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ABSTRACT 

Gossypol is a naturally occurring, highly colored yellow pigment indigenous to 

the small intercellular pigment glands of the cotton plant genus Gossypium, which is 

proposed to be part of plant’s defense system. Gossypol is characterized by wide 

contraceptive, antiviral, anticancer and antifungal properties. However, the relatively 

high toxicity of gossypol precludes its application in medical therapy. For this reason 

the syntheses and tests of gossypol derivatives, have been tried to enable their 

application as drugs. In our study, gossypol based methylation, glycosylation and 

nanoconjugate reactions were explored. The gossypol derivatives were all fully 

characterized by NMR, MS, FT-IR, UV spectrometry, HPLC and X-ray 

crystallography. Firstly, hexamethyl ethers of gossypol were synthesized, particularly, 

existence of four tautomers of gossypol tetramethyl ethers were chromatographically 

separated and confirmed. Gossypol exhibited the strongest antioxidant activity, while 

its ethers only remained partial antioxidant activity due to their conjugated 

naphthalene structure preserved in the derivatives. The result of alpha-amylase 

inhibitory activities of gossypol and its methylated ethers showed that the gossypol’s 

methylated ethers were the alpha-amylase inhibitors, while gossypol was the 

alpha-amylase activator. Furthermore, it was found that anticancer activity of the 

gossypol and its methylated ethers depended on the degree of methylation level of 

gossypol. Secondly, novel glycosidic gossypol analogues were obtained by the 

ultrasound-assisted reaction of potassium salt of gossypol with 3, 4, 
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6-tetra-O-acetyl-α-D-glucopyranosyl bromide under phase transfer catalytic condition. 

The evaluation of anticancer, antitrypanosomal activities as well as cytotoxicity of 

those novel glycosidic gossypol derivatives implied that 6, 7'-gossypol diglycosidic 

tetraacetate (compound 8) could be developed into a potential pharmaceutical 

candidate in the treatment of cancer since it exhibited powerful cancer cells inhibition 

with significantly low cytotoxicity. In addition, 7, 7'-gossypol diglycosidic 

tetraacetate (compound 7) and 6, 7'- gossypol diglycosidic tetraacetate (compound 8) 

possess antitrypanosomal activity with LD50 value of 2.12 and 2.44 µM, respectively. 

Finally, gossypol reacted with fullerene [60] in the presence of sarcosine through the 

Prato reaction, resulting in some unexpected N-methylfulleropyrrolidines, and 

different products in variable yields were obtained when choosing toluene or 

chlorobenzene as reaction medium. During the reaction, gossypol decomposed into 

benzaldehyde which was successfully detected as a new intermediate. In an in vitro 

assay of NO radical induced apoptosis in 3T3L1 cells for the N-methyl-2, 

2-dimethylfulleropyrrolidine (compound 14) showed dose dependent and stronger 

radical scavenging activities than the parent fullerene.   
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CHAPTER 1  

LITERATURE REVIEW 

1.1 Introduction 

Gossypol is a yellowish pigment and natural toxin found in the seeds of cotton 

plants (various Gossypium species). Its dimeric, bis-naphthalene structures are 

derived from sesquiterpenes of the cadinane family. The cadinanes are formed in the 

biogenetic cascade from the bisabolane intermediate by a series of putative 1, 2-shifts 

and cyclization. Gossypol exists as two atropisomers due to restricted rotation about 

the biaryl bond (Jung and Fahey, 1983; Cane, 1999). 

 

 

 

 

 

Figure 1.1 Chemical structure of gossypol 

 

1.2 Discovery 

Gossypol was first isolated by Longmore in 1886 from soapstock obtained on 

refining cold pressed cottonseed oil. Later, Marchlewski purified the chemical in 1899 
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by precipitating it from an ether solution using acetic acid to produce gossypol acetic 

acid. After further isolation, the chemical was named gossypol because of its 

originality from the vegetative family species gossypium and its polyphenolic 

chemical nature. Although cottonseed is the most familiar and abundant source of 

gossypol, the chemical has also been found in the bark and flowers of the tropic tree, 

Thespesia popolinea, common to Africa, Asia and the Pacific Islands, and in certain 

the members of the family Malvaceae (Varol et al., 2009). Okra, one of the staples of 

New Orleans creole cooking, also is a member of the same family and was reported to 

contain gossypol in its seeds (Hron et al., 2007). However, further careful evaluation 

of the chemical by chromatographic methods revealed it was not gossypol, but a 

degradation product of a reaction of hydroxylated unsaturated fatty acid triglycerides 

with aniline used in the gossypol analysis (Hron et al., 2007). The chemical structure 

of gossypol was first derived in 1938 by Adams and his students, who did extensive 

studies on its properties and reactions, and published a series of articles about the 

determination of the structure (Adams and Geissman, 1938). Twenty years later, 

Edwards (1970) confirmed Adams’ structural formula by being the first to succeed in 

total synthesis of gossypol. Because of gossypol’s uniqueness and challenging 

chemistry, it has been studied by many researchers since its discovery. 

1.3 Initial research interest 

Gossypol in cotton plants can slow down the reproduction of the insects that eat 

cotton bolls and seeds. This compound can also affect reproduction of mammals 
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(Saluja, 1988). Pressed cake of cotton seeds, a byproduct of the cotton industry, is 

sometimes fed to livestocks with unintentional contraceptive effects. Nevertheless, the 

most interest in gossypol derives from its activity as a contraceptive in human males. 

For example, the effect of gossypol on human male fertility has been known in China 

for many years. In 1929, a study of couples who used crude cottonseed oil for cooking 

showed that they were smaller than average families. Later, researchers were 

convinced that the oil affected male fertility. Eventually researchers isolated the 

contraceptive compound gossypol from the cotton seed oil. This discovery led to large 

scale testing of gossypol as a male contraceptive in China during the 1970s, which 

involved over 8,000 men, and continued for over a decade. The researchers found that 

men taking a daily gossypol pill had reliable contraception, but without significant 

change in libido (Taylor et al., 1991). Meanwhile, the chemical gossypol was 

confirmed to be able to affect the maturation and motility of sperm through 

inactivation of the enzymes required for the sperm to fertilize the ova (Ueno et al., 

1988). The contraceptive effect appears to be associated with the (-)-isomer, while 

toxic effects (cardiac toxicity in cattle) appear to be associated with the (+)-isomer 

(Heywood et al., 1988). However, the studies revealed two serious flaws: disruption 

of potassium uptake and incomplete reversibility. The large-scale trials of gossypol in 

Chinese men showed an abnormally high rate of hypokalemia among subjects, 

varying from 1-10% (Bi et al., 1981). Hypokalemia is characterized by low levels of 

potassium in the blood. Since potassium is one of the key elements used by the 

muscles and nerves to transmit signals, low blood potassium can cause fatigue, 

muscle weakness and at its most extreme, paralysis. Hypokalemia is usually the result 

of kidney malfunction, and can be caused by excessive consumption of diuretics. Also, 
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there is evidence that the incidence of hypokalemia depends on intake dosage of 

potassium (Lohiya, 1990; Kumar, 1997). Therefore, Coutinho of Brazil (2002) 

claimed that previous reports of hypokalemia were the result of “the Chinese diet, 

which is poor in potassium, and not to the effect of gossypol on the kidneys.” 

However, researchers are still full of questions of the observations on the effect of 

gossypol on kidney. Several studies of gossypol as a contraceptive in male monkeys 

tried to remedy potassium loss by giving the monkeys a daily potassium supplement, 

but the treatment did not stop the monkeys from losing potassium, which made the 

researchers believe that hypokalemia was an inevitable side effect, even though the 

dose the monkeys received were higher than the equivalent dose given to men.  

Regardless of gossypol’s possible causal relationship with hypokalemia, 

researchers at the World Health Organization (WHO) have other concerns about side 

effects due to natural toxicity. Therefore, some argue that this alone should disqualify 

it from further study (Waites, 1998).  

  1.4 Toxicity 

The toxicity of gossypol has been shown on the reproductive system, heart, liver, 

and membranes. Besides, the compound exhibits both pro- and anti-oxidant behavior. 

Electron transfer (ET) functionalities, present in gossypol and its metabolites, 

comprise conjugated dicarbonyl, a quinone derivative, Schiff bases, and metal 

complexes. The parent possesses a reduction potential favorable for in vivo ET. 

Considerable evidence points out oxidative stress, formation of reactive oxygen 

species, DNA scission, and redox cycling by ET in biosystems, have similar 
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mechanism of action as gossypol. In a study on the apoptotic effect of gossypol on 

human lymphocytes, gossypol in a concentration of 20-50 mM could induce apoptosis 

in human lymphocytes without causing necrosis through cytotoxic effects. The 

combined use of steroid hormones (methyltestosterone and ethinyl estradiol) and 

gossypol (low dose) in an antifertility study in rats showed that the steroid hormone 

made the procedure of spermatogenesis slower, while low dose gossypol caused all 

sperm to lose their activity in the epididymis. Both affect the process of 

spermatogenesis from different endpoints and successfully induce infertility in the 

short term. A low dose of gossypol not only executes antifertility function in the 

epididymis, but also affects the quality of spermatozoal production in testis by 

impacting the procedures of both acrosomal formation and spermatozoal elongation. 

This assists in maintaining long term infertility (Kovacic, 2003). 

1.5 Bioactivities 

1.5.1 Antioxidant property  

 Gossypol is a polyphenolic compound from the viewpoint of its chemical 

structure. Like many other phenolic chemicals, such as butylated hydroxytoluene 

(BHT), coumaric acid, gallic acid, quercetin, myricetin, catechin, gallocatechin, etc., 

gossypol is an effective and potent natural antioxidant. For example, gossypol was 

found to be able to protect carotene in vitro against preformed fat peroxides many 

decades ago (Hove, 1944a,b). Hove confirmed that cottonseed products containing 
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gossypol could inhibit carotene destruction and rancidity development in vitro, and 

gossypol could act as a carotene-protecting antioxidant in vivo. Gossypol has shown 

potential in inhibiting rat liver microsomal peroxidation, which is caused by an 

incubation with ferric/ascorbate (IC50< 0.1µM) (Laughton et al., 1989). Gossypol also 

exhibited a significant positive effect on oil and biodiesel stability. With a 

concentration of 0.1% gossypol, the oxidative stability indices (OSI) of cottonseed oil 

biodiesel could increase to 17.2 hours from 4.15 hours at 110 oC (Fan et al., 2008).  

In some cases, modification of the functional groups on gossypol may not affect 

its original chemical and biological activities. For instance, the modification of 

aldehydic groups on gossypol to form dianilinogossypol, of which the free carbonyl 

groups were tied up by the anilido complex, did not decrease the antioxidant activity 

of the free compound (Bickford et al., 1954; Hove, 1944) Bickford and coworkers 

(1954) also found the other Schiff base-formed gossypol derivatives, gossypol-urea, 

gossypol-aminobenzene-thiol, and gossypol-glycineindicates, have roughly equivalent 

antioxidative ability to gossypol on a molar basis. Gossypol bis(piperinoethylimine) 

and bis(morpholinoethylimine) also showed potent antioxidant action in human blood 

serum and rat brain synaptosomes. At equal concentrations, these substances 

suppressed the peroxidation of lipids in enzymatic and nonenzymatic systems 

regarding the oxidation of rat liver microsomes (Dalimov et al., 1989). 
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On the contrary, in many other cases, the modification of phenolic hydroxyl 

groups on gossypol could significantly decrease the “chemical” antioxidative abilities 

regarding free radical scavenging activity, reducing power, and DNA damage 

prevention activity (Wang et al., 2008), demonstrating that the hydroxyl groups are 

critical for the antioxidative activities. For example, 6-methoxy gossypol exhibited a 

similar free radical scavenging activity as 6, 6'-dimethoxy gossypol, but both 

methylated derivatives of the gossypol possessed a weaker radical scavenging activity 

than gossypol. The concentrations of 6-methoxy gossypol and 6, 6'-dimethoxy 

gossypol needed to scavenge 50% of the free radicals in the test system were two-fold 

higher than that of gossypol (about 16ppm vs. 8ppm). Although gossypol, 6-methoxy 

gossypol, and 6,6'-dimethoxy gossypol all reduced ferric ions to ferrous ions in a 

dose-dependent manner, gossypol again showed greater reducing power and higher 

efficiency than 6-methoxy gossypol or 6,6'-dimethoxy gossypol. However, all three 

test compounds showed much stronger reducing power than commercial antioxidant 

butylated hydroxytoluene (BHT). For instance, 6,6'-dimethoxy gossypol at a 

concentration of 10 ppm exhibited the same reducing power as BHT at a 100 ppm 

concentration.  The relative capability of gossypol and its methylated derivatives to 

prevent DNA damage caused by ultraviolet light and hydrogen peroxide was 

consistent with the compounds’ antioxidant effects.  This suggests that gossypol’s 

protection of DNA may occur partially by quenching free radicals, therefore 

alleviating oxidative stress. A previous study (Li et al., 2000) also found that gossypol 
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demonstrated the ability, in a dose-dependent manner, to protect supercoiled plasmid 

DNA from damage caused by exposure to Fe3+/ascorbate.  

1.5.2 Anti-cancer activity 

Gossypol is capable of inhibiting the growth of a variety of cancer cell lines 

including breast, colon, prostate, and leukemia cells (Balci et al., 1999; Benz et al., 

1990; Huang et al., 2006; Zhang et al., 2003). These disruptions include inhibition of 

cytoplasmic and mitochondrial enzymes involved in energy production (Ueno et al., 

1988) and uncoupling of oxidative phosphorylation (Flack et al., 1993; Abou-Donia  

et al, 1974). In addition, depletion of cellular adenosine triphosphate (ATP) has been 

demonstrated in cultured tumor cells (Keniry et al., 1989). Gossypol also inhibits key 

nuclear enzymes responsible for DNA replication and repair, including DNA 

polymerase α (Rosenberg et al., 1986) and topoisomerase II, and blocks DNA 

synthesis in HeLa cells (Wang, 1984). Hou et al. (2004) found that gossypol at 50 µM 

for 6 hours could induce apoptosis in human promyelocytic leukemia cells (HL-60) 

(DNA fragmentation, poly(ADP) ribose polymerase cleavage), and also induce the 

truncation of Bid protein, the loss of mitochondrial membrane potential, cytochrome c 

release from mitochondria into cytosol, and activation of caspases-3, -8, and -9. At a 

low dose of 5 µM, gossypol also could cause a significant elevation of caspases-3, -8 

and -9, which resulted in cell apoptosis of human colon cancer cell line HCT 116 

(Zhang et al., 2007). Recent studies on human leukemia U937 cells showed gossypol 
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at >10 µM resulted in significant cell cytotoxicity and DNA fragmentation, induced 

caspase-3 activation and poly (ADP) ribose polymerase cleavage. These properties 

make gossypol a potential antineoplastic agent.  

It is reported that inhibition of DNA synthesis can be achieved with 10 µM 

gossypol by blocking the G1/S checkpoint in MCF-7 cells at 24 hours of incubation 

(Ligueros et al., 1997). Gossypol might regulate cell cycles by modulating the 

expression of cell cycle regulatory proteins Rb and cyclin D1 and the phosphorylation 

of Rb protein. Jiang et al. (2004) obtained a similar conclusion that inhibitory effect of 

gossypol on the proliferation of human prostate cancer PC3 cells was associated with 

induction of TGF-β1, which in turn influenced the expression of the cell 

cycle-regulatory protein, cyclin D1. In human alveolar lung cancer cells, gossypol 

induced Fas/Fas ligand mediated apoptosis (Moon et al., 2008a). Also, gossypol 

induced transcriptional downregulation and posttranslational modification of hTERT 

in human leukemia cells, causing inactivation of c-Myc and Akt, respectively. Both 

c-Myc and Akt are able to regulate various Bcl-2 proteins, the pro-apoptosis protein 

family members.  

Gossypol also downregulates the expression of NF-kappaB-regulated gene 

products, including inhibitors of apoptosis such as protein (IAP)-1, IAP-2, and 

X-linked IAP. These results suggest that gossypol-induced apoptosis partially 

involves suppression of NF-kappaB activity (Moon et al., 2008b). Treatment of 
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Ramos cells with gossypol not only induced cell arrest on the G0/G1 phase, but also 

increased apoptosis and growth inhibition induced by etoposide, doxorubicin 

hydrochloride, vincristine, and paclitaxel (Li et al., 2008). Liu et al., (2002) found that 

(-)-gossypol was more active in inhibiting breast cancerous epithelial cells and 

cancerous stromal cells. Meanwhile, the inhibitory activity of (-)-gossypol was related 

to the reduction of the cell cycle regulator, cyclin D1, and the induction of the cell 

proliferation inhibitor, TGF-β.  In the study of human prostate cancer cells, it was 

found that (-)-gossypol-induced apoptosis was mediated by the regulation of Bcl-2 

and caspase families (Huang et al., 2006). Another in vitro study (Mohammad et al., 

2005) demonstrated (-)-gossypol had significant inhibitive effects against the growth 

of lymphoma cell line WSU-DLCL2 and fresh cells obtained from a lymphoma 

patient with no effect on normal peripheral blood lymphocytes. (-)-Gossypol also 

induced complete cytochrome c release from mitochondria, increased caspases-3 and 

-9 activity, and caused apoptotic death without affecting protein levels of Bcl-2, 

Bcl-X (L), Bax, and Bak.  Recent research has revealed that (-)-gossypol acts as a 

BH3 mimetic, binding to the BH3-binding domain in various pro-apoptotic proteins 

of the Bcl-2 family, displacing pro-death partners to induce apoptosis (Balakrishnan et 

al., 2008; Meng et al., 2008).  

 Sikora et al. (2008) found that the combination of gossypol with the antioxidant 

N-acetyl-cysteine to block reactive oxygen species (ROS) would increase the (-) 

gossypol-induced cytotoxicity in tumor cells, but not normal cells, indicating that 
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concurrent treatment with antioxidants to block ROS prevents oxidative inactivation 

of (-)-gossypol and limits off-target toxicity allowing more potent 

(-)-gossypol-induced anti-tumor activity. An in vivo study also showed that 

(-)-gossypol significantly enhanced the antitumor activity of X-ray irradiation, leading 

to tumor regression in the combination therapy by inhibiting both antiapoptotic 

proteins Bcl-2 and/or Bcl-xL (Xu, 2005). A combination of docetaxel and 

(-)-gossypol synergistically enhanced the antitumor activity of docetaxel both in vitro 

and in vivo in the human prostate cancer PC-3 xenograft model in nude mice.  

(-)-Gossypol exerts its antitumor activity through inhibition of the anti-apoptotic 

protein Bcl-xL accompanied by an increase of pro-apoptotic Noxa and Meng et al., 

2008). One study on gossypol derivatives (Arnold et al., 2008)) showed that 

apogossypolone could inhibit the growth of the lymphoma cell line WSU-FSCCL 

with an IC50 of 109 nM, and the activation of caspases-9, -3, and -8 was observed.  

Hu et al. (2008) found that apogossypol selectively inhibited proliferation of three 

NPC cell lines (C666-1, CNE-1 and CNE-2) that highly expressed the anti-apoptotic 

Bcl-2 proteins with release of cytochrome c, activation of caspases-9 and -3, and 

apoptosis of sensitive NPC cells. The toxicity and efficacy study on mice (Kitada et 

al., 2008) showed that mice tolerate doses of apogossypol 2- to 4-times higher than 

gossypol. Apogossypol displayed superior activity to gossypol in terms of reducing 

splenomegaly and reducing B-cell counts in the spleens of Bcl-2-transgenic mice, 

indicating the potential of gossypol derivatives for cancer therapy. Gossypolone was 
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less potent than gossypol in inhibiting human breast cancer cells (Gilbert et al., 1995). 

The reduced effectiveness of gossypolone compared to gossypol in breast cancer cells 

agrees with the antifertility effects (Kim et al., 1984), but is in contrast to the 

antisteroidogenic and antireproductive effects of gossypolone, which have shown 

similar potency as gossypol (Gu, 1991). Methylated gossypol, 6-methoxy gossypol, 

and 6, 6'-dimethoxy gossypol, compared with the parent compound, showed superior 

anti-cancer activity against cervical, breast, and colon cancer cells (Wang et al., 

2008).  

 In summary, gossypol is believed to arrest cell growth at the G0/G1 phase and 

induce cell apoptosis, in cancer cells, by regulating the cell cycle, enzymes, 

anti-apoptosis, and pro-apoptosis proteins. 

1.5.3 Anti-virus activity    

 Lin et al. (1989 and 1993) reported that gossypol inhibited the replication of 

human immunodeficiency virus-type 1 (HIV-1) and found (-)-gossypol to be more 

inhibitory (IC50=5.2 µM) compared to the (+)-gossypol (IC50=50.7µM). Besides 

HIV-1, gossypol also showed anti-viral activity in multiple enveloped viruses 

including herpes simplex virus type 2 (HSV-II), influenza virus, and parainfluenza 

virus (Vander Jagt et al., 2000). 
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Gossypol and a series of peri-acylated gossylic nitriles were compared for their 

anti-viral activities against HSV-II and for their toxicities to the host Vero cells. All of 

the peri-acylated gossylic nitriles exhibited lower cytotoxicities to the host cell than 

did the parent compound gossypol. Both gossypol and the series of derivatives 

exhibited anti-viral activities against HSV-II when the virus was treated with 

concentrations as low as 5x10-7 M. Two of the derivatives, gossylic nitrile-1, 

1'-diacetate and gossylic nitrile-1, 1'-divalerate, were capable of inhibiting viral 

multiplication in Vero cells that were infected with virus before administration of the 

drug. The authors (Radloff et al., 1986) concluded that modification of gossypol’s 

aldehydic groups lowered its toxicity to the host Vero cells but did not abolish the 

compound’s anti-viral (HSV-II) activity. Derivatives of gossypol may be useful as 

anti-viral agents.  

Later, Royer et al. (1991) found that gossypol and its derivatives, gossylic 

nitrile-1, 1'-diacetate, gossylic iminolactone, and gossylic lactone inhibited the 

replication of human immunodeficiency virus type 1 in vitro. Gossylic iminolactone 

displayed the greatest inhibition, followed by gossypol, gossylic nitrile-1, 

1’-diacetate, and gossylic lactone, indicating that derivatives of gossypol can retain 

anti-viral activities. Then, Royer and coworkers (1995) tested several other gossypol 

derivatives for inhibition of HIV: 1, 1'-Dideoxygossypol, 1, 1'-dideoxygossylic acid 

(DDGA), 8-deoxyhemi -gossypol (DHG), and 8-deoxyhemigossylic acid (DHGA). 

The result showed that DDGA was the most effective in inhibiting the replication of 
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HIV in vitro with EC50 < 1 µM. Meanwhile, DDG was less effective than DDGA.  

DHG showed some anti-HIV activity, and DHGA was ineffective against HIV. Since 

all four gossypol derivatives were found to have much lower affinities for albumin 

than the parent compound gossypol, this would possibly enhance the anti-virus 

activity of the gossypol derivatives in vivo with less interference from in vivo proteins.  

1.5.4 Anti-parasiticprotozoan activities  

Malaria is a vector-borne infectious disease caused by protozoan parasites. 

Human malaria is usually caused by the infection of Plasmodium falciparum, 

Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax (Mendis, 2001). It 

is widespread in tropical and subtropical regions, including Asia, Africa and parts of 

the Americas. Each year there are about 350-500 million cases of malaria, and more 

than one million people die (CDC, 2009). A series of gossypol derivatives with 

modified aldehydic groups and hydroxyl groups have been shown to inhibit the 

growth of Plasmodium falciparum (Razakantoanina et al., 2000; Royer et al., 1986). 

The derivatives with ethyl, propyl, or isopropyl side chains as well as gossylic nitrile 

1,1’-divalerate with IC50 values close to gossypol (IC50=16 µM) showed stronger 

inhibition than other gossypol derivatives against the growth of Plasmodium 

falciparum.  

 Royer et al. (1986) proposed that the antimalarial activity of gossypol and 

gossypol derivatives was through the inhibition of lactate dehydrogenase, which is the 
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most active and essential enzyme for anaerobic life cycle of Plasmodium falciparum. 

Any compound showing inhibition of this enzyme also kills the parasites 

(Razakantoanina et al., 2000; Royer et al., 1986). Similarly, the inhibition of LDH 

activity in T. gondii can also inhibit growth of the parasite in cultures (Dando et al., 

2001). In the study on Entamoeba histolytica (Gonzalez-Garza et al., 1993a and 

1993b), gossypol also showed the inhibition to alcohol dehydrogenase and malic 

enzymes, and (-)-gossypol was found more active than racemic gossypol and 

(+)-gossypol. The (-)-gossypol was 3.6 and 13.0 times more potent than 

(+/-)-gossypol and (+)-gossypol, respectively, in inhibiting the malic enzyme, and 1.9 

times and 2.9 times more potent than (+/-)-gossypol and (+)-gossypol, respectively, 

against the alcohol dehydrogenase.  

Trypanosomes, protozoan parasites belonging to the subphylum Mastigophora, 

can cause a chronic infection called sleeping sickness. It has seriously affected the 

health of people in western and central African countries, and exerted significant 

mortality in man and livestock. Over 60 million people living in 36 sub-Saharan 

countries are threatened by sleeping sickness (WHO, 2001) and 48000 deaths were 

reported in 2002 (WHO, 2004). In addition, 46 million cattle are exposed to the risk 

of the sleeping disease. The disease costs an estimated 1,340 million USD per year 

(Kristjanson, 1999). However, few drugs are available for the treatment of 

trypanosomal infections that cause significant mortality in man and livestock in 

Africa. Gossypol was reported to be able to inhibit trypanosomes (Blanco et al., 1983; 



16 

 

Kaminsky and Zweygarth, 1989; Montamat et al., 1982). Montamat and coworkers 

(1982) reported that a 5-min exposure to 100 µM gossypol (~50 ppm) immobilizes 

cultures of Trypanosoma cruzi.  Blanco et al. (1983) reported that a 30-min exposure 

to 25 µM gossypol (~12 ppm) immobilizes and alters the cell morphology of T. cruzi.  

Later, Kaminsky and Zweygarth (1989) reported that, for three separate Trypanosoma 

brucei strains (including one drug resistant strain), the IC50 value for a 24h gossypol 

exposure was >10 ppm.  Our study showed a similar level of gossypol’s 

anti-trypanosomal activity with IC50 value of 7.8 ppm after 24-h exposure.  

Moreover, methylated gossypol, both 6-methoxy gossypol (IC50 value, 3.98 ppm) and 

6, 6’-dimethoxy gossypol (IC50 value, 3.21 ppm) showed more effective inhibition of 

growth than gossypol.  In the study of T. cruzi, gossypol was also reported to inhibit 

some oxidoreductases (Gerez de Burgos et al., 1984; Montamat et al., 1982), such as, 

alpha-hydroxyacid and malate dehydrogenases, NAD-linked enzymes, and glutamate 

dehydrogenase, glucose-6-phosphate dehydrogenase, and NADP-dependent enzymes. 

Gossypol also inhibits the MDH enzyme of T. cruzi (Gerez de Burgos et al., 1984).  

Accordingly, the possible mechanism of the antiparasitic effect of gossypol and 

gossypol derivatives could be the selective inhibition of vital enzymes in the parasites. 

1.5.5 Anti-microbial activity 

The anti-microbial properties of gossypol have been reported by several research 

groups. Gossypol has general antifungal activities with LD50 values from 20 to 100 
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ppm of pure gossypol (Bell, 1967), and has an inhibitory effect on microorganisms 

including aerobic sporeformers and lactobacilli and some yeasts (Margalith, 1967). 

Gossypol showed strong antibiotic activity against aerobic sporeformers and 

lactobacilli, and displayed antagonistic property to some of the more oxidative yeasts.  

Later, Vadehra et al. (1985) investigated the effects of gossypol on the growth of 

a variety of bacteria and on spore formation and germination in Bacillus cereus. It 

was found that gossypol had more potent antibacterial properties against gram 

positive organisms (i.e. Streptococcus spp., Bacillus spp., Staphylococcus aureus) 

than gram negative bacteria such as Pseudomonas aeruginosa, Salmonella spp., 

Klebsiella pneumoniae, Shigella spp., Proteus spp., and Escherichia coli. All of the 

gram positive organisms tested were completely inhibited at a concentration of 100 

ppm. None of the tested gram negative strains was inhibited at 100 ppm of gossypol, 

and only 1/3 of the tested strains were inhibited at 200 ppm of gossypol. The authors 

proposed that the anti-bacterial activity of gossypol was related to the gram character 

of the organisms. Besides, the chemical and quantitative differences of the cell wall 

and cell membrane of the gram positive and negative groups may influence the 

transport of gossypol to its target site (i.e., Gram-positive organisms have high 

amount of peptidoglycan in the cell wall, and lack the outer membrane found in 

Gram-negative bacteria). The same research group also found that yeasts, such as 

Saccharomyces cereviseae, S. uvarum, S. diasticu) were sensitive to gossypol, and the 

growth were completely inhibited at 50 ppm of gossypol.  Subsequent research 
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(Poprawski and Jones, 2001) found that fungi Paecilomyces fumosoroseus (associated 

with cutaneous and disseminated infections in dogs and cats) were highly tolerant to 

gossypol even at 500 ppm, but could be strongly inhibited at 1000 ppm of gossypol.  

1.5.6 Lowering plasma cholesterol levels 

Cholesterol is a fat-soluble compound found in the body. Having high "bad" 

cholesterol means you have too much low density lipoprotein (LDL) in your blood, 

which is linked to serious problems, such as atherosclerosis and coronary heart attack 

or stroke. A study on adult male cynomolgus monkeys (Shandilya and Clarkson, 1982) 

found that gossypol administered orally at 10 mg/kg/day for 6 months could cause a 

significant decrease in total plasma cholesterol (TPC) and LDL without any 

significant decrease in plasma high density lipoprotein cholesterol (HDL) levels.  It 

was proposed that this cholesterol lowering activity might be attributed to: (a) 

gossypol might possibly reduce the intestinal absorption of dietary cholesterol; and (b) 

gossypol might reduce the hepatic synthesis of low density lipoproteins.  Studies 

with rabbits also showed that dietary cottonseed protein effectively lowered the 

concentration of plasma cholesterol when compared to the animal protein casein, 

which was attributed to the presence of gossypol in the cottonseed protein. Thrice 

weekly subcutaneous injection doses of 20 mg/kg body weight to rats for 4 weeks also 

resulted in lower serum cholesterol. Another study on rats demonstrated that gossypol 

consumption not only had a significant effect on alcohol dehydrogenase, but also a 
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profound influence on the regulation of cholesterol level in the liver. A subsequent 

study on rats showed that the administration of gossypol at 20 mg/kg body 

weight/rat/day for 8 weeks could significantly decrease the serum level of cholesterol 

in both low and normal protein-fed male Wistar rats. The combined administration of 

gossypol and chloroquine (chloroquine, a 4-aminoquinoline, used for treatment of 

malaria) to the protein-malnourished rats had more profound effects in decreasing the 

levels of serum cholesterol and triglycerides compared to normal-protein fed rats, 

indicating the implication of the treatment and dietary effect on the level of serum 

cholesterol. However the mechanism by which gossypol lowers the serum cholesterol 

still needs further investigation. 
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CHAPTER 2 

CHEMICAL CHARACTERIZATION AND BIOACTIVITIES OF GOSSYPOL 

AND ITS METHYLATED ETHERS 

2.1 Abstract 

Tetramethyl and hexamethyl ethers of gossypol were synthesized from gossypol 

that was extracted from cotton plant. The gossypol ethers were fully characterized by 

NMR, MS, and HPLC methods. Particularly, existence of four tautomers of gossypol 

tetramethyl ethers were chromatographically separated and confirmed by the 

combination of NMR and LC/MS. Antioxidant activity in terms of DPPH free radical 

scavenging capability of gossypol and its methyl ethers were compared. Gossypol 

exhibited the strongest antioxidant activity, while its ethers only remained partial 

antioxidant activity due to their conjugated naphthalene structure preserved in the 

derivatives. In addition, alpha-amylase inhibitory activities of gossypol and its 

methylated ethers were determined. The result showed that the gossypol’s methylated 

ethers were the alpha-amylase inhibitors, while gossypol was the alpha-amylase 

activator. Furthermore, it was found that anticancer activity of the gossypol and its 

methylated ethers against MCF-7 cancer cells depended on the degree of methylation 

level of gossypol. 

2.2 Introduction 

Gossypol is a polyphenolic aldehyde isolated from the members of various 

Gossypium species, which is a natural toxin present in the cotton plant that protects it 
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from insect damage (Smith et al., 1972). Gossypol exists as two atropisomers due to 

the restricted rotation of its binaphthyl bond (Figure 2.1). As we mentioned in 

Chapter 1, the initial research interest on gossypol derived from the (-)-gossypol 

isomer that is active in male sterility discovered in in 1970s when it was found to be 

able to affect the maturation and motility of sperm, and inactivate the enzymes 

required for the sperm to fertilize the ova (Anonymous, 1978; Anonymous, 1980). In 

addition, a number of potential biological activities of gossypol, such as antiviral 

(Radloff et al., 1986; Lin et al., 1993), antiamoebic (Gonzalez-Garza et al., 1991), and 

antiprotozoan effects (Blanco, et al., 1983; Gerez de Burgos, et al., 1984; Montamat et 

al., 1982), were reported. While gossypol displays a certain degree of toxicity due to 

its aldehyde groups which can easily bind nucleophilic targets of biological 

importance (Clark et al., 1927; DePeyster et al., 1993; Gallup et al., 1931), various 

gossypol derivatives such as apogossypol (Clark et al., 1928; Meltzer et al., 1985; Zhu 

et al., 1992), gossypolone (Haas et al., 1965), gossypol ethers (Adams and Geissman, 

1938; Adams et al., 1938; Datta et al., 1972; Haar et al., 1952; Morris et al., 1937; 

Seshadri et al., 1973; Seshadri et al., 1975) and gossypol Schiff base (Dao et al., 2000;  

Liang et al., 1995; Kim et al., 1987; Przybylski et al., 2003; Zheng et al., 1992), which 

have been prepared since 1930s, have not been studied thoroughly for their 

bioactivities. This prompted us to synthesize some of these gossypol derivatives, and 

explore their novel bioactivities. 

In this study, we synthesized, separated and fully characterized gossypol 

tetramethyl ethers, hexamethyl ether and their tautomers.  In addition, their DPPH 

free radical scavenging activities, alpha-amalyse inhibitory activities and anticancer 

activities were determined.   
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Figure 2.1 Two Atropisomers of gossypol 

2.3 Experimental 

2.3.1 Material  

Structures of gossypol and all of its tested derivatives are shown in Figure 2.2.  

2′-Bi [8-formyl-1, 6, 7-trihydroxy-5-isopropyl-3-methylnaphthalene]) acetic acid (1, 

gossypol acetic acid, MW=578.6, C30H30O8•C2H4O2, HPLC purity >95%, racemic 

form) was purchased from Zhejiang Yixin Pharmaceutical Co., Ltd. P. R. China. 

6-Methoxygossypol (5) and 6, 6′-dimethoxygossytpol (6) (see Figure 2.2) were 

isolated as previously reported (Kim et al., 1987). Racemic gossypol and possible 

derivatives were biologically tested. 1, 1-diphenyl-2-picrylhydrazyl (DPPH free 

radicals), butylated hydroxytoluene (BHT), 3, 5-dinitrosalicylic acid (98%) (DNSA), 

alpha-amylase (type VI-B: from porcine pancreas), dimethyl sulfoxide (DMSO), 

potassium carbonate (K2CO3), and phosphoric acid (H3PO4) were purchased from 

Sigma Chemical Co., (St. Louis, MO). Starch from potatoes ((C6H10O5)n, Mr=162.14n) 

was purchased from Fluka, Germany. Potassium sodium tartrate (KNaC4H4O6•4H2O, 
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Figure 2.2 Structures of gossypol and its ethers *4a=A: lactol form, B: lactol form, 
R1=CH3, R2=H; 4b= A: aldehyde form, B:lactol form, R1=CH3,R2=H; 4c= A: 
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FW=282.231), and sodium hydroxide were purchased from J. T. Baker Chemical Co. 

(Phillipsburg, N.J. USA). Sodium phosphate (Na2HPO4, FW=141.96) and sodium 

chloride were purchased from Fisher Scientific Company (Fair lawn, N.J. USA). 

Iodomethane (CH3I 99.5% pure, 2.2789 g cm-3 at 20°C, molar mass 141.94 g mol-1), 

and dimethyl sulfate ((CH3O)2SO2, d=1.33 g ml-1, molar mass 126.13 g mol-1) were 

from Alfa Aesar company (Ward Hill, MA, USA). All solvents for chromatographic 

isolation were of analytical grade. HPLC grade methanol, dichloromethane, acetone, 

acetonitrile, and chloroform were purchased from Fisher Scientific Company (Fair 

lawn, N.J. USA). Tissue culture plates were purchased from Costar Corp. 

(Cambridge, MA). Heat-inactivated fetal bovine serum, fetal bovine serum, and 

newborn calf serum were purchased from Hyclone Laboratories, Inc. (Logan, UT).  

MCF-7 (human breast cancer) cancer cell lines were purchased from the American 

Type Culture Collection (ATCC) (Rockville, MD).  

 

2.3.2 Instruments for Chemical Analysis 

HPLC analysis was carried out on a Shimadzu HPLC system that included 

LC-20AT solvent delivery pumps, a CBM-20A communication bus module, a 

SPD-M20A photo-diode array detector, and the ClassVP operating software. The 

HPLC was equipped with a Kromasil RP C18 column (particle size of 5µm, column 

size of 150 mm×4.6 mm, Alltech Associates, Inc. Deerfield, IL), which was placed in 

a column oven (CTO-20A) under a constant temperature at 25oC. The mobile phase 

consisted of methanol: H2O = 87:13 (v/v) containing 0.1% aqueous H3PO4. The 

column flow rate was set at 1 ml min-1, while the HPLC pressure was controlled 

between 1020-1040 psi.  
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LC/MS analysis was performed on an Agilent 6100 series LC/MS in which a 

quadruple mass spectrometer was coupled to an Agilent 1200 HPLC that consisted of 

a G1329A high performance autosampler (hp-ALS-SL), a G1312A binary pump 

(BIN-SL), a G1379B vacuum degasser, a G1316A thermostatted column 

compartment (TCC-SL) and a G1314B variable wavelength detector (VWD-SL). The 

quadrupole mass spectrometer was operated with an atmospheric pressure 

electrospray ionization (API-ES) source in positive mode. The flow rate of HPLC was 

maintained at 1 mL min-1 through a Kromasil RP C18 column (particle size of 5 µm, 

column size of 150 mm×4.6 mm, Alltech Associates, Inc. Deerfield, IL). The mobile 

phase in an isocratic elution consisted of methanol and water (v/v=87:13) containing 

0.1% formic acid. Mass spectra were recorded within the m/z range of 100-1000. The 

dry gas flow for MS was 13.0 L min-1, the nebulizer pressure was 30 psig, dry gas 

temperature was 350ºC, and the Vcap voltage was 3500 V. Data was acquired from 

and processed by the Agilent LC/MSD ChemStation software. 

Some mass spectrum were obtained by a nanoflow capillary HPLC coupled with a 

quadrupole time-of-flight micro mass spectrometer (Q-TOF-MS) (Waters Corp., 

Milford, MS) with an electrospray ionization (ESI) in both ESI-MS and ESI-MS-MS 

modes operated by the Masslynx software (V4.0, Waters Corp., Milford, MS). Each 

separated and purified sample was directly injected from the sample vial into the ESI 

source in methanol at a flow rate of 1.5 µL min-1. The ion source voltages were set at 

±3000V for positive and negative ion mode acquisitions, respectively. In both modes, 

the source temperature was maintained at 100°C and the mass spectrum was scanned 

from 100 to 800 m/z at 1 second with 0.1-second inter-scan delay in continuum mode.  

For MS/MS analysis, mass spectrum was scanned from 50-800 m/z. 



34 

 

Glu-fibrinopeptide (Sigma) as a mass standard in ESI-MS and ESI-MS-MS mode was 

infused through the nanoLockspray (Waters Corp., Milford, MS) for single point, real 

time, and accurate mass calibration. Raw spectra were processed using the MassLynx 

software (V4.0).  Precursor ion scans on positive and negative ion modes using low 

energy collision induced dissociation (CID) resulted in more structural fragments, 

which helped structural identification of compounds of interest.  

1D and 2D NMR (1H NMR, 13C NMR, DEPT, HMQC, HMBC) spectra were 

acquired from a Bruker AV-500 spectrometer or JEOL operated at 300 MHz for 1H 

NMR and 75 MHz for 13C NMR. Data were processed by the Bruker XWINNMR 

3.50 programs.  

In addition, thin layer chromatography (TLC) analysis was performed on F254 plates 

precoated with silica gel 60 and fluorescent reagent (Merck, Darmstadt, Germany). 

The TLC was visualized at 254 nm in a UV-viewing system purchased from Fisher 

Biotech.  Silica gel (300 meshes), which was purchased from QingDao Haiyang 

Chemical Co., Ltd. P. R. China, was used for column chromatography.  

The in vitro DPPH free radical scavenging assay and the alpha-amylase enzymatic 

assay were measured by the Thermo Scientific Genesys 20 visible spectrophotometer. 

2.4 Chemical Syntheses and Structural Characterization 

2.4.1 Chemical Syntheses 

A sample of gossypol acetic acid (500 mg, 0.97 mmol), potassium carbonate (1 g, 

7 mmol) and dimethyl sulfate (1.5 g, 12 mmol) in acetone (10 mL) was refluxed for 

48 hours according to the Adams’ method with minor modification (Figure 2.3)  
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Figure 2.3 Methylation of gossypol with dimethyl sulfate 

  

(Morris et al. 1937). Then acetone was removed under vacuum. The residue was 

reconstituted into a solution by adding 15 mL of water before it was heated for 0.5 h 
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to thoroughly hydrolyze the excess dimethyl sulfate. After the mixture was cooled 

down to room temperature, ethyl ether (50 mL × 3) was added to extract the 

gossypol’s methylated products that were separated and purified by preparative TLC 

eluted with chloroform and methanol (150:1, v/v) to afford compounds 2, 3 and 4, 

with 5.5%, 10.3%, 62.1% yield, respectively. 

To obtain the compound 2 in a higher yield, the Haar’s method (Haar et al., 1952) was 

applied with a minor modification. A solution of 500 mg of gossypol acetic acid (0.97 

mmol), 10 ml of anhydrous acetone, 1 g of potassium carbonate (7 mmol, excess) and 

1.4 g of methyl iodide (9.7 mmol) were mixed and refluxed gently for 48 hrs (Figure 

2.4). Then the volatile solvent was removed by rotary evaporation. The residue was 

purified with flash chromatography (silica gel, 300 – 400 meshes, CHCl3/MeOH = 

150/1, vol) to give compounds 2, 3 and 4 with yield of 43%, 9.1%, 7.4%, 

respectively. 

2.4.2 Spectral data of gossypol derivatives 

  (The carbon position numbering of gossypol refers to Figure 2.2) 

  Gossypol hexamethyl ether in dialdehyde form (GHE, compound 2)  

1H-NMR (300 M Hz, in CDCl3) δ (ppm): 10.65 (2H, s, two protons of –CHO) 7.90 

(2H, s, two sp2 protons of naphthol ring), 3.98 (6H, s, protons of two methoxyl group 

at position 7 and 7′ ), 3.94 (6H, s, protons of two methoxyl group at position 6 and 6′), 

3.96 (2H, m, protons attached to tertiary carbon in two isopropyl groups), 3.25 (6H, s, 
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Figure 2.4 Methylation of gossypol with methyl iodine 

 

protons of two methoxyl group at position 1 and 1′), 2.22 (6H, s, protons of methyl 

group at position 3 and 3′), 1.57 (12H, m, protons of four methyl groups in the 

isopropyl groups); 13C NMR (125 MHz, in CDCl3 ) δ (ppm): 21.10, 22.18, 59.62, 

61.10, 62.19, 122.81, 126.06, 127.85, 131.01, 135.29, 137.72, 149.60, 152.98, 193.19; 
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UV-Vis: λmax/nm: 255, 294, 420; HRESI-MS m/z: 603.2816 [M+H]+, (Calcd for 

C36H42O8, 602.2880); HPLC: TR=18.55 min; 

  Gossypol hexamethyl ether in monoaldehyde-monolactol form (GHE′, compound 

3) 

1H-NMR (300 M Hz, in CDCl3) δ (ppm): 10.60 (1H, s, the proton of –CHO) 7.91 

(1H, s, the sp2 proton of naphthol ring at position 4), 7.50 (1H, s, the sp2 proton of 

naphthol ring at position 4′ ), 7.20 (1H, s, the proton at position 9′), 4.21(3H, s, 

protons of methoxyl group attached to 9′ carbon), 3.96 (6H, s, protons of two 

methoxyl group at 7 and 7′), 3.91(6H, s, protons of two methoxyl group at 6 and 6′), 

3.05 (3H, d, protons of two methoxyl group at 1), 2.24 (6H, s, protons of methyl 

group in 3 and 3′), 1.56 (12H, m, protons of four methoxyl group in isopropyl groups); 

13C NMR (125 M Hz, in CDCl3 ) δ:20.96, 21.00, 22.08, 27.17, 29.71, 58.39, 58.43, 

60.43, 60.47, 62.18, 103.04, 112.11, 115.59, 117.98, 122.55, 127.48, 130.89, 136.00, 

136.29, 137.38, 137.75, 147.73, 149.37, 150.09, 153.92, 192.91; HRESI-MS m/z: 

603.2948 [M+H]+, (Calcd for C36H42O8, 602.2880);  

  Gossypol tetramethyl ethers (compound 4) 

1H-NMR (300 M Hz, in CDCl3) δ (ppm): 10.60, 7.93, 7.92, 7.50, 7.09 , 6.98, 6.95, 

4.16, 4.14, 3.98, 3.91, 3.54, 3.28, 2.35, 2.23, 1.58; Retention time for 4a-d in LC-MS 

were 17.056, 18.825, 14.631, 13.635min (see Figure 2.5) with area percentage of 

39.31%, 35.38%, 19.64% and 5.67%, respectively. HRESI-MS of 4a-d showed m/z: 

573.2595 [M+H]+, (Calcd for C34H38O8, 574.2880);  

2.5 DPPH antioxidant assay 
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The DPPH free radical scavenging activity was determined by the modified 

method (Yamaguchi et al., 1998). Solution of each sample (i.e., G stands for gossypol 

acetic acid 1, GHE for gossypol hexamethyl ether in dialdehyde form 2, GHE′ for 

gossypol hexamethyl ether in monoaldehyde and monolactol form 3, GTE for 

gossypol tetramethyl ether 4, and BHT for butylated hydroxytoluene) dissolved in 

dichloromethane were prepared for 0 - 200 ppm. An aliquot of 0.5 mL of the solution 

was mixed with 0.4 mL of 0.25 mM solution of DPPH in dichloromethane. The 

solution was sealed and shaken vigorously and then incubated in the dark at room 

temperature for 15 min. Absorbance at 517 nm was measured. The DPPH antioxidant 

activity was calculated as scavenging activity (%) = (1-absorbanceof sample at 517 

nm/ absorbance of control at 517 nm) ×100% (Dowd et al., 2006). 

2.6 Alpha-amylase inhibition assay 

The DNSA regent (Wang et al., 2008) was prepared as a mixture of 1 g of 3, 

5-dinitrosalicylic acid, 20 mL of NaOH (2 M), 50 mL of H2O and 30 g of potassium 

sodium tartrate. After ultra sonication, certain amount of water was added to make the 

mixture in total volume to 100 mL.  

The alpha-amylase inhibitory activity was determined using the type VI-B porcine 

pancreatic alpha-amylase. An aliquot of DMSO (100 µL, containing sample with 

certain concentration) was added into starch solution (500 µL, 1%). The mixture were 

incubated at 45oC for 10 min immediately after adding alpha-amylase solution (400 

µL, 50 µg mL-1 in 0.02 mol L-1 sodium phosphate buffer, pH=6.9 with 6 mmol L-1 

NaCl), incubation was timed accurately. After incubation, the reaction was terminated 

by adding 2 mL of DNSA regent. Then, the test tubes were incubated at 90oC in water 



40 

 

bath for 10 min accurately. At the end of this period, the test tubes were cooled down 

in tap water and diluted by addition of 22 mL of distilled water. Absorbance was 

measured at 540 nm by the Genesys 20 visible spectrophotometer. Each absorbance 

subtracted the absorbance measured under the exact same condition without the 

amylase (same volume, same temperature, same time intervals, same ratio of starch 

solution, etc.). The control absorbance was measured for that of the mixture without 

sample at the same condition. In addition, the control should also subtract the 

absorbance without the amylase and sample. 

Standard curve was prepared by maltose. In brief, 1 mg mL-1 of stock solution of 

maltose was diluted into final concentrations of 8-80 µg mL-1. Each test tube was 

added by 2 mL of DNSA regent and 2 mL of maltose solution (final concentration is 

8-80 µg mL-1). After incubation at 90oC in water bath for 10 min, the mixtures were 

cooled down in tap water and diluted with 21 mL of distilled water. The absorbance 

was measured at 540 nm. The enzymatic regression equation was determined as Y= 

0.0044X-0.0367 and R² = 0.9985, where Y stands for the absorbance at 540 nm, and 

X stands for maltose concentration (µg mL-1). Alpha-amylase activity was reflected 

by resultant reducing sugar content during the reaction within certain time interval. 

2.7 Anticancer assay 

The MCF-7 cancer cells were cultured in RPMI with 10% fetal bovine serum 

respectively. The cell line was incubated at 5% CO2 and 90-100% relative humidity at 

37°C. Medium renewal was carried out 2-3 times per week, and cells were 

subcultured when they achieved 80-90% confluence. Prior to chemical treatment, 104 

cells well-1 were seeded into a 96-well tissue culture plate and were allowed to attach 
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for 24 h. The cells were then treated with a defined concentration of the test 

compound dissolved in DMSO, which was limited to a 1% concentration in each well. 

As negative controls, cells were treated with DMSO only. After a 24-hour’s 

incubation, cell proliferation was determined with the CellTiter 96 aqueous 

nonradioactivity cell proliferation assay (Promega, Madison, WI). Results were 

recorded on a universal EL800 Bio-Tek microplate reader at 490 nm. 

2.8 Results and discussion 

Gossypol methylated ethers were prepared by using iodomethane and dimethyl 

sulfate to produce selective gossypol ether tautomers in desired yields. In case of 

mono-lactol and mono–aldehyde forms such as compounds 2 and 4b, the chemical 

shift of the proton in lactol ring moved from 10.6 ppm to 7.09 ppm, and the tertiary 

protons in benzene ring (position 4 and 4′) displayed two unequivalent signals around 

7.5 and 7.9 ppm. In addition, the protons of methoxyl groups in position 1 and 1′ 

showed up around 3.4 ppm if they were in the aldehyde form, while the protons of 

methoxyl groups in position 9 and 9′ had a downfield movement to around 4.1 ppm in 

the lactol form. Moreover, the chemical shifts of the protons in the methyl groups at 6 

and 6′, and 7 and 7′ pairs were found to have an upfield movement (or the nucleus  
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Figure 2.5 The LC/MS chromatogram of compounds 4a-d 

 

were more shielded) from 3.94 ppm and 3.98 ppm in the dialdehyde form (compound 

2) to 3.91ppm and 3.96 ppm in the monoaldehyde and monolactol form (compound 3), 

respectively. The retention time of compounds 4a-d (Figure 2.5) was 17.056, 18.825, 

14.631, 13.635 min respectively in the LC/MS chromatogram. The concentration ratio 

of 4a:4b:4c:4d is 39.31: 35.38: 19.64: 5.67, which are exactly consistent with the 

integration ratio of protons in the aldehyde groups and lactol groups from 1H NMR 

spectra. 

The DPPH free radical scavenging activity was used to evaluate the antioxidant 

activities of gossypol and its ethers in different degree of methylation. Antioxidant 

properties, especially radical scavenging activities, are very important due to the 

deleterious role of free radicals in biological systems. Our results provide interesting 
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insights into the antioxidants of gossypol and its derivatives, and shed more light onto  

 

Figure 2.6 The DPPH free radical scavenging activities of G, 6-MG, 
6, 6'-DMG, GTE, GHE, GHE′ and BHT. (The numbering refers to 

Figure 2.2) 

 

their mechanisms as free radical scavengers. As shown in Figure 2.6, gossypol 

possesses a significantly high antioxidant activity with its DPPH free radical 

scavenging capacity over 80% within the concentration range of 20-200 ppm, of 

which the IC50 value for gossypol was 9.2 ppm. Our previous research demonstrated 

that the IC50 values for the 6-methoxygossypol (compound 5), and 6, 

6′-dimethoxy-gossypol (compound 6) to scavenge the DPPH free radicals in the same 

experimental system were 16.4 and 16.8 ppm, respectively, which were relatively 

higher than that of gossypol. In this study, it was further confirmed that more 

methylation of gossypol resulted in remarkably lower DPPH free radical scavenging 

activities below 20% within the concentration range of 0-200 ppm, although the 
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gossypol ethers still remained parts of antioxidant activity comparable to that of BHT. 

Based on our experiments and study on this structure-activity relationship, it seems 

the overall tendency of the functional modification of gossypol follows the rule of that 

more hydroxyl group in gossypol is replaced by methyl group, the lower free radical 

scavenging activity of the derivatives will have.  

Besides, three possible antioxidant mechanisms of gossypol are shown in the 

Figure 2.7.  

 

 

 

 

Figure 2.7 Three possible antioxidant mechanisms of gossypol 
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Antioxidant polyphenols have been recognized that they are able to neutralize 

radicals by three pathways, e.g., donating hydrogen atom through one-step H-atom 

transfer (HAT), stepwise electron transfer proton transfer (ETPT) and sequential 

proton loss electron transfer (SPLET) ) (Zhang et al., 2006). These antioxidant 

pathways also fit for the antioxidant gossypol and some of its derivatives. Yet, the 

antioxidant capacity of gossypol derivatives also depends on their modified molecular 

structures. 

It is clear from this investigation that the numbers and positions of hydroxyl groups 

and other functional groups are important for the antioxidant and free radical 

scavenging activities of gossypol and its derivatives. After the hydroxyl groups in 

gossypol were partially and/or completely methylated, the H-atom donating capability 

significantly decreased although partial free radical scavenging activity of the 

methylated gossypol derivatives was preserved. This demonstrated that the conjugated 

binaphthalene ring of the backbone of gossypol could also stabilize some free radicals 

through the ETPT mechanism, although other aforementioned pathways might 

coordinate and play the critical role for the free radical scavenging activity. 

The alpha-amylase inhibitory activities of gossypol as well as their di/tetra/hex 

methyl ethers were also examined (Figure 2.8). It was found that gossypol 

hexamethyl ether (GHE), gossypol tetramethyl ether (GTE), 6-methoxygossypol 

(6-MG), and 6, 6′-dimethoxygossypol (6, 6′-DMG) all displayed enzymatic inhibitory 

ability at lower levels compared to acarbose, which is a well-known inhibitor of 

α-glucosidases, α-amylases, cyclomaltodextrin glucanyltransferase (CGTase) and 

dextransucrase and used as an anti-diabetic drug (Morris et al., 1937). However, in 
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our surprise, it was found that gossypol activated rather than inhibited the enzyme. It 

is postulated that the alpha-amylase have several tertiary structural forms in solution 

that are in dynamic equilibrium with each other. The additives that give maximum  

 

activation bind to the protein-enzymes to give a single, optimum structure that is fixed 

and gives the maximum activity with activation. Our study attempts to give a hint for 

further understanding of the fundamental issues behind the enzyme activation and 

inhibition. 

Furthermore, gossypol exhibited dose-dependent growth inhibition against the 

breast cancer cell line MCF-7. Although the low-leveled methylated gossypol ethers 

such as 6- methoxygossypol and 6, 6′- dimethoxygossypol have been demonstrated to 

possess higher anticancer activity than gossypol to some extent (Wang et al., 2008), 

the highly methylated gossypol ethers like compounds 2-4 (e.g., GTE, GHE, and 

  

Figure 2.8 Alpha-amylase activity treating with G, GTE, GHE, 
6-MG, 6, 6'-DMG and Acarbose at 8mM concentration 
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GHE′) exhibited a remarkably weak or no anticancer activity against each cell line in 

our experiment (Figure 2.9). We postulated that partial methylation of gossypol could 

increase the lipophilic affinity of 6-MG and 6, 6′-DMG with cancer cells resulting in 

 

higher toxicity against those cells, but higher methylation of hydrpoxyl groups could, 

on the contrary, decrease and/or deprive the gossypol’s original strong activity that 

relied on the hydroxyl and aldehydic groups. This unexpected finding needs further 

investigation regarding the functionalities of the aldehyde and hydroxyl groups on 

gossypol. 

2.9 Conclusion 

In this experiment, the tetra/hexmethyl ethers of gossypol were synthesized by 

two modified methods using iodomethane and dimethyl sulfate. The gossypol ether 

was successfully separated and fully characterized by NMR, MS, and HPLC. Four 

 

Figure 2.9 Growth inhibition of breast cancer MCF-7 incubated with G, GTE, 
GHE and GHE′. Error bars represent standard deviations of three experiments. 
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gossypol tetramethyl ether tautomers were also determined by LC/MS. In addition, 

their free radical scavenging activity and inhibitory alpha-amylase activities were 

measured. Gossypol possesses a high antioxidant activity, and also is a good 

alpha-amylase activator, while gossypol hexamethyl ether (GHE), gossypol 

tetramethyl ether (GTE), methoxygossypol (6-MG), and 6, 6′-dimethoxygossypol (6, 

6′-DMG) all exhibited their inhibitory tcapability against the alpha-amylase. In 

addition, gossypol ethers showed very weak or no anticancer activities, which were 

correlated with the methylation level. Nevertheless, our results demonstrated that 

gossypol and its derivatives possess many biological activities, and have potential to 

be developed as drugs for some chronic diseases.  
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Appendix I 

 

 
Figure A2.1 The 1HNMR spectra of 2 (300MHz, CDCl3) 
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Figure A2.2 The 13CNMR spectra of 2 (300MHz, CDCl3) 
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Figure A2.3 The chromatogram HPLC of 2 
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Figure A2.4 The 1HNMR spectra of 3 (300MHz, CDCl3) 

 



56 

 

 
 
 

 

 

 

 

 

Figure A2.5 The 13CNMR spectra of 3 (300MHz, CDCl3) 



57 

 

 
 

 

Figure A2.6 The 1HNMR spectra of 4 (300MHz, CDCl3) 
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Figure A2.7 The ESI-MS spectra of 3, 2, 4 (form the top to the end respectively) 
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(Figure A2.8-1)  
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(Figure A2.8-2) 
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(Figure A2.8-3) 
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(Figure A2.8-4) 
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(Figure A2.8-5) 

Figure A2.8 The LC-MS spectra of 4 (the MS spectra parts are for 19.0, 17.1, 14.5, 
13.7min form the top the end respectively) 
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CHAPTER 3 

NOVEL-O-GLYCOSIDIC GOSSYPOL ISOMERS AND THEIR 

BIOACTIVITIES 

3.1 Abstract 

  Novel glycosidic gossypol analogues, gossypol diglycosidic tetraacetate 7, 

gossypol diglycosidic tetraacetate 8, gossypol mono-glycosidic tetraacetate 9 

gossypol diglycoside 10 and gossypol diglycoside 11 were obtained by the 

ultrasound-assisted reaction of potassium salt of gossypol with 3, 4, 

6-tetra-O-acetyl-α-D-glucopyranosyl bromide under phase transfer catalytic (PTC) 

condition. The new glycosidic gossypol derivatives were fully characterized by 1D 

NMR (1H NMR, 13C NMR, DEPT, 1D NOE), 2D NMR (HMBC, HMQC) 

spectroscopy, HRMS/MS spectrometry, UV spectrometry as well as HPLC-PDA 

technique. The biological activities of the novel glycosidic gossypol analogues were 

explored in detail. The anticancer, antitrypanosomal activities as well as cytotoxicity 

evaluation of those novel glycosidic gossypol derivatives exhibited that gossypol 

diglycosidic tetraacetate 8 could be developed into a potential pharmaceutical 

candidate in the treatment of cancer since it elicited powerful inhibition against cancer 

cells (MCF–7 Human breast and HT-29 Human colon carcinoma cells) with 

significantly low cytotoxicity compared with unfunctional gossypol. In addition, 



65 

 

gossypol diglycosidic tetraacetate 7 and 8 possess antitrypanosomal activity with 

LD50 value of 2.12 and 2.44 µM, respectively.   

3.2 Background 

 A glycoside is any molecule in which a sugar group is bonded through its 

anomeric carbon to another group via a glycosidic bond.  

 

  

Figure 3.1 Structure of some phenolic glycosides existing in natural plants 
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  Glycosides can be linked by an O-(an O-glycoside), C-(a C-glycoside), N-(a 

glycosylamine) or S-(a thioglycoside) glycosidic bond. The sugar group is then 

known as the glycone and the non-sugar group as the aglycone or genin part of the 

glycoside. In addition, the glycone can consist of a single sugar group 

(monosaccharide) or several sugar groups. Common types of glycosides include 

saponins, cardiac glycosides (cardenolides), cyanogenic glycosides, anthraquinone 

glycosides and glucosinolates, many of which possess various biological functions, 

e.g, as deterrents to herbivores (Majak, 1992; Duffey, S. S. 1980). Some examples of 

natural phenolic glycosides are given in Figure 3.1.  

 Carbohydrates carrying aromatic aglycones are important natural products with 

versatile bioactivities and thus key synthetic targets. The most common carbohydrate 

donors used for aromatic O-glycosylation are anomeric acetates, halides, 

trichloroacetimidates and thioglycosides as well as some other less common donors. 

Anomeric acetates or trichloroacetimidates, which are activated under acidic 

conditions, are preferred for electron rich aromatic aglycons; while glycosyl halides, 

which are activated using basic conditions, are preferred for electron deficient 

aromatic residues (Jacobsson et al., 2006).  

  Before the introduction of gossypol glycosylation, it is worth to mention an 

important reaction: the Koenigs–Knorr reaction (Figure 3.2) which was reported in 

1901 and thus, it is one of the oldest, simplest but most useful reactions for 

preparation of a wide variety of O-glycosides. It is useful for coupling reactions with 

either alkyl or aromatic alcohols as well as for coupling between sugars. The 
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methodology requires silver salts as catalysts. Among them, the oxide, carbonate, 

nitrate, triflate silver salts are the most commonly employed. Also a drying agent such 

as calcium sulfate, calcium chloride or molecular sieves is recommended (Fischer et 

al., 1901; Koenigs et al., 1901). 
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Ag2CO3 PhH, drierite (drying agent), I2 

Ag2O S-collidin (acid scavenger) 

AgNO3 HgO (acid scavenger) 
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AgOTf CH2Cl2, r.t. 

Figure 3.2 The Koenigs–Knorr reaction 
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3.3 Introduction 

The naturally occurring sesquiterpene dimer gossypol and its derivatives have 

long been a subject of interest to medicinal chemists due to their great potentials in 

pharmaceutical and industrial applications. This polyphenolic pigment displays 

various promising biological properties including contraceptive (Porat, 1990), 

anticancer (Moon et al., 2008; Shelley et al., 2000), antiviral (Radloff et al., 1986), 

and antifungal properties (Przybylski et al., 2009b). However, the relatively high 

toxicity of gossypol (Clark, 1927; Gallup et al., 1931) precludes its application in 

medical therapy, for this reason the syntheses and tests of potentially less toxic 

gossypol analogues are desired to enable their application as drugs. Many gossypol 

derivatives including its Schiff bases (Przybylski et al., 2009a), gossypol ethers 

(Adams et al., 1938; Morris et al., 1937), apogossypol series derivatives (Meltzer et 

al., 1985), gossypolone (Haas, 1965), gossindane (Talipov et al., 1999), halogenated 

gosspol (Zhu et al., 1992), periacetylated gossylic nitriles, periacetylated gossylic 

imino-lactones, azo-derivatives, hydrazones, thioderivatives of gossypol have been 

obtained and tested for their antipsoriatic, antimalarial, antitumor, interferon-inducing 

as well as anti-HIV activities (Przybylski et al., 2009c; Dodou et al., 2005; 

Razakantoanina et al., 2000; Rezhepov et al., 2002; Liang et al., 1995; Royer et al., 

1995).  

However, among those gossypol derivatives, no studies about gossypol 

glycosides have been reported up to now. As mentioned above in Section 3.2 
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background, glycosides are a main type of sources of natural medicines, cosmetics, 

and some functional food ingredients, which possess essential biological functions 

that make them the key synthetic targets. On one hand, gossypol glycosylation 

products may have increased solubility and thus make them more easily absorbed by 

the intestine; on the other hand, gossypol glycosides may undergo different 

metabolism pathways with reduced toxicity. However, regardless of these potential 

advantages, phenols such as gossypol are difficult to be glycosylated due to the 

electron-withdrawing properties of aromatic rings (Jacobsson et al., 2006). 

In this paper, novel glycosidic gossypol isomers were synthesized through 

ultrasound assisted reaction of 2, 3, 4, 6-tetra-O-acetyl-α-D-glucopyranosyl bromide 

with potassium salt of gossypol under PTC conditions and were fully characterized by 

1D NMR (1H NMR, 13C NMR, DEPT, 1D NOE), 2D NMR (HMBC, HMQC), HRMS, 

HPLC. Besides, we explored the antioxidant capacity, antitumor effects and the 

cytotoxicity of the glycosidic gossypol isomers and their hydrolyzed products. 

3.4 Experimental 

3.4.1 Material  

2, 2′-Bi [8-formyl-1, 6, 7-trihydroxy-5-isopropyl-3-methylnaphthalene]) acetic 

acid (gossypol acetic acid, MW=578.6, C30H30O8•C2H4O2, HPLC purity >95%) was 

purchased from Zhejiang Yixin Pharmaceutical Co., Ltd. P. R. China. 

Tetrabutylammonium bromide, 99+% (MW=322.36 C16H36BrN), 2, 3, 4, 
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6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (MW=411.21, C14H19BrO9), were 

products form Acros organics, New Jersey, USA. Dimethyl sulfoxide (DMSO), 

potassium carbonate (K2CO3), and phosphoric acid (H3PO4) were purchased from 

Sigma Chemical Co., (St. Louis, MO). Amerlite ion exchange resin (IR-120 H. C. P.) 

has medium porosity and moisture holding capacity of 44-48%, which is composed of 

strong acidic, sulfonated polystyrene type cation exchange resin (RSO3-H
+). All 

solvents for chromatographic isolation were of analytical grade. HPLC grade 

methanol, dichloromethane, acetone, and chloroform were purchased from Fisher 

Scientific Company (Fair lawn, N.J. USA).  Tissue culture plates were purchased 

from Costar Corp. (Cambridge, MA). Heat-inactivated fetal bovine serum, fetal 

bovine serum, and newborn calf serum were purchased from Hyclone Laboratories, 

Inc. (Logan, UT).  MCF-7 (human breast cancer), HT-29 (colon cancer) cancer cell 

lines and 3T3L1 preadipocytic cell line were purchased from the American Type 

Culture Collection (ATCC) (Rockville, MD). MCF-7 cells were cultured in 

RPMI-1640 with 10% newborn calf serum and HT-29 cells were cultured in RPMI 

with 10% fetal bovine serum instead of the newborn calf serum. The base medium for 

3T3L1 preadipocytic cells is ATCC-formulated Dulbecco's Modified Eagle's 

Medium, Catalog No. 30-2002. To make the complete growth medium, the following 

components were added to the base medium: bovine calf serum to a final 

concentration of 10%. All cell lines were incubated at 5% CO2 and 90-100% relative 

humidity at 37°C. Medium renewal was carried out 2-3 times per week, and cells 
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were subcultured when they achieved 80-90% confluence. 1, 

1-diphenyl-2-picrylhydrazy (DPPH), butylated hydroxytoluene (BHT), 3, 

5-dinitrosalicylic acid (98%)(DNSA), alpha-amylase (Type VI-B, from porcine 

pancreas), starch from potatoes ((C6H10O5) n, Mr=162.14n) was purchased from Fluka, 

Germany. Potassium sodium tartrate (KNaC4H4O6•4H2O, FW=282.231), sodium 

hydroxide were purchased from J. T. Baker Chemical Co., (Phillipsburg, N.J. USA). 

Sodium phosphate (Na2HPO4, FW=141.96), Sodium chloride were purchased from 

Fisher Scientific Company (Fair lawn, N.J. USA).  

3.4.2 Instruments for chemical analysis 

HPLC analysis was carried out on a Shimadzu HPLC system that included 

LC-20AT solvent delivery pumps, a CBM-20A communication bus module, a 

SPD-M20A photo-diode array detector, and the ClassVP operating software.  

The HPLC was equipped with a Kromasil RP C18 column (particle size of 5µm, 

column size of 150 mm×4.6 mm, Alltech Associates, Inc. Deerfield, IL), which was 

placed in a column oven (CTO-20A) under a constant temperature at 25oC. The 

mobile phase consisted of methanol: H2O = 87:13 (v/v) containing 0.1% aqueous 

H3PO4. The column flow rate was set at 1 ml min-1, while the HPLC pressure was 

controlled between 1020-1040 psi.  

Mass spectrum were obtained by a nanoflow capillary HPLC coupled with a 

quadrupole time-of-flight micro mass spectrometer (Q-TOF-MS) (Waters Corp., 

Milford, MS) with an electrospray ionization (ESI) in both ESI-MS and ESI-MS-MS 

modes operated by the Masslynx software (V4.0, Waters Corp., Milford, MS). Each 
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separated and purified sample was directly injected from the sample vial into the ESI 

source in methanol at a flow rate of 1.5 µL min-1. The ion source voltages were set at 

±3000V for positive and negative ion mode acquisitions, respectively. In both modes, 

the source temperature was maintained at 100°C and the mass spectrum was scanned 

from 100 to 800 m/z at 1 second with 0.1-second inter-scan delay in continuum mode.  

For MS/MS analysis, mass spectrum was scanned from 50-800 m/z. 

Glu-fibrinopeptide (Sigma) as a mass standard in ESI-MS and ESI-MS/MS mode was 

infused through the nanoLockspray (Waters Corp., Milford, MS) for single point, real 

time, and accurate mass calibration. Raw spectra were processed using the MassLynx 

software (V4.0). Precursor ion scans on positive and negative ion modes using low 

energy collision induced dissociation (CID) resulted in more structural fragments, 

which helped structural identification of compounds of interest.  

LC/MS analysis was performed on an Agilent 6100 series LC/MS in which a 

quadrupole mass spectrometer was coupled to an Agilent 1200 HPLC that consisted 

of a G1329A high performance autosampler (hp-ALS-SL), a G1312A binary pump 

(BIN-SL), a G1379B vacuum degasser, a G1316A thermostatted column 

compartment (TCC-SL) and a G1314B variable wavelength detector (VWD-SL).  

The quadrupole mass spectrometer was operated with an atmospheric pressure 

electrospray ionization (API-ES) source in positive mode. The flow rate of HPLC was 

maintained at 1 mL/min through a Kromasil RP C18 column (particle size of 5 µm, 

column size of 150 mm×4.6 mm, Alltech Associates, Inc. Deerfield, IL). The mobile 

phase in an isocratic elution consisted of methanol and water (v/v=87:13) containing 

0.1% formic acid. Mass spectra were recorded within the m/z range of 100-1000. The 
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dry gas flow for MS was 13.0 L/min, the nebulizer pressure was 30 psig, dry gas 

temperature was 350 0C, and the Vcap voltage was 3500 V. Data was acquired from 

and processed by the Agilent LC/MSD ChemStation software. 

The instrument used for infrared (IR) spectral analysis was a PerkinElmer 1725 

series FTIR spectrometer (PerkinElmer Corporation, Norwalk, CT) equipped with a 

room temperature deuterated triglycine sulfate detector and controlled by a 

PerkinElmer 7300 PC. 

The software used for collecting the FTIR data was the Spectrum version 5.3.1. 

The instrument was purged with dry nitrogen and maintained with two automatic 

dehumidifiers to minimize CO2 and water vapor interference. Melted drops of each 

standard were placed in a transmission cell with sodium chloride (NaCl) windows. 

The transmission path of 25 µm was adjusted using a polytetrafluoroethylene spacer. 

The cell was then placed in the cell holder in the FTIR spectrometer before the sample 

was scanned. The transmission cell was rinsed three times with acetone and then dried 

with a soft tissue before the next sample was put in. Calibration spectra were collected 

by 81 scans of each of the 45 standards at a resolution of 4 cm−1, gain of 1.0, and 

strong apodization throughout the mid-IR region of 4000–400 cm−1.All the spectra 

were subtracted from the background KBr spectrum. All the samples were scanned in 

duplicate. 

The UV-Vis absorbance spectra are recorded by the SPD-M20A photo-diode 

array spectrophotometer. 
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1D and 2D NMR (1H NMR, 13C NMR, DEPT, HMQC, HMBC) spectra were 

acquired from a Bruker AV-500 spectrometer or JEOL operated at 300 MHz for 1H 

NMR and 75 MHz for 13C NMR. Data were processed by the Bruker XWINNMR 

3.50 programs.  

In addition, thin layer chromatography (TLC) analytic plates were F254 plates 

precoated with silica gel 60Å and fluorescent reagent (Merck, Darmstadt, Germany & 

Whatman, New Jersey, USA). The TLC preparative plates are Partisil PK6F, 

precoated with silica gel 60Å, 20×20cm, layer thickness is 250 or 1000 µm., 

purchased from Whatman Inc, New Jersey, USA. The TLC was visualized at 254 nm 

in a UV-viewing system purchased from Fisher Biotech. Silica gel (300 meshes), 

which was purchased from QingDao Haiyang Chemical Co., Ltd. P. R. China, was 

used for column chromatography.  

3.4.3 Chemical syntheses and structural characterization 

 The synthetic procedure for the glycosidic gossypol isomers is depicted in Figure 

3.3. To a mixture of gossypol acetate (500 mg, 0.864 mmol, 1eq) in 

dichloromethane/acetone (v/v=5:1, 25 ml) and 2, 3, 4, 6- tetra-O-acetyl-α 

-D-glucopyranosyl bromide (711mg, 1.728 mmol, 2eq) in dichloromethane (5 ml), 

aqueous KOH (0.3 g, 5mmol in 10 ml water) and  tetrabutylammonium  bromide 

(0.6 g, 1.86 mmol in 10 ml water) were added. The mixture was ultrasonicated until 

the completion of the reaction (at least 6 hrs at room temperature), which was 

indicated by phase separation and analyzed by TLC (dichloromethane/methanol  
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Figure 3.3 The glycosylation of gossypol  
(7 or GS1:7, 7'-gosspol di-glucosidic tetraacetate 
8 or GS2:6, 7'-gosspol di-glucosidic tetraacetate) 
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=20:1). The organic layer was washed with water, dried over anhydrous sodium 

sulfate and distilled under reduced pressure. The crude sample was loaded onto a 

silica gel (300 mesh) column and eluted out with gradient from 100% petroleum ether 

to the mixture of petroleum ether-acetone in 10/1 to the final concentration ratio 3/1  

 (V/V). The isomers were finally elaborately separated by preparative TLC 

(dichloromethane/ methanol=20:1), pure fractions were pooled and evaporated to 

afford 7, 7′-gosspol di-glucosidic tetraacetate 7 in 36% yield (0.36g) and 6, 7′-gosspol 

di-glucosidic tetraacetate 8 in 24% yield (0.24g) and trace amount of gossypol  

  

Figure 3.4 Hydrolysis of compounds 7 and 8 

(10 or GS1':7, 7'-gosspol di-glucoside  
11 or GS2':6, 7'-gosspol di-glucoside)  
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mono-glucosidic tetraacetate 9. The gossypol glucosidic tetraacetates could be 

converted into gossypol glucosides quantitatively in dry methanol (10 mL) and 

sodium methoxide. The deacetylation reaction (Figure 3.4) was monitored via TLC. 

At the end of the reaction (30 min), the solution was neutralized by the addition of 

freshly regenerated IR-120 H+ resin. 

  All structures of glycosylated gossypol derivatives were fully characterized via 

rigorous structure determination through multiple spectral experiments such as 1D 

NMR (1H NMR, 13C NMR, DEPT and 1D NOE), 2D NMR (HMBC, HMQC), UV 

spectroscopy, HRMS as well as HPLC technique.  

3.4.4 Experimental results and discussion 

 The negative-ion mode HR-nano-ESI Q-TOF MS/MS spectrum of 7 showed the 

molecular ion peak of C58H66O26 at m/z 1177.4166 (intensity 100%) and two other 

major peaks at m/z 847.2607 (intensity 35%) and 516.1364 (intensity 20%) 

corresponding to the fragments from 7 which lost one and two glycosyl groups 

respectively (see Figure 3.5). The fragment structure in blue bracket is corresponding 

to the mass peak from which the arrow in blue pointed, the same to the red ones). 

Similar MS/MS spectra of 8 showed the molecular ion peak of C58H66O26 at m/z 

1177.4055 and two fragment peaks at m/z 847.2491 and 516.1309 as shown in Figure 

3.6. The compound 9 showed the molecular ion peak of C44H48O17 at m/z 847.2687 

corresponding to the gossypol mono-glucosidic tetraacetate (Figure 3.7).  
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 1H NMR (300 MHz, CDCl3) data of 7: 1.52 (d, 12H, J=3Hz, -CH3 at 12, 12', 13 

and 13'), 2.21 (m, 12H, -CH3 of -OAc groups), 2.31 (s, 6H, -CH3 at 15 and 15'), 3.81 

(m, 2H, J=3Hz, -CH= at 11 and 11'), 4.26 (m, 4H, -CH=, sp2 protons in sugar 

residues), 5.16-5.52 (m, 5H, -CH=, sp protons in sugar residues), 6.34(-OH), 7.06(d, 

2H, J=2Hz, -CH=, sp protons at 14 and 14'), 7.42(s, 2H, sp protons at 4 and 4').  

  1H NMR (300 MHz, CDCl3) data of 8: 1.52 (t, 12H, J=3Hz, -CH3 at 12, 12', 13 

and 13'), 2.16 (m, 12H, -CH3 of -OAc groups), 2.28 (s, 6H, -CH3 at 15 and 15'), 3.79 

(m, 2H, J=3Hz, -CH= at 11 and 11'), 4.15 (m, 4H, -CH=, sp2 protons in sugar 

residues), 4.25-5.52 (m, 5H, -CH=, sp protons in sugar residues), 5.18(-OH),  

 

 

Figure 3.5 The ESI- Q-TOF MS/MS spectrum of 7 
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6.36(-OH), 7.08(s, 2H, -CH=, sp protons at 14 and 14'), 7.39(s, 2H, sp protons at 4 

and 4').    

    13C NMR data of 7 (75MHz, CDCl3): 20.54, 20.61, 20.75, 20.96, 21.33, 26.97, 

30.90, 61.65, 66.77, 69.47, 70.17, 70.80, 76.61, 77.03, 77.23, 77.45, 100.67, 102.87, 

109.24, 114.15, 117.88, 120.17, 126.62, 127.60, 138.25, 138.59, 146.01, 155.12, 

169.99, 170.20, 170.92, 171.52.   

 

 

Figure 3.6 The ESI- Q-TOF MS/MS spectrum of 8 
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Figure 3.7 ESI- Q-TOF MS spectrum of 9 

 

 13C NMR data of 8 (75MHz, CDCl3): 20.53, 20.61, 21.04, 21.24, 21.33, 26.94, 

30.92, 62.06, 67.03, 69.41, 70.07, 71.02, 76.60, 77.02, 77.22, 77.45, 99.90, 103.08, 

109.29, 114.09, 117.70, 119.95, 126.35, 127.45, 137.96, 138.22, 145.93, 154.94, 

170.00, 170.28, 170.65, 171.45. 

The 1H NMR spectrum of 7 clearly showed one set of doublet proton resonance 

(methyl groups at 12, 13 and 12′, 13′ position) at 1.52ppm (Figure 3.9) while the 1H  
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Figure 3.8 The change of the signal at 6.3ppm in 1H NMR spectra of 7 after CD3OD 

were added 

NMR of 8 showed two sets of doublet proton resonance signals at 1.52ppm for the 

methyl groups at the same position (triplet at 500MHz, doublet of doublets at 

300MHz, J=3Hz). The signal at 6.3ppm in both 1H NMR spectra of 7 and 8 became 

less intense after a few drops of CD3OD added into the sample tube (Figure 3.8) 

indicating that one of the OH groups left in gossypol framework of gossypol. The 

identification of hydroxyl group in gossypol framework (left: before adding CD3OD; 

right: after adding CD3OD). glucosidic molecule gave rise to the signal at 6.3ppm for 

both 7 and 8. The protons attached to carbon 14′ were demonstrated to be in a 

hemiacetal form according to the appearance of the signal at 7.02ppm and absence of 

aldehyde signal at 11ppm.  

     The 13C NMR and DEPT spectra of 7 (in CDCl3) (See AddendixII, Figure 
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A3.1, A3.2, A3.14) located a set of CH2 peaks from glucoside moiety at 61.96ppm, a 

set of CH peaks at 27.01ppm for methine group at position 11 and 11′, four sets of 

tertiary carbon peaks from glucoside moiety at 66.99, 69.28, 70.01, 71.25 ppm 

respectively, the other three sets of tertiary carbon peaks from the carbon in the 

hemiactal structure of gossypol, the anomeric carbon of glucoside moiety and the 

tertiary carbon of benzene at 100.66, 102.88, 114.15ppm respectively. The compound 

8 possesses 13C NMR and DEPT spectra similar to that of 7 but some of the signals 

split and have more fine signals.    
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  In addition, the ultraviolet absorption spectra (Figure 3.10) of gossypol 

diglucosidic tetraacetates and gosspol diglucosides all have profound hypsochromic 

shift comparable to the unfunctional gossypol. Ultraviolet and visible light have 

sufficient energy to cause only two electronic transitions, the promotion of a 

nonbonding (lone-pair) electron (n) into an antibonding molecular orbital (n to π* 

transition), the higher energy electronic transition is the promotion of an electron from 

a bonding molecular orbital into an antibonding molecular orbital (π to π* transition). 

While the ultraviolet absorption spectrum of pure gossypol shows three well separated 

bands at 235, 288, 372 nm since it contains conjugated Pi-electron system, the 

strongest absorbance is at 235nm, after glycosylation, the compound 7-11 presumably 

due to the substitution of the two bulky glycosidic groups which could cause 

distortion of the naphthalene ring in the gossypol framework, besides, the conversion 

from the dialdehyde form to the dilactol form and substitution also affected the 

electron density and the conjugation system. The UV spectra showed that 

glycosylation of gossypol could alter the relative intensities of the main UV 

absorption bands. There is hyperchromic shift at 266 nm except of the hypsochromic 

shift for the absorption bands. 

  The UV-Vis of gossypol: max/nm (MeOH) 235(strongest), 288, 372; HPLC: 

tR=7.94min; mobile phase: CH3OH: H2O=87:13 (0.1% H3PO4), the average 

pressure=1052psi, flow rate=1ml/min;   
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  The UV-Vis of 7, 7'-gosspol diglucosidic tetraacetate (Compound 7): max/nm 

(MeOH) 206, 225, 260 (strongest); HPLC: tR=1.63min; mobile phase: pure CH3OH, 

the average pressure=600psi, flow rate=1ml/min; 

  The UV-Vis of 6, 7'-gosspol diglucosidic tetraacetate (Compound 8): max/nm 

(MeOH) 205, 225, 260 (strongest); HPLC: tR=1.84 min; mobile phase: pure CH3OH, 

the average pressure=600psi, flow rate=1ml/min; 

   The UV-Vis of 7, 7'-gossypol diglucoside (Compound 10): max/nm (MeOH) 206, 

226, 261 (strongest); HPLC: tR=1.49 min; mobile phase: pure CH3OH, the average 

pressure=597psi, flow rate=1ml/min; 

  The UV-Vis of 6, 7'-gossypol diglucoside (Compound 11): max/nm (MeOH) 206, 

227, 261 (strongest); HPLC: tR=1.59min; mobile phase: CH3OH: H2O=87:13 (0.1% 

H3PO4), the average pressure=600psi, flow rate=1ml/min. 

   See Page 71 about the other additional HPLC conditions.  
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Figure 3.10 The UV/vis absorbance spectra for gossypol, gosspol diglucosidic 
tetraacetates, gosspol diglucosides 
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Figure 3.11 The arrow indication of the NOE correlation in the structure of 
compound 7, a-f refer the protons at different position in the molecule 

 

  All the data indicate that the two glucose molecules in compound 7 is 

symmetrical, while it is unsymmetrical for compound 8. There are two possible 

isomers of 1: 6, 6′ or 7, 7′-double substitution. In order to discriminate the possible 

configuration, 1D NOE experiments were carried out (Figure 3.11 and 3.12). The 

arrows in (A) indicate the mutual NOE correlations. The protons at position b and 

a were irradiated separately, the proton signals which arise from a, c and d give 

NOE in response to the irradiation of signal b, while the signals of b, e and f give a 

NOE in response to the irradiation of signal a. The protons of the hydroxyl group 

left in the gossypol framework and the methyl groups at position b are spatially  
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(B) 

 

Figure 3.12 1D NOE spectra of isomer 7 (500MHz), 
(A) Irradiating proton signal at b position 
(B) Irradiating proton signal at a position. 

Position refers to Figure 3.11. 
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close enough to elicit an NOE response which gives an evidence of  compound 7 

to be 7,7′-substitution. Interestingly, the hydrolyzed products of 10 and 11 exist as 

dialdehyde form according to the reappearance of proton signal at 11.1ppm in the 

1H NMR spectra. The new gosspol glucosidic tetraacetates are relatively stable in 

air. While stocking in methanol, they would undergo hydrolysis slowly possibly 

due to larger proton activity and less 3D hydrogen bonded structure as well as 

higher solubility of gossypol glucosidic tetraacetates in methanol than the other 

solvents.   

 Let me disscuse the FT-IR spectra of gossypol and glycosylated gossypols 

(Figure 3.13-15). The starting material, gossypol acetic acid is a complex which 

consists of one gossypol molecule and one acetic acid molecule through hydrogen 

bonding, there are no additional hydro-gen bonds between these complexes, 

gossypol crystal structure is stabilized by Van der Waals interactions only. The 

functional group region of 4000-1400 cm-1 an IR spectrum is where most of the 

functional groups show absorption bands; the finger print region of 1400-600 cm-1 

is characteristic of the compound as a whole. In the functional region of the FT-IR 

spectrum of unmodified gossypol, two clear bands at 3503.37 and 3425.63 cm-1 

assigned to different types of hydroxyl groups involved in the hydrogen bonds of 

different strength are observed, in contrast, the rest O-H groups after gossypol 

glycosylation show stretches at 3502.34 cm-1 for the compound 8 and 3481.20 cm-1 

for the compound 7 which is the only difference at absorption frequency for these 
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two isomers, and it also give a further evidence to indicate that the O-H groups 

exist in different chemical environment further. Also, the FT-IR spectrum shows 

the stretching vibration mode of C=O of the ester group in eight acetyl groups of 

the gosspol diglucosidic tetraacetates show the strongest absorption band at the 

frequency of 1754.79 cm-l for both Compound 7 and 8, while the FT-IR spectrum 

of unglycosylated gossypol show absorption at 1712.01 cm-l with medium 

intensity for the stretching vibration of C=O in the aldehyde groups. The frequency 

occurs at around 2961.07 cm-l reflect sp3 C-H scissoring vibration mode for both 

glycosylated gossypol and pure gossypol. In addition, the increased C-O bonds of 

both Compound 7 and 8 show strong stretches at 1223 cm-l in the fingerprint 

region.  
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Figure 3.13 The FT-IR spectrum of 7, 7'-gosspol diglucosidic tetraacetate 
(Compound 7) in KBr pellet in the range 4000–370 cm-1 

 [IR ν/cm-1 (KBr) of 7, 7'-gosspol diglucosidic tetraacetate (Compound 7): 3481.20, 

2961.13, 1754.79, 1634.30, 1440.89, 1370.27, 1223.64, 1159.13, 1072.79, 875.06, 

601.75, 397.23, 376] 
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Figure 3.14 The FT-IR spectrum of 6, 7'-gosspol diglucosidic tetraacetate 
(Compound 8) in KBr pellet in the range 4000–370 cm-1 

  [IR ν/cm-1 (KBr) of 6, 7'-gosspol diglucosidic tetraacetate (Compound 8): 3503.37, 

3425.63, 1961.07, 1712.01, 1577.13, 1613.81, 1441.09, 1381.10, 1339.22, 1297.84, 

1179.01, 1123.59, 1053.13, 966.65, 912.80, 772.49, 611.99, 542.43, 478.40, 394.83, 

385.83] 
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Figure 3.15 The FT-IR spectrum of gosspol in KBr pellet in the range 4000–370 cm-1 

  [IR ν/cm-1 (KBr) of gossypol: 3503.37, 3425.63, 2961.07, 1712.01, 1613.81, 

1577.13, 1441.09, 1381.10, 1339.22, 1297.84, 1179.01, 1123.59, 1053.13, 966.65, 

912.80, 842.15, 772.49, 642.43, 611.99, 478.40, 394.83, 385.83] 
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 The anticancer activities of gossypol, 7, 7′-gosspol diglucosidic tetraacetate, 6, 

7′-gosspol diglucosidic tetraacetate, 7, 7′-gosspol diglucoside and 6, 7′-gosspol 

diglucoside were investigated by using an MTT (3-(4, 5-dimethyl- thiazole-2yl)-2, 

5-diphenyl tetrazolium bromide) assay on human colon adenocarcinoma HT-29 

and breast adenocarcinoma MCF-7 human cancer cell lines, the results are 

presented in Figure 3.16. When the growing cancer cell cultures achieved 80-90% 

confluence, they were incubated for another 24 hours right after chemical 

treatment. The result was recorded on a universal EL800 Bio-Tek microplate 

reader at 490nm. A mitochondrial enzyme in living cells, succinate dehydrogenase, 

cleaves the tetrazolium ring and converts the MTT into an insoluble purple 

formazan and the amount of formazan produced is directly proportional to the 

number of viable cells. The cytotoxicity of gossypol, 7, 7′-gosspol diglucosidic 

tetraacetate, 6, 7′-gosspol diglucosidic tetraacetate, 7, 7′-gosspol diglucoside and 6, 

7′-gosspol diglucoside to 3T3L1 adipocytes evaluated with an LDH (lactate 

dehydrogenase) assay were shown in Figure 3.17. The cells were incubated for 4 

hours after chemical treatment, cell death in the cultures was assessed by 

determining release of lactate dehydrogenase from the cells into the culture 

medium. Results from two assays (MTT and LDH) to cancer cell lines and 

adipocytes showed that the cytotoxicity of compound 7, 7′-gosspol diglucosidic 

tetraacetate, 7, 7′-gosspol diglucoside and 6, 7′-gosspol diglucosidic tetraacetate, 

were significantly lower than gossypol and 6, 7′-gosspol diglucoside at P<0.05.  
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Figure 3.16 Growth inhibition of human breast MCF-7 cancer cell line (top) and 
human breast HT-29 colon cell line (bottom) incubated with gossypol, gossypol 

diglycosidic tetraacetates (compound 7 and 8), gossypol diglycosides (compound 10 
and 11) for 24 hrs. Error bars represent standard deviations of six experiments, and 
different letters represent significant difference at P > 0.05. G stands for Gossypol, 
GS1 for 7, GS2 for 8, GS1' for 10, GS2' for 11, see Figure 3.3 and 3.4 about the 

numbering 
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      The relative cytotoxicity at concentration of 50µM are 57.99%, 22.11%, 

23.27%, 23.22%, and 71.05% for gossypol, 7, 7′-gosspol diglucosidic tetraacetate, 

6, 7′-gosspol diglucosidic tetraacetate, 7, 7′-gosspol diglucoside and 6, 7′-gosspol 

diglucoside respectively, while the anti-proliferation activity for cancer cell lines 

(eg. HT-29 colon cancer cell) at 50µM of those five glycosidic gossypols are 

24.57%, 68.85%, 47.26%, 68.29% and 39.95% respectively which give hints that  

the 6, 7′ isomer-gossypol diglycosidic tetraacetate (compound 8), targetedly 

inhibits cancer cell growth with reduced cytotoxic effect to normal cells 

comparable to un-functionalized gossypol. 

 

 

Figure 3.17 The cytotoxicity of gossypol and its glycosidic analogues, data is means 
of three or more determinations, SD were within 5%. G stands for Gossypol, GS1 for 
7, GS2 for 8, GS1' for 10, GS2' for 11, see Figure 3.3 and 3.4 about the numbering 
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The naphthalene-based compound gossypol has long been known to exhibit 

antimalarial and other biological activities. Previous studies have indicated that 

compounds of this type target plasmodium falciparum lactate dehydrogenase 

(pfLDH), an essential enzyme for energy generation within the parasite. Crystal 

structures of the complexes formed by binding of to their target enzyme have been 

used to delineate the molecular features likely to form the gossypol binding site. 

Although this core pharmacophore-like molecule only exhibits low levels of 

inhibitory activity, these molecular snapshots provide a rational basis for renewed 

structure-based development of naphthalene-based compounds as anti-malarial 

agents. The impact of the new gossypol glycosides on trypanosoma brucei parasites 

has also been explored. Gossypol has been reported to inhibit certain oxidoreductases, 

such as R-hydroxy acid and malate dehydrogenases in trypanosoma. Brucei, and 

Kaminsky et al. reported that the EC50 value of gossypol in 24 hrs growth inhibition 

test for three separate T. brucei strains was over 10 ppm (Kaminsky et al., 1989). In 

our study, diglycosidic tetraacetates (compound 7&8) have been shown to be most 

effective against trypanosome brucei with significantly lower LD50s values (2.21 µM 

and 2.44µM respectively) compared with unmodified gossypol and gossypol 

diglycosides 10 and 11(Table 1 & Figure 3.18). The fact that the hemiacetal form in 

7 and 8 might probably block themselves from the Schiff base formation with proteins 

maybe contribute to their potent inhibition effect on trypanosoma brucei cell growth,  
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 Gossypol 7 8 10 11 

LD50 36.90 2.21 2.44 >100 72.60 

±SD 10.24 0.09 0.21 ------ 1.04 

Table I. LD50 (µM) values of gossypol (G), gossypol diglycosidic tetraacetate (7&8), 
gossypol diglycoside (10&11) to trypanosoma brucei cells 

  

 

  

Figure 3.18 .The LD50 (µM) values of gossypol, gossypol diglycosidic tetraacetates, 
gossypol diglycosides to trypanosoma brucei cells. G stands for Gossypol, GS1 for 7, 

GS2 for 8, GS1' for 10, GS2' for 11, see Figure 3.3 and 3.4 about the numbering 
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  The attenuation of gossypol’s impact against trypanosomes is possible partially due 

to the gossypol protein interactions. In addition, acetyl residues have also been proved 

to play an essential role in the anti-trypanosomal activity from our results, the 

non-acetyl gossypol diglycosides (10&11) which are present as dialdehyde form yield 

weaker inhibition comparable to unmodified gossypol (72.6µM and >100µM), which 

is consistent with our hypothesis. Flitter et al. also reported that some specific 

vaccines containing acetyl residues could elicit reverse biological response (Moe et al., 

2009). 

3.5 Conclusion 

In conclusion, novel glycosidic gossypol analogues were obtained and fully 

characterized for the first time. The studies of inhibition of cancer cell lines and the 

cytotoxic effect indicated that the gossypol diglycosidic tetraacetate 8 possessed the 

lowest cytotoxic effect compared to other gossypol glycosides. Moreover, 8 exhibited 

strong anticancer as well as anti-trypanosomal activity. It shows that the diglycosidic 

tetraacetate 8 can be possibly developed as a potential anticancer agent or 

anti-trypanosomal agent. Further investigation is being carried out in our lab to 

identify the mechanism of structure activity relationship responsible for the biological 

activities. 
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Figure A3. 1 The DEPT 1350 spectra of 7 
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Figure A3.2 The DEPT 900 spectra of 7 
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Figure A3.3 1H NMR spectra of 8 
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Figure A3.4 The DEPT 900 spectra of 8 
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Figure A3.5 The DEPT 1350 spectra of 8 
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(Figure A3.6-1) 
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 (Figure A3.6-2) 

Figure A3.6 The 1D NOE spectra of 7 (A, B) 
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(Figure A3.7-1) 
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(Figure A3.7-2) 

Figure A3.7 The 1D NOE spectra of 8  
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                  Figure A3.8 The UV spectra of 7 (left) and 8 (right) 

 

            

 

         Figure A3.9 The HPLC spectra of 7(left) and 8 (right) 
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Figure A3.10 The MS spectra of 10, m/z=[M+Na]+=865.2(Positive mode: top),  
m/z=[M-H]-=841.5(Negative mode: bottom) 
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Figure A3.11 The MS spectra of 11, m/z = [M-H]-=841.5(Negative mode) 

Figure A3.12 The HPLC and UV spectra of 10 

 

Figure A3.13 The HPLC and UV spectra of 11 
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Figure A3.14 The 13C NMR spectrum of 7 
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Figure A3.15 The 13C NMR spectrum of 8 
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 CHAPTER 4 

UNEXPECTED FORMATION OF N-METHYLFULLEROPYRROLIDINES 

BY THE REACTION OF FULLERENE AND GOSSYPOL AND THEIR 

BIOACTIVITIES 

4.1 Abstract 

Fullerene [60] reacted with 2, 2′-bis-(formyl-1, 6, 7 trihydroxy-5-isopropyl-3- 

methylnaphthalene) (gossypol) in the presence of sarcosine through the Prato 

reaction, this reaction resulted in some unexpected N-methylfulleropyrrolidines, and 

different products in variable yield were obtained when choosing toluene or 

chlorobenzene as reaction medium. These fulleropyrrolidines were fully characterized 

via rigorous structure determination through multiple spectral experiments, which 

included 1D NMR (1H NMR, 13C NMR, the DEPT), 2D NMR (HMQC, HMBC), UV, 

FT-IR, HRMS, HPLC and X-ray crystallography. During the reaction, gossypol 

decomposed into benzaldehyde which was successfully detected as a new 

intermediate through GC–MS spectra, although the polyphenolic gossypol undergoes 

decomposition under drastic conditions such as heat and high pressure and the 

detailed composition have been studied, this new intermediate has never been 

detected and reported. 

Besides, in an in vitro assay of NO radical induced apoptosis in 3T3L1 cells for 

the N-methylfulleropyrrolidines and pure fullerene, N-methylfulleropyrrolidine (the 
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compound 7) and N-methyl-2, 2-dimethylfullerpyrrolidine (the compound 8) showed 

dose dependent and stronger radical scavenging activities than the parent fullerene. 

The study in this chapter enriched the chemistry of gossypol l and gave a hint to   

illustrate the mechanism during the decomposition f gossypol.  

4.2 Introduction 

Buckminster fullerene also called bucky ball is a distinct state of carbon. They 

were reported by Kroto et al. (1985; 1991) in the form of C60 molecules. Since then 

there have been various studies for the utilization of this physically stable but 

chemically reactive molecule. Applications of C60 in areas such as optical devices, 

semiconductors, chemical sensors, catalysis and in the medical field have been 

explored (Yadav et al., 2008). While among various potential properties of the parent 

fullerene and fullerene derivatives, biomedicinal function might be one of the most 

promising utilities (Hirsch et al., 1994; Jensen et al., 1996; Daros et al., 1999; Bolskar 

et al., 2003; Zhou et al., 2001). The capability of C60 and its derivatives to scavenge  

  

 

 

 

                C60                              C70 

Figure 4.1 The molecule structures of fullerene [60], fullerene [70] 
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free radicals enables them to be a potentially useful source of new chemotherapeutic 

agents in the prevention or treatment of some chronic diseases, such as AIDS (HIV-1 

protease inhibition) (Marcorin et al., 2000; Friedman et al., 1998; Zhu et al., 2003), 

malignant tumors (Mashino et al., 2003), osteoporosis (Gonzalez et al., 2002; 

Mirakyan et al., 2002; Yin et al., 2005; Yin et al., 2006) etc, fullerene and its 

derivatives also possess neuroprotective, antibacterial and gene transfection 

properties(Susanna et al., 2003). Moreover, it has been recognized that fullerenes are 

one of the key building blocks for nanoscale materials, C60 has been considered as 

interesting candidate for constructing nanoparticulate drug delivery systems that are 

able to be loaded with various biofunctional agents for providing different 

bioactivities (Maggini et al., 1993; Georgakilas et al., 2002). 

  Nanoparticle based drug delivery systems have considerable potential for 

treatment of some certain diseases. The important technological advantages of 

nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility 

of incorporation of both hydrophilic and hydrophobic substances, and feasibility of 

variable routes of administration. Nanoparticles can also be designed to allow 

controlled (sustained) drug release from the matrix. These properties of nanoparticles 

enable improvement of drug bioavailability and reduction of the dosing frequency, 

Nanoparticles for the purpose of drug delivery are defined as submicron colloidal 

particles. This definition includes monolithic nanoparticles or nanospheres in which 

the drug is adsorbed, dissolved, or dispersed throughout the matrix and nanocapsules 
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in which the drug is confined to an aqueous or oily core surrounded by a shell-like 

wall. Alternatively, the drug can be covalently attached to the surface or into the 

matrix (Gelperina et al., 2005).  

In our study, the original purpose is to synthesize a covalent bonded fullerene 

gossypol conjugate through 1, 3-dipolar cycloaddition as the following Figure 4.2 

and 4.3 shows. 

The Prato reaction or 1, 3-dipolar cycloaddition which is the most versatile and 

wildly used method to functionalize fullerene, there need an aldehyde group bearing 

molecule, and an α-terminal amino acid and unsaturated compound, the pyrrolidine  

  

 

 

 

 

 

 

 

 

Figure 4.2 The reaction of C60 with azomethine ylide through the Prato reaction 
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Figure 4.3 The reaction between gossypol and C60 

 

like derivatives were obtained though a azomethine ylide as intermediate (Maggini et 

al., 1993).  

Some pioneering work has been initiated to make various functional fullero- 

pyrrolidines, which are regarded as versatile building blocks for fullerene containing 

functional molecules. As we mentioned before, gossypol, which is a polyphenolic 

compound widely existing in members of the Malvaceae family and particularly rich 

in cottonseed, has two aldehyde groups and possesses a wide spectrum of biological 

activities such as contraceptive, antiviral, antiamoebic and antiprotozoan effects. 

While gossypol displays toxicity to a few of system in mammals as we introduced in 

the review in Chapter1, and gossypol is hydrophobic compound which to some extent 

limit the bioavailability of gossypol. Some researchers reported that the aldehyde 
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group could bind to proteins when it is consumed by human or animals. If the 

fullerene based gossypol could be obtained through the 1, 3-cycloaddition and the 

reactive aldehyde groups would be blocked and the lower toxicity was expected. In 

addition, the fullerene residue is more lipophilic, so the designed nano-based gossypol 

could become more lipophilic and maybe affect the way of administration and the 

process of absorption, distribution, metabolism, and excretion. Gossypol is considered 

suitable for making nanoparticlebased drug for its multiple bioactivities and chemical 

reactivity of gossypol. 

In this context, an attempt to synthesize a fullerene–gossypol hybrid was 

conducted by 1, 3-dipolar addition, the Prato reaction. However, fulleropyrrolidines 

rather than the expected fullerene–gossypol hybrid were formed. These 

fulleropyrrolidines were fully characterized via rigorous structure determination 

through multiple spectral experiments such as 1D NMR (1H NMR, 13C NMR, DEPT), 

2D NMR (HMQC, HMBC), UV, FT-IR, HRMS, HPLC and X-ray crystallography. In 

the course of synthesis and with the aid of gas chromatography–mass spectrometry 

(GC–MS), we found that benzaldehyde was formed as a new reaction intermediate 

from gossypol degradation upon heating in toluene. In 1930s, Adams and his 

coworkers (1938; 1939) found that, under heating conditions, gossypol ethers 

degraded into a reaction intermediate termed gossic acid, which had roughly half 

molecule of gossypol. In addition, Clark and his coworkers (1928) found that formic 

acid, acetic acid, n-butyric acid, as well as iso-butyric acid were formed as 
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decomposition products during the reaction between gossypol and potassium 

permanganate in sodium hydroxide solution. In the present study, benzaldehyde was 

found for the first time to be an intermediate for gossypol reactions. 

4.3 Experimental 

4.3.1 Materials 

Fullerene [60] (99.5%) was purchased from SES Research, Houston, TX, USA. 

All organic solvents (HPLC grade) were distilled in vacuum in order to reduce the 

content of dissolved oxygen or filtrated by 0.2micro PVDF membrane filter. Toluene, 

chlorobenzene were purchase from Fisher Scientific, Pittsburgh, PA, USA. The 

solvents were dehydrated by distillation in the presence of CaH2. 1, 

2-dichlorobenzene-d4 and chloroform-d was from Cambridge Isotope Laboratories, 

Inc., MA, USA. Carbon disulfide (CS2, MW=76.14). Sarcosine (N-methylglycine, 

C3H7NO2, MW=89.09) was from Alfa Company, MA, USA. Gossypol acetic acid 

was isolated by Soxhlet extraction, 6-methoxygossypol and 6, 6-dimethoxygossypol 

were provided by USDA-SRRC. Both methoxygossypol derivatives were 1:1 M 

solvates of acetic acid. Like gossypol acetic acid (1:1), both methylated gossypols are 

racemic. Sodium nitroprusside (SNP, Na2 [Fe(CN)5NO]·2H2O,MW= 261.92) was 

from Sigma–Aldrich (Atlanta, GA). Heat-inactivated fetal bovine serum, fetal bovine 

serum, and newborn calf serum were purchased from Hyclone Laboratories, Inc. 

(Logan, UT). 3T3L1 fat cells were purchased from the American Type Culture 
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Collection (ATCC) (Rockville, MD). The CellTiter96 Aqueous assay kitwas 

purchased fromPromega, Madison, WI. 

4.3.2 Instruments 

4.3.2.1. X-ray analysis 

The X-ray diffraction data were collected with graphite-monochromated Cu Ka 

radiation (k = 0.71073 A°) on a Rigaku AFC8S diffractometer with a Mercury CCD 

detector at 193 K. The structure was solved by direct methods, and refined using 

full-matrix least-squares techniques with the program SHELXTL. 

4.3.2.2 NMR experimental 

1D and 2D NMR spectra were acquired using a Bruker AV-500 spectrometer or 

JEOL operating at 300 MHz (for 1H NMR). Data processing was carried out by the 

Bruker XWINNMR 3.50 program. (See Chapter2 for detail) 

4.3.2.3 FT-IR analysis 

The transmission FT-IR spectra were obtained using a Perkin Elmer 2000 FT-IR 

spectrometer. (See Chapter2 for detail) 

4.3.2.4 Mass spectral analysis 

Mass spectra were acquired on Q-Tof micro (Waters) with direct injection 

through capLC to nanospray in negative ion mode. MassLynx software drives the LC 
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and autosamplerand permits data collection in MS and MS/MS modes. The 

ProteinLynx Globe Server 2.1.5 (PLGS) software performed the data analysis. (See 

Chapter2 for detail) 

4.3.3 Synthesis of fulleropyrrolidines 

4.3.3.1 Extraction of gossypol from cottonseed 

Dry the Soxhlet apparatus at 105°C to constant weight, add the crushed cotton 

seed (1.5kg) to the cloth container and seal to prevent sample loss during the 

extraction. Place several boiling chips into a clean, dry receiving flask (5L container). 

Pour 3L solvent into the dry receiving flask and insert the cloth container and install 

the apparatus as Figure4.5 shown. Heat at reflux for 48hrs, periodically check the  

 

 

 

 

 

 

Figure 4.4 The gossypol extraction apparatus   
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reflux rate and adjust the heating rate to give solvent exchanges every three hours, we 

use petroleum ether to remove fatty acid and proteins and use acetone to extract 

gossypol.  When the extraction time is complete, place the receiver flask on the 

rotary evaporator and remove the solvent under vacuum. Pure gossypol (22.5g, yield: 

1.5%) which was confirmed by NMR spectra was obtained by repeated 

recrystallization from acetone solution by adding 50% glacial acetic acid. 

4.3.3.2 Synthesis and spectral data of N-methyl-2-phenylfulleropyrrolidine 

(compound 12) and N-methylfulleropyrrolidine (compound 13) 

A sample of C60 (100 mg, 0.139 mmol) was dissolved in dry toluene (30 ml) and 

then the solution of gossypol (80.36 mg, 0.139 mmol) in DMSO (3 ml) as well as an 

equivalent amount of sarcosine (12.37 mg, 0.139 mmol) were added. After 5 min of 

nitrogen flushing, the mixture was heated at 110 oC for 18 hrs (Figure 4.5). The 

product of N-methyl-2-phenylfulleropyrrolidine (12, 32.4 mg, 27.3%) was purified 

 

 

 

 

Figure 4.5 The reaction apparatus   
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by flash chromatography (chlorobenzene/hexane, 5/3). The subsequent elution with 

chlorobenzene/ methanol (100/1) afforded N-methylfulleropyrrolidine (13, 8.6 mg, 

7.3%). Noticeably, 43% amount of C60 was recovered in this reaction. 

Spectral data of 12: 1H NMR (300 MHz, ODCB-d4) 2.76 (s, 3H, N–CH3), 4.14 

(d, 1H, one of proton of CH2 in pyrrolic structure), 4.86 (d, 1H, the other proton of 

CH2 in pyrrolic structure), 4.88 (s, 1H, CH in pyrrolic structure), 7.30 (m, 1H, Ph-H), 

7.42 (t, 2H, Ph-H), 7.86 (s, 2H, Ph-H); 13C NMR (75 MHz, ODCB-d4) 39.68, 

(N–CH3), 69.05 (sp3 C of C60), 69.95 (CH2 in pyrrolic structure), 77.22 (sp3 C of 

C60), 83.52 (CH in pyrrolic structure), 135.72, 135.91, 136.51, 136.80, 137.37, 

139.28, 139.72, 139.99, 140.02, 141.30, 141.51, 141.71, 141.75, 141.84, 141.86, 

141.94, 142.00, 142.14, 142.17, 142.31, 142.35, 142.47, 142.78, 142.92, 144.18, 

144.25, 144.37, 144.53, 144.92, 145.01, 145.06, 145.11, 145.17, 145.33, 145.37, 

145.40, 145.56, 145.72, 145.89, 145.98, 146.02, 146.05, 146.07, 146.35, 146.66, 

147.08, 153.37, 153.55, 153.96, 156.35; 

IR m/cm-1 (KBr):  3437, 2921, 2779, 1637, 1429, 1182, 1107, 699, 575, 526;  

ESI m/z: 854 [M+1] +. Anal. calcd for C69H11N: C, 97.06%; H, 1.30%; N, 

1.64%. Found: C, 97.46%; H, 1.29%; N, 1.50%. 

Spectral data of 13: 1H NMR (300 MHz, CDCl3) 3.04 (s, 3H, N–CH3), 4.44 (s, 

4H, four proton of CH2 in pyrrolic structure), 13C NMR (75 MHz, ODCB-d4) 41.12 

(N–CH3), 69.98 (two CH2 in pyrrolic structure), 71.22 (two sp3 C of C60), 131.98, 
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132.84, 136.19, 139.95, 141.66, 141.87, 142.09, 142.39, 142.87, 144.37, 145.06, 

145.21, 145.51, 145.84, 145.95, 146.03, 147.09, 154.97; 

IR m/cm-1 (KBr):  3447, 2851, 1384, 1338, 1229, 1158, 1069, 797, 737, 596, 

573, 552, 525. 

 4.3.3.3 Synthesis and spectral data of N-methyl-2, 2-dimethylfulleropyrrolidine 

(compound 14) 

A sample of C60 (60 mg, 0.0834 mmol) was dissolved in dry chlorobenzene (30 

ml) and then the solution of gossypol (48 mg, 0.0834 mmol) in DMSO (3 ml) as well 

as two equivalents amount of sarcosine (24.74 mg, 0.167 mmol) were added. After 5 

min of nitrogen flushing, the mixture was heated at 120 oC for 18 h. The reaction 

products were purified by flash chromatography (chlorobenzene/methanol, 100/1, vol) 

to afford the compounds 14 (11.3 mg, 27.3%) and 2 (7.4 mg, 18.5%). 

Spectra data of 14: 1H NMR (300 MHz, CS2–CDCl3) 1.95 (s, 6H, C–(CH3)2), 2.87 (s, 

3H, N–CH3), 4.56 (d, 2H, CH2 in pyrrolic structure), 13C NMR (75 MHz, 

CS2–CDCl3) 22.85, (two carbons of C–(CH3)2), 34.20 (N–CH3), 65.73 (CH2 in 

pyrrolic structure), 68.89 (quartary carbon attached to N), 69.59 (sp3 C of C60), 77.73 

(sp3 C of C60), 136.26, 136.71, 139.92, 140.34, 141.84, 141.99, 142.09, 142.23, 

142.32, 142.54, 142.77, 144.67, 144.72, 145.35, 145.41, 145.52, 145.80, 146.16, 

146.35, 146.39, 146.65, 154.61, 156.33;  
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  IR m/cm-1 (KBr): 3434.81, 2924.88, 2963.09, 1384.90, 1157.13, 1097.91, 1021.96, 

990.75, 802.95, 736.43, 640.90, 573.80, 554.15, 525.76;  

  HRMS (ESI) m/z calcd for C65H11N, 805.09; found, 806.09 [M+1] +. 

  4.3.4 Bioactivity assay 

In the selected in vitro assay of NO radical induced apoptosis in 3T3L1 cells, the 

3T3L1 preadipose cells in RPMI supple-mented with 5% fetal bovine serum (FBS) 

were seeded into a 96-well tissue culture plate (105 cells/well, 80 µl/well), prior to 

chemical treatment. They were allowed to attach for 24 h. After that, 10 µl SNP (0.3 

mg/ml) in medium was added into each well except the control group. In this test, the 

cell viability in 0.3 mg/ml SNP solution was 63.46% compared to the blank. The cells 

were then treated with a defined concentration (0–100 µg/ml) of the test compounds 

(C60, 12, 13, 14), which were finely dispersed in medium for another 24 hrs. Then 20 

µl /well of combined MTS/PMS solution were added. After keeping in an incubator in 

a humidified, 5% CO2 atmosphere at 37 oC for 3 hrs, the supernatant (80 µl /well) 

was transferred to another 96-well tissue culture plate, which was recorded under the 

absorbance at 490 nm using an EL800 Bio-Tek microplate reader. Each treatment was 

measured in three replicates to give the value in the mean ± SD. 

4.4 Results and discussion 



129 

 

C60 reacts with gossypol in the presence of sarcosine in toluene to produce 

N-methyl-2-phenylfulleropyrrolidine (12) and N-methylfulleropyrrolidine (13) in 

27% and 7.3% yield, respectively (Figure 4.6). Their structures were determined by 

MS, FT-IR, 1H, 13C NMR, DEPT (distortionless enhancement by polarization 

transfer) and HMQC spectroscopy [(1H-detected) heteronuclear multiple-bond 

quantum coherence correlation]. The 1H NMR spectrum of 12 showed that it was not 

a simple hybrid of fullerene and gossypol because of the missing proton signals of 

–OH, –CH3 and –CH(CH3)2 groups of gossypol and unexpected appearance of proton 

signals in the aromatic area. The 13C NMR spectrum of compound 12 (see Appendix 

III) shows five signals in saturated carbon area. The HMQC spectra showed that the 

proton resonance at 2.76 ppm correlated to the carbon resonance at 39.68 ppm and the 

proton resonance at 4.14 ppm as well as 4.86 ppm correlated to the same carbon 

resonance at 69.95 ppm. At the same time, the proton signal at 4.88 ppm correlated to 

the carbon resonance at 83.52 ppm. Its 13C NMR and DEPT spectra demonstrated 

two sp3 carbons of fullerene (69.05 ppm, 77.22 ppm), one secondary carbon (69.95 

ppm), one tertiary carbon (83.52 ppm), and a methyl group attached to the nitrogen 

atom (39.68 ppm). Noticeably, fifty signals in the unsaturated carbon area indicated 

that 12 had C1 symmetry. Compound 12 was finally figured out as 

N-methyl-2-phenylfulleropyrrolidine which was further confirmed by its X-ray 

crystallographic structure (Figure 4.8), the method of single crystal culture and the 

detailed data of the its X-ray crystallographic structure of compound 12 refer the 



130 

 

Appenda III in the end of this chapter. The 1H NMR spectra (300 MHz, CDCl3) of 

compound 13 showed a singlet at 3.04 ppm for the protons in the methyl group 

attached to the nitrogen atom and a singlet at 4.44 ppm for the four protons of the  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 The reaction of fullerene and gossypol in toluene 
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Figure 4.7 The flash column and TLC separation of the reaction mixture, flash 
column chromatography (PhCl:hexane=5:3,silica gel 200-300) 
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methylene group in the pyrrolic structure. The 13C NMR spectra of 13 (see Appenda 

III) showed only 18 signals in the unsaturated carbon area, suggesting a more 

symmetrical C2v structure. In contrast, the 1H NMR of compound 14 displayed the 

proton signals of methyl group attached to the nitrogen atom, two methyl groups 

attached to the quartary carbon as well as a methylene group in the pyrrolic structure 

calibrated as 3:6:2, and the 13C NMR spectra of 14 in CS2 and CDCl3 showed 6 

signals in saturated area. In addition, the DEPT 90o spectra did not show any peaks, 

which indicated no methenyl group in the molecule of 14. Furthermore, the spectra of 

DEPT 135o displayed two positive signals for the carbon of the methyl group attached 

to the nitrogen atom at 22.85 ppm and two equivalent carbons of the methyl groups 

attached to the quartary carbon in the pyrrolic ring at 34.20 ppm, respectively. 

Combining the mass spectra and IR data, the compound 14 was finally characterized 

as N-methyl-2, 2-dimethyl fulleropyrrolidine. After slow evaporation of 

chlorobenzene at room temperature, black single crystals of the compound 12 that 

were of X-ray crystallographic quality were obtained with shiny faces that were 

brown in transmitting light. The obtained X-ray structure (Figure4.8) at 273 K is in 

agreement with that from the NMR derived assignments. 
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Figure 4.8 ORTEP drawing of N-methyl-2-phenylfulleropyrrolidine (12) with 
thermal ellipsoids plotted at 50% probability. Selected bond lengths (A°) and angles 

(deg): N(1)–C(3) 1.158(10); N(1)–C(2) 1.445(8); N(1)–C(1) 1.464(9); C(3)–C(4) 
1.497(9); C(3)–C(10) 1.602(10); C(4)–C(9) 1.339(9); C(4)–C(5) 1.360(9); C(5)–C(6) 

.376(10); C(6)–C(7) 1.416(10); C(7)–C(8) 1.344(10); C(8)–C(9) 1.399(10); 
C(10)–C(11) 1.503(8); C(10)–C(18) 1.786(10); C(11)–C(21) 1.635(12); C(11)–C(12) 

1.772(10); C(12)–C(13) 1.365(9); C(13)–C(14) 1.374(8); C(14)–C(15) 1.225(14). 
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      Figure 4.9 The reaction of fullerene and gossypol in chlorobenzene 
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Figure 4.10 The flash column separation of the reaction mixture, flash column 
chromatography (PhCH3: methanol=5:1, silica gel 200-300)  

 

There is no reaction at room temperature for both reactions shown in Figures 4.6 

and 4.9, and the reactants are UV light stable too. The reactant mixture remained 

unchanged after being exposed to UV light irradiation at 254 nm for 17 hrs. When the 

reaction was carried out in toluene, compounds 12 and 13 were both the main 

products within 18 hrs, while the latter became the dominant product after 18 hrs. 

However, when using chlorobenzene, compounds 13 and 14 were obtained, but no 

compound 12 was detected. The mechanism of this unusual transformation is unclear 

by a lack of understanding of the exact nature of gossypol involved in the process. 

However, a plausible mechanism for this reaction in toluene was attributed to the 
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formation of a new reaction intermediate, benzaldehyde, which was derived from 

gossypol. The intermediate benzaldehyde from gossypol reacted with fullerene under 

such reaction conditions resulting in these fulleropyrrolidines, just like a common 

1,3-dipolar addition reaction in the presence of amino acid. The formation of 

benzaldehyde from gossypol degradation was only detected in toluene, but not in 

chlorobenzene. In order to gain a deeper insight of the reaction process and elucidate 

the reaction mechanism, gossypol was heated without C60 in different solvents 

(toluene and chlorobenzene). Two portions of 10 ml gossypol solution (dissolved in 

toluene and chlorobenzene, respectively) at same concentration (1 mg/ml) were added 

into two vials which were sealed and then heated at 110 oC for 12 hrs. After the 

thermal treatment, the gossypol solution using toluene as solvent displayed a deep 

orange color that was significantly different from its original yellow color, while the 

gossypol chlorobenzene solution remained the same bright yellow color as before, 

which demonstrated that the reaction mechanism: the reaction results tell us there 

exist intermediate product benzaldehyde during degration of gossypol using toluene 

as solvent. Gossypol had undergone a much more dramatic decomposition in toluene 

than in chlorobenzene. Additionally, benzaldehyde was detected by GC–MS (Figure 

4.12) in the toluene solution but not in the chlorobenzene solution. The possibility that 

the intermediate aldehyde derived from toluene was eliminated since it was not 

detected in pure toluene under the same heating condition. 
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(A) (continued) 

 

                           (B) (Continued) 
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(C) 
 
Figure 4.11 (A) The HPLC chromatography of toluene: Rt= 5.3 min; (B) The HPLC 
chromatography of benzaldehyde: Rt=7.0 min; (C) The HPLC chromatography of the 

reaction mixture of toluene and gossypol after refluxing overnight 

 

 

In addition, when gossypolone which was prepared by the Shirley’s method 

(1965), 6-methoxygossypol and 6, 6-dimethoxy-gossypol reacted with C60 under the 

same conditions, only compound 13 was obtained (Figure 4.13). Further bioassay 

showed that these N-methylfulleropyrrolidines exhibited dose-dependent growth 

protection from nitric oxide (NO) radical induced apoptosis to 3T3L1 cells (Figure 

4.14). Sodium nitroprusside (SNP) is usually considered to be a precursor of nitric  
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Figure 4.12 The GC-MS spectra for mixture of toluene and gossypol after refluxing 
overnight 
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Figure 4.13 The reaction of gossypol and gossypolone, 6-methoxy gossypol and 6, 
6′-dimethoxygossypol respectively in toluene 
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Figure 4.14 Cell damage induced by NO free radical protection of C60, and 
compounds 12, 13, 14  

 

 

 

oxide radical, which is a short-lived free radical generated endogenously, exerts 

influence on a number of functions, including vasodilation, neurotransmission, 

synaptic plasticity and memory in the central nervous system. Overproduction of NO 

can lead to toxicity, e.g. DNA fragmentation, cell damage and neuronal cell death 

(Dawson et al., 1992). Among the C60 and N-methylfulleropyrrolidines, compounds 

13 and 14 exhibited stronger free radical scavenging activity than the parent fullerene 

in preventing NO induced damage, especially by the compound 14. These results 

indicate that the pyrrolic structure in these fullerene derivatives has a tendency to 

increase the bioactivity. 
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4. 5 Conclusions 

In conclusion, three unexpected N-methylfulleropyrrolidines were obtained from 

the reaction of fullerene and gossypol, and characterized by 1D, 2D NMR, FT-IR, MS 

and X-ray crystallography. In toluene, the N-methyl-2-phenylfulleropyrrolidine 

(compound 12) and N-methylfulleropyrrolidine (compound 13) were obtained, while 

the compound 13 and N-methyl-2, 2-dimethylfulleropyrrolidine (compound 14) were 

formed in chlorobenzene. On the other hand, the rigorous structure characterization of 

these products as well as the new intermediate detection provided better 

understanding of gossypol’s degradation reaction behavior. Moreover, the bioassay 

for the cell damage protection demonstrated that the pyrrolic structure in the 

fulleropyrrolidines might have contributed enhanced radical scavenging activity 

evaluated in vitro. 

 

 

 

 

 

 



143 

 

4.6 References 

Adams, R., and Dial, W. R. (1939). Structure of gossypol. XXII. gossypol ethers and 
their reduction products. J. Am. Chem. Soc. 61, 2077–2082. 

Adams, R., Morris, R. C., and Kirkpatrick, E. C. (1938). Structure of gossypol. IX. 
oxidation and degradation of gossypol hexamethyl ether; gossic acid. J. Am. 

Chem. Soc. 60, 2170–2174. 

Bolskar, R. D., Benedetto, A. F., Husebo, L. O., Price, R. E., Jackson, E. F., and 
Wallace, S. (2003). First soluble M@C60 derivatives provide enhanced access 
to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 
as a MRI contrast agent. J. Am. Chem. Soc. 125, 5471–5487. 

Clark, E. P. (1928). Gossypol. III. The oxidation of gossypol. J. Biol. Chem. 77, 
81–87. 

Daros, T., and Prato, M. (1999).  Medicinal chemistry with fullerenes and fullerene 
derivatives. Chem. Commun. 8, 663–669. 

Dawson, T. M., Dawson, V. L., and Snyder, S. H. (1992). Immunosuppressant FK506 
enhances phosphorylation of nitric oxide synthase and protects against 
glutamate neurotoxicity. Annu. Neurol. 32, 297–311. 

Friedman, S. H., Ganapathi, P. S., Rubin, Y., and Kenyon, G. L. (1998). Optimizing 
the binding of fullerene inhibitors of the HIV-1 protease through predicted 
increases in hydrophobic desolvation. J. Med. Chem. 41, 2424–2429. 

Gelperina, S., Kisich, K., Iseman, M. D., and Heifets, L. (2005). The potential 
advantages of nanoparticle drug delivery systems in chemotherapy of 
tuberculosis. Pulmonary Perspective. 172, 1487-1490 

Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., and Hirsch, A. 
(2002). Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 
760–761. 

Gonzalez, K. A., Wilson, L. J., Wu, W. J., and Nancollas, G. H. (2002). The 
differential cytotoxicity of water-soluble fullerenes. Bioorg. Med. Chem. 10, 
1991–1997. 

Hirsch, A. (1994). The chemistry of the fullerenes. New York: Thieme Medical 
Publishers.  



144 

 

Jensen, A. W., Wilson, S. R., and Schuster, D. I. (1996). Biological applications of 
fullerenes. Bioorg. Med. Chem. 4, 767–779. 

Kroto, H. W., Allal, A. W., and Balm, S. P. (1991). C60: Buckminsterfullerene. Chem. 

Rev .91, 1213-1235,  

Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., and Smalley, R. E. (1985).  
C60: Buckminsterfullerene. Nature, 318, 162-163.   

Maggini, M., Scorrano, G., and Prato, M. (1993). Addition of azomethine ylides to 
C60: synthesis, characterization, and functionalization of fullerene 
pyrrolidines. J. Am. Chem. Soc. 115, 9798–9799 

Marcorin, G. L., DaRos, T., Castellano, S., Stefancich, G., Bonin, I., and Miertus, S. 
(2000). Design and synthesis of novel [60] fullerene derivatives as potential 
HIV aspartic protease inhibitors. Org. Lett. 2, 3955–3958. 

Mashino, T., Nishikawa, D., Takahashi, K., Usui, N., Yamori, T., and Seki, M. (2003).  
Antibacterial and antiproliferative activity of cationic fullerene derivatives. 
Bioorg. Med. Chem. Lett. 24. 4395–4397. 

Mirakyan, A. L., and Wilson, L. J. (2002). Functionalization of C60 with 
diphosphonate groups: a route to bone-vectored fullerenes. J. Chem. Soc. 

Perkin. Trans. 2, 1173–1176. 

Shirley, D. A., and Haas, R. H. (1965). Oxidation of gossypol. II. formation of 
gossypolone with ferric chloride. J. Org. Chem. 30. 4111–4113. 

Susanna, B., Daros, T., Spalluto, G., and Prato, M. (2003). Fullerene derivatives: an 
attractive tool for biological applications. Eur. J. Med. Chem. 38, 913-923  

Yadav, B. C., and Kumar, R. (2008). Structure, properties and applications of 
fullerenes. Int. J. Nanotech. Appl. 2, 15–24. 

Yin, J. J., Jin, L. M., Liu, R. L., Li, Q. N., Fan, C. H., and  Li, Y. (2006). Reactions 
of fullerenes with reactive methylene organophosphorus reagents: efficient 
synthesis of organophosphorus group substituted C60 and C70 derivatives. J. 

Org. Chem. 71, 2267–2271. 

Yin, J. J., Li, Y. G., Li, B., Li, W. X., Jin, L. M., and Zhou, J. M. (2005). Facile and 
potent synthesis of carbon-bridged fullerene dimers (HC60–CR2–C60H type). 
Chem. Commun. 3041–3043. 



145 

 

Zhou, S., Burger, C., Chu, B., Sawamura, M., Nagahama, N., and Toganoh, M. (2001). 
Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light 
scattering study. Science. 291, 1944–1947. 

Zhu, W. Z., Schuster, D. I., and Tuckerman, M. E. (2003). Molecular dynamics study 
of the connection between flap closing and binding of fullerene-based 
inhibitors of the HIV-1 protease. Biochemistry. 42, 1326–1333. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

4000.0 3000 2000 1500 1000 400 .0

6 1.6

64

66

68

70

72

74

76

78

80

82

84

86

88

9 0.5

cm-1

%T 

P 1

3437.00

2921.24

2779.98

1637.78 1453.38
1429.52

1332.60

1181.81
1107.78

806.28
766.92

739.30
699.02

598.02
575.42

553.15
479.18

Appendix III 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.1 The IR spectrum of 12 
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Figure A4.2 The IR spectrum of 13 
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Figure A4.3 The IR spectrum of 14 
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Figure A4.4 The IR spectrum of C60 

 
 



150 

 

4
00

0.0
3

00
0

2
00

0
1

50
0

1
00

0
4

00
.0

cm
-1

%
T 

P
1

P
0P

2

P
3

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 Figure A4.5 The IR spectrum of C60, 12, 13, 14(P0:C60; P1:12; P2:13; P3:14) 
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Figure A4.6 The 
1HNMR spectrum of 12(300MHz, ODCB-d4) 
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Figure A4.7 The 
13CNMR spectrum of 12((75MHz, ODCB-d4) 
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Figure A4.8 The HMQC spectrum for 12(300MHz, ODCB-d4) 
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Figure A4.9 The ESI-MS spectrum of 12 
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Figure A4.10 The DEPT 90°spectrum for 12 (300MHz, ODCB-d4) 
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Figure A4.11 The DEPT 135°spectrum for 12 (300MHz, ODCB-d4) 
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Figure A4.12 The 
1HNMR spectrum of 13 (300MHz, CS2-CDCl3) 
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Figure A4.13 The 13CNMR spectrum of 13(300MHz, ODCB-d4) 
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Figure A4.14 The 1HNMR spectrum of 14 (300MHz, CS2-CDCl3) 
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Figure A4.15 The 13CNMR spectrum of 14(75MHz, CS2-CDCl3) 
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Figure A4.16 The 13CNMR spectrum of 14 (75MHz, CS2-CDCl3), from 
130ppm-160ppm 
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Figure A4.17 The ESI-MS spectrum of 14 

 

 

 



163 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A4.18 The ORTEP drawing of compound 12 with thermal ellipsoids plotted at 

50% probability. 
 
Bond precision: C-C = 0.0110 A Wavelength=0.71073 

Cell: a=10.074(2) b=9.974(2) c=39.648(8) 

 
alpha=90 beta=92.67(3) gamma=90 

Temperature: 158 K 
  

 
Calculated Reported 

Volume 3979.4(14) 3979.5(14) 
Space group P 21/c  P21/c  
Hall group -P 2ybc  ?  

Moiety formula C69 H11 N, C6 H5 Cl  ?  
Sum formula C75 H16 Cl N  C75 H16 Cl N  
Mr 966.34 966.34  
Dx,g cm-3 1.613 1.613  

Z 4 4  
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Mu (mm-1) 0.158 0.158  
F000 1960.0 1960.0 

F000' 1961.35  
 

h,k,lmax 12,11,47 12,11,47 
Nref 7060  6771  
Tmin,Tmax 0.959,0.984 

 
Tmin' 0.942 

 
Correction method= Not given 

 
Data completeness= Ratio = 0.959 Theta(max)= 25.110 

R(reflections)= 0.1991( 4095) wR2(reflections)= 0.4688( 6771) 

S = 2.430 Npar= 694 

   

*There are several methods for single crystal culture such like sublimate, 

co-crystallization, etc, but the most simplest and the most practical ones are slow 

evaporation, diffusion in liquid phase, diffusion in gas phase, we recommend the 

optimal amount of the sample for single crystal culture is 5-15mg, crystal 

nucleus could not formed in extreme diluted solution, while when the mother liquor is 

over concentrated, quick crystallization process results in bad crystals. In our 

experiment, the pretreatments of the samples include purification using preparative 

TLC and filtration through a cotton ball which is placed in a pipette, we found cotton 

balls better than a filtration paper in crystal culture. There are several solvents we use 

for this single crystal such as benzene, chlorobenzene, chloroform, dichloro methane 

or solvent mixture systems (good solvent and poor solvent in different proportion 

1:2-1:4). We set five tubes for each solvent system, all the tubes were sealed with 

paprafilm and punched with tiny holes and were put on a stable position for a few 

days. 
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CHAPTER 5 

SUMMARY 

In this thesis, methylation, glycosylation and nanoconjugate reactions of the 

natural product-gossypol were studied. The bioactivity assays of the gossypol 

derivatives such as antioxidant, antidiabetic, anticancer, antitrypanosomal activities 

were explored. The gossypol derivatives including gossypol ethers, apogossypol, 

gossypolone, gossypol glycosides, unexpected N-methylfulleropyrrolidines products 

obtained from the gossypol based nanoconjugate reactions as well as related gossypol 

derivatives were synthesized and fully characterized by NMR, MS, FT-IR, UV 

spectrometry, HPLC and X-ray crystallography.  

Firstly, hexamethyl and tetramethyl ethers of gossypol were synthesized, 

particularly, existence of four tautomers of gossypol tetramethyl ethers were 

chromatographically separated and confirmed with the assistance of NMR method. 

Gossypol exhibited the strongest antioxidant activity due to the high number of 

hydroxyl groups, while its ethers only remained partial antioxidant activity because of 

their conjugated naphthalene structure preserved in the derivatives. It was found that 

the anticancer activity of gossypol and its methylated ethers depended on the degree 

of methylation level of gossypol, the lower level of methylation the molecule 

undergoes, the higher antioxidant activity it held. Furthermore, the result of 

alpha-amylase inhibitory activities of gossypol and its methylated ethers showed that 
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the gossypol's methylated ethers were the alpha-amylase inhibitors, while gossypol 

was the alpha-amylase activator.  

Secondly, novel glycosidic gossypol analogues were obtained by the 

ultrasound-assisted reaction of potassium salt of gossypol with 3, 4, 

6-tetra-O-acetyl-α-D-glucopyranosyl bromide under phase transfer catalytic condition. 

The evaluation of anticancer, antitrypanosomal activities as well as cytotoxicity of 

those novel glycosidic gossypol derivatives implied that 6, 7'-gossypol diglycosidic 

tetraacetate (compound 8) could be developed into a potential pharmaceutical 

candidate in the treatment of cancer since it exhibited powerful cancer cells inhibition 

with significantly low cytotoxicity. In addition, 7, 7'-gossypol diglycosidic 

tetraacetate (compound 7) and 6, 7'- gossypol diglycosidic tetraacetate (compound 8) 

possess strong antitrypanosomal activity with LD50 value low to 2.12 and 2.44 µM 

respectively.  

Finally, gossypol reacted with fullerene [60] in the presence of sarcosine through 

the Prato reaction, resulting in some unexpected N-methylfulleropyrrolidines, and 

different products in variable yield were obtained when choosing toluene or 

chlorobenzene as reaction medium. During the reaction, gossypol decomposed into 

benzaldehyde which was successfully detected as a new intermediate through GC-MS 

for the first time which enriches the research of gossypol decomposition reaction. In 

an in vitro assay of NO radical induced apoptosis in 3T3L1 cells for the N-methyl-2, 
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2-dimethylfulleropyrrolidine (compound 14) showed dose dependent and stronger 

radical scavenging activities than the parent fullerene. 

The natural product-gossypol possess potential bioactivities in many aspects and 

certain toxicity to some extent, the chemical modification of gossypol is an efficient 

way to convert this two edge weapon to the more favorable direction, the prospective 

work about chemical reactions of gossypol can be sulfonation, halogenation, 

complexation etc, taking place in different reactive points of the gossypol molecule, 

future work will be focus on the quantitative structure-activity relationship (QSAR) of 

those novel gossypol derivatives and the mechanism to the molecular level of 

digestion, absorption, metabolism and excretion in biosystems.  
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