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Abstract

We consider nonparametric estimation of a smooth regression function of one variable. In

practice it is quite popular to use the data to select one global smoothing parameter. Such global

selection procedures cannot sufficiently account for local sparseness of the covariate nor can they

adapt to local curvature of the regression function. We propose a new method to select local

smoothing parameters which takes into account sparseness and adapts to local curvature of the

regression function. A Bayesian method allows the smoothing parameter to adapt to the local

sparseness of the covariate and provides the basis for a local cross validation procedure which adjusts

smoothing according to local curvature of the regression function. Simulation evidence indicates that

the method can result in significant reduction of both point-wise mean squared error and integrated

mean squared error of the estimators.
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Chapter 1

Introduction

The kernel method for regression estimation has become a standard statistical technique in

many areas of research. It is well known that the performance of kernel methods depends crucially on

the smoothing parameter (the bandwidth). This fact motivated data-driven bandwidth procedures

appearing in the literature. Among these, we mention three: least square cross validation (LSCV)

proposed by Craven and Wahba(1979); plug-in methods(e.g., see Hardle and Bowman (1988)); and

AIC based methods (e.g., see Akaike (1973)).

However, in many situations a single fixed bandwidth does not generally provide a good

estimator of a regression function. One reason for this is that the amount of smoothing needed for

estimating a function where the data is dense is different from that required to estimate a function

where the data is sparse. Besides that, a bandwidth chosen to optimally estimate the function at

or near its local mode may differ from the bandwidth that is required to get an accurate estimate

of the regression function where the function is flat. In order to overcome the disadvantages of

a fixed bandwidth it is necessary to allow the bandwidth to somehow adapt locally. Apart from

the direct plug-in method which requires the knowledge of the unknown mean function, very few

data based methods to select local bandwidths have been proposed. Fan et al (1996) proposed an

adaptive procedure to get local bandwidths. Their technique uses a plug-in approach coupled with

an arbitrary approximation scheme to develop a bandwidth as a function of the point of estimation.

However, as the authors mentioned, their procedure does not work well for moderate sample sizes.

To allow a smoothing method to adapt to sparseness in the data, the choice of a local

smoothing parameter should depend on the design density of the covariate. The local sparseness
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of the covariate would be reflected by a data based local bandwidth for a design density estimator.

Gangopadhyay and Cheung (2002) and Kulasekera and Padgett (2006) proposed adaptive Bayesian

bandwidth selection for density estimation. They treat the bandwidth as a scale parameter, and use

a prior distribution for that to compensate for the lack of information in moderate to small sample

sizes. As a result, their approaches perform well for moderate sample sizes.

In this article, we combine Bayesian estimation of a bandwidth for the design density with

a local cross-validation to get local bandwidths that enhance nonparametric regression estimator

performance. We describe our procedures for local linear regression, but the method can be adapted

to other smoothed estimators of regression functions. We show that judicious choices of prior

parameters lead to local bandwidths tending to zero as sample size increases, and thus the estimator

using bandwidths from our procedure is consistent.

This article is structured as follows. In section 2 we develop the Bayesian cross-validation

procedure. Results obtained from a simulation study following by a real data example are provided

in Section 3. All the proofs are presented in the Appendix.
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Chapter 2

Adaptive bandwidth selection for

kernel estimation of regression

We describe the development of the Bayesian cross-validation approach for kernel regression

estimators and discuss asymptotic properties of local smoothing parameters from our procedure.

We begin by developing some notation. Let (Xi, Yi), i = 1, 2, ..., n be n independent and

identically distributed (i.i.d.) bivariate observations with a joint density function f(·, ·). Let the

marginal density of X be f(·). Let K be a classical second order kernel function, that is

(1)
∫∞
−∞K(u)du = 1

(2)
∫∞
−∞ uK(u)du = 0

(3) M2 =
∫∞
−∞ u2K(u)du 6= 0

(4) V =
∫∞
−∞K(u)2du <∞

Our goal is to estimate the regression function, which is the conditional expectation

m(x) = E[Y |X = x] (2.1)

(assuming f(x) 6= 0). Then the model can be written as :

Y = m(X) + ε

3



where E[ε|X] = 0, V [ε|X] = σ2. In this article, we consider the local linear estimator of m(x) given

by

m̂h(x) =
1

nh(x)

n∑
i=1

K

(
x−Xi

h(x)

)
M2n(x)− (x−Xih(x) )M1n(x)

M2n(x)M0n(x)−M2
1n(x)

Yi (2.2)

where Mjn(x) = (h(x)n)−1
∑n
i=1K

(
x−Xi
h(x)

)(
x−Xi
h(x)

)j
, j = 0, 1, 2; and h(x) is the bandwidth to be

selected at x.

Our aim is to select a bandwidth that depends on the data. Noticing that the amount of

smoothing when X is dense is different from that when X is sparse, we initially get an adaptive

smoothing window based on the X observations, using a Bayesian approach (see Kulasekera and

Padgett, 2006 ). This window will be used to conduct a local cross-validation resulting in h(x) in

(2). The reason for a local cross-validation is to accommodate different mean functions with the

same design density for X.

2.1 Bayesian Smoothing window

Here we develop an initial bandwidth which adapts to the local sparseness of data. Define

fh(x) = f ∗Kh(x) =
∫
f(u)Kh(x− u)du = E[Kh(X − x)] (2.3)

where Kh(x) = 1
hK(xh )

Now, considering h as a parameter for fh, for a prior density π(h), the posterior distribution

of h is

π(h|x) =
fh(x)π(h)∫
fh(x)π(h)dh

(2.4)

Since fh(x) is unknown, we can not compute π(h|x) directly. However, it is natural to use the

sample mean

f̂h(x) =
1
n

n∑
i=1

Kh(Xi − x)

to estimate fh(x). Substituting this in (4), we get

π̂(h|X1, ..., Xn, x) =
f̂h(x)π(h)∫
f̂h(x)π(h)dh

(2.5)
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Then, for the squared-error loss, the best local bandwidth h = h(x) is given by the posterior mean

h∗(x) =
∫
hπ̂(h|X1, ..., Xn, x)dh (2.6)

Note that with this approach, the posterior is a function of h only and, with a well-selected prior and

a kernel, π(h|X1, ...Xn, x) and h∗(x) can be explicitly obtained. Although this approach works in

principal for any kernel and the most suitable prior (preferably a conjugate prior), for the remainder

of this article we shall use a normal kernel and an inverted-gamma prior due to the algebraic

simplicity. In particular for a normal kernel

K(u) =
1√
2π
e−u

2/2,−∞ < u <∞

coupled with an inverted-Gamma prior,

π(h) =
2

Γ(α)βαh2α+1
exp{ −1

βh2
}, α > 0, β > 0, h > 0

we get

π̂(h|X1, ..., Xn, x) =
∑n
i=1(1/h2α+2)exp{−(1/h2)((Xi − x)2/2 + 1/β)}∑n

i=1(Γ(α+ 1/2)/2){(Xi − x)2/2 + 1/β}

resulting in

h∗(x) =
Γ(α)√

2βΓ(α+ 1/2)

∑n
i=1{1/(β(Xi − x)2 + 2)}α∑n

i=1{1/(β(Xi − x)2 + 2)}α+1/2
(2.7)

The following theorem shows that if one picks the prior parameters in a suitable manner(fix

α and let β diverge with a proper rate as sample size increases) one can get a sequence of h∗(x) that

converges to zero almost surely, for every x.

Theorem 2.1.1 Let f(·) be continuous and bounded away from 0 at x . If α > 0 is fixed, β →∞,

and nβ−
1
2 →∞, as n→∞ then

h∗(x)→ 0

and

nh∗(x)→∞

with probability one, as n→∞

5



The proof of this Theorem is given in the Appendix.

Remark 2.1.1 The implementations of the Bayesian procedure requires a specification of parame-

ters α, and β for the prior distribution. From the proof of Theorem 2.1 in Appendix A, we can see

that the asymptotic rate of the Bayesian bandwidth h∗(x) is between [β−
1
2 , β−

α
4α+2 ]. Thus, if we let

α be sufficiently large and choose β between n
2
5 and n

4
5 , the Bayesian bandwidths converge to 0 with

rate close to that of the mean squared optimal bandwidths.

2.2 Local cross-validation

The above Bayesian bandwidth only considers the influence from the distribution of X.

However, in kernel regression estimation, the bandwidths must reflect the impact of the responses.

This motivates the following modifications of the Bayesian bandwidths to obtain the final bandwidths

to estimate the regression function.

Sincem(·) is continuous and our object is to estimatem(·) locally at x, we argue that only the

segment of observations in the neighborhood of x is vitally important. In particular, for estimating m

at x, we propose to conduct a cross-validation using observations falling in Ix = [x−h∗(x), x+h∗(x)]

only. The version of local CV in this context is developed as follows. First let

m̂−i(Xi) =
1

(n− 1)h

∑
j 6=i

K

(
Xi −Xj

h

)
M2i(Xi)− (Xi−Xjh )M1i(Xi)
M2i(Xi)M0i(Xi)−M2

1i(Xi)
Yj

and Mki(Xi) = ((n− 1)h)−1
∑
j 6=i

K

(
Xi −Xj

h

)(
Xi −Xj

h

)k
, k = 1, 2, 3

Now, let l(x) denotes the number of covariate values falling in Ix and let (X
′

i , Y
′

i ), i = 1, .., l(x)

denotes the corresponding observations. Now we define the locally cross-validation bandwidth h∗∗(x)

by

h∗∗(x) = arg

min
h

l(x)∑
i=1

(
Y
′

i − m̂−i(X
′

i)
)2

 (2.8)

Remark 2.2.1 Note that the bandwidth h∗∗(x) is selected from a set of candidate bandwidths when

minimizing the leave one out cross validation CV above. In global cross validation procedures this

set is usually taken as [n−1+η, n−η] for some small η > 0. Such cross validations produce bandwidths

of order n−1/5 with probability tending to 1 when the sample size is n (see Girard, 1998). Since the

6



number of observations contained in the interval Ix is of order nh∗(x) under reasonable conditions

on the density of X, h∗∗ above will be of order [nh∗(x)]−1/5. Thus, the proposed adaptive bandwidth

h∗∗ can achieve near asymptotic optimal rate for suitably chosen β in the prior.

7



Chapter 3

Numerical results

To illustrate the improvement of our Bayesian locally adaptive CV procedure over a few

existing methods, we conducted a Monte Carlo simulation. Implementation of our technique is

straightforward. However, there are two steps that we need to be careful. The first one is how to

choose the parameters α, β for the prior distribution. In our numerical work, we chose α = 100 and

β = n for small and moderate sample sizes. The second is the cross validation. Notice that one

needs at least three observations to do the local Cross-Validation for local linear estimators. Thus,

in practice, if l(x) is greater than 3, we can do the local cross-validation to modify the Bayesian

bandwidth h∗(x). For windows with less than 3 observations, we used the Bayesian bandwidth. Also

in practice, cross-validation is generally carried over a sequence of candidate bandwidths (h1, ..., hk).

In our simulations, the grid of h values for each x is given as h∗(x)

l̂(x)
, 2h∗(x)

l̂(x)
, ..., h∗(x), where l̂(x) =⌊

l(x)
2

⌋
, which equally spaces the initial Bayesian window according to the number of observations

falling in the window.

The performance of local linear estimator using different bandwidth selection procedures is

related to the sample size, the distribution of X, the true regression function, and the true standard

deviation of the errors. Although only few selected results are reported here for the sake of brevity,

the following settings of these factors were examined, with 1000 replications for each set of factor

combination.

(a) sample size n= 25(small), 50(moderate)

(b) distributions of X: Uniform(0, 1), Normal(0.5, 0.25)

8



(c) regression functions

(i) m(x) = 1− 48x+ 218x2− 315x3 + 145x4 (a polynomial regression function with a trend)

(ii) m(x) = sin(5πx) ( a function without much fine structure )

(iii) m(x) = 10exp(−10x) ( a function with a trend but no fine structure )

(iv) m(x) = x+ 0.5exp{−50(x− 0.5)2} ( a function with different degrees of curvature )

(v) m(x) = 0.3exp{−64(x− 0.25)2}+ 0.7exp{−256(x− 0.75)2)} ( a function with noticeably

different curvature)

(d) error standard deviation σ=0.2, 0.3

Most of the regression functions above were used in earlier studies (Ruppert et al. 1995;

Hart and Yi, 1996; Herrmann 1997; Eubank, 1999)–. We used R (Ihaka and Gentlemen, 1996) for all

computations. We compare the local linear estimators m̂l(x) using Bayes type local bandwidth to

local linear estimators m̂g(x) using global CV bandwidth by comparing the estimated MSE (ESMSE)

of each estimator based on the simulations. Specifically, we consider logged ratio

r(x) = log
(
ESMSE(m̂g(x))
ESMSE(m̂l(x))

)

and the estimated integrated MSE

EIMSE(m̂) =
1
p

p∑
i=1

ESMSE(m̂(xi))

over (0, 1), since (0, 1) contains more than 95% observations for both design densities in our simula-

tion study. Here, ESMSE(m̂(x)) =
N∑
i=1

(m̂(x)−m(x))2/N at any given x for any estimator m̂(x) of

m(x) with N being the number of simulations, xi’s i = 1, . . . , p are equally spaced points in (0, 1).

We chose p = 100 for our simulations.

Table 3.1: EIMSE for m(x) = 1− 48x+ 218x2 − 315x3 + 145x4, σ = 0.3
n Design Density Bayesian Local CV Global CV
25 Uniform 0.1551595 0.4486760

Normal 0.8738112 4.5184210
50 Uniform 0.0437532 0.0466022

Normal 0.2342103 1.1904470

9
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Figure 3.1: m(x) = 1− 48x+ 218x2 − 315x3 + 145x4, σ = 0.3

Table 3.1-3.2 and Figures 3.1-3.2 give some results of two typical mean functions: (1) m(x) =

1− 48x+ 218x2 − 315x3 + 145x4, (2) m(x) = 0.3exp{−64(x− 0.25)2}+ 0.7exp{−256(x− 0.75)2)}

. The results with other mean functions and parameter combinations were very similar, and are

presented in Appendix B. Figure 3.1 gives the logged ratio r(x) for the regression function m(x) =

1−48x+218x2−315x3 +145x4 with σ = 0.3, where the global CV works well for small and moderate

sample sizes with the uniform design. As shown in Figure 3.1, our procedure outperforms the global

CV over a large proportion of the interval even for the uniform design, when the sample size is small.

Although it does not outperform the global CV everywhere for the uniform design when the sample

size is moderate, it is still preferable since the integrated MSE (MSE) of m̂(x) was less than that

of m̂n(x) ( see Table 3.1). As for the normal design, the Bayesian local CV dominates the global

CV nearly everywhere, especially where the data is sparse. Figure 1 has shown that our method

not only works well for those regression functions on which the global CV has a good performance;

moreover, it gives a much better estimation when the design is not uniform. This phenomenon is

simply a manifestation of the fact that our technique takes the sparseness of design into account

and adapts to the design density.

Figure 3.2 shows the logged ratio r(x) for the mean function m(x) = 0.3exp{−64(x −

0.25)2} + 0.7exp{−256(x − 0.75)2)} with σ = 0.2. This mean function has two modes and the

10
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Figure 3.2: m(x) = 0.3exp{−64(x− 0.25)2}+ 0.7exp{−256(x− 0.75)2)}, σ = 0.2

Table 3.2: EIMSE for m(x) = 0.3exp{−64(x− 0.25)2}+ 0.7exp{−256(x− 0.75)2)}, σ = 0.2
n Design Density Bayesian Local CV Global CV
25 Uniform 0.0283580 0.0521505

Normal 0.0553061 0.4777479
50 Uniform 0.0135138 0.0153065

Normal 0.0199792 0.1460045

degrees of its curvature are noticeably different, and hence the global CV performs relatively poorly,

especially for areas where design density is sparse. Figure 2 clearly indicates that our Bayesian local

cross-validation selection is better than the global CV method for small and moderate sample sizes.

This fact is expected since our procedure adapts to the mean function and density design locally.

For The improvement of our method is not significant for sample size 200 or larger, since the global

CV performs well with a large sample size.

In addition to the above, we examined the performance of our method against the improved

AIC method (AICc) proposed by Hurvich et al. (1998) and the adaptive bandwidth selection men-

tioned in Fan et al. (1996). Fan et al. (1996) explicitly discussed the smoothing parameter selection

for density estimation only. They however suggested that their method, although not performing

well for small to moderate sample sizes, can be extended to regression estimation. Following their

approach, we used the same spline approximation to the optimal bandwidth function h(x) where the

11



proposed cross-validation over a large set of cubic spline interpolant of prechosen knot-bandwidth

pairs {(a1, h1), . . . , (ap, hp)}(in their notation) was conducted by minimizing
∑n
i=1(m̂ĥi

(Xi) − Yi)2

where m̂ĥi
(Xi) is the estimated regression function for a bandwidth calculated at Xi for each spline

function. The knots (a1, . . . ap) for our simulation were chosen to be equispaced on [0, 1] with p = 6.

We chose four values {0.5ĥG, ĥG, 1.5ĥG, 2ĥG} for each coordinate hi, i = 1, . . . , p where ĥG was the

global cross-validation bandwidth.

The MSE performance of local linear estimators with Fan et al. type bandwidths and those

with AICc were both inferior to our proposed method. We just provided the IEMSE for these local

linear estimators using these bandwidths in Table 3.

Table 3.3: EIMSE for m(x) = x+ 0.5exp{−50(x− 0.5)2} , σ = 0.3
n Design Density Bayesian Local CV Fan et al. type bandwidth AICc
50 Uniform 0.0173432 0.0459627 8.9721330

Normal 0.0260417 0.0606059 0.8616309

The use of this Bayesian local cross-validation procedure is not restricted to local linear

estimator. We examine the Nadaraya-Watson estimator proposed by Nadaraya (1964) and Watson

(1964) with our local bandwidths and obtained a similar performance to above.

To illustrate the use of the proposed idea, we now apply the proposed methodology to

analyze a real data set. This data set pertains to an exhaust study using ethanol as the fuel in

an experimental engine (Cleveland 1993). The experiment is to determine the dependency of the

concentration of oxides of nitrogen, the major air pollutants, on various engine settings. In particular,

the response variable Y is the concentration of nitric oxide plus the concentration of nitrogen dioxide

in the exhaust of an experimental engine when the engine is set at different equivalence ratios (the

amount of ethanol) x. We modeled Y with x using the local linear estimator. The Bayesian local

CV estimated regrssion function for several pairs of prior parameters along with the global CV type

estimator are presented in Figure 3.3.
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Chapter 4

Conclusions

The Bayesian local cross-validation procedure for smoothing parameter selection proposed

here has several advantages as seen in our simulations. The finite sample dominance of these es-

timators coupled with reasonable asymptotic properties make such bandwidths highly desirable.

However, there are several issues in the Bayesian approach that need further investigation. These

include the examination of the Bayes criteria couple with other smoothing parameter selection cri-

terions, such as AIC, AICc.
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Appendix A Proof of Theorem 2.1

Here, we show h∗(x)→ 0 and nh∗(x)→∞, as n→∞.

Since β diverges as sample size increases, we write β as βn. Choose εn, such that (1) εn →∞,

and (2) εn√
βn
→ 0, as n→∞. Since Γ(α)

Γ(α+ 1
2 )

is a constant for fixed α, (7) can be rewritten as

h∗(x) = Cα

∑n
i=1

(
1

βn(Xi−x)2+2

)α
√
βn
∑n
i=1

(
1

βn(Xi−x)2+2

)α+ 1
2

(1)

where Cα = Γ(α)√
2Γ(α+ 1

2 )
. Consider the numerator of (9),

n∑
i=1

(
1

βn (Xi − x)2 + 2

)α
=

n∑
i=1

I

[
|Xi − x| ≤

εn√
βn

](
1

βn (Xi − x)2 + 2

)α
+

n∑
i=1

I

[
|Xi − x| ≥

εn√
βn

](
1

βn (Xi − x)2 + 2

)α
<

n∑
i=1

I

[
|Xi − x| ≤

εn√
βn

](
1

βn (Xi − x)2 + 2

)α
+ n

(
1

ε2n + 2

)α
= n

εn√
βn

n∑
i=1

1

n εn√
βn

I

[
|Xi − x| ≤

εn√
βn

](
1

βn(Xi − x)2 + 2

)α
+ n

(
1

ε2n + 2

)α
≤ n εn√

βn

n∑
i=1

1

n εn√
βn

I

[
|Xi − x| ≤

εn√
βn

](
1

2

)α
+ n

(
1

ε2n + 2

)α

Consider the denominator of (9)

√
βn

n∑
i=1

(
1

βn (Xi − x)2 + 2

)α+ 1
2

≥
√
βn

n∑
i=1

I

[
|Xi − x| ≤

√
εn√
βn

](
1

βn(Xi − x)2 + 2

)α+ 1
2

= n
√
εn

n∑
i=1

1

n
√
εn√
βn

I

[
|Xi − x| ≤

√
εn√
βn

](
1

βn(Xi − x)2 + 2

)α+ 1
2

≥ n
√
εn

n∑
i=1

1

n
√
εn√
βn

I

[
|Xi − x| ≤

√
εn√
βn

](
1

εn + 2

)α+ 1
2

Let f1n(x) denotes
∑n
i=1

√
βn
nεn

I
[
|Xi − x| ≤ εn√

βn

]
, and let f2n(x) denotes

∑n
i=1

√
βn

n
√
εn
I
[
|Xi − x| ≤

√
εn√
βn

]
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then, combing two inequalities above, we get

∑n
i=1

(
1

βn(Xi−x)2+2

)α
√
βn
∑n
i=1

(
1

βn(Xi−x)2+2

)α+ 1
2
≤
n εn√

βn
f1n(x)

(
1
2

)α
+ n

(
1

ε2n+2

)α
n
√
εnf2n(x)

(
1

εn+2

)α+ 1
2

=

√
εn√
βn

f1n(x)
(

1
2

)α
f2n(x)

(
1

εn+2

)α+ 1
2

+

(
1

ε2n+2

)α
√
εnf2n(x)

(
1

εn+2

)α+ 1
2

Since both
∑∞
n=1exp(−γn( εn√

βn
)2) and

∑∞
n=1exp(−γn(

√
εn√
βn

)2) converge for every γ > 0 with our

choices of εn, βn, then

supx|f1n(x)− f(x)| a.s→ 0, supx|f2n(x)− f(x)| a.s→ 0

as n→∞; by Theorem 2.1.3 Prakasa Rao (1983).

Notice that
√
εn →∞ and

√
εn√
βn
→ 0, as n→∞, then

∑n
i=1

(
1

βn(Xi−x)2+2

)α
√
βn
∑n
i=1

(
1

βn(Xi−x)2+2

)α+ 1
2
≤
(

1

2

)α √εn√
βn
C1

f(x)

f(x)
(

1
εn+2

)α+ 1
2

+ C2

(
1

ε2n+2

)α
√
εnf(x)

(
1

εn+2

)α+ 1
2

≤
(

1

2

)α
C1

(√
εn(εn + 2)α+ 1

2
√
βn

)
+ C2

(
(εn + 2)α+ 1

2

f(x)
√
εn(ε2n + 2)α

)

≤ C3

(
εα+1
n√
βn

+
1

εαn

)

with probability one, as n→∞, where C1, C2, C3 are constant. Hence, for sufficiently large n

h∗(x) ≤ C
(
εα+1
n√
βn

+
1

εαn

)

almost surely, where some C. The optimal rate of εn to minimize the right hand side is β
1

2(2α+1)
n . Then,

h∗(x) ≤ Cβ
− α

2(2α+1)
n

Also, since
n∑
i=1

(
1

βn(Xi − x)2 + 2

)α
≥

n∑
i=1

(
1

βn(Xi − x)2 + 2

)α+ 1
2

we have

h∗(x) ≥ Cαβ
− 1

2
n

Therefore

Cαβ
− 1

2
n ≤ h∗(x) ≤ Cβ

− α
2(2α+1)

n (2)
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By the assumptions, βn → ∞ and nβ
− 1

2
n → ∞, we get h∗(x) → 0 and nh∗(x) → ∞, as n → ∞. Hence,

h∗(x) is a proper bandwidth of regression estimator for every x.
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Appendix B More numerical results

More figures about our simulation study are presented here. These figures show the improvement

of our procedure convincingly.
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Figure 1: m(x) = 1− 48x+ 218x2 − 315x3 + 145x4, σ = 0.2
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Figure 2: m(x) = 0.3exp{−64(x− 0.25)2}+ 0.7exp{−256(x− 0.75)2)}, σ = 0.3
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Figure 3: m(x) = x+ 0.5exp{−50(x− 0.5)2}, σ = 0.2
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Figure 4: m(x) = x+ 0.5exp{−50(x− 0.5)2}, σ = 0.3
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Figure 5: m(x) = sin(5πx) , σ = 0.2
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Figure 6: m(x) = sin(5πx) , σ = 0.3
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Figure 7: m(x) = 10exp(−10x), σ = 0.2
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Figure 8: m(x) = 10exp(−10x) , σ = 0.3
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