Izhikevich compares a set of 11 spiking neuron models [3] in terms of their biological

accuracy and computational load. He shows that four of the more biologically accurate

models include (in order of biological accuracy) the Hodgkin-Huxley [4], Izhikevich [5],

Wilson [6], and Morris-Lecar [7] models. Of these, the Hodgkin-Huxley model is the

most computationally intensive, while the Izhikevich model is the most computationally

efficient.

The four spiking neural networks examined are based on a character recognition

model. The character recognition model was taken from [15]. This model was adapted

from the two layer spiking neuron network model developed by Gupta and Long [8].

While Gupta utilized the integrate and fire model, this work utilizes the four more

biologically accurate spiking models identified by Izhikevich [3]. Izhikevich points out

 3

that the commonly used Integrate and Fire model is one of the least biologically accurate

spiking neuron models. He states that “the model cannot exhibit even the most

fundamental properties of cortical spiking neurons, and for this reason it should be

avoided by all means” [3]. The models utilize pulse coding to mimic the high speed

recognition taking place in the mammalian brain [9] and spike timing dependent

plasticity (STDP) for training [10]. The models are trained to recognize a set of 48

images of characters.

The multicore architectures examined in this study include the 8+1 core

Sony/Toshiba/IBM (STI) Cell broadband engine [11], the Intel Xeon E5345 processor,

and the Sun UltraSPARC T2+ processor [12]. The platform used to examine the Cell was

a Sony PlayStation 3. In case of the Xeon, the platform used was a dual socket × quad-

core Intel Xeon E5345. The UltraSPARC T2+ platform used was a dual-socket × eight-

core UltraSPARC T2+ T5140 server.

IBM is currently utilizing a 32,768 processor Blue Gene/L to simulate a spiking

network based model [25], while EPFL and IBM are utilizing an 8,192 processor Blue

Gene/L system to simulate a sub-neuron based cortical model [23]. The PetaVision

project announced in June 2008 is utilizing the Roadrunner supercomputer to model the

human visual cortex [13].

The Air Force Research Laboratory (AFRL) in Rome, NY has set up a 336 STI

Cell multicore processor based Sony PlayStation 3’s (PS3s) primarily to examine the

large scale implementations of neuromorphic models [40]. This cluster is capable of

providing a performance of 51.5 TF and cost about $361K to set up (of which only 37%

 4

is the cost of PS3s). This is significantly more cost effective than an equivalently

performing cluster based on Intel Xeon processors [40]. This thesis also examines the

scaling and performance of the spiking neural models on this cluster.

The main contributions of this work are:

1. A study of the parallelization of four biologically accurate neuron models.

Both thread and data level parallelization are examined.

2. An evaluation of the multicore implementations of the models. The

performance of the models on three multicore platforms (a Cell based Sony PS3, a Sun

dual-socket × eight-core UltraSPARC T2+ T5140 server, and a dual socket × quad-core

Intel Xeon E5345) is examined. Several network sizes were implemented to examine the

effect of scaling the models.

3. A study of the scalability of these models on the AFRL PS3 cluster.

Results indicate that optimized parallel implementations of the models can

provide significant speed-ups on multicore architectures. The highest speed-ups were

observed for the Hodgkin-Huxley and Morris-Lecar models. For the largest size

implemented, these were 7.87 and 8.08 on the Intel Xeon platform utilizing 8 cores, 7.01

and 5.74 on the PS3 utilizing 6 cores, and 1.48 and 2.66 on Sun UltraSPARC T2+ T5140

utilizing 15 cores. The speed-ups are with respect to a vectorized single thread

implementation on the Intel Xeon. Please note that [14] [15] present preliminary versions

of the results in the thesis. The speed-up on all the processing platforms increased and

saturated as the network size was increased for the Morris-Lecar and Hodgkin-Huxley

 5

models. For the Izhikevich and Wilson models, the speed-up decreased with the increase

in network size. This was due to the fact that the models were memory intensive and had

a low compute-to-I/O ratio.

Large scale implementation results indicate that the models scale almost linearly

on the PS3 cluster. Equivalents of 108 neurons were modeled along with about 1010

synapses. A mouse cortex in comparison contains about 1.6 × 107 neurons and 1.6 × 1011

synapses [17]. The Blue Gene was able to simulate a rat cortex (55×106 neurons and

4.42×1011 synapses) at near real time. However the cost of AFRL cluster is significantly

lower than the one used in [25]. This indicates that the 336 node PS3 cluster provides a

highly economical, yet powerful, platform for neuromorphic simulations.

This thesis is organized in the following manner: chapter 2 discusses the related

work, chapter 3 and 4 discuss the spiking models and the multicore architectures

considered. Chapter 5 and 6 discuss the network, parallelization techniques and

optimizations used. Chapter 7 describes the experimental set up. Chapter 8 presents the

results for individual multicore architectures. Chapter 9 describes the cluster

implementation in detail and presents the results and its biological relevance. Chapter 10

concludes the thesis.

 6

CHAPTER TWO

RELATED WORK

Several groups have examined the acceleration of applications on multicore

processors. Williams et. al. [27] examined the acceleration of several scientific

computing kernels on the Cell processor and found good performance gains over other

non-multicore architectures. Other studies have also shown that the Cell processor can

provide high performance as well [28], [29]. Williams et. al. have also compared the

performance of some recent multicore architectures for sparse matrix-vector

multiplication applications and have found that the Cell and Sun UltraSPARC T2+

processors provide good speed-ups [30]. Khan et. al. [31] describes simulations of an

ARM based multicore processor for the acceleration large scale spiking neural network

models. Till date, there has been no study examining the acceleration of spiking network

models on various multicore processors.

Several groups are currently developing biological scale implementations of

spiking networks, but are generally not examining the applications of these systems

(primarily as they are modeling large scale neuronal dynamics seen in the brain). The

Swiss institution EPFL and IBM are developing a highly biologically accurate brain

simulation [23] at the sub neuron level. They have utilized the Hodgkin Huxley and the

Wilfred Rall [24] models to simulate up to 100,000 neurons on an IBM BlueGene/L

supercomputer. At the IBM Almaden Research Center, Ananthanarayanan and Modha

[25] utilized the Izhikevich spiking neuron models to simulate 55 million randomly

 7

connected neurons (equivalent to a rat-scale cortical model) on a 32,768 processor IBM

BlueGene/L supercomputer. Johansson et. al. simulated a randomly connected model of

22 million neurons and 11 billion synapses using an 8,192 processors IBM BlueGene/L

supercomputer [2]. Izhikevich developed a very large model of the thalamocortical

system and studied its behavior [26]. The neural connections in these studies are random

and the networks do not identify any patterns.

Several groups have studied image recognition using spiking neural networks. In

general, these studies utilized integrate and fire model. Johansson and Lansner developed

a large cluster based spiking network simulator of a rodent sized cortex [17]. They tested

a small scale version of the system to identify 128×128 pixel images. Baig [18]

developed a temporal spiking network model based on integrate and fire neurons and

applied them to identify online cursive handwritten characters. Gupta and Long [8]

investigated the application of spiking networks for the recognition of simple characters.

Other applications of spiking networks include instructing robots in navigation and

grasping tasks [19], recognizing temporal sequences [20][21], the robotic modeling of

mouse whiskers [22]. Thorpe developed SPIKENET [16], a large spiking neural network

simulation software. The system can be used for several image recognition applications

including identification of faces, fingerprints, and video images.

 8

CHAPTER THREE

MODELS EXAMINED

Spiking neural models capture neuronal behavior more accurately than traditional

neural models. A neuron consists of three functionally distinct parts called dendrites,

axons, and a soma. Each neuron is typically connected to over 10,000 other neurons [32].

The dendrites of a neuron collect input signals from other neurons, while the axons send

output signals to other neurons. Signals coming in along dendrites cause changes in the

ionic levels within the soma, which in turn causes the neuron’s membrane potential to

change. If this membrane potential crosses a certain threshold, the neuron is said to have

“fired” or “spiked”. In these events the membrane potential rises rapidly for a short

period of time (a spike) and causes electrical signals to be transmitted along the axons of

the neuron to other neurons connected to it [33]. Spiking is the primary mechanism by

which neurons send signals to each other. Over the last 50 years, several models have

been proposed that capture the spiking mechanism within a neuron.

In this paper, four of the more biologically accurate spiking neuron models (as

listed by Izhikevich [3]) are examined. These are the Hodgkin-Huxley [4], Izhikevich [5],

Wilson [6], Morris-Lecar [7] models. The Hodgkin–Huxley model is considered to be

one of the most biologically accurate spiking neuron models. All four of the models can

reproduce almost all types of neuron responses that are seen in biological experiments.

All but the Izhikevich model are based on biologically meaningful parameters (such as

activation of Na and K currents, and inactivation of Na currents). Table 3.1 compares the

computation properties of the four models. The Hodgkin–Huxley model utilizes

 9

exponential functions, while the Morris-Lecar model uses hyperbolic functions. These

contribute to the higher flops needed for these two models. Note that the four models are

not tuned to replicate one specific type of neuron. Thus the number of simulation cycles

for the models do vary. This however does not impact the inference carried out by the

models in this study.

Table 3.1. Spiking Network Properties

Model Differential
Equations

Variables
updated

each
cycle

Flops /
neuron
(Euler)

Flops /
neuron
(Runge-
Kutta)

Cycles /
recognition

Izhikevich 2 2 13 70 12
Wilson 4 7 37 152 29
Morris-
Lecar

2 5 187 297 15

Hodgkin-
Huxley

4 16 265 442 373

Two common methods to implement the differential equations in these models

include the Euler and the Runge-Kutta approaches. While the Runge-Kutta approach

provides more accurate results, the Euler method is the most common approach for

implementing the differential equations as it has a significantly lower computational load.

This study primarily utilizes the Euler approach, although the Runge-Kutta approach is

examined as well. The flop counts for both the Euler and the Runge-Kutta approach are

listed in Table 3.1. These values are based on the implementations of the four models.

 10

Izhikevich Model

Izhikevich proposed a new spiking neuron model in 2003 [5] that is based on only

two differential equations (eq. 1, 2). This model requires the least computations of all the

models examined, because it needs fewer flops per neuron update and requires fewer

neuron updates to be carried out per simulation run time (since the simulation time step is

higher). However the model can still reproduce almost all types of neuron responses that

are seen in biological experiments. The four constant parameters (a, b, c and d) can be

initialized differently to allow modeling of various neural responses. A time step of 1 ms

was utilized (as was done by Izhikevich in [5]). Figure 3.1 shows the spikes produced

with this model.

20.04 5 140
dV

V V u I
dt

= + + − + (1)

()
du

a bV u
dt

= − (2)

if 30 mV, then
V c

V
u u d

←
≥

← +

Figure 3.1. Spikes produced with the Izhikevich Model

The following parameters were used for the Izhikevich model: Excitatory

neurons: a = .02, b = 0.2, c = -55, d = 4; Inhibitory neurons: a = 0.06, b = 0.22, c = -65, d

= 2, time step = 1 ms.

 11

Wilson Model

The Wilson model [6], proposed in 1999, requires four differential equations

(equations 3 to 6). The model has more number of parameters than the Izhikevich model.

Tuning these parameters allow the model to exhibit almost all neuronal properties. Three

of the parameters in the differential equations (T∞, R∞, and m∞) also need to be

evaluated each cycle, thus adding a set of three more equations. A time step of 0.01 ms

was utilized to update the four differential equations. Figure 3.2 shows some typical

spikes produced with this model.

(1 / 45)(3)
dH

H T
dt

= − + (3)

(1/14)()
dT

T T
dt ∞= − + (4)

(1 /)()R

dR
R R

dt
τ ∞= − +

(5)

1
()(() 26 () ()

())

Na K T Ca

H K

dV
m V E R V E g T V E

dt C
g H V E I

∞= − − − + − − −

+ +

 (6)

Figure 3.2. Spikes produced with the Wilson model

 12

 The following parameters were used for the Wilson model: g_T = 0.1

seimen, gH = 5 seimen, τR = 4.2 ms, C = 1 micro farad, ENa = 0.5, EK = 0.95, ECa = 1.2, V

= -0.6 mV, R = 0, T = 0, H = 1, time step = 0.01 ms.

Morris-Lecar Model

Cathy Morris and Harold Lecar proposed a two dimensional conductance-based

spiking model in 1981 [7]. The model consists of two differential equations (eq. 7, 8).

Three of the parameters in the differential equations (m∞, w∞, and τw) need to be evaluated

each cycle, thus adding a set of three more equations. These three equations involve

hyperbolic functions, thus making it computationally more expensive than the Izhikevich

and Wilson models. This computational load is lower than the Hodgkin-Huxley model

however, thus making it popular in neuro-computation communities. A time step of 0.01

ms was utilized to update the two differential equations. Figure 3.3 shows some typical

spikes produced with this model.

1

()(() ()

())

Ca Ca K K

Leak Leak

dv
I g m V V g w V V

dt C
g V V

∞= − − − −

− −

(7)

1
()()

w

dw
w w

dt
φ

τ ∞= − (8)

 13

Figure 3.3. Spikes produced with the Morris-Lecar model

 The following parameter values were used for the Morris-Lecar model: C = 7, VK

= -84 mV, gK = 8 mV, VCa = 120 mV, gCa = 4.4 seimen, VLeak = -60, gLeak = 2 seimen,

V_1 = -1.2, V_2 = 18, V_3 = 2, V_4 = 30, φ = 0.04, Time step = 0.01 ms.

Hodgkin-Huxley Model

The Hodgkin–Huxley model [4] was a seminal work in neuron modeling. It

consists of four differential equations (eq. 9-12). A set of 10 more equations have to be

evaluated each cycle to update parameters used in the differential equations. Four of these

equations utilize exponential functions. This makes the Hodgkin-Huxley model the most

complex of the four models studied. A time step of 0.01 ms was utilized to update the

four differential equations as this is the most commonly used value. Figure 3.4 shows the

spikes produced with this model. This model has also been used in the detailed large

scale neural simulations being carried out by IBM and EPFL [23].

 14

4 31
(){ () () ()}K K Na Na L L

dv
I g n V E g m h V E g V E

dt C
= − − − − − − (9)

(()) / ()n

dn
n V n V

dt
τ∞= − (10)

(()) / ()m

dm
m V m V

dt
τ∞= − (11)

(()) / ()h

dh
h V h V

dt
τ∞= − (12)

Figure 3.4. Spikes produced with the Hodgkin-Huxley model

The following parameter values were used for the Hodgkin-Huxley model: gK =

36 seimen, gNa = 120 seimen, gL = 0.3 seimen, EK = -12 mV, ENa = 115 mV, EL = 10.613

mV, V = -10 mV, VK = 0 mV, VNa = 0 mV, VL = 1 mV, time step = 0.01 ms.

 15

CHAPTER FOUR

MULTICORE ARCHITECTURES EXAMINED

Due to microelectronics constraints, such as wire delays and power densities,

modern processors are increasing performance by exploiting parallelism rather than

increasing clock frequencies. As a result, multicore processors have become widespread.

It is expected that in the future, processors with hundreds of cores will become available.

In addition to multiple cores, some processors are exploiting vector parallelism to

improve performance.

This thesis examines three of the leading chip multicore processor (CMP) designs

in context of neuromorphic algorithms – in particular biologically inspired spiking neural

networks. This chapter briefly describes the processors and platforms with their

individual architectural features: the dual socket × quad-core Intel Xeon E5345

(Clovertown); the dual socket × eight core hardware multithreaded Sun UltraSPARC T2+

T5140 (Victoria Falls); and the heterogeneous single socket × eight-SPE Cell processor

ased Sony PlayStation 3. Overviews of the configurations and characteristics appear in

Table 4.1.

 16

Table 4.1. Architectural summary of evaluated platforms. Top: per core

characteristics. Bottom: SMP characteristics

Core Architecture Intel Core2

Sun
UltraSPARC
T2+

IBM
PPE SPE

Type
Superscalar
out-of-order

MT dual
issue

MT dual
issue

SIMD dual
issue

Clock (GHz) 2.33 1.16 3.2 3.2
Local store - - - 256 KB

L1 Data Cache per core 32 KB 8 KB 32 KB -

L2 Cache per core - - 512 KB -

System
Xeon E5345
(Clovertown)

UltraSPARC
T2+ T5140
(Victoria
Falls)

Sony
PlayStation
3

Sockets 2 2 1

Cores per Socket 4 8 1 8
DRAM Capacity 12 GB 64 GB 2 GB
DRAM bandwidth
(GB/s) 21.33 (read) 42.66 (read) 25.6
 10.66 (write) 21.33 (write)
Threading Pthreads Pthreads Libspe2
Compiler gcc cc Gcc spu-gcc

Intel Xeon E5345 (Clovertown)

Two dual-core Xeon chips are paired onto a single multi-chip module. Each core

is based on Intel’s Core2 micro-architecture (Woodcrest). It utilizes lower voltage and is

more power efficient. Each core thus runs at a lower frequency (2.33 GHz). The

 17

individual cores can fetch and decode up to four instructions per cycle, and can execute

six micro-ops per cycle. Each core has a 128b adder and a 128b multiplier. This enables

Xeon to support Single Instruction Multiple Data (SIMD). Streaming SIMD Extensions 3

(SSE3) instructions make use of the 128b registers. Its peak double precision

performance is 9.3 GFlops/s. Each core includes a 32 Kb, 8-way L1 cache, each chip

(two cores) has a shared 4MB, 16 way L2 cache.

This thesis evaluates the performance of Clovertowns’ available on the Palmetto

Cluster at Clemson University. This Xeon platform is a two processor based platform.

Thus, the platform can use up to eight cores (four from each processor) for computation.

A simplified version of the Clovertown architecture as seen in [41] is shown in Figure

4.1.

Figure 4.1. Dual-socket × quad-core Intel Xeon E5345 (Clovertown) processor
architecture

 18

Sun UltraSPARC T2+ T5140 (Victoria Falls)

Being the industry’s first “system-on-a-chip” (SoC), the UltraSPARC T2 Plus

[12] packs the most cores and threads available on any general purpose processor. The

processor has eight cores, each capable of supporting two groups of four hardware thread

contexts (referred to as Chip Multi-Threading or CMT). Thus each core can support up to

eight threads. Unlike other architectures which improve performance by utilizing larger

registers, this processor scales its performance through multi-threading. The SoC has 10

GB Ethernet networking.

The UltraSPARC T2+ has a dedicated Floating Point Unit (FPU) for each core

(shared among eight threads). The FPU does not have a fused multiply add (FMA)

functionality. Per-core and per-socket performance is 1.16 GFlops/s and 9.33 GFlops/s.

Each core has 8kB write-through L1 cache, 16 KB of instruction cache and is connected

to a 4MB shared L2 cache via an on-chip crossbar switch. The UltraSPARC T2+ has no

hardware pre-fetching. Also, software pre-fetching places the data in L2 cache. The

platform utilized for experimentation was a Sun Enterprise T5140 server. It consists of

two UltraSPARC T2+ processors each operating at 1.2 GHz. Thus, the system has 16

available cores (eight from each processor). A simplified version of the Sun UltraSPARC

T2+ T5140 architecture as seen in [41] is shown in Figure 4.2.

 19

Figure 4.2. Dual-socket × eight-core Sun UltraSPARC T2+ T5140 (Victoria
Falls) processor architecture

STI Cell

The STI Cell Broadband Engine [11] processor is the heart of the Sony

PlayStation 3 (PS3) video gaming console. The architecture is heterogeneous. It consists

of a Power Processing Element (PPE) and eight Synergistic Processing Elements (SPEs).

Of the eight SPEs, only six are enabled on the PlayStation 3 platform. The PPE handles

the operating system and administrative functionalities. The SPEs each use a disjoint

software controlled local memory. Each SPE has 256 KB of local memory.

The software controlled DMA (Direct Memory Access) engine is efficient and

helps fetch data asynchronously from DRAM into the local store. As fetching the data is

software controlled, programming the Cell architecture is more complex than

 20

conventional architectures. This approach eliminates conflict misses and write fills, but

capacity misses must be handled by the programmer due to the limited amount of local

store space available.

Element Interconnect Bus

SPE 1

1
LS MFC

SPE 2

1
LS MFC

SPE 3

1
LS MFC

SPE 4

1
LS MFC

1S

SPE 5

LS MFC 1S

SPE 6

LS MFC 1S

SPE 7

LS MFC 1S

SPE 8

LS MFC

PPE

1
L1 L2

DRAM

Interrupt

Controller

I/O

Interface

Element Interconnect Bus

SPE 1

1
LS MFC

SPE 2

1
LS MFC

SPE 3

1
LS MFC

SPE 4

1
LS MFC

1S

SPE 5

LS MFC 1S

SPE 6

LS MFC 1S

SPE 7

LS MFC 1S

SPE 8

LS MFC

PPE

1
L1 L2

DRAM

Interrupt

Controller

I/O

Interface

Figure 4.3. STI Cell processor architecture

Each SPE has 128b wide registers. This enables the Cell to take advantage of

vector processing as well. The PPE and SPE operate at 3.2 GHz. Each SPE is capable of

processing up to four instructions in parallel each cycle (eight if considering FMA). The

SPEs utilize in-order execution and have no branch prediction hardware. High compute-

to-I/O ratios are needed to achieve the full potential of the Cell processor [34].

One of the key features of the cell processor is to transfer complexity from

hardware to software. Thus the cores utilize in-order execution with no branch prediction

hardware. Instead of a processor controlled cache, the local store is programmer

managed. This ensures that only necessary data is brought in. The Cell platform used in

this study is a Sony PlayStation 3 cluster available at the Arctic Region Supercomputing

Center (ARSC). A simplified version of Cell processor architecture is shown in Figure

4.3.

 21

CHAPTER FIVE

NETWORK DESIGN

Gupta and Long [8] presented a character recognition network based on the

integrate-and-fire neuron model [35]. That network was adapted in this thesis to evaluate

the four spiking neuron models under consideration. Four versions of the image

recognition network were developed (corresponding to the four spiking models studied)

where the main difference was in the equations utilized to update the potential of the

neurons. The parameters utilized in each case are specified in chapter three.

 The network consisted of two layers, where the first layer acted as input neurons

and the second layer as output neurons. Input images were presented to the first layer of

neurons, with each image pixel corresponding to a separate input neuron. Thus the

number of neurons in the first layer is equal to the number of pixels in the input image.

Binary input images were utilized in this study. The number of output neurons was equal

to the number of training images. Each input neuron was connected to all the output

neurons. A prototype of this network is shown in Figure 5.1.

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Figure 5.1. Network used for testing spiking models

Each neuron has an input current that it uses to evaluate its membrane potential. If

the membrane potential crosses a certain threshold during a cycle, the neuron is

considered to have fired or spiked. In case of a level one neuron, the input current is zero

if the neuron’s corresponding pixel in the input image is “off”. If the pixel is “on”, a

 22

constant current is supplied to the input pixel. A level two neuron’s overall input current

is the sum of all the individual currents received from all the level one neurons connected

to it. This input current for a level two neuron is given by equation 13 below:

∑=
i

j)i(f)j,i(wI (13)

where

w is a weight matrix where w(i,j) is the input weight from level one neuron i to

level two neuron j.

f is a firing vector where f(i) is 0 if level one neuron i does not fire, and is 1 is the

neuron does fire.

The elements of the weight matrix w are determined through a training process

where a set of training images are presented sequentially to the input neurons. The weight

matrix elements of each output neuron are updated using the STDP rule each cycle. The

weight matrix thus obtained is used to determine the input current to each of the output

neuron.

In the testing phase, an input image is presented to the input neurons and after a

certain number of cycles, one output neuron fires, thus identifying the input image.

During each cycle, the level one neurons are first evaluated based on the input image. As

and when a level one neuron fires, its weight corresponding to each output neuron is

added to the current of each of the output neurons it is connected to. At the end of the

cycle, the input current for two level neurons is the sum of the weights from the level one

neurons that have fired the current cycle. This input current is used in the following cycle

to evaluate the neuron membrane potentials of the level two neurons. This process is

 23

described in detail in algorithm 1. This thesis studies the acceleration of the recognition

phase of each network on multicore processors.

Algorithm 1: The testing phase for the spiking neuron image recognition model
1. Repeat till a level two neuron fires:
2. For all level one neurons:
3. Read input current
4. Calculate neuron membrane voltage
5. If neuron fires, upgrade the level 2 input current
 —Barrier—
6. For all level two neurons:
7. For each non zero number of firing from level one (from previous cycle),
8. Calculate total level 2 input current
9. Calculate neuron membrane voltage

 10. If neuron fires, output is produced
 —Barrier—

 24

CHAPTER SIX

PARALLELIZATIONS AND OPTIMIZATIONS

Network Parallelization

All four models studied in this paper are evaluated using the network developed

in chapter five. In general one thread was created for each core at the start of the program

on the different multicore architectures examined (STI Cell, Intel Xeon E5345, and Sun

UltraSPARC T2+). Since the UltraSPARC T2+ supported multiple threads per processor

it was tested it with multiple threads per core. Each thread was assigned tasks

intermittently by the master thread and was terminated only at the end of the program.

Creating threads only once and letting them run for the lifetime of the program

significantly reduces the thread creation overhead; this issue has been discussed at great

length in several recent papers including [11] [36].

Since all the nodes in each layer are independent of each other, they can be

evaluated in parallel. Individual threads were created for each core on all the processors

studied. The neurons in the first layer (input layer) were distributed evenly across the

threads generated. Since all the neurons utilize the same set of computations, processors

with SIMD support available (Cell and Xeon) exploited data level parallelism by

evaluating sets of four neurons simultaneously. As the level two neurons are only 48 in

number, they were evaluated on the PPE in case of Cell and on the first thread in case of

Xeon and UltraSPARC T2+. This improved the scalability of the model.

As shown in Algorithm 1, two barriers were utilized to allow all the threads to

complete the nodes in each layer of the network. A firing vector was used in the

 25

preliminary implementations. It stored the indices of the level one neurons fired in the

previous cycle. This was later used to calculate the current for the level two neurons. This

approach required the sharing of the firing vector among all the threads. While migrating

to a large scale cluster implementation, this approach was a lot harder to implement. Thus

this approach was discarded.

In the current approach, if a level one neuron fired, its corresponding weights

were added to the level two current data structure for the corresponding thread. At the

start of the next cycle, the currents from all the threads are summed by which ever

processor was evaluating the level two neurons. This eliminated the need for having an

extra data structure like the firing vector and eliminated concurrency issues. It also

improved the scalability of the implementation.

The Cell implementation used mailboxes for synchronization while the Sun and

Intel implementations used pthread barriers.

Optimizations

This section explains the optimizations that were considered and the order in

which they were considered. The optimizations are designed to be effective both on

conventional cache-based multicore processors and the Cell architecture. The techniques

implemented include multi-threading, vectorization, double buffering, software

pipelining, pre-fetching and loop optimizations.

 26

Multi-Threading

 The first technique in the optimization process utilizes the fact that all the

processors are multicore by exploiting thread-level parallelism. The neurons at level one

are distributed evenly across the threads. This ensures that each thread is fairly load

balanced. The implementation does this dynamically depending on the size of the input

image. Threading reduces the instruction latency thus improving the performance. The

threads are created using the POSIX thread library on the UltraSPARC T2+ and Xeon

architectures while the Cell implementation utilized the libspe2 library.

Vectorization

The Cell SPE and the Xeon architectures have 128b registers. This enables them

to exploit any data-level parallelism present in the application. Four single precision

floating point operations or two double precision floating point operations can be

evaluated with a single instruction on these registers. All the loads are 16 bytes and must

be 16 byte aligned. It is to be noted that it takes 6 cycles for a single precision floating

point operation and 13 cycles for a double precision floating point operation on the Cell.

Thus the implementations used single precision floating point values. The Cell can

perform a fused multiply-add (FMA).

On the Intel, SSE3 instructions were used for vectorizing the operations. On x86

architectures, SSE3 provides an unaligned load but adds some performance penalty. Thus

all the data structures were 16 byte aligned. The Morris-Lecar and the Hodgkin-Huxley

models make use of hyperbolic and exponential functions. As the SSE3 library did not

 27

have exponential functions, the implementation made use of the Universal SIMD Library

developed by Helmut Dersch [37].

Loop Optimization

Maximizing in-core performance is essential. The Cell processor does not have

branch prediction hardware. In order to minimize the branch prediction on the Cell, the

loops were unrolled by a factor of eight. This technique is useful for the Cell as it utilizes

in-order execution, but is of little use in case of out-of-order superscalar processors. This

also meant that the function calls had to be in-lined. The code on the Cell was further

optimized by minimizing unnecessary branches.

Figure 6.1. Assembly code for the Wilson model on Cell after loop unrolling,
data pre-fetching and software pipelining.

On the Cell, it takes 6 cycles to fetch data into the register. This meant that

utilizing indexed data structures would lead to a high percentage of stalls in the

instruction pipeline. Thus, the required data was pre-fetched. Software pipelining was

 28

used in combination with loop unrolling to minimize these stalls. Figure 6.1 shows a

snippet of the assembly code for the Wilson model after data pre-fetching, loop unrolling

and software pipelining. It can be seen from the figure that after these optimizations,

there are no stalls in the instruction pipeline.

Memory optimizations

Data transfer on the Cell is explicitly managed by the programmer as opposed to

the operating system. The local store’s memory is limited to 256 KB. On an average, 16

bytes of memory is required to store the state of a neuron. Thus when evaluating a

network of neurons, we need to explicitly DMA in the required data, evaluate the neuron

equations, and DMA out the data. If we are to wait for the data to be brought in before we

start performing computations, we are limited by the DMA. Thus double buffering was

implemented to hide I/O latency with computation. In this process, once the data required

for the first iteration has been obtained, the first iteration of the loop can be evaluated

simultaneously with DMA data transfer for the second iteration of the loop. This ensures

that one is not waiting on data to perform computations.

 29

CHAPTER SEVEN

EXPERIMENTAL SETUP

Three hardware platforms were utilized in this study: one was Intel Xeon E5345

based, one was STI Cell based, and one was Sun UltraSPARC T2+ based. The Intel

platform had two quad-core Xeon E5345 processors, used 12 GB of DRAM and was

running RedHat 4.1.2-44. Thus, the platform was capable of utilizing eight cores. The

STI platform utilized was a Sony PlayStation 3 cluster available at the Arctic Region

Supercomputing Center (ARSC), Alaska. The PlayStation 3 has one Cell processor on

which six of the eight cores are available for use and contains 256 MB of DRAM. This

platform was running Fedora Core 9 with IBM Cell SDK 3.1. The Sun UltraSPARC T2+

platform utilized was a Sun SPARC Enterprise T5140 running Solaris 10. This system

contained two UltraSPARC T2+ processors and used 64 GB of DRAM. This system is

thus capable of utilizing 16 cores (eight from each processor) and each core supports up

to a maximum of eight threads. All the programs were compiled with –O3 optimizations.

On the UltraSPARC platform, one core was used for running the operating system while

the remaining cores were used to run the spiking neuron models. Each thread was bound

to a specific core to ensure process affinity thereby ensuring optimum performance.

Seven networks with varying input image sizes were utilized to examine each of

the spiking neural network models. The sizes of level 2 and level 1 neurons for different

input sizes are shown in Table 7.1. The overall network structure was kept similar to the

design mentioned in Figure 5.1 with two layers of nodes per network. Each of the level 2

neurons was connected to all of the neurons from level 1. The number of input (level 1)

 30

neurons was equal to the number of pixels in the input image. The number of output

(level 2) neurons was equal to the number of training images categories.

Table 7.1. Spiking Network Configurations Evaluated

Input image
size

Level 1
neurons

Level 2
neurons

Total
neurons

480 × 480 230,400 48 230,448
720 × 720 518,400 48 518,448
960 × 960 921,600 48 921,648

1200 × 1200 1,440,000 48 1,440,048
1680 × 1680 2,822,400 48 2,822,448
2160 × 2160 4,665,600 48 4,665,648
2400 × 2400 5,760,000 48 5,760,048

Figure 7.1. Training images utilized. There are 48 24 × 24 pixel images

 31

In this study all the spiking networks of different sizes were trained with to

recognize the same number of images. A set of 48 24×24 pixel images were generated

initially and were then scaled linearly to the different network sizes. The images

represented the 26 upper case letters (A-Z), 10 numerals (0-9), 8 Greek letters, and 4

symbols. Figure 7.1 shows the training images used. The four models were initially

developed and tested and trained in MATLAB before being converted to C.

 32

CHAPTER EIGHT

RUN TIME PERFORMANCE

All the models were implemented on the three computing platforms to evaluate

the performance of one processor per platform. Unless mentioned, the Euler method was

utilized to evaluate the differential equations for each of the models. A vectorized single

thread version of the program was developed and tested on the Intel Xeon E5345. The

speed-up of the four models running on each of the three computing platforms is shown

in Figure 8.1. These speed-ups are relative to the single thread SSE3 implementations of

the models on the Intel Xeon E5345.

The Izhikevich and Morris-Lecar models require fewer parameters than the

Wilson or Hodgkin-Huxley models to store the state of a neuron (see Table 3.1). Thus,

the memory requirement for the former models is less when compared to the latter

models. As a result, on the PS3, the largest network implemented for the Izhikevich and

Morris-Lecar models had 5,760,048 neurons (2400 × 2400), while the largest network

implemented using the Wilson and Hodgkin-Huxley models had 4,665,648 neurons

(2160 × 2160). This was due to insufficient virtual memory on the PPE of the PS3. The

largest size implemented for each of the models on Xeon and UltraSPARC T2+ platforms

had 5,760,048 neurons (2400 × 2400).

Table 8.1 gives the compute-to-I/O ratios for all the models on the PS3. This

indicates the number of flops performed per byte of data fetched. It is 0.45 and 0.77 for

Izhikevich and Wilson models and 4.6 and 5.52 for Morris-Lecar and Hodgkin-Huxley

models. Low compute-to-I/O ratios hinder the performance of multicore processors.

 33

Table 8.1. Compute to I/O ratios (flops per data byte fetched) for models on the
PlayStation 3

Model Euler
Runge-
Kutta

Izhikevich 0.45 2.37
Wilson 0.77 3.15

Morris-Lecar 4.60 7.30
Hodgkin-Huxley 5.52 9.21

(a) (b)

(c) (d)

Figure 8.1. Speed-up for Intel Xeon E5345 platform (8 threads), Sony PS3 (6 threads),

Intel Xeon E5345 platform (4 threads), Sun UltraSPARC T2+ T5140 (120 and 64)
threads over vectorized Intel Xeon single thread for the (a) Izhikevich, (b) Wilson, (c)

Morris-Lecar, and (d) Hodgkin-Huxley models.

 34

Figures 8.1 a and 8.1 b show the speed-ups of the Izhikevich and Wilson models

on all the platforms with the increase in input image size (network size). On the Cell (6

threads) and UltraSPARC T2+ platforms (64 and 120 threads), the speed-up increases

and eventually saturates. In case of the Wilson model, the speed-up decreases only for the

2160 × 2160 (4,665,648 neurons) network on the Cell platform. This probably might be

due to hard disk access or excessive cache misses. The Xeon platform speed-up for these

models increases initially but eventually decreases. It is to be noted that these models are

more memory intensive as they have a low compute-to-I/O ratio (less than one). It has

been shown that for similar applications, the Xeon chipset’s capabilities limit multi-

socket scaling on memory intensive applications [41]. The speed-up declines faster in

case of the Wilson model on the Xeon platform as it requires more data to store the state

of each neuron. As expected, for these models, maximum speed-up obtained for the

largest size was on the Xeon platform using 8 threads while the least speed-up obtained

was on the UltraSPARC T2+ platform using 64 threads (eight cores).

 Figures 8.1 c & 8.1 d show the speed-ups for the Morris-Lecar and Hodgkin-

Huxley models on all the platforms. These models have a high compute-to-I/O ratio

(greater than one). The speed-up increases with size and saturates on all the platforms. It

is seen that for larger network sizes, these models give the highest performance gain. As

expected, for these models, the performance gain is close to 4 and 8 in case of the Xeon

platform running 4 and 8 threads. Similarly, the gain on the Cell platform (PS3) is close

to 6 for the Morris-Lecar model while it is close to 7 for the Hodgkin-Huxley model. The

performance is higher in case of the Hodgkin-Huxley model as it has more equations

 35

making use of the fused multiply add functionality available on the Cell platform. On the

other hand, the gain observed on UltraSPARC T2+ platform for Hodgkin-Huxley is

lower than that of Morris-Lecar inspite of having the highest compute-to-I/O ratio. This is

primarily due to the limited number of dedicated FPUs (one per core shared among eight

threads) available on the UltraSPARC T2+. Thus on this platform, the Hodgkin-Huxley

model has the least performance gain amongst all the models.

(a)

(b)

(c)

(d)

Figure 8.2. Per-core efficiency of (a) Izhikevich, (b) Wilson, (c) Morris-Lecar, and (d)
Hodgkin-Huxley models with network size 1200 × 1200 on the Xeon, Cell and

UltraSPARC T2+ platforms.

Figure 8.2 shows the per-core efficiency of the platforms for a network with

1,440,048 neurons (1200 × 1200) of all the models. This network size was chosen as this

 36

was the largest network implemented on a single core on each of the platforms. On the

UltraSPARC T2+ platform, note that there are always eight threads per-core.

Figures 8.2 a and 8.2 b show the per core efficiency of all the platforms for the

Izhikevich and Wilson models. For these models, a single core on the Cell (PS3) platform

is faster than that on the Xeon platform. The per-core efficiency on all the platforms

declines with the increase in the number of cores for these models. In case of the Sun

platform, the decline is fairly gradual. But in case of Xeon and Cell platforms, the decline

in performance is very steep. It is seen that the per-core efficiency on the Cell platform

declines much faster than on the Xeon platform. This indicates that memory intensive

applications with a low compute-to-I/O ratio, do not achieve significant gains with the

increase in the number of cores. This also explains why there is a decline in performance

gain with the increase in network size for Izhikevich and Wilson models as observed in

Figures 8.1 a and 8.1 b.

Figures 8.2 c and 8.2 d show the per core efficiency of all the platforms for the

Morris-Lecar and Hodgkin-Huxley models. These models have a high compute-to-I/O

ratio. As expected, the per-core efficiency remains almost constant on all the platforms

for these models. Such models can make use of all the cores to achieve the best

performance. For these models, the I/O overhead is a lower fraction of the overall

runtime for these models.

 37

(a)

(b)

(c)

Figure 8.3. Variation in speed-up of the 1200×1200 network with the number of
threads for the (a) Sun UltraSPARC T2+, (b) Intel Xeon, and (c) Cell platforms.

 38

Figure 8.3 shows how the speed-up varies as the number of threads is increased

on the different platforms. On Sun, Intel and Cell platforms, the speed-up increases with

the number of threads for all the models. On the Cell platform, the performance gain with

the increase in threads is less or almost negligible for the Izhikevich and Wilson models.

This is primarily because the short runtimes of the code allow the extra DMAs from six

cores to cause contentions. Figure 8.4 shows how the overall DMA time varies with the

number of SPEs on the Cell processor based Sony PlayStation 3 for the 480 × 480

Wilson model. As expected, the computation time decreases with the increase in the

number of SPEs, but the time for DMA does not decrease. Thus, these models are limited

by DMA contentions.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

Number of SPU

R
u
n
 t
im

e
(m

s)

Total time

L1 DMA time

L1 computation time

Figure 8.4. Variation in the runtime of the 480 × 480 Wilson model on the Cell processor
based PlayStation 3.

 39

The Runge-Kutta approach provides a higher level of accuracy in resolving the

differential equations in the models, but requires significantly higher runtime. Table 3.1

compares the flops needed per neuron under two different approaches. Table 8.1 provides

the compute-to-I/O ratio for each of the models when using this model to evaluate

differential equations. As shown in Figure 8.5, the Runge-Kutta approach generally

provided a higher speed-up over the Euler approach. This is primarily due to a higher

compute-to-I/O ratio in this approach. The speed-up is over a PPE serial implementation.

0

20

40

60

80

100

120

140

160

180

200

Izhikevich Wilson Morris-Lecar Hodgkin-Huxley

S
pe

ed
up

Euler, Cell

Runge-Kutta, Cell

Euler, Intel

Runge-Kutta, Intel

Figure 8.5. Speed-up of the four models over the Cell PPU when using the Euler and
Runge-Kutta approaches.

 40

CHAPTER NINE

LARGE SCALE IMPLEMENTATION

The AFRL Cluster

The AFRL cluster utilized in this study consists of 336 Sony Playstation 3s (PS3s).

Each PS3 contains 256MB of RDRAM and a 40GB hard drive. As shown in Figure 9.1,

the 336 PS3s were grouped into 14 sub-clusters, with each sub-cluster consisting of 24

PS3s, a dual quad-core Xeon head node, and a high speed Ethernet switch. The sub-

clusters were connected through a central high speed Ethernet switch. The peak

performance of the cluster is 51.5 TF. The cluster uses openMPI 2.4.1 for communication

between the PS3s. Each PS3 was running on Fedora 7 equipped with IBM Cell SDK 3.1.

A detailed description of the cluster is presented in [40].

Switch

Switch for

Sub-cluster 1

Xeon

Head node

24 PS3s

Switch for

Sub-cluster 14

Xeon

Head node

24 PS3s

Switch

Switch for

Sub-cluster 1

Xeon

Head node

24 PS3s

Switch for

Sub-cluster 14

Xeon

Head node

24 PS3s

Figure 9.1. AFRL Cluster PS3 organization

 41

Implementation

 The testing phase of the network described in chapter five was implemented on

the PS3 cluster. Since all four spiking network models were implemented using the same

image recognition network structure, the parallelization approach and optimizations for

all the models were the same. All the neurons at any particular level of the model run in

parallel and are independent of each other. This allows the neurons of a given level to be

split evenly across all the available SPEs in the full set of PS3s used. Additionally, since

all the neurons utilize the same set of computations, vectorization was used to evaluate

four neurons at a time on each SPE.

Eleven networks with varying input image sizes were developed in order to

examine the performance and scalability of the four models on the AFRL cluster. Table

9.1 shows the input image size, number of level one and level two neurons and the

corresponding number of synapses for the networks. The number of output neurons is

equal to the number of training categories. In this study, all the networks are trained to

recognize the same set of input images (scaled to appropriate sizes). The set of 48, 24x24

images which were generated initially [15] were scaled linearly depending on the

required input image size.

 42

Table 9.1. Networks used for Cluster Implementation of Spiking Neural Network Models

Size of Input
Image

Level 1
neurons

Level 2
neurons

Synapses

1200 × 1200 1,440,000 48 69,120,000
2400 × 2400 5,760,000 48 276,480,000
3600 × 3600 12,960,000 48 622,080,000
4800 × 4800 23,040,000 48 1,105,920,000
8160 × 8160 66,585,600 48 3,196,108,800
8400 × 8400 70,560,000 48 3,386,880,000

12000 × 12000 144,000,000 48 6,912,000,000
14400 × 14400 207,360,000 48 9,953,280,000
16800 × 16800 282,240,000 48 13,547,520,000
18000 × 18000 324,000,000 48 15,552,000,000
20400 × 20400 416,160,000 48 19,975,680,000

Experimental Setup

 On the AFRL Cluster utilized, approximately 300 out of 336 PS3s were available

for use. The studies utilized only the PS3s on the cluster and did not run any code on the

Xeon headnodes. In the runs performed, no impact was seen in using the PS3s from

different sub-clusters on the overall runtime. This indicates that the MPI overhead for

using PS3s in different sub-clusters and within one sub-cluster were similar.

 43

Results

This section considers the scalability of the four spiking neural network models with

variations in the number of PS3s. All the runs utilized the two layer configuration

described in chapter five. Figure 9.2 shows the performance of the cluster with a fixed set

of neurons assigned to each PS3. Thus varying the number of PS3s would proportionately

change the overall number of neurons in the networks modeled. The results show that the

neurons per second throughput for the cluster scaled up almost linearly with the number

of PS3s. The four models have different flop counts per cycle. Additionally, as mentioned

in chapter three, the four models do not simulate the same type of neuron; thus the

number of simulation cycles needed for the four models to generate an inference is

different. These contribute to the difference in the neurons per second throughput of the

four models. The Izhikevich model required the least runtime and so had the highest

neurons per second throughput. The Hodgkin-Huxley model was at the other end of the

throughput scale.

1.E+05

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

0 50 100 150 200 250 300

PS3s

N
eu

ro
n

s/
se

c

Izhikevich

Wilson

Morris-Lecar

HH

Figure 9.2. Runtime for varying number of PS3 and network size for same number of
neurons/PS3 (1,440,000).

 44

 .

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300 350

No. of PS3

R
u

n
 t

im
e

(m
s)

Image Size=12000×12000

Image Size=8400×8400

Image Size=3600×3600

(a)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

No. of PS3

R
u

n
 t

im
e(

m
s)

Image Size=12000×12000

Image Size=8400×8400

Image Size=3600×3600

(b)

0

50

100

150

200

250

0 50 100 150 200 250 300 350

No. of PS3

R
u

n
 t

im
e

(m
s)

Image Size=12000×12000

Image Size=8400×8400

Image Size=3600×3600

(c)

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

No. of PS3

R
u

n
 t

im
e

(m
s)

Image Size=12000×12000

Image Size=8400×8400

Image Size=3600×3600

(d)

Figure 9.3. Runtime for the Spiking Neural Models for varying number of PS3s a)
Hodgkin-Huxley b) Morris c) Wilson and d) Izhikevich

The scalability of networks with fixed numbers of neurons was examined with

variations in the number of PS3s. Figure 9.3 shows the change in runtime for networks of

three sizes for the four spiking neuron models. The three networks examined had the

following number of level 1 neurons: 12,960,000 (3600×3600), 70,560,000 (8400×8400),

and 144,000,000 (12000×12000). The number of level 2 neurons was always fixed at 48.

 45

In all cases it is seen that the runtime decreases with the number of PS3s utilized. As

expected, smaller networks reached a saturation point with fewer PS3s than the larger

networks

The Cell processor contains eight SPEs, of which six are available on the PS3. The

effect of changing the number of SPEs on the overall runtime was investigated with

variations in the number of PS3s. Figure 9.4 shows the results of this study for the four

spiking neuron models. As expected, in both the Hodgkin-Huxley and Morris-Lecar

models (Figures 9.4 a and 9.4 b respectively), the runtime decreases proportionately with

the number of SPEs utilized. This indicates that these two models were able take full

advantage of all the SPEs available on the PS3s.

As shown in Figures 9.4 c and 9.4 d, the Wilson and Izhikevich models respectively

reach saturation points at three SPEs – there is no significant improvement in

performance by increasing the number of SPEs utilized. Chapter eight discusses this issue

in detail. This is primarily due to limitations in the DMA bandwidth of the SPEs. A

similar DMA saturation effect is seen in [38] [39]. Thus with these two models, it may be

useful to run other (non-memory intensive) tasks on three of the SPEs on each Cell

processor in the cluster.

 46

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6

No. of SPU/PS3

R
u

n
 t

im
e

(m
s)

Image Size=7200×7200, PS3=201

Image Size=8160×8160, PS3=321

Image Size=2400×2400, PS3=51

(a)

0

50

100

150

200

250

300

350

1 2 3 4 5 6

No.of SPU/PS3

R
u

n
 t

im
e

(m
s)

Image Size=7200×7200, PS3=201

Image Size=8160×8160, PS3=321

Image Size=2400×2400, PS3=51

(b)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

No. of SPU/PS3

R
u

n
 t

im
e

(m
s)

Image Size=7200×7200, PS3=201

Image Size=8160×8160, PS3=321

Image Size=2400×2400, PS3=51

(c)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

No. of SPU/PS3

R
u

n
 t

im
e

(m
s)

Image Size=7200×7200, PS3=201

Image Size=8160×8160, PS3=321

Image Size=2400×2400, PS3=51

(d)

Figure 9.4. Runtimes of the Spiking Neural Models with varying number of SPEs on
the PS3s a) Hodgkin-Huxley b) Morris-Lecar c) Wilson d) Izhikevich

 47

Biological Relevance

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Number of synapses (x1E8)

Number ofl neurons (x1E7)

Figure 9.5. Maximum neurons and synapses processed for varying number of PS3s

The human cortex contains approximately 1011 neurons [23] and 1.5×1014 synapses

whereas a mouse cortex has 1.6×107 neurons and 1.6×1011 synapses [17]. Figure 9.5

shows the maximum number of neurons and synapses that were modeled with the spiking

network models for varying numbers of PS3s. With 300 PS3s, up to 4.16×108 neurons

and 2×1010 synapses were modeled. Table 9.2 summarizes these results.

Table 9.2. Components of different systems

System Neurons Synapses
Human cortex 1011 1.5×1014
Mouse cortex 1.6×107 1.6×1011
Spiking neuron models 4.16×108 2×1010

Although the number of neurons (or equivalent neurons) modeled is close to

biological scales, it is important to note that several biological properties were not

captured in the models implemented. The models implemented considered only the

“recognition phase”, and thus did not model spike-timing-dependent plasticity (STDP).

 48

Additionally, the two layer spiking network models were far removed from the highly

interconnected neural structure seen in the cortex. However the results do indicate that

large clusters of PS3s can provide a good platform for biological scale cortical models.

 49

CHAPTER TEN

CONCLUSION

An image recognition model was utilized to analyze the performance acceleration

of four spiking network models on modern multicore processors. The spiking network

models were parallelized using both data and thread level parallelism.

The results of this work show that modern multicore processors can provide

significant speed-ups for spiking neural network models. Results show that the

architectures scale well and provide significant speed-ups for models with high compute-

to-I/O ratio. The Sun UltraSPARC T2+ platform provided a lower performance

improvement than both the Cell and Intel Xeon processors. This is likely to be due to the

lack of SIMD operations on the Sun UltraSPARC T2+. Of the four models examined the

Hodgkin Huxley and Morris-Lecar models provided the highest speed-ups for the larger

models, while the Izhikevich and Wilson model provided the lowest speed-up. This was

due to the low compute-to-I/O ratio in the latter.

From the scaling study on the cluster, it can be seen that the 336 PS3 cluster

provides a highly economical, yet powerful, platform for neuromorphic simulations. The

system is capable of producing up to 50 TFlops. The four models under study were scaled

up on a cluster of 336 PS3s at the AFRL facility in Rome, NY. Results indicate that the

models were fully scalable across the cluster. Additionally, two of the four models were

scalable across the six SPEs available on each Cell processor in the cluster.

The largest spiking network model implemented contained 4.16×108 neurons and

2×1010 synapses. Given that the human brain contains about 1011 neurons, this is a large

 50

number of components that the cluster was capable of modeling. As a simplistic

comparison, image recognition (for the largest image size tested) required about 227ms in

the spiking network, and about 100ms in the human brain.

In a recent study [2], a 32,768 processor IBM BlueGene supercomputer was able

to simulate a rat scale cortex (55×106 neurons and 4.42×1011 synapses) at near real time.

This model did implement learning and was more biologically accurate than the models

implemented in the study. However the cost of the BlueGene system is significantly

higher (approximately 2-3 orders more) than the system we utilized. The AFRL cluster

cost $337k, of which the PS3s cost about $133k. Since we were able to model a similar

scale cortical system (although our model was much simpler) it indicates that a cluster of

PS3s can be an economical platform for simulating large scale neuromorphic models.

It is important to note that the networks implemented are extremely simplistic.

Possible future work in this area could be to examine implementations of more

biologically realistic networks and include learning in the implementations. Additionally,

the application of similar large cortical models to different domains could be examined.

Also, the effect of various compilers on the performance of the models on each of the

architectures could be studied. In particular, the effect of icc compiler on the performance

of the Intel architectures could be investigated for each of the models.

 51

REFERENCES

[1] T. Dean, “A Computational Model of the Cerebral Cortex,” Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), pp. 938-943,
2005.

[2] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg, and A. Lansner,

“Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer,”
IBM Journal of Research and Development, 52(1-2), 31–41, Jan.-Mar. 2008.

[3] E.Izhikevich, “Which Model to Use for Cortical Spiking Neurons?” IEEE

Transactions on Neural Networks, 15(5), 1063-1070, 2004.

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current

and application to conduction and excitation in nerve,” Journal of Physiology, 117,
500–544, 1952.

[5] E. M. Izhikevich, “Simple Model of Spiking Neurons,” IEEE Transactions on

Neural Networks, vol. 14, no. 6, pp. 1569-1572, November, 2003.

[6] H. R. Wilson, “Simplified dynamics of human and mammalian neocortical neurons,”

J. Theor. Biol., vol. 200, pp. 375–388, 1999.

[7] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,”

Biophys. J., vol. 35, pp. 193–213, 1981.

[8] A. Gupta, L. Long, “Character Recognition using Spiking Neural Networks,”

International Joint Conference on Neural Networks, Aug. 2007.

[9] A. Delorme and S. Thorpe, “Face processing using one spike per neuron: resistance

to image degradation,” Neural Networks, vol. 14, pp. 795–804, 2001,

[10] Y. Dan and M. Poo, “Spike time dependent plasticity of neural circuits,” Neuron,

vol. 44, pp. 23–30, 2004.

[11] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.

Yamazaki, “Synergistic Processing in Cell’s Multicore Architecture,” IEEE Micro,
26(2), 10–24, Mar. 2006.

[12] Sun Microsystems, “UltraSPARC T2™ Supplement to the UltraSPARC

Architecture 2007”, http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-
current-draft-HP-EXT.pdf, 2007.

 52

[13] J. Rickman, “Roadrunner supercomputer puts research at a new scale,” Jun. 2008,
http://www.lanl.gov/news/index.php/fuseaction/home.story/story_id/13602.

[14] T. M. Taha, P. Yalamanchili, M. A. Bhuiyan, R. Jalasutram, and S. Mohan,

“Parallelizing Two Classes of neuromorphic Models on the Cell Multicore
Architecture,” to be presented at the International Joint Conference on Neural
Network, Atlanta, Georgia, June 2009.

[15] M. A. Bhuiyan, R. Jalasutram, and T. M. Taha, “Character recognition with two

spiking neural network models on multicore architectures,” to be presented at the
IEEE Symposium on Computational Intelligence for Multimedia Signal and Vision
Processing, Nashville, Tennessee, March 2009.

[16] A. Delorme and S. J. Thorpe, “SpikeNET: an event-driven simulation package for

modelling large networks of spiking neurons,” Network-computation in neural
systems, 14(4), 613–627, Nov. 2003.

[17] C. Johansson and A. Lansner, “Towards Cortex Sized Artificial Neural Systems,”

Neural Networks, 20(1), 48–61, Jan. 2007.

[18] A. R. Baig, “Spatial-temporal artificial neurons applied to online cursive handwritten

character recognition,” in European Symposium on Artificial Neural Networks, pp.
561–566, April 2004.

[19] C. Panchev and S. Wermter “Temporal sequence detection with spiking neurons:

towards recognizing robot language instructions,” Connect. Sci., 18(1): 1-22, 2006.

[20] D. V. Buonomano and M. M. Merzenich, “A neural network model of temporal code

generation and position invariant pattern recognition,” Neural Computation, vol. 11,
pp. 103–116, 1999.

[21] T. Ichishita, R. Fujii, “Performance evaluation of a temporal sequence learning

spiking neural network”, Proceedings of the 7th IEEE International Conference on
Computer and Information Technology, Oct. 2007.

[22] K-Team, Inc. Online Available: http://www.k-team.com/

[23] H. Markram, “The Blue Brain Project,” Nature Reviews Neuroscience, 7, 153–160,

2006.

[24] W. Rall, “Branching dendritic trees and motoneuron membrane resistivity,”

Experimental Neurology, 1, 503–532, 1959.

 53

[25] R. Ananthanarayanan and D. Modha, “Anatomy of a Cortical Simulator,”
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Supercomputing 2007), Reno, NV, November
2007.

[26] E. Izhikevich and G. Edelman, "Large-Scale Model of Mammalian Thalamocortical

Systems," Proceedings of the National Academy of Sciences, 105(9), 3593–3598,
Mar. 2008.

[27] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, “Scientific

Computing Kernels on the Cell Processor”, International Journal of Parallel
Programming (IJPP), Vol. 35, No. 3, 2007.

[28] Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tydlitát, A. K. Nanda, “Speech

recognition systems on the Cell Broadband Engine processor”, IBM Journal of
Research and Development, Volume 51 Issue 5, 2007

[29] Scarpazza, D.P.; Villa, O.; Petrini, F. “Efficient Breadth-First Search on the Cell/BE

Processor”, IEEE Transactions on Parallel and Distributed Systems, Volume
19, Issue 10, Page(s):1381 – 1395, Oct. 2008.

[30] S. Williams et al., Optimization of sparse matrix–vector multiplication on emerging

multicore platforms, Parallel Comput. (2009), doi:10.1016/ j.parco.12.006, 2008

[31] M. M. Khan, D. R. Lester, Luis A. Plana, Alexander D. Rast, X. Jin, E. Painkras,

Stephen B. Furber, “SpiNNaker: Mapping neural networks onto a massively-parallel
chip multiprocessor,” IJCNN 2008, pp. 2849-2856, June 2008

[32] E. M. Izhikevich., “Dynamical Systems in Neuroscience”, MIT press, Cambridge,

Massachusetts, 2007

[33] W. Gerstner, W. Kistler, “Spiking Neuron Models, Single neurons, Populations,

Plasticity,” Cambridge University Press, 2002

[34] A. Buttari, J. Dongarra, and J. Kurzak, “Limitations of the Playstation 3 for High

Performance Cluster Computing,” University of Tennessee Computer Science
Technical Report, CS-07-594, May 2007.

[35] A. N. Burkitt, “A review of the integrate-and-fire neuron model: II. Inhomogeneous

synaptic input and network properties,” Biological Cybernetics, Vol. 95, Number 2,
pp 97-112, August, 2006

 54

[36] Y. Xia and V. Prasanna, “Parallel Exact Inference on the Cell Broadband engine
processor,” Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
2008.

[37] http://webuser.hs-furtwangen.de/~dersch/libsimdmath.pdf

[38] David Krolak, “Unleashing the Cell Broadband Engine Processor, The Element

Interconnect Bus”, IBM white paper,
http://www.ibm.com/developerworks/power/library/pa-fpfeib/

[39] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J.

Shalf, K. Yelick, "Stencil Computation Optimization and Autotuning on State-of-
the-Art Multicore Architectures", in Supercomputing (SC), 2008.

[40] Richard Linderman, “Early experiences with algorithm optimizations on clusters of

playstation 3’s,” DoD HPCMP Users Group Conference, Jul. 2008.

[41] Samuel Williams, Jonas Carter, Leonid Oliker, John Shalf, Katherine Yelick,

“Optimization of a lattice Boltzmann computation on state-of-the-art multicore
platforms”, Journal of Parallel Distributed Computing, 2009.

[42] Q. Wu, P. Mukre, R. Linderman, T. Renz, D. Burns, M. Moore and Qinru Qiu,

“Performance optimization for pattern recognition using Associative Neural
Memory,” Proceedings of the 2008 IEEE International Conference on Multimedia &
Expo, Jun. 2008.

	Clemson University
	TigerPrints
	8-2009

	Acceleration of Spiking Neural Networks on Multicore Architectures
	Rommel Jalasutram
	Recommended Citation

	Microsoft Word - $ASQ23726_supp_ECD494C0-7859-11DE-8666-DF5FF0E6BF1D.doc

