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Abstract

The success of a healthcare facility evacuation depends on communication and decision-making at

all levels of the organization, from the coordinators at incident command to the clinical staff who

actually carry out the evacuation. One key decision is the order in which each patient is chosen

for evacuation. While the typical planning assumption is that all patients are to be evacuated,

there may not always be adequate time or resources available to move all patients. In these cases,

prioritizing or ordering patients for evacuation becomes an extremely difficult decision to make.

These decisions should be based on the current state of the facility, but without knowledge of the

current patient roster or available resources, these decisions may not be as beneficial as possible.

Healthcare facilities usually consider evacuation a last-resort measure, and there are often system

redundancies in place to protect against having to completely evacuate all patients from a facility.

Perhaps this is why there is not a great deal of research dedicated to improving patient transfers.

In addition, the question of patient prioritization is a highly ethical one.

Based on a literature review of 1) suggested patient prioritization strategies for evacuation planning

as well as 2) the actual priorities given in actual facility evacuations indicates there is a lack of con-

sensus as to whether critical or non-critical care patients should be moved away from a facility first

in the event of a complete emergency evacuation. In addition, these policies are “all-or-nothing”

policies, implying that once a patient group is given priority, this entire group will be completely

evacuated before any patients from the other group are transferred. That is, if critical care patients

are given priority, all critical care patients will be transferred away from the facility before any
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non-critical care patient.

The goal of this research is to develop a decision framework for prioritizing patient evacuations,

where unique classifications of patient health, rates of evacuation, and survivability all impact the

choice. First, I provide several scenarios (both in terms of physical processing estimates as well

as competing, ethically-motivated objectives) and offer insights and observations into the creation

of a prioritization policy via dynamic programming. Dynamic programming is a problem-solving

technique to recursively optimize a series of decisions. The results of the dynamic programming

provide optimal prioritization policies, and these are tested with simulation analysis to observe sys-

tem performance under many of the same scenarios. Because the dynamic programming decisions

are based on the state of the system, simulation also allows the testing of time-based decisions.

The results from the dynamic programming and simulation, as well as the structural properties of

the simulation are used to create assumptions about how evacuations could be improved.

The question is not whether patient priorities should be assigned - but how patient priorities should

be assigned. Associated with assigning value to patients are a variety of ethical dilemmas. In this

research, I attempt to address patient prioritization from an ethical perspective by discussing the

basic principles and the potential dilemmas associated with such decisions.

The results indicate that an all-or-nothing, or a “greedy” policy as discussed in the literature

may not always be optimal for patient evacuations. In some cases, a switching policy may occur.

Switching policies begin by evacuating patients from one classification and then switch to begin

evacuations from the second patient class. A switch can only be made once; after a switch is made,

all remaining patients from the new group should be evacuated. When there are no more patients

of that group remaining in the system, the remaining patients from the class that was initially given

priority should be evacuated. In the case of critical and non-critical care patients, switching policies

first give priority to non-critical care patients. When the costs of holding patients in the system are

not included in the models — and the decisions are just based on maximizing the number of saved
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lives — the switching policies may perform as good or better than the greedy policies suggested in

the literature. In addition, when holding costs are not included, it is easier to predict whether the

optimal policy is a greedy policy or a switching policy.

Prioritization policies can change based on the utility achieved from evacuating individual patients

from each class, as well as for other competing objective functions. This research examines a

variety of scenarios — maximizing saved lives, minimizing costs, etc. — and provides insights

on how the selection of an objective impacts the choice. Another insight of this research is how

multiple evacuation teams should be allocated to patients. In the event that there is more than

one evacuation team dedicated to moving a group of patients, the two teams should be allocated

to the same patient group instead of being split between the multiple patient groups.
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Chapter 1

Introduction

1.1 Background

Over the past few years, there has been an increase in research and literature related to emergency

preparedness and response. Most of this research relates to the preparation for, or response to, mass

casualty emergencies. In these events, a healthcare facility is expected to be a resource to the af-

fected population, and the facility must make decisions associated with sudden, increased demands.

There are a number of papers that focus on creating and maintaining “surge capacity” in hospitals

or rationing scarce resources — including patient beds, operating rooms, ventilators, etc. — after

a mass casualty event (see Chapter 2, Section 2.5). There is not a good deal of research, however,

that considers decision making in healthcare when the facility itself is a victim of an emergency

([19], [108], [143]). Some emergency types may affect a healthcare facility’s ability to function and

may therefore force the need for a complete evacuation. Healthcare facility evacuations present a

number of challenges for patients as well as clinical staff and administrators.

A healthcare facility may be the victim of an emergency if 1) its resources are overwhelmed with

sudden and unexpected demands or 2) the emergency causes - or presents potential for - damage

to the facility. Terrorist attacks, pandemic outbreaks, or some other type of external emergency

may cause this first scenario. In these types of emergency situations, a hospital is expected to be
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a resource for response efforts. A fire, flood, bomb threat, or other internal emergency, may cause

the second scenario. Hurricanes or other natural disasters may cause both. In order to meet the

demands of new patients, or to continue to care for their existing patients, a healthcare facility

may have to evacuate some or all of its occupants. Depending on the type of facility, less critical

patients can be discharged early to decrease the number of patients that require coordinated evac-

uation efforts, but those that need continued care will have to be transferred to another facility.

Every healthcare facility is required to have an evacuation plan in place ([13], [143], [156]), and

although considered a last resort, it is almost certain that every healthcare facility has the potential

for some sort of emergency that would require patient transfers. Based on their location, certain

facilities will have varying levels of risk. For example, facilities on the East Coast are more likely to

have to evacuate patients due to hurricanes. In addition, these types of emergencies are forecasted,

and the facility may be able to make evacuation decisions in advance of the event and even execute

a “preemptive” evacuation.

Evacuation is considered a last-resort measure by many healthcare facility operators, especially due

to the cost and advanced care often required by the patients. Some will even go as far as saying

“we will not evacuate” [64]. The facility would prefer not to shut down, and they often have system

redundancies in place to protect against catastrophic failures. Perhaps this is why there is not a

great deal of research aimed at improving policies and methods for healthcare facility evacuations.

Experiences during recent hurricanes, however, identified many healthcare facilities having to per-

form last-minute, pre-storm evacuations, as well as some post-storm evacuations.

Healthcare facilities usually implement one of the following generalized coordination structures to

address decision making: the Hospital Incident Command System (HICS) [7] or the National In-

cident Management System (NIMS) [8]. Both of these emergency management systems utilize a

central Incident Command System (ICS) and can actually be used in conjunction with each other.

The ICS is an all-hazard incident management system that defines the components and character-

istics of the management structure during the entire incident.
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It is difficult to create a complete and comprehensive evacuation plan that includes all emergency

types and response options [151]. Therefore, healthcare facility evacuation plans tend to be high-

level, generic documents. Some researchers suggest that evacuation plans are written just to satisfy

the requirements of accrediting agencies and are rarely practiced ([108], [152]). Decision-making

guidelines are usually nondescriptive, especially concerning the order in which patients will be

selected for transfer. However, an evacuation plan that addresses the patient roster, staffing re-

quirements, supplies, and equipment must be laid out in great detail in order for an evacuation to

be implemented effectively [156].

1.2 Objectives of Research

The typical planning assumption of a complete, emergency evacuation is that all patients will

be transferred away from the facility, so most evacuation plans do not discuss which patients to

evacuate if there is inadequate time available to transfer all patients. Moreover, there is no docu-

mentation about which patient types should be transported first or if transporting a certain patient

type actually adds more risk than sheltering that patient in place. When there are limited time and

resources, a plan that includes a patient prioritization scheme could provide healthcare providers

guidance in setting patient priorities for evacuation. To further support this, it has been noted

that unclear lines of authority have contributed to a large number of response failures [45]. By

specifying an authority structure clearly and providing decision-makers with the best information

about patient priorities, the clinical staff may have an increased ability to respond to the right

patients at the right time.

In addressing the issues outlined above, the following questions come to mind:

• What are the current policies for patient selection decisions during evacuations?

• If there are limited resources and time, which patients should be evacuated first?
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• When is a greedy, all-or-nothing policy optimal?

• Can patients be classified based on certain characteristics?

• What are the underlying objectives of evacuation decisions?

• Can we provide patient priority guidelines based on the risks and rewards?

• What are the ethical implications of various evacuation policies?

• Can patient priority guidelines be included in evacuation plans?

This research proposes a two-phase modeling approach to determine the order in which patients

should be chosen for evacuation. Unique classifications of patient health, rates of evacuation, and

survivability all impact the choice. First, I consider several scenarios (both in terms of physical

processing estimates as well as competing, ethically-motivated objectives) and offer insights and

observations into the creation of a prioritization policy. Dynamic programming is used to model the

system, run a variety of tests to observe the optimal policy, and observe properties of the optimal

solutions. The results of the numeric tests from the dynamic program are used in simulation analy-

sis to observe system performance under many of the same scenarios. In addition, I use simulation

analysis for tests that complicate the dynamic program. These two tools can be used together

to analyze an evacuation for any facility: 1) the dynamic program is used to develop a decision

framework for prioritizing patient evacuations and determine properties of the optimal solutions,

and 2) the simulation model measures the performance of the optimal evacuation policy or extends

the modeling capabilities.

During an emergency, the ethical perspective is utilitarian: do the most good for the most amount

of people (beneficence). Should this be interpreted as “get the most out”? Is there a better objec-

tive to incorporate fairness, a second principle of ethical healthcare? The prioritization policies that

will be discussed in this research can be categorized in two ways: greedy and switching. A greedy

policy chooses to evacuate one patient group entirely before starting to evacuate any other patient

groups, and a switching policy begins evacuating a patient class and then switches to another based
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on the number of each type remaining in the system. As shown in Chapters 5, 6, and 7, the policies

change with the choices for model inputs.

Is it ethical to enact a policy that requires all of a certain patient group to be evacuated before

beginning to evacuate any other patient groups? For obvious reasons, and reasons that will be

discussed in Chapter 3, it would be unlikely that a clinical staff would be comfortable with this

decision, especially when their patients are not categorized as the first to be evacuated. Manipu-

lating values, such as holding costs or rewards, encourages changes to the policies, such that other

patient groups get attention more quickly, but is this ethical?

Finally, this research considers how the utilitarian views of evacuation conflict with the ethics of

virtue that tend to guide healthcare practitioners. How will conflicting ethical perspectives of a

clinical staff, whose work is based more on morals than consequences, affect an evacuation based

on utility? These issues will be discussed in Chapter 3. How value is placed and modeled on

transferring patients, patient deaths, and keeping patients in the system will also be examined and

used in Chapter 5.

1.3 Outline

The dissertation is structured in the following manner. Chapter 2 introduces the relevant literature

including lessons learned from previous evacuations, research directly related to healthcare facility

evacuation, other emergency preparedness literature, and modeling. Chapter 3 includes a detailed

discussion of the ethical dilemmas and perspectives related to this problem. In order to gain a base-

line understanding of local evacuation plans, a survey was distributed to healthcare facilities across

South Carolina. Chapter 4 discusses the survey results. In Chapter 5, the model assumptions and

parameters are introduced, and a single-server model is introduced and tested with dynamic pro-

gramming and simulation analysis. In Chapter 6, the dynamic programming optimality equation

for the single server model is further examined including a sensitivity analysis and a discussion of
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the properties of the optimal solutions and implications for practitioners. Chapter 7 presents an

overview of model extensions, and Chapter 8 contains conclusions and recommendations for future

work.

1.4 Scope of Research

Healthcare facilities, like police stations, airports, and schools, are classified as essential facilities

because they are facilities that the community depends on for support and/or resources. During

an emergency event, the population looks to essential facilities, such as a hospital or even a nursing

home, to provide medical care, and in some cases, even the most basic resources such as food, water,

and shelter. In addition, the dependence of a healthcare facility’s occupants on its staff leads to

a second classification as a vulnerable facility. Falling into either of these categories - an essential

facility or a vulnerable facility - requires specific considerations for evacuation decisions [152]. Since

a healthcare facility falls into both, evacuation plans should include guidelines for how to handle

both internal and external emergencies. If patient evacuations are forced by an external emergency,

the facility may be faced with sudden, increased demands. If an evacuation is underway, it has

already been determined that the facility cannot function fully or safely, and special considerations

need to be given as to how to handle incoming patients. This research focuses on prioritizing the

vulnerable or dependent population of a healthcare facility and does not consider the effects of the

classification of an essential facility.

Every facility may be faced with an emergency situation that would require an evacuation. No-

notice emergencies (such as fires) leave little to no time for decision making. Other emergencies

may threaten in advance or cause damages afterwards, such as a hurricane. Depending on the

location of the facility, external events such as hurricanes or floods give an advanced notice that

an evacuation may be necessary. Manmade emergencies or the aftereffects of disasters (i.e. loss of

power, water, or oxygen) could require an evacuation after an emergency. In either of these cases,

the administrative and clinical staff would very likely have some sort of decision window to prepare
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for patient transfers. In such cases, an Incident Command Center may be established. Fires or

other emergencies that cause immediate damage to the facility and danger to the patients require

an immediate response. In these cases, the staff must act instantaneously, and there will be no time

for Incident Command to delegate the staff’s assignments. This research pertains to evacuations

with short- or long-term notice though insights from the results may be beneficial when planning

for evacuations due to fires and other no-notice emergencies. In addition, having knowledge of the

guidelines will likely help the clinical staff know how to respond in real-time when there is no time

for direction from management.

As previously mentioned, certain emergencies may only require a healthcare facility to evacuate

some of its patients. These partial evacuations can occur when some type of external emergency has

increased demands by causing a patient surge. Some patients may need to be transferred to other

facilities so that there are enough beds available to accommodate these incoming patients. Other

emergencies may require a small area of the facility to temporarily evacuate some of its patients

to directly outside of the facility, but these patients can usually return to their beds or some other

area within a reasonable amount of time.

In the case of a forecasted emergency, the staff would likely discharge as many patients as possi-

ble to decrease the number of patients for which the healthcare facility would be responsible for

transport. For the remainder of the discussions, we assume that the patient population has already

been reduced by early discharges and that all patients remaining in the facility will have to be

transported. This research focuses on an emergency that would require a full evacuation where all

patients in the facility are at risk due to some type of internal or external emergency; sheltering-in-

place is not an option. The additional assumption is that there are not enough resources available

to transport all patients away from the facility before the emergency occurs or some critical time

window ends.
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1.5 Need, Significance, and Potential for Research

There are a variety of papers that clearly indicate that methods for ethically prioritizing patients

for evacuation would be a beneficial contribution.

• “The whole topic of the evacuation of institutionalized populations badly needs research for it

seems to require inordinate attention and resources, and generates many problems when such

withdrawal movements are required” Hans and Sell, 1974 in Evacuation Risks: A Tentative

Approach for Quantification [68].

• “Because of the large number of health care facilities in the United States, their placement and

geographical presence in the population, their centrality in developing an adequate community

response to a disaster, and the huge level of risk to patients associated with evacuation, it is

important for health care executives to make sound decisions concerning the process of facility

evacuation... Most research has focused on disaster events or facility planning for disaster

types and not the decision processes required for a specific response or outcome in disasters”

Kathlyn McGlown, in her 1999 dissertation Determinants of the Evacuation of Health Care

Facilities [108].

• “Explicit guidelines for decision making on residents’ evacuation must be developed” Insights

from the “Hurricane Summit,” funded by the John. A Hartford Foundation in 2006 [78].

• “Familiarity with and utilization of a framework for ethical decision-making may facilitate

health care professionals in maneuvering through disaster-instigated ethical dilemmas” “Dis-

aster Ethics, Healthcare and Nursing: A Model Case Study to Facilitate the Decision Making

Process” in the Online Journal of Health Ethics [129].

• “The goals of triage in different environments and contexts can lead to divergent perspectives

of what constitutes ethically sound decision making,” and “a system that allows real-time

classification of risks and benefits...would be a great advantage in ethical decision making” in

“Lifeboat Ethics: Considerations in the Discharge of Inpatients for the Creation of Hospital

Surge Capacity” [93].
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• “Advance agreement is needed among key parties about which patients will be evacuated first.

Several disputes developed over priorities in the days after Katrina. There was disagreement,

for example, over whether the sickest patients or those more likely to survive should be

evacuated first” in “Hospitals in Hurricane Katrina: Challenges Facing Custodial Institutions

in a Disaster” [63].

• “Medical and social needs must be considered in trigging evacuees. The traditional medical

model for triage in the U.S. is to treat the most critically injured first; in an overwhelming

disaster situations, health care providers may shift to battlefield triage practices in which

those with the highest probability of survival are treated first. Little is known about lay

clinicians’ abilities to shift paradigms during response” from the AHRQ’s “Recommendations

for a National Mass Patient Evacuee Movement, Regulating, and Tracking System” [51].

• “The ethical decisions inherent in triage decisions should not be first considered during a

real event. Rather, they should be rehearsed and discussed long before they are needed” from

“Terrorism and the Ethics of Emergency Medical Care” in the Annals of Emergency Medicine

[126].

The goal of this research is to address these issues by developing patient prioritization guidelines to

improve decision-making during an emergency evacuation from a healthcare facility. By modeling

the system and decisions mathematically - and by considering the ethical dilemmas associated with

these types of decisions - some of the decision responsibility can be taken out of the clinical staff’s

hands. This will allow them to focus on their primary task of safely performing patient transfers.

This research will promote a safe and effective means for continuing patient care during a disaster

and thereby improve the standards for the quality of care during an emergency.

There are two obvious benefits to this research: first, the insights from this research can help emer-

gency planners evaluate and determine guidelines and policies for evacuations. Such guidelines are

based on mathematical modeling and will be suggested in this research. These can be included

within emergency plans and practiced by the staff. Second, the insights from the guidelines and
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policies can be used to assist a clinician when faced with real-time decision making dilemmas during

situations that have not been planned.

Finally, it should be noted that this research is not intended to direct clinicians from a medical

perspective. Real-time decision making obviously requires unique, medical information for each

patient. This research assumes, however, that the outcomes of such decisions can be improved by

supplementing medical expertise with the insights from the models.
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Chapter 2

Review of the Literature

This chapter will discuss the relevant literature from a variety of disciplines including healthcare,

engineering, and ethics. The purpose is to review similar work and research efforts as well as to

develop a base understanding of healthcare evacuation decision making. In addition, this literature

review sets the stage for the modeling efforts being introduced and explored in the subsequent

chapters.

This chapter begins by reviewing papers that discuss actual healthcare facility evacuations (Section

2.1) and the lessons learned. Section 2.2 discusses the patient prioritization strategies for evacua-

tion based on a review of actual patient transfers or suggested protocol.

The next section, Section 2.3, discusses a higher-level stream of research dedicated to how the

general population responds to evacuations. This includes how decisions are made about whether

to evacuate, when to evacuate, and how to evacuate (selection of routes).

Section 2.4 outlines the research that directly relates to improving healthcare facility evacuations.

Most of the healthcare emergency preparedness literature focuses on the healthcare facility’s role

during an emergency - instead of directly discussing evacuations only - so this much larger stream of

research - including surge capacity, triage, and altered standards of care - is explored in Section 2.5.
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Section 2.6 focuses on modeling techniques for allocating resources to time-sensitive tasks. The

focus is on two papers, Glazebrook et al. and Argon et al. that are directly related to this research.

In addition, examples of the use of dynamic programming and simulation for healthcare policies or

improvement are outlined. The modeling parameters that will be considered in future chapters are

discussed in Section 2.7.

Section 2.9 presents literature related to the ethical considerations in this problem. A more detailed

discussion of ethics, however, is presented in Chapter 3.

2.1 Healthcare Facility Evacuations and Lessons Learned

The following section details the lessons learned during actual healthcare facility evacuations. Each

subsection outlines the lessons learned and needs for improvement for pre-disaster planning, de-

cision making, patient care and transportation, staffing, record-keeping, and communication as

identified in the papers. The following papers describe emergency events and are were used to

summarize the lessons lessons learned in Sections 2.1.1 - 2.1.6.

• Sternberg et al. [152] investigated databases to make assumptions about the types of haz-

ards that resulted in 275 hospital evacuations in the United States between 1971 and 1999.

Over half of these healthcare facility evacuations could be primarily attributed to internal

emergencies such as a fire or potential exposure to hazardous materials.

• Schultz et al. [143] created and issued a questionnaire to personnel at area hospitals that

were on duty during the Northridge, California earthquake. The earthquake resulted in eight

hospital evacuations: six were evacuated with 24 hours of the earthquake, one evacuated

3 days after the earthquake, and one evacuated 2 weeks after the earthquake. For the six

hospitals that evacuated soon after the earthquake, the decision to evacuate was based on
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non-structural damage. The other two hospitals had to evacuate patients because of non-

repairable structural damage.

• Cocanour et al. [31] described the “Lessons Learned From the Evacuation of an Urban

Teaching Hospital” after Hurricane Allison caused flooding and forced the full evacuation of

Memorial Hermann Hospital and Memorial Hermann Children’s Hospital. The facilities were

able to discharge 169 patients but still had to evacuate 406 patients. These patients were

transferred to 29 other facilities within approximately 30 hours.

• Bowers et al. [19] described the lessons learned from the perspective of Texas Medical Center’s

entire hospital system after Hurricane Allison.

• Hyer et al. [77] documented the experiences of almost 300 nursing homes during the 2004

Hurricane Season. Approximately 16% of facilities had to evacuate at least once.

• Augustine and Schoettmer [11] described a complete evacuation forced by a bomb threat.

The staff of Galion Community Hospital in Columbus, Ohio evacuated all 46 of its patients

to a single, similar-sized facility located 20 miles from their hospital.

• Bovender and Carey [18] summarized the experiences and lessons learned from the evacua-

tion of Tulane Hospital after Hurricane Katrina. When the decision to evacuate was made,

there were approximately 1,300 people at Tulane Hospital. Only 121 were patients; the rest

were staff members, medical students and faculty, family members of patients and staff, and

“medically fragile” patients sent from the Superdome. There were also 71 pets.

• Lach et al. [95] reviewed the basic considerations for evacuating older patients based on

evacuations during Hurricanes Katrina and Rita.

• Gray and Hebert [63] conducted interviews with hospital executives, public officials, and

others in New Orleans-area hospitals to summarize the effects of evacuations conducted before

and after Hurricane Katrina.

• Castro et al. [25] distributed surveys to assess the response of long-term care facilities during

Hurricanes Katrina and Rita.
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• Dosa et al. [36] interviewed twenty nursing home administrative directors about the evacua-

tion decisions made during Hurricanes Katrina and Rita.

• Laditka et al. [96] described the care of nursing home evacuees after transport based on

interviews with staff members in receiving facilities after Hurricane Katrina.

• Hyer et al. [78] described need for improvements as identified at the John A. Hartford

Foundation’s “Hurricane Summit” in 2006. This report pertains to the preparation for and

response to emergencies at long-term acute care facilities.

• The U.S. Government Accountability Office’s “Limitations in Federal Evacuation Assistance

for Health Care Facilities Should be Addressed” [1] discussed the federal government’s in-

volvement in hospitals’ and nursing homes’ preparation for evacuation.

• A report from the Office of Inspector General evaluated “Nursing Home Emergency Pre-

paredness and Response During Recent Hurricanes” [2] by analyzing survey and interview

responses as well as emergency plans.

• Lewis [98] described the evacuation response and lessons learned after a tornado damaged a

facility in Americus, Georgia in 2007. Before the tornado, all patients were moved to interior

hallways. Fifty-three patients were evacuated to local hospitals in approximately 3 hours.

• Barnett et al. [13] described two healthcare facility evacuations in Southern California to

avoid damage from the wildfires in 2008. A hospital and a skilled nursing facility evacuated

77 inpatients and 122 skilled nursing facility patients to 7 hospitals and 13 long-term care

facilities within 7 hours.

2.1.1 Pre-disaster Planning

This section discusses issues identified during evacuations that can be categorized as pre-disaster

planning. Many of the lessons learned in the papers listed above relate to areas that should have

been (or were successfully) discussed and implemented well in advance of any of the disasters de-

scribed above.
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Some of the lessons learned pertain to architectural or design concerns and should therefore be

considered when developing a new or renovating an existing facility. For example, services that

are critical to continued patient care - pharmacy, nursing units, etc. - should not be placed in

areas that may be affected by flooding ([31], [63]). When these essential services are unnecessarily

damaged, an evacuation that might otherwise be avoidable may be required. During Hurricane

Katrina, generators were damaged, and facilities were forced to evacuate. Gray and Herbert [63]

suggested that, had they been placed in areas that were not subject to flooding, some of the post-

storm conditions may not have been as dangerous at multiple facilities. Even when generators are

used as a means of backup power, it is important for the staff to consider that power outages may

not necessarily be temporary [31], and generators are not likely to support the requirements for a

facility to operate ([63], [78]), and evacuations may be necessary.

As mentioned before, every facility is required to have an evacuation plan in place. These should

be reviewed and updated on a regular basis [11]. Most hospital evacuations are caused by internal

emergencies such as fires, utility failures, or exposure to hazardous materials, but hospitals should

plan for multiple hazard types [152]. To be effective, receiving facilities - the facilities to which the

patients will be transferred - should be identified prior to an emergency event ([63], [77], [78]). Plan-

ners must also consider that certain types of emergencies may affect multiple local hospitals ([11],

[18], [152]). Therefore, local facilities should be identified to receive patients from facilities that

are affected by an internal emergency, and non-regional facilities should be identified for external

emergencies that may affect an entire community. In these cases, patients may have to travel longer

distances to be relocated to safety. These types of regional emergencies may also cause demands

at a hospital to increase. In addition, community-wide disasters will place increased demands on

transportation resources ([1], [78]). During external emergencies, other local facilities may have to

shut down, so plans must include guidelines for how to handle new, incoming patients ([1], [63]).

Since a hospital is considered a resource in an emergency, plans should also include how to handle

the non-patient population that arrives seeking basic needs such as food, water, or shelter ([18],
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[63]).

Good relationships with community organizations - churches, nursing homes, or school systems -

may provide an additional opportunity for resources [11] whether it be supplies, water, or trans-

portation resources. Additional resources such as staff, transportation, and supplies should be

identified prior to a disaster for use after an event [95].

Evacuation plans should include backup policies and devices to handle power losess ([18], [31],

[78]). This includes generators as previously discussed and also batteries for flashlights, alternate

methods for recording patient information, and alternatives for equipment such as ventilators and

medication storage systems. In addition, backup plans for communication ([18], [31], [98]) and

patient care ([13], [31], [63], [143]) are essential. In the more recent papers, some of the authors

suggested that patients, staff, and equipment may need protection during or after the evacuation

([18], [63], [98]).

Facilities that may be at a higher risk for evacuation may benefit from planning at a much lower

level. Creating unit-specific “evacuation packs” that include patient worksheets, important contact

information, and the supplies necessary to take care of the patients will help save critical time

when evacuation orders are given [11]. Medications, food, and other supplies should be prepared in

advanced and made easily portable [95]. Whether this level of planning is appropriate for a facility

depends on the how the management views the risks and benefits, which will be further discussed

in the next section.

Finally, the majority of nursing homes surveyed after Hurricanes Katrina and Rita indicated that

nursing home facilities need more considerations for preparations or response in public health emer-

gencies planning ([25], [36], [78], and [96]).
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2.1.2 Decision Making

Whether planning for a potential disaster or facing an actual emergency, decision-makers must

balance the uncertainty, risks, costs, and the narrowing window for evacuations [63]. This includes

deciding whether to evacuate in advance when an emergency is forecasted. If the risks of transport-

ing patients are greater than sheltering-in-place, then it is likely that a facility will choose not to

move the patients. If the nature of the emergency threatens to affect the facility’s ability to provide

care, the facility must decide if and when to evacuate. Obviously the probability of predicting

where a hurricane will make landfall increases as the time until landfall decreases. If patients are

moved too soon, the forecasted event may not affect the facility at all. “Unnecessary” evacuations

put patients at otherwise avoidable risks, and they are expensive for the facility. An advanced

evacuation, however, may allow the facility access to resources that may decrease in availability

as the time window decreases. Making the decision not to evacuate in advance may lead to some

of the well-publicized complications that are reviewed in the papers that discuss the aftermath of

Hurricane Katrina ([18], [63]) though advanced evacuation still puts patients at a variety of risks.

Dosa et al. [36] discussed the issues inherent in evacuating frail patients from nursing homes and

how this may influence the decision to evacuate or not. As part of their call for additional research

in this area, they pose a framework for assessing the risk based on three key elements - the indi-

vidual patient, the facility, and the emergency event. Such an approach to quantifying risk could

be used in deciding whether to evacuate or not, as well as in prioritizing patient transfers once a

decision to evacuate has been made.

Once the decision has been made to evacuate patients, there are no established guidelines about

how to prioritize patients for transfer. Typically, triage refers to allocating scarce medical resources

to a surge of incoming patients after an emergency such as a mass casualty event. Patients are

chosen for treatment by determining who will benefit the most. In the context of a healthcare

facility evacuation, patients may be “triaged” to determine the best prioritization scheme. The

Center for Bioterrorism Preparedness and Planning [115] suggested that the patients that require

the most assistance should be transferred away from the facility first. Gray and Hebert [63] agreed
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with this strategy for advanced evacuations. The Association of periOperative Registered Nurses

(AORN) [3] and the New York Centers for Terrorism Preparedness and Planning [131] suggested

that patients should be prioritized from least to most critical. Schultz [143] suggested that the ef-

fectiveness of triage decisions depends on the situation. Triaging patients will be further discussed

in Section 2.2. Regardless of the strategy chosen to move patients, a staff member with knowledge

of the current patient roster is critical to patient “triage.” There should be multiple staff capable

of filling this role so that there is someone on site at all times [31].

2.1.3 Patient Care and Transportation

Facilities need to remember that vehicles other than ambulances can be used to move patients. If

the emergency affects the availability of transportation resources or routes, other forms of alternate

transportation may be required ([18], [19], [25], [31], [63], [77], [78]). Access to transportation

resources has been identified as a major issue during evacuations, particulary for nursing homes

[77]. Since multiple facilities may have contracts with the same transportation service providers,

demands may exceed availability during community-wide emergencies.

Even though some long-term care facilities had planned arrangements for patient transfers to spe-

cific receiving facilities, so many other facilities were overwhelmed by Hurricanes Katrina and Rita.

These facilities may have also been forced to evacuate or may have already reached capacity by

accepting other evacuees; therefore, the intended receiving facilities were unavailable [77]. In addi-

tion, some healthcare facilities may not be prepared or willing to accept some of the more critical

patients due to resource or staffing constraints. One third of the nursing homes surveyed indicated

that they were unable to find a place to transfer their special needs residents, and they were re-

quired to shelter in place [77]. Transport may negatively impact a patient’s health, particularly for

nursing home patients ([36], [2]).

Depending on the type of emergency and the conditions at the receiving facilities, it may be easier
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for a facility to choose to send all of its patients to a single facility. In the case of the bomb threat

as described in Augustine and Schoettmer [11], the patient population was small enough - and

the capacity at a receiving facility large enough - so that all of the staff could move with their

patients to continue care. This allowed for less planning and paperwork. When it is not possi-

ble to redistribute the staff for uninterrupted care, sending patients to multiple facilities helps to

avoid overwhelming a single facility [31]. If a receiving facility cannot immediately accept patients,

there must be a plan in place for continuing patient care outside of a healthcare facility ([13], [143]).

Patients’ special requirements and limitations should be considered when preparing them for trans-

port ([1], [18], [25], [63], [77], [95]), and coordinating patients in vehicles leads to better utilization

of that resource [31]. Particulary for older patients, stretchers or other equipment for transporting

patients may be difficult to use and time-consuming [78]. Charts ([11], [63]) and medications [11]

should travel with the patient, and patients should have some sort of identification attached to

them [63]. For longer travel, supplies for heating and cooling the patients, as well as food and

water, will need to travel with the patients ([96], [2]). For older patients that may have problems

communicating, identification, medical history, and medication information should travel with the

patients [95]. Finally, family members and volunteers may either help ([31], [63]) or hinder ([63],

[98]) the evacuation efforts. In some cases, family members can assist with patient transfers, but

in other cases, they may add to the problem by seizing scarce resources or getting in the way of

the clinical staff and hindering the evacuation efforts.

2.1.4 Staffing

There are not many lessons learned that discuss staffing plans, roles, or requirements though it

seems intuitive that an evacuation is highly dependent on staff’s participation and cooperation.

Most of the papers stress the importance of having evacuation plans, and authors stress the im-

portance of training the staff to understand the plan ([11], [19], [25]). Lach et al. [95] suggested

that nurses should be educated about the various types of disasters and their potential consequences.
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As mentioned above, certain patient types may be difficult to transport, and may require the coor-

dination and use of many staff resources [77]. Most of the papers credit their staff for participation,

teamwork, and response.

Whether patients are assigned to be transported to a single receiving facility or to multiple ones,

some authors suggested that the staff should be reassigned to the new facilities to continue caring

for patients ([19], [31]) though these authors do not make it clear how such arrangements should

be made or managed.

Staff at long-term residential facilities must take special care when transporting long-term care

patients. The patients may be confused or scared, and the staff must be “calm and reassuring, yet

firm in their directions. It is important to move quickly and confidently, without causing panic and

further disorientation [95].” Though most nursing homes indicated that they had sufficient staff to

evacuate patients during the 2004 hurricanes, maintaining adequate staffing levels throughout the

evacuations was difficult, and the administration had to enforce staff participation [77]. Allowing

the staff to travel with their families - or allowing families to come into the facility - may improve

staffing levels [25].

In addition to the papers listed in this section, Qureshi [134] examines the staff’s “ability and

willingness to report to duty during catastrophic disasters,” and Chaffee [26] discussed the impact

of disasters on nurses and the ethical dilemmas associated with reporting to work. Qureshi et

al. [134] surveyed healthcare workers around New York City about a wide range of disaster types

including mass casualty events, environmental disasters, and epidemics. The authors discussed

the barriers that affect healthcare workers’ ability and willingness to report to work. Chaffee [26]

listed “what employeers can do,” to plan for emergencies. These include developing an outline of

what is expected from employees during an emergency, determining which employees would not be

available due to special needs or other volunteer obligations, and identifying services that would be
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made available to those employees who do work during an emergency (child care, pet care, food,

shelter, counseling, etc.).

2.1.5 Record-keeping

Once patient evacuations are underway, there should be systems in place for tracking the evacuees

([63], [78], [98]) as well as a system to monitor bed availability at area hospitals [78]. Because loss

of electricity may be a potential result of the disaster, a hard copy list of patient transfers should

be maintained [11] at both the transferring and receiving facilities [31]. In addition, equipment

transfers should be monitored [31], and a system that tracks costs would be beneficial [11].

2.1.6 Communications

Clearly reliable communication and coordination are essential to patient transfers ([11], [18], [31])

and potentially the most important factor that contributes to a successful evacuation [18]. This

includes having back-up plans in place as discussed in Section 2.1.1 . Though communication

channels are described as contributing to the success of the Southern California evacuation, it was

determined to be the area that needed the most improvement in the debriefing session [13]. The

lessons learned from the nursing home evacuations during Hurricanes Katrina and Rita indicate

that there should be improvements to communication between the staff and physicians or medical

directors before moving patients [25]. Communication needs to flow within the facility and to the

receiving facilities ([18], [31], [63]).

One less obvious communication-related consideration relates to the media’s effect on the evacu-

ation. Bowers et al. suggested that communication with the media is important [19]. Hospitals

can utilize the media to communicate where patients have been transferred or if there is any dam-

age that would prevent providing care to incoming patients. However, the media may broadcast

inaccurate information. This should certainly not be a primary concern, but the planners should
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be aware that the media may be present and may have an effect on the public’s perception of the

event [18].

2.2 Prioritizing Patients for Evacuations

A literature review of 1) suggested patient prioritization strategies for evacuation planning as well

as 2) the transport priorities as used in actual facility evacuations shows that there is a lack of

consensus about whether non-critical or critical care patients should be moved away from a facility

first in the event of a complete emergency evacuation. In this section, the actual and suggested

patient prioritization strategies are discussed. Figure 2.2.2 at the end of the section summarizes

the prioritization strategies presented in the literature.

2.2.1 Evacuation Plans

The Center for Bioterrorism Preparedness and Planning [115] suggested a complete evacuation

should happen in two phases: first, patients should be moved to a staging area. Because ambula-

tory patients require the least assistance, the Center for Bioterrorism Preparedness and Planning

suggested that these patients be moved to the staging area first and that the more critical care

patients be moved to the staging area last because moving these patients will require many more

resources. Once the patients have been staged, however, the patients that require the most assis-

tance should be transferred away from the facility first. These procedures are based on the START

triage strategy where the staging phase follows the reverse triage rules and the transportation phase

follows the traditional START triage rules. Gray and Hebert [63] agree with this strategy for ad-

vanced, pre-emergency evacuations because of the level of difficulty and the resources associated

with transporting these patients.

The New York Centers for Terrorism Preparedness and Planning [131] and the Association of peri-

Operative Registered Nurses (AORN) [3] suggested that patients should be prioritized from least to
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most critical. It should be noted, however, that the New York Centers for Terrorism Preparedness

and Planning’s Hospital Evacuation Protocol [131]is obviously written with a sudden, unexpected

event. The AORN Guidance Statement: Mass Casualty, Triage, and Evacuation outlines that all

ambulatory patients be lead out of the facility first, and then non-ambulatory patients should be

prioritized from least to most critical. It is difficult to determine for what type of even the AORN

statement was developed. At times, it would seem that the procedures refer to an immediate emer-

gency such as a fire. For example, “staff members should assemble ambulatory patients together

and designate one or more staff members to lead patients to the designated safe area.” However,

the document outlines considerations for patient evacuations including patient assessment, weight,

stability, and transportability as well as resource requirements and equipment such as ventilators,

tanks, monitors, and medications; it seems that such assessments refer to advanced evacuation due

to a forecasted event.

In a discussion of simulation modeling to evaluate risks, Johnson [83] supports this prioritization

strategy by stating that “the implicit objective at each stage is to maximize the number of people

who can be moved to safety in the shortest available period of time.” By stages, he is referring

to the same phases as the AORN Guidance Statement, where ambulatory patients are moved first

and then non-ambulatory patients are moved in the priority of least to most critical.

Moskop and Iserson [111] propose that patient evacuations follow reverse logic of normal triage

methods and that attention must first be paid to ambulatory patients before evacuating those that

are dependent on higher levels of care. The authors also suggested that triage in order to evacuate

a hospital may be more difficult than “out-of-hospital.” Finally, though the authors do not cite the

sources, Lach et al. [95] discussed the complexities of nursing home triage “because triage protocols

call for helping those in the best condition and most likely to survive first.”

The actual patient transfers after the Northridge, California earthquake will be discussed in the

next section. In a paper that discussed the eight hospital evacuations after the earthquake, Schultz
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et al. [143] summarized what they believe to be the most effective prioritization strategies: when

the threat to patients is immediate, patients should be prioritized from least to most critical. When

the treat is not immediate, the most critical patients should be given priority in order to decrease

the burden on the staff and other resources.

2.2.2 Actual Patient Transfers

The Northridge, California earthquake in 1994 caused six hospitals to completely evacuate all of

their patients and two others to partially evacuate. Six of these facilities chose to evacuate imme-

diately, and they all cited nonstructural damage (such as loss of power) as a primary reason for

evacuation (one facility also cited structural damage as a reason for evacuation). Five of these six

facilities did not feel that their patients were in immediate danger, so they chose to evacuate their

most critical patients first. The sixth hospital, however, felt that the damage was significant enough

to put their patients at a serious risk, so they chose to evacuate their non-critical care patients first.

The hospital moved all 334 patients to outside of the facility within 2 hours by prioritizing least to

most critical. The final patients to leave the building were those who had been trapped inside the

facility due to the structural damage from the earthquake.

After Tropical Storm Allison, facilities with the Texas Medical Center lost power and evacuated

both of their hospitals. Patients from the intensive care units were evacuated first [19]. These

patients and their records were transferred to other facilities within the system up to 200 miles

away.

Gray and Hebert [63] summarized the challenges at multiple hospitals during Hurricane Katrina.

They discussed the experiences at Lindy Boggs Medical Center where doctors prioritized patients

into one of three categories: ambulatory patients, patients that needed medical attention, and crit-

ical patients. According to the hospital’s existing evacuation policy, the critical patients were to

be evacuated first, but the rescue teams insisted that women, children, and ambulatory patients
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had to be evacuated first because of the conditions in New Orleans. At Charity Hospital, the most

critical patients (excluding intensive care babies) were evacuated first. Two of these patients were

prisoners, and there were conflicts among the staff members since these patients were evacuated

before other patients. Though not completely clear, Gray and Hebert [63] imply that the Veterans

Affairs hospital evacuated its critically care patients first. The authors do not provide any insight

on the prioritization strategies used at Tulane University Hospital or Children’s Hospital. In the

“Lessons Learned” summary, Gray and Hebert [63] conclude that “advance agreement is needed

about which patients will be evacuated first.”

Hodge et al. [12] also review the prioritization protocols used during Hurricane Katrina: at Memo-

rial Medical Center, the healthy patients were evacuated first. In her discussion of Dr. Ana Pou -

the surgeon accused of euthanizing patients in the wake of Hurricane Katrina - Okie [13] clarifies

Memorial Medical’s approach for patient priorities. Initially, the most critical care patients were

evacuated first, but when help was not immediately available, the least critical patients were chosen

for evacuation because they had the greatest chance of surviving. As the evacuation continued,

the most critical care patients remained at Memorial. Approximately 200 patients were evacuated,

however, and these included ICU patients, bariatrics patients, and patients with “do not resusci-

tate” (DNR) orders.

A few months after Katrina, Hurricane Rita threatened the University of Texas Medical Branch at

Galveston. Until 2005, the University of Texas Medical Branch at Galveston’s evacuation plan was

to discharge healthy patients and to shelter-in-place and care for the critical patients [14]. When

Hurricane Rita threatened a few months after Katrina, the facility changed its plan and chose to

evacuate the most critical patients first.
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Figure 2.1: Summary of prioritization strategies for critical and non-critical care patients.

2.2.3 Prioritization Discussion

The important purpose of this section is to highlight two main points. First, there are not general

guidelines for patient prioritization during healthcare facility evacuations. In addition, there is a

lack of consensus about which patient types - critical care or non-critical care - should be evacuated

first. Second, the policies included in evacuation protocols and those chosen for patient selection

decisions in actual evacuations - with the exception of the actual patient transfers at Memorial

Medical Center after Hurricane Katrina - are “all-or-nothing” policies meaning that the examples

in this section advise completely evacuating all of one patient type before beginning to evacuate

any patients that fall into the other classification. At Memorial, the plan was to evacuate the most

critical care patients first, so the evacuations started with these patients. Because of the conditions,

however, the patient prioritization switched to choosing patients with the greatest probability of

survival.

2.3 General Evacuation Research

The general evacuation research typically relates to how individuals respond and move away from

danger, beginning with the seminal paper by Quarantelli [132]. This paper collects and analyzes

information related to evacuation characteristics and presents the findings of the literature and
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research in an analytical model of evacuation behavior at the local community level. The model

describes the relationship between the context, threat conditions, social processes, behavior pat-

terns, and consequences. This and other research in this stream address human decision making

and how the general public makes decisions about evacuation. Specific to hospitals and special

needs populations, Vogt [167], [168] and McGlown [108], [109] analyze the decision making process

prior to and during evacuations (see Section 2.4.3).

2.3.1 Deciding to Evacuate

Various researchers have attempted to model the factors that influence how a person responds to a

threat of an emergency including when to evacuate or whether to leave at all (see, e.g., [46], [117],

and [150]).

Fitzpatrick and Mileti [47] discussed the factors that affect the public’s perception about an evac-

uation. The paper references a variety of leading evacuation researchers including Clifford [30],

Drabek ([37], [38], [39]), Fritz ([54], [55]), Perry ([118], [119], [120], [121], [122], [123], [124], [125])

Quarantelli ([132], [133]), Sorensen ([148], [149]), and Turner ([160], [161], [162]). Fitzpatrick and

Mileti summarized the factors that affect the risk perception and therefore evacuation behavior as:

• Source - the credibility of where information about the risk is coming from,

• Consistency - whether the evacuation warning information is consistent with other types of
warnings,

• Accuracy - the level of detail within the evacuation warning,

• Clarity - how easily the warning is understood,

• Certainty - how believable the evacuation warning is,

• Sufficiency - the appropriate amount of information - not too little such that the warning is
confusing and not too much that the warning message is overwhelming,

• Guidance - the level to which the solution is outlined,

• Frequency - how often the warnings are delivered for a particular emergency,

• Specificity - where is the actual danger,
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• Channel - the method(s) by which the information was delivered,

• Cues - the number of physical cues,

• Social Setting - what is happening when the information is delivered and what others are
doing in response to the warning,

• Social Ties - various connections to people and places,

• Social Structure - characteristics of those who receive the warning,

• Psychological Factors - personal traits that affect how the warning is received, and

• Pre-warning Perceptions - perception of the actual risks

Notice that the first ten of these relate to the way the information about the evacuation is pre-

sented. The last six relate to personal and public factors. These all work together to contribute to

perception, and then motivation and perception lead to action.

2.3.2 Deciding When to Evacuate

Sorensen studies the factors that influence an evacuee’s decision on when to leave [150]. His gen-

eral model considers the variation in individual’s response times to an evacuation warning. The

model confirms that the most important factor that influences an individual’s evacuation decision

depends on when they were warned, and the time that an individual receives a warning varies

with the warning channel. In addition, personalized warnings decrease the response time, but it is

obvious that personalized warnings take longer to create and deliver.

These factors are different for healthcare facilities where the occupants face greater risks during

transport. In addition, most occupants of a healthcare facility are a dependent population, and

they rely on direction and assistance from the staff as well as the availability of transportation and

other resources.
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2.3.3 Selection of Evacuation Routes and Resources

There is an entire stream of literature focusing on moving general populations away from hazards

using roadway/highway infrastructure. For research contributions in macro/meso-simulation and

network-based methods to evaluate traffic flow (see e.g., [33], [72], [127], and [145]). More recently,

the application of micro-simulation and dynamic optimization has increased (see, e.g., [27], [52],

and [73]). Many of these researchers propose operational policies for mass evacuations. Sumalee

[154] focus on traffic networks after a major disaster.

2.4 Research for Improving Healthcare Facility Evacuations

Emergency preparedness and response has been researched for decades. However, since the World

Trade Center attacks on September 11, 2001 and several other large-scale disasters (Hurricane

Katrina, wildfires, tsunamis, etc.), there has been an additional focus on the preparation for, or re-

sponse to, mass casualty emergencies. In fact, several papers specifically address triaging incoming

patients (to evaluate the need and benefit of medical resources) and/or creating surge capacity in

hospitals after a mass casualty event. There is significantly less research that considers healthcare

facilities as the victims of these emergencies ([19], [36], [108], and [143]).

In this section, the current engineering contributions related to healthcare facility evacuations are

highlighted. There are a number of papers that focus on each of the topics addressed in the

following sections - healthcare facility design, evacuation plans, making the decision to evacuate,

pre-evacuation times, and the selection of evacuation routes and resources - but there are limited

sources that address these with respect to evacuations. Such papers will be discussed in Section

2.3. The papers presented in this section focus specifically on research related to improving health-

care facilities. The following section, Section 2.5, briefly highlights some of the other healthcare

emergency preparedness research streams.
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2.4.1 Healthcare Facility Design

Ünlü et al. [112] present a space syntax model to consider the navigation issues during a hospital

evacuation. The authors site the shape of the building and evacuation routes, ergonomics, and

characteristics of the occupants as the main factors that influence circulation out of a hospital dur-

ing an evacuation. The model can be used to test designs for new facilities and analyze weaknesses

as related to patient evacuations.

Various risk assessment techniques can be used to identify potential hazards, but it is difficult to

estimate how these risks may further complicate patient evacuations. For example, certain emer-

gencies may affect exit routes, elevators, or equipment. Congestion in corridors or smoke in the

air may slow evacuation times or alter routes. Instead of staging several drills to test the various

complications, Johnson [83] created a simulation model of the evacuation of Glasgow Hospital and

considered the various risks to estimate the average and worst-case evacuation times.

2.4.2 Evaluating Evacuation Plans

By examining more than 2,000 nursing home evacuation plans, Castle [24] determined the elements

that were most often excluded: staffing procedures for the evacuation (44%), plans for coordina-

tion with the community (42%), reentry to the facility (40%), consideration of residents’ medical

and personal needs (37%), maintaining water supply (36%), consideration of residents’ personal

belongings (35%), and pre-identified evacuation routes and travel time estimates (31%).

In her dissertation, McGlown [108] suggested that hospital evacuations plans are usually only “pro-

duction documents” that are written only to meet the standards set by accrediting agencies. Vogt

[168] surveyed nursing home facilities and used Quarantelli’s model to evaluate the threats, re-

sources, social climate, and other extracommunity factors as they relate to the effectiveness of an

evacuation. While many of the issues are common to general population evacuations, Vogt [168]

identified the need for different evacuation strategies for dependent populations.
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2.4.3 Deciding to Evacuate and Pre-evacuation Times

For a discussion for the general population, see Section 2.3.1.

McGlown’s [108] main research focus is to consider the variables that contribute to a healthcare

facility’s decision to evacuate, and they fall into five categories: infrastructure impediments, event

monitoring, time and risk factors, the internal environment, and the external environment. The

study participants included those with the authority to make evacuation decisions including man-

agement from healthcare facilities and “prehospital agencies” (EMS and fire). She presents a

conceptual model for “interpretation of variables relevant” to making a decision to evacuate based

on these factors. Her method for analyzing the relationships of the variables was based on Quar-

antelli’s framework [132], and the findings are similar. For example, the variables are related as

shown in Table 2.1 below. Note: the table was adapted from a figure in [108].

Once the decision to evacuate has been made, it is important to note another difference in the evac-

uation of a healthcare facility. Gwynne et al. [66] studied the pre-evacuation time - the difference

between the time the occupant started to evacuate and the time the evacuation order was given -

at a university residence hall and at a hospital. In the hospital case study, the authors point out

that the behavior of the staff directly affects the patients’ response to - and activities during - an

emergency. They suggested that any hospital evacuation model should include some element to

represent pre-evacuation time, but the factors that affect pre-evacuation time need further research.

2.4.4 Selection of Evacuation Routes and Resources

In the event of an external, regional disaster, other healthcare facilities - as well as the general

population - may also be evacuating, and the patients may have to compete for transportation

resources including vehicles and routes. If an internal emergency forces a facility to evacuate, the
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Table 2.1: Factors that Affect the Decision to Evacuate.
Quarantelli McGlown

(General Population) (Healthcare)

Threat Event Monitoring
Situational Variables Disaster type/severity

Agent variables Imminent danger
Social-psychological variables weather conditions

Resources Infrastructure Impediments
Evacuation drills Loss of [utilities]

Evacuation planning Structural damage
Personnel Fire/smoke, bomb treat or discovery

Physical/safety structures

Social Climate Time and Risk
Risk perception Time factors

Hierarchy of decision making Preparation
Complexity of organization Level of risk and assessments
Ability to receive warnings

Constraints on decision making

Organizational Characteristics External Environment
Regulations Regulations or legal authorization

External resources Community resources or services
Ability to predict hazard Community infrastructure

Ability to win
Definition of threat or risk

Social Linkages Internal Environment
Interorganizational linkages Facility resources
Intraorganizational linkages Facility census, acuity, staffing

Previous organization interaction Alternatives or alternate facilities
Specially designated emergency units Special needs
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facility may have access to additional resources to help with an evacuation. Taaffe et al. [155] used

simulation to evaluate various scenarios for evacuation time requirements. Tayfur and Taaffe [158]

developed a model to determine the allocation of staffing and transportation resources during a

pre-specified evacuation window that minimizes cost.

The Agency for Healthcare Research and Quality (AHRQ) provides a web-based evacuation plan-

ning tool for healthcare facilities. Based on the user’s input assumptions including the number and

types of available transportation resources as well as the number and types of patients to be evac-

uated, the model provides estimates for the times to evacuate patients and transportation resource

utilization. Patients are classified by their transportation requirements, and the assumption is that

this reflects their acuity. Patient relocation assignments are made such that the sickest patients are

transferred to the closest facilities to reduce travel time [50].

Tayfur and Taaffe [157] used simulation to evaluate various scenarios for evacuation time require-

ments. Tayfur and Taaffe [158] developed a model to determine the allocation of staffing and

transportation resources during a pre-specified evacuation window that minimizes cost. Though

the authors do not incorporate traffic simulation, they instead include a traffic congestion factor to

include additional delays in travel times.

Duanmu et al. [40] recognized the variety of emergency and evacuation planning at healthcare

facilities but identified a need for research related to external disasters that force the general popu-

lation and healthcare facilities to simultaneously evacuate. The authors create a traffic simulation

model to analyze the interaction and the effects on evacuation time, delays, and routes. The model

can be used to test various evacuation start times by estimating travel ties between the evacuating

and receiving facilities. A case study of the Charleston, South Carolina metropolitan area indicated

that in order to evacuate all patients from a large hospital prior to a hurricane’s landfall, a hospital

evacuation should begin no less than 12 hours prior to the community’s mandatory evacuation

orders or both can begin simultaneously if both the hospital and community evacuations begin 2
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days prior to landfall.

2.5 Emergency Preparedness in Healthcare

This section briefly highlights the more researched emergency preparedness topics including surge

capacity, triage, and rationing, and battlefield medicine. The ethical dilemmas associated with

these will be further discussed in Chapter 3.

2.5.1 Surge Capacity

Surge capacity refers to a facility’s ability to quickly make room for incoming patients when there

is an unexpected increase in demand due to an emergency or disaster [85]. There are a variety

of papers that discuss hospital surge capacity during emergencies (see e.g., [23], [44], [71], [85],

[116], [142], and [144]). Hick [71] et al. and Kaji [85] et al. present conceptual models, but none

of these use any mathematical modeling techniques for responding to increased demands. Both

papers discuss the differences in normal daily volume surges with emergency surges.

Though presented in the context of surge capacity, I think the discussion of a successful surge

response could also be applied to a discussion of the requirements for a successful evacuation. Hick

et al. [71] cite the four most important factors that contribute to successful surge capacity as

system, space, staff, and supplies. The authors describe classifications for these four components

in terms of conventional, contingency, and crisis capacity levels. In order for these parameters to

be effective, the following “underlying system components” must be in place:

• Command - an incident command system should be included in the emergency plan and

practiced for application

• Control - the facility can control their building by managing the people and even the air that

is allowed to enter the facilities
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• Communication - internal and external communication links are required

• Coordination - particulary for emergencies that affect more than just the facility, incident

command should coordinate with other healthcare facilities as well as public safety support

• Continuity of operations - to provide continued care

• Community infrastructure - support from local agencies may help provide assets. In addition,

the facility has to be prepared to handle its existing and new, incoming patients.

Kanter and Morgan examined hospital occupancy rates in New York and found that there may not

be enough capacity to handle demands after certain types of mass casualty events. In order to be

able to meet the demands, the authors suggested that altered standards of care may be necessary

[86]. See Section 2.5.3.

2.5.2 Triage and Rationing

Triage refers to the allocation decisions that must be made when the available resources cannot

satisfy the available demands. It refers to prioritization of patients, and in some cases, “some

[demands] may not be satisfied at all” [110]. The concept of triage is generally considered in terms

of a response to an emergency situation - in what order should victims be treated - to increase

chances of survival.

Rationing refers to “any implicit or explicit mechanisms that allow people to go without beneficial

services” [164]. Rationing does not only refer to the allocation of medical supplies; physician bed-

side rationing refers to determining whether certain clinical interventions are necessary [76] .

Hurst [76] describes the three forms of rationing by clinical judgement: triage (a number of patients

competing for limited resources), strained or fixed resources (actual patients are not competing,

but candidates for a resource are compared to potential candidates), and by opinion of the gains
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(comparison of the costs to the benefits). Examples of triage rationing include dividing time be-

tween patients during rounds or admitting patients to an ICU. Deciding how to allocate limited

blood supplies or vaccines is an example of comparing patients to other potential patients.

The papers listed in Table 2.2 are just a sample of those that discuss strategies for triage and

rationing.

Table 2.2: Papers That Discuss Rationing in Healthcare.

Author Topic

Cookson and Dolan [32] Justice
Egol et al. [41] ICU Admission
Ham and Coulter [67] Determining coverage for the insured
Jacobs et al. [81] Oregon Health Plan
Kŕızová and Simek [94] Expensive care in a “transition country”
Roberts et al. [138] Mass care with scarce resources
Sinuff et al. [147] Critical care beds
Ubel and Goold [163] Bedside rationing

2.5.3 Altered Standards of Care

In 2005, before Hurricanes Katrina and Rita, the Agency of Healthcare Research and Quality

published the “Altered Standards of Care in Mass Casualty Events” [79]. Because of the terrorist

attacks in 2001, it became obvious that the ability of providers to administer the usual levels of

quality care may decrease during a mass casualty event. The usual levels of care are determined

by [79]:

• “What - what types of interventions, clinical protocols, standing orders, and other specifica-

tions should be used in providing health and medical care?”

• “To whom - which individiuals should receive health and medical care according to their

condition or likelihood of response?”

• “When - with what urgency should health and medical care be provided?”

36



• “By whom - which individuals are certified and/or licensed to provide care within a defined

scope of practice and other regulations?”

• “Where - what facility and system standards (pre-hospital, hospital, alternate care site, etc.)

should be in place for the provision of health and medical care?”

“The standard of care is often defined as the level at which average, prudent, similarly qualified

providers in a given community would have managed the patient’s care under the same or similar

circumstances” [171]. Such definitions are necessary for liability, and therefore it is necessary to

define the altered standards of care for situations in which those usually accepted levels are not

possible.

As mentioned above, Hick et al. [71] discussed the four elements of surge capacity in terms of con-

ventional, contingency, and crisis capacities. When at “contingency capacity,” the patient volumes

are higher than the usual, “conventional” capacity, but the additional patient volumes have little

to no impact on patient care. “Crisis capacity,” on the other hand refers to limited space, staff,

or supplies that are inconsistent with the usual levels of care in a disaster setting. The goal in

such a case is to “provide the best possible care to patients given the circumstances and resources

available.”

The Indiana State Department of Health [113] published a document regarding the altered stan-

dards of care with respect to pandemic influenza. Such decisions are not only regarding how patient

care will change but also how the use of supplies and equipment (such as ventilators) will be man-

aged and rationed if necessary.
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2.6 Modeling Policy Decisions

2.6.1 Scheduling Impatient Jobs

Queuing theory has been applied to healthcare as a tool to examine utilization ([21], [146]), de-

termine appropriate appointment or staff schedules ([65], [88]), model patient flow ([22], [91]), and

assess waiting lists for services such as transplants ([9], [175]). Many researchers have also con-

sidered how to distribute resource-constrained service to jobs or customers that are “impatient.”

Bhattacharya and Ephremides [16] and Panwar et al. [114] consider jobs with deadlines and single

servers and prove that scheduling the most time-critical jobs is the optimal policy when the ob-

jective is to minimize the number of tardy jobs. Bhattacharya and Ephremides [17] further their

research and suggested state-dependent policies when considering a single server with two queues

and minimizing average tardiness per job. Dalal and Jordan [34] consider scheduling impatient jobs

and prove that the optimal policy to maximize reward chooses the job with the highest product

of reward and service rate. Additional papers consider deadlines while assuming that all jobs are

available immediately (see, e.g., [20], and [42], [128]).

In Glazebrook et al. [58], the authors propose models for determining single-server service allo-

cation schedules where (1) service is preemptive or nonpreemptive, (2) jobs reside in one or more

classes, and (3) jobs arrive randomly or are available immediately. When all jobs are waiting in the

system at time zero, the objective is to maximize the rewards until no jobs remain in the system or

to minimize the rewards lost through abandonment. The near-optimal policy is based on strictly

ordered tasks and therefore chooses tasks with small service times and large reward-rate loss. For a

multi-class problem, each customer classification is associated with a unique abandonment time as

well as a unique reward for successful completion of service. The resulting index policy approaches

decisions based on the maximum available reward rate [58].

The work of Argon, Ziya, and Righter [10] pertains to scheduling impatient jobs in the context of

emergency triage. Where our research addresses the evacuation of a hospital due to an emergency,
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Argon et al. [10] consider a surge on a hospital’s operating rooms due to a mass casualty emergency.

Their mode could also be used to determine patient priorities for allocating scarce resources in re-

sponse to an emergency event. Their triage system is modeled as a single-server clearing system

where patients are classified by two distributions - one to represent how long the patient has to live

and another to represent their service times. These jobs or patients already exist in the system (no

consideration of arrivals) and abandon the system if they 1) are selected for service or 2) if they

are not selected for service within their lifetime.

The problem discussed in this dissertation is similar to the one presented by Argon et al. [10] in

that there are a finite number of patients waiting for service and that new patients will not arrive

to the system. Key differences include:

• In this research, we examine a two-server model in addition to the single server model;

• In [10], once a patient is chosen for service, it does not abandon the system. In the models

presented in this paper, there is a probability of successful a successful evacuation (service)

to represent the fact that patients may not survive the evacuation conditions;

• The model in Argon et al. [10] does not consider holding costs;

• The goal of the model in [10] is to maximize the number of patients chosen for service. For

this research, the models were created to examine multiple objectives including maximizing

saved lives and minimizing cost; and

• In some of the models developed for this research, patient transitions between classes are

allowed.

Argon et al. [10] show that when the order of jobs based on service times is identical to the indexed

order of lifetimes, then the job with the shortest service/lifetime is treated first. However, the least

severe cases typically do not require the longest service times. Argon et al. [10] propose a dynamic

program to determine server allocation when maximizing the total number of patients taken into

service, and they show that when the number of jobs is high, the servers should be allocated to
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the “less time-critical patients with shorter treatment times.” As the total number in the system

becomes infinitely large, the “shortest expected process time first” rule becomes the optimal policy.

For the case when time-critical jobs have long service times (as is to be expected), the authors

develop two heuristic approaches and provide numerical results on the performance of the resulting

policies. Argon et al. [10] acknowledge that decisions to admit patients into an operating room

would require much more system knowledge and human interaction, and therefore their work is not

to suggest policies, but to provide insights on triage decision making.

Note: Argon et al. [10] refer to their evacuation system as a “clearing system.” In the 1970’s, Shaler

Stidham, Jr. ([139], [140]) classified certain stochastic processes as clearing systems. These systems

accumulate queues and are intermittently and instantaneously cleared. For example, consider the

arrivals of passengers at a bus stop. When the bus arrives, the queue is instantly emptied. Though

their model aims to clear a group of incoming patients through triage, the system is not actually a

clearing system.

In Glazebrook et al. [58] and Argon et al. [10] (as well as many others), the cµ rule plays a key

role in their results. The cµ rule minimizes cost by giving priority to the job with the highest value

of ciµi where ci is the cost of keeping job i in the system and µi is the service rate for job type i

(see, e.g., Iravani and Kolfal [80] and Van Mieghem [165]).

The work of Glazebrook et al. [58] and Argon et al. [10] has connection to our proposed research,

but there are some fundamental differences in our approach. One major difference in our system is

that our parameters are not necessarily stationary over time. For example, only a small percentage

of patients should have expiring lifetimes during the evacuation period (die waiting for evacuation).

Once the evacuation period is over and the disaster occurs, depending on the nature of the disaster,

all patients lifetimes may expire instantaneously. Another difference is the decision horizon. In the

case of a patient surge on an emergency room, there is no time limit, and the decisions will be made

until all patients have been triaged. In our research, there is a limited time window between the
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decision to evacuate and the impending disaster. As the disaster approaches, we also believe it is

important to consider how the standard level of care changes, and how that will impact service or

evacuation times, as well as patient selection decisions. For these reasons, we strongly believe this

is a rich area of research, where advancements in modeling (via tools such as dynamic programming

and simulation) will be abundant.

2.6.2 Healthcare Policy Decisions with Dynamic Programming and Simulation

This section discusses the application of dynamic programming and simulation in healthcare. Dy-

namic programming consists of a variety of techniques used to determine the optimal solution for

problems where decisions are required within a sequence of events [14]. This problem-solving ap-

proach can apply to a wide range of problems including both deterministic and stochastic problems.

Dynamic programming can be used to numerically solve problems as well as develop conclusions

about the structural properties of the optimal policy. Most dynamic programs are solved by back-

wards induction, so therefore the optimal policy consists of the optimal policies for a series of

subproblems.

When the routine performance of a system is represented, simulation can be used to test ”what if”

scenarios without requiring the initial investment and actual implementation of each scenario. This

allows an opportunity to analyze how changes to various inputs, resources, or time requirements

affect the entire system. Simulation is used often in healthcare as teaching opportunities for the

clinical staff. These simulations are usually in the form of physical models of the system. For

example, simulation labs are used to create scenarios for mock patients, and even evacuations or

other emergency events can be simulated. Computer simulation is obviously preferred when actual

simulations would be too expensive, complicated, intrusive, or impossible.
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2.6.2.1 Dynamic Programming in Healthcare

The following are examples of applications of dynamic programming to policy decisions in health-

care:

• As early as 1969, dynamic programming was used to model healthcare decisions. Esogbue

[43] modeled the operating rooms in hospitals.

• Fries and Marathe [53] used dynamic programming to examine appointment systems in am-

bulatory care clinics.

• Weiss [172] modeled an operating room as a single machine job shop where the operations

are jobs that are either 1) already scheduled or 2) used to determine the optimal order. In

both cases, the estimated start times of the procedures depend on the two costs considered

in the problem (idle cost and surgeon’s waiting cost).

• In order to estimate price expectations of over-the-counter pain relievers, Gönül [60] developed

a dynamic program to examine brand choice.

• Claxton and Thompson used dynamic programming to optimize the design clinical trials [29]

including sample size, allocation, and the “societal payoff to proposed research.”

• Maxwell et al. [105] used approximate dynamic programming to determine re-deployment

strategies for minimizing the time it takes an emergency medical service (EMS) crew to

respond to a call.

2.6.2.2 Simulation in Healthcare

Jun et al. [84] and Gnal et al. [59] two of the most recent papers that review the use of discrete-event

simulation in healthcare. The following are examples of applications of discrete-event simulation

in healthcare with respect to policy making:

• Hupert et al. demonstrated the usefulness of discrete event simulation modeling improving

response to emergency events. The authors created a model to design antibiotic distribution

centers after a bioterrorism attack [75]
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• Giachetti et al. [57] developed a simulation model to evaluate scheduling policies in an

outpatient clinic.

• Fletcher et al. [48] discussed a simulation model used to evaluate patient visits to England’s

Accident & Emergency departments in accordance with the national policy of completing

98% of patient visits within 4 hours of their arrival.

• As described in Section 2.4.4, Taaffe et al. [155], Tayfur and Taaffe ([158], [157]) and Duanmu

et al. [40] used simulation to examine the resources and routes associated with evacuating

healthcare facilities.

• Ramwadhdoebe et al. [136] developed a discrete-event simulation model to determine a policy

for testing infants for developmental dysplasia in the Netherlands.

• Werker et al. [173] examined waiting times for radiation therapy at the British Columbia

Cancer Agency and tested a variety of scenarios to shorten waiting times.

• Konganakorn et al. [92] used discrete-event simulation to test the economic benefit of two

different treatments for pneumonia.

2.7 Evacuation and Transportation Data

The models in Chapters 5, 6, and Chapter 7 will consider the following input parameters: patient

evacuation rates, probabilities of successful evacuations, and patient death rates while waiting for

evacuation. To our knowledge, there are no papers that estimate these parameters. This section

will examine any relevant data points from the papers discussed in this chapter.

Løv̊as [103] studies the complex system that results when a building is evacuated. Though not

healthcare facility-specific, the performance measures of interest apply: number of deaths, number

of safe evacuees, and the time needed to evacuate a given number of people. In addition, Løv̊as

provides an excellent discussion on how to measure evacuation systems based on these key outcomes

or objectives. These suggestions of past researchers clearly identify the need for improved decision
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making during healthcare emergencies.

2.7.1 Time to Evacuate

The time it takes a person to evacuate a building depends on his or her response time to the

emergency and how long it takes to physically move to an exit. Evacuation time estimates have

been studied in the context of nuclear power plants [73], communities [27], and traffic [100]. In the

case of a healthcare facility, the building’s occupants cannot immediately leave the facility. Most

patients must rely on the decisions of the clinical staff, and the clinical staff must remain in the

building to carry out the evacuation. For the models described in the following sections, most of

the evacuation time parameters are based on our observations of a mock evacuation.

In his summary of a simulation created for a London hospital, Johnson [83] reminds modelers about

the delays associated with moving patients. He estimates the minimum and maximum delays as-

sociated with the preparation for the helping the patient evacuate. For “mobile patients able to

move on their own,” the minimum delay is 30 seconds, and the maximum delay is 90 seconds. For

“immobile patients who could be moved with relative ease,” the minimum delay is 1 minute, and

the maximum delay is 3 minutes. For other immobile patients, the minimum delay is 3 minutes,

and the maximum delay is 15 minutes. These times, however, are only associated with preparing

the patient for physical movement; there is no discussion of locating and preparing medications,

charts, and other equipment that may have to travel with the patient. Johnson [83] also estimates

the time required for a nurse to transport a patient. He gives “fast,” “medium,” and “slow” esti-

mates. The time required for a nurse to push a patient in a bed is estimated to be 20, 25, or 35

seconds per 10 meters. For a nurse to push a patient in a wheelchair, the times are between 12, 16,

and 20 seconds per 10 meters. Finally, for a nurse to walk alone with a patient, the travel times

per 10 meters are estimated to be between 8, 12, and 16 seconds.

Table 2.3 was adapted from Schultz et al. [143] to provide insight on the time required to complete
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an evacuation. These time requirements are for both partial and complete evacuations, and the

time required was measured from the beginning of the evacuation to the moment that the last

patient was transported away from the facility.

Table 2.3: Time Required to Evacuate Patients.

Number of Patients
Evacuated

Time Required for
Evacuation [hours]

Average Time per Patient
[minutes]

25 13 31.2
2 1 30
320 9 1.69
125 19 9.12
270 9 2
202 10 2.97
46 12 15.65
76 13 10.26

There is no direct discussion in [143] of why the average time per patient is so different. Note

that the least amount of time per patient is associated with the facility that moved their patients

to a staging area directly outside of the facility. It is easy to understand that the differences in

resource requirements, patient volumes, and transportation distances can cause such differences in

the average evacuation time per patient, but it is difficult to understand exactly how a patient can

be evacuated in less than 2 minutes.

2.7.2 Transportation Risk

According to a study conducted in 2005 that analyzed the vital signs of critically ill patients trans-

ferred to the intensive care unit of a tertiary referral center, 37% of these patients exhibited a vitals

increase beyond predefined thresholds after transport. Either a nurse or physician was present in

80% of the transports, and the distance of transport did not correlate with the condition on arrival

[99]. The data collected from this study shows there is a definite increase in risk associated with

a transfer. Among those parameters that differed after arrival were oxygen saturation, heart rate,

temperature, and glucose level.
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A patient’s age will also affect the likelihood of mortality or increased complications during trans-

fer. Patients 75 years or older account for 1.8 million trauma-related visits per year. Over 40%

of these visits require ambulatory assistance. Patients in younger age groups are not as likely to

be admitted into a hospital with ambulatory assistance [49]. These patients who are 85 years or

older have a mortality rate 2 times those under 85 years old [153]. Often transfers for continued

medical care were more common among younger patients while older patients more frequently fell

into the categories of emergency and urgent admissions, indicating a natural increase in risk when

transferred (see, e.g., [35] and [170]). Inter-hospital transfers also present an increase in risk to

the patient. In an analysis performed by the National Institute of Health in 2006, the risk of in-

hospital mortality was 2.25 times higher among those transferred compared with those who were

not transferred. However, the study concluded that the risks differed with the experience of the

attending physician at the receiving hospital [170].

The following are related to patient complications during actual evacuations:

• One patient experienced complications related to evacuation after evacuating Galion Com-

munity Hospital in response to a bomb threat [11].

• There were no deaths reported from the eight hospital evacuations after the Northridge,

California earthquake [143].

• After Hurricane Katrina, none of patients from Tulane University Hospital died during the

evacuation, but two patients from Charity Hospital that had been transported to Tulane died

during the evacuation [63].

• St. Charles Parish Hospital did not evacuate until after Hurricane Katrina, and there were

no deaths reported [63]. There were 8 patient deaths at Charity Hospital, 19 at Lindy Boggs,

and 45 at Memorial Hospital.

• There were no deaths reported in the summary of lessons learned from the evacuation of

Texas Medical Center during Tropical Storm Allison [31].

46



2.8 Goals

The following discuss the goals or objectives of evacuation, triage, and allocation decisions.

• With respect to evacuation and surge capacity at Robert Wood Johnson University Hospital,

the goal is to “maximally reduce the number of casualties” [82].

• The goal of allocation decisions should be “maximizing the survival rate” [87].

• Based on Texas Medical Center’s experiences during Tropical Storm Allison, receiving facili-

ties should be chosen that avoid “overwhelming a facility with too many patients arriving at

once” [31].

• According to a draft published by the Massachusetts Department of Public Health and the

Harvard School of Public Health [4], “priority for limited medical resources and [altered

standard of care clinical] protocols will be based upon the allocation of scarce resources to

maximize the number of lives saved.”

• “The goal of a ... response [is] to maximize the number of lives saved” [79].

• White et al. discuss ethical decision making in the context of allocating ventilators to hos-

pitalized patients during an pandemic influenza outbreak [174]. The authors point out that

many allocation decision criteria are based on maximizing the number of people that survive

until hospital discharge.

2.9 Ethical Considerations

Hardin [69] introduced the concept of lifeboat ethics: there is only room in the limited supply of

lifeboats for some percentage of the population, and the rest of the population are left to swim

on their own. There are a number of decision criterion that can be used to make decisions about

how to “fill the lifeboats.” In a healthcare context, Kraus et al. [93] consider a hospital as a

lifeboat for a community during a disaster. With a patient surge, the authors suggested that triage
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decisions should balance the basic medical ethical principles: autonomy (respect for patients as de-

cision makers), beneficence (maximizing benefits and minimizing injury), nonmaleficence (avoiding

harm), and justice (fairness). Patient triage during disaster events typically takes on a utilitarian

view: do the most amount of good for the most amount of people. In order to do this, the public

accepts that the standard quality of care may decrease, and thus “sufficient” care becomes accept-

able. This leads to a key question in our research: how do ethical decision making and acceptable

level of care impact the selection of the next patient for evacuation?

Most triage decisions are made by the patient roster, and clinical staff does not necessarily have

access to information about the available resources, risks, and rewards. Kraus et al. [93] further

suggested that “a system that allows real-time classification of risks and benefits...would be a great

advantage in ethical decision making.”

An ethical dilemma, according to Rushworth Kidder [89], is a problem where more than one “right”

option conflict. These can generally be categorized into one or more of the following categories:

individual versus community, short-term versus long-term, truth versus loyalty, and justice versus

mercy [89]. Once the evacuation orders are underway, other potential ethical dilemmas include

[97], but are not limited to

• Determining when to evacuate,

• Prioritizing patients for evacuation,

• Deciding which staff members should report to work,

• Allocating and distributing scarce resources,

• Maintaining privacy and granting patient autonomy,

• Identifying authority and managing teamwork, power, and roles,

• Determining how to best use non-clinical staff such as family members and volunteers,
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• Determining acceptable levels of care,

• Deciding the best plan for patients that will inevitably die, and

• Handling admissions and emergent patients from outside of the facility

Note: Ethical dilemmas are not categorized in [89] or [97]; Larkin [97] suggested some potential

dilemmas and Kidder [89] suggests the categories. The ethical dilemmas will be further discussed

in Chapter 3 along with a discussion of the four main ethical frameworks.
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Chapter 3

Ethics and Objectives

This chapter discusses the ethical dilemmas associated with healthcare facility evacuations. It must

be noted that there are a number of stakeholders in healthcare ethical dilemmas, and each has a

shared objective: patients’ health. These stakeholders, however, also have additional - and some-

times competing - objectives. Consider the following in Table 3.1.

Table 3.1: Internal Stakeholders in a Healthcare Facility.

Stakeholder Goal

Patients Health
Patients’ Family and Friends Health of the patient
Patients’ Employer Want employee to return to work
Nurses Deliver quality care
Physicians Diagnose and deliver quality care
Facility administrators Maximize revenue; deliver quality care
Third party payers Maximize revenue; develop cost-effective treatment plans

It is an assumption that the patients should always be at the center of the “moral universe” (a

term used in [89]) for healthcare decisions. Including additional stakeholders into ethical decision

making compounds and increases the complexity of ethical dilemmas. My opinion of the moral

universe with respect to evacuations, or at least how I would like it to be, is represented in Figure

3.1, though there are no papers to support this idea.
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Figure 3.1: Example of the moral universe for healthcare facility evacuations.

An ethical dilemma, according to Rushworth Kidder [89], is a problem where more than one “right”

option conflict. These can generally be categorized into one or more of the following categories:

individual versus community, short-term versus long-term, truth versus loyalty, and justice versus

mercy [89]. There are a variety of ethical dilemmas associated with healthcare facility evacuations

[97], and these are listed in Table 3.2. Note the list is not classified in [97] as in the table.

The ethical dilemma at the focus of this chapter is determining the order in which patients should

be transported. According to Bernard Gert [56], “a person acts irrationally when (s)he acts in a

way that (s)he knows (justifiably believes), or should know, will significantly increase the proba-

bility that (s)he, or those (s)he cares for, will suffer death, pain, disability, loss of freedom, or loss

of pleasure: and (s)he does not have an adequate reason for acting so.” Patients are a dependent

population, and in order for most to get to safety, they will require the assistance of the clinical

staff. When the choice to transport one patient causes another to be left behind, this may directly

cause harm. In the case of an emergency evacuation with limited time for transport, there actually

is the potential for “death, pain disability, loss of freedom, or loss of pleasure.” The caveat at the

end of Gert’s definition of rationality “justifies” causing harm as proper prioritization policies will

lessen the harm for the entire system.
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Table 3.2: Breakdown of Healthcare Evacuation Dilemmas by Type.

Dilemma Individual vs.
Community

Short-term vs.
Long-term

Truth vs.
Loyalty

Justice
vs. Mercy

Determining when to evacuate X
Prioritizing patients for evacua-
tion

X X X

Clinical staff reporting to work X X
Duty to patients versus family X
Distributing scarce resources X X X
Maintaining privacy X X
Granting patient autonomy X X X
Identifying authority X X X
Teamwork, power, and roles X X X
Use of non-clinical staff, volun-
teers

X X

Determining acceptable levels of
care

X X X

What to do when a patient will
inevitably die?

X X X

How to handle admissions, emer-
gent patients

X X

Receiving facilities:resource dis-
tribution

X X X
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3.1 Ethical Perspectives

“Morality is, at the very least, the effort to guide one’s conduct by reason” [135], and Ethics is

“the obedience to the unenforceable” [89]. There are four, main ethical perspectives that guide

such decision making: utilitarian, deontological, care-based, and virtue-based ethics. Care-based

ethics will not be discussed as it is not a good model for policy making or occupational behavior;

however, it is interesting to consider that those carrying out an evacuation are in care-giving roles.

3.1.1 Utilitarianism and Evacuations

“Utilitarian theories assign people responsibility for producing certain results, leaving the individ-

uals concerned broad discretion in how to achieve those results” [62]. As compared to the other

ethical perspectives, utilitarianism is the best guide for public policy, and its concepts can help

evaluate options for the proper objective functions for evacuations. Using a utilitarian framework,

right and wrong are evaluated based on consequences alone, and these consequences - or utility -

are the most important. The goals of a Utilitarian are to do the greatest good for the greatest

amount. We assume that each person is the best judge of their preferences and interests except in

the case when they are the only ones to suffer from potential consequences. The “greatest good”

was originally considered to be “happiness” by Jeremy Bentham, one of the philosophers originally

credited with Utilitarianism [135]. In Utilitarianism, each person’s happiness should be given equal

consideration: “each counts for one and no one counts for more than one” [62]. Finally, “it is

legitimate for the collectivity to impose sanctions upon individuals in pursuit of [a] goal” [62].

During an emergency, the public generally accepts Utilitarian decision making [93]. Therefore, it is

fair to assume the “public health model” as a standard; “the patient is the public, and the mission

is to promote the public’s health” [169].
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“The greatest good for the greatest amount” presents the most challenging aspect of our research.

How should the greatest good be quantified: number of evacuees, profit, number of life years? In

addition, there are some limitations to using utilitarian principles to improve evacuations. First,

it is hard to foresee consequences. Our models only look at the immediate consequences: life or

death. However, there are so many different stakeholders, and the potential effects of an evacuation

grow exponentially as more people are included and the costs, happiness, time, etc. are considered.

That being said, there is no way to represent what is the “greatest good” for individuals, and it is

hard to know what to include in trying to quantify this for a community. Further, “there is no obvi-

ous place within utilitarian theories for people’s idiosyncratic perspectives, histories, attachments,

loyalties or personal commitments” [62]. We cannot assume that those carrying out an evacuation

would not have some sort of personal relationship with the patients that they would be responsible

for evacuating.

This leads us to our discussion of responsibilities and Deontological ethics. However, before I tran-

sition from utilitarianism to Kantian ethics, it is important to consider the middle-ground or “rule

utilitarianism” as it directly applies to decision making in evacuations. Once determining the set

of rules that it optimal, “we do not have to invoke the principle again to determine the rightness of

particular actions” [135]. That is, once the set of optimal policies that “does the most good for the

most amount” has been determined, it is not necessary to reconsider each individual decision-epoch

from a utilitarian perspective.

3.1.2 Deontological Ethics and Evacuations

The major concepts in Deontological, or Kantian, ethics include duty and respect for persons.

The ethical rules are absolute, and the morality of a particular action depends on the intent and

purpose, not the final consequences. In order to determine if an action is ethical from a Kantian

perspective, consider if it would be acceptable as a universal law. The consequences of the action

do not matter; the duty is what is important.
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In a Kantian framework, people should not be treated as a means to an end, and patient autonomy

should be respected. As noted before, it is easier to grant patient autonomy in cases where the out-

comes only affect the patient or a small group. Kantian ethics does not focus on outcomes, so it is

important to remember that evacuation is a utilitarian concept. During an evacuation though, the

staff have a duty to keep their patients safe. They also have other duties that may be competing.

In the event of a community-wide emergency, a staff member may have family obligations. Even

when someone from the clinical staff assists with evacuations, there could be different motives for

fulfilling this duty. Are they helping only because it is their job? It is fair to assume that those in

the business of care-giving have virtuous traits. It is a combination of their virtues and duties that

motivates them to assist with evacuations. In the case of an emergency evacuation, however, duties

may conflict. In the event that duties as identified by a utilitarian policy diverge, a virtue-based

approach to ethics may help identify solutions.

3.1.3 Virtue-Based Ethics and Evacuations

As stated before, utilitarianism is the best guide for policy making. Therefore, the hope is that

we can outline the most ethical procedures for prioritizing patients based on the greatest good.

There will, however, likely be unplanned events that require immediate decisions. Such decisions

will be ethical decisions, and will test the “ethical fitness” [89] of those carrying out the evacuation.

Coincidentally, health care professionals are known for their virtuous traits. The ethical codes

for nurses and physicians center on moral values and require compassion, respect, commitment,

responsibility, accountability, integrity, dedication, and truthfulness [5], [6].

Larkin and Arnold identified the virtues for healthcare workers during an emergency: “prudence,

courage, justice, stewardship, resilience, vigilance, and charity” [97]. “Virtue-based ethics are more

adaptable to the multiplicity of rapidly changing disaster circumstances than mere principles, rules

and protocols, particularly since the scope, magnitude, and dynamics of a particular challenge
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cannot be determined in advance [97]”.

Priel and Dolev [130] and Kraus et. al [93] suggest that medical decisions must balance beneficence,

nonmaleficence, autonomy, and justice. Priel and Dolev [130] extend Larkin and Aronld’s [97] list,

and include “compassion, trustworthiness, discernment, and integrity” as the four virtues essential

to medical practitioners and suggest these “be manifested in mass casualty situations.”

3.2 Ethics and Public Policy

According to Goodin, “utilitarianism can be a good normative guide to public affairs without nec-

essarily being the best practical guide to personal conduct. But special circumstances confound

the direct application of utilitarianism to personal affairs, and in such circumstances utilitarianism

itself recommends that people’s conduct be guided by more indirectly utilitarian mechanisms -

obeying rules of conduct or developing traits of character” [62]. The middle ground between Util-

itarianism and Kantian is rule-based utilitarianism where the consequences guide the formulation

of a set of rules. The utilitarian concepts determine the policies, these guidelines define roles and

responsibilities, and virtues contribute to the success of an evacuation.

The optimal policies vary with the choice of objectives, and the purpose of this research is to in-

vestigate the options for objectives and determine the one(s) that best balance the basic ethical

principles.

Current evacuations operate based on beneficence (maximize benefit and minimize harm). In con-

versations with healthcare officials, the typical opinion is that non-critical care patients should be

evacuated first. Will this produce justice and equity to all patient classes? We address this issue

in Chapter 5 by incorporating ethical considerations into the modeling objective.
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3.3 Ethical Perspectives in Healthcare Emergency Preparedness

During an emergency, when allocation decisions are to be made, the accepted perspective is Utili-

tarian: do the most good for the most amount ([93], [70], [107], and [126]).

In collecting papers regarding ethical decision making for emergency events in healthcare, it is al-

most always easy to predict how the arguments for ethical behavior will be framed. If the author is

a doctor or a nurse, the arguments will most likely focus on values and virtues. Lawyers and those

in public health tend to argue for the greatest good (utility). Robert Veatch, Ph.D. agrees that

there are two major, moral principles for triage; one is to choose to care for victims that would bene-

fit the most from care (utility), and the other is to care for those in the greatest need (justice) [166].

The purpose of this section is to suggest a potential conflict in the ethical perspectives. Because

this research focuses on the utilitarian concept of doing the most good for the most number, it is

important to consider that those actually carrying out the utilitarian policies may not agree with

the decision.

• “Many [medical professionals] are simply not prepared to modify their intransigent principle

of unwavering duty to their patients’ individual interest” [104]

• “Nursing is a discipline rich in values” [137]

• “Public health ethics differs from clinical ethics by giving priority to promoting the common

good over protecting the individual autonomy.... Public health policies, which focus primarily

on population-level health outcomes, may subordinate the interests and rights of indviduals

to the common good.... The notion that public health measures could shape life-or-death

choices for all ... patients is foreign to most clinicians and patients” [174]

The papers outlined in the following subsections address ethical concerns during emergency events

with an emphasis on virtues, values, and morals.
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3.3.1 Values and Virtues

In their discussion of triage in healthcare, Moskop and Iserson [111] suggest that it is “important

that triage officers understand the triage system they employ and the moral values and principles

upon which it is based” [111]. “To begin an ethical analysis of triage,” the authors “first consider

how triage fosters the values of human life, health, efficient use of resources and fairness.” “Triage

and Values” is their first major section, and the authors discuss the values inherent and foreign

to triage [111]. Though there is a lengthy discussion of utility, it is in a subsection of “Triage

and Principles of Distributive Justice” that comes after the discussion. Moskop is a Professor of

Medical Humanities at East Carolina University and Kenneth Iserson is an M.D. and Professor of

Emergency Medicine.

Larkin and Arnold [97] present the ethical dilemmas that may be associated with a terrorist at-

tack, and discuss virtue-based ethics as the best approach for “emergency planning, preparedness,

and response to acts of terrorism.” Larkin and Arnold are both M.D.s. In fact, they support the

hypothesis that M.D.s may be predisposed to think of ethics in terms of virtue rather than utility

by stating “we espouse the notion that virtue-based ethics are more adaptable to the multiplicity

of rapidly changing disaster circumstances than mere principles, rules and protocols.”

The ethical framework presented in [159] for decision making in pandemic influenza preparedness

is based on the following. First, the ethical decision making process should include the following

values: accountability, inclusiveness, openness and transparency, reasonableness, and responsive-

ness. Decisions should be made based on: duty to provide care, equity, individual liberty, privacy,

protection of the public from harm, reciprocity, solidarity, stewardship, and trust. Notice that the

Utilitarian concept of stewardship is included as a value. Thompson et al. [159] state that “deci-

sion makers have a responsibility to avoid and/or reduce collateral damage that may result from

resource allocation decisions; maximize benefits when allocating resources; protect and develop re-

sources where possible;” and “consider good outcomes (i.e. benefits to the public good) and equity

(i.e., fair distribution of benefits and burdens).”
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The following papers also examine ethical dilemmas with a virtue-based framework:

• Linda Good, R.N. [61], also discusses disaster ethics in terms of virtue. “The same fundamen-

tal virtue-based ethics that have guided health care decisions ... provide the moral foundation

to carry out the challenging task of triage.”

• G. Richard Holt, M.D., reviews literature to summarize the ethical challenges and perspectives

of medical care during mass casualty events [74]. He concludes that “it is necessary to...

formulate a virtue-based, yet practical, ethical approach to medical care under such extreme

conditions.”

• Nora Bell [15] challenges the utilitarian-based triage system: “the ‘more is better’ principle

lacks the status of a universal moral obligation and leads to an impersonal view of the valuing

of life.”

3.3.2 Duties

In addition to utilitarian- and virtue-based ethics, there is another framework, Deontological or

duty-based ethics, that is based on rules and obligations. In her discussion of whether nurses

should report to work during an emergency situation, Chaffee’s [26] arguments appeal to “duty,”

“responsibility,” and “obligation.” It could be argued, however, that whether a nurse decides to

report to work as a function of such commitments could be a reflection of his or her personal virtues.

In the Indiana State Department of Health’s [113] report on altered standards of care, the following

ethical framework is suggested for determining how breathing equipment should be allocated during

pandemic influenza: “duty to care, duty to steward resources, duty to plan, distributive justice,

and transparency.” “Duty to steward resources” refers to utilitarian principles in that allocation

decisions must be made based on the saving the most lives.
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3.3.3 Utilitarian Approach

The following papers discuss triage and other allocation decisions from a Utilitarian perspective:

• “Lifeboat Ethics: Considerations in the Discharge of Inpatients for the Creation of Hospital

Surge Capacity” was written by Kraus (M.P.H), Levy (M.D, J.D), and Kelen (M.D.) [93].

• Ken Kipnis, a professor of Philosophy, does not appeal to the values and virtues behind triage

decisions but instead says that triage decisions are to “produce the best outcome” [90].

• Rhonda Hartman, a lawyer, argues that “the rationale for triage is utilitarianism” [70].

• Linzer et al. [101] agree that “triage is largely utilitarian in nature,” and suggest that social

workers rely on Utilitarian and Deontological ethics to make decisions. The authors are

professors with degrees in social work.

In summary, the discussion in this chapter was to illustrate that there may be some conflicting and

competing ethical perspectives during a healthcare facility evacuation. When doctors and nurses,

who are driven by virtues and values, are asked to carry out policies that are based on utilitarian

principles, ethical dilemmas beyond those already inherent in the evacuation process may further

complicate the decision making process.
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Chapter 4

Evacuation Survey

In research funded by South Carolina State University’s James E. Clyburn University Transporta-

tion Center, we developed and distributed an evacuation survey to hospitals and nursing homes

across the state. Approximately 30 surveys were mailed to contacts, but only 7 were returned. De-

spite the low response rate, the information helped set a baseline for our understanding of healthcare

facility evacuation plans across our state. It is important to note that none of the facilities reported

having a prioritization plan or instructions on who to evacuate if only a limited number of patients

could be moved. In addition, we received nine evacuation plans to review and compare with the

survey results.

4.1 Survey Creation

In 2005, Schultz et al. [141] noted the lack of standardized data collection for hospital evacuations.

The team created a survey tool for systematically collecting data on the actual emergency, hos-

pital demographics, existing emergency plans, incident command, patient transfers, and “hospital

recovery.”

The survey distributed for this research used, amended, and supplemented questions from [141]. A

copy of the survey informational letter and the actual survey can be found in Appendix 4. Sample
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questions included:

• With regard to evacuation, are there strategies used to determine transfer/movement priority

in the evacuation plan? If so, please describe.

• Does your evacuation plan address patient evacuation out of the facility?

• Does the plan include an estimate for the time required for a full evacuation?

• Does the evacuation plan address what to do if there is a limited time window for evacuation

(not enough time to get all patients out of the facility)?

• What transportation resources are available to actually move patients?

• Which patient group would you most likely transport first?

• Which patient age group do you think have priority in transporting to safety?

This survey was created and distributed in the beginning phases of this entire body of research.

The purpose was to determine whether any prioritization guidelines were currently being included

in emergency planning.

4.2 Survey Responses

Seven surveys were returned from various sized hospitals including a 53-bed facility, a 54-bed facil-

ity, a 56-bed facility, a 145-bed facility, a 296-bed facility, a 588-bed facility, and an 845-bed facility.

The number of staffed beds in these facilities ranged from 28-850 beds. These facilities were 2-, 1-,

3-, 5-, 7-, 8-, and 6-stories tall, respectively.

With respect to transportation priority, two facilities indicated that ambulatory patients would be

evacuated first. Two of the facilities indicated that their evacuation plans addressed which patients

should be chosen for transport in the event that there was not enough time to get all of the patients

out, though such guidelines could not be identified in the evacuation plans that they provided to
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us. The other 5 facilities indicated that there were no guidelines for patient selection if there was

not enough time available to move patients. The two largest facilities estimated it would take “24

hours” and between “36-48 hours” to evacuate. The smaller hospital replied “yes,” there is an

estimate for how long a complete evacuation would take, but no estimate was given. Another of

the smaller facilities is a nursing home, and they estimate that a complete patient evacuation would

take between 3-4 hours to complete.

The following tables represent the responses to the prioritization questions. Table 4.1 represents

patient groups, and Table 4.2 represents age groups.

Table 4.1: Which patient group would you most likely transport first?

Facility No. Hospice Acutely Ill Chronically Ill Immediate Care Other

1 X
2 X
3 skilled nursing
4 X X
5 X
6 X X X X

Facility 7 did not check any of the options listed in Table 4.1 but instead answered: “ethical ques-

tion; answer determined by event type (pan flu event vs. mass casualty event for best likelihood of

survival/best good for most/etc. or whatever ethics model is for event type.” There was however,

no mention of ethics models in the evacuation plans.

Table 4.2: Which patient age group do you think has priority in transporting to safety?

Facility No. Infants Children 21-35 35-65 66+

1 X X
2
3 X
4 X X X X X
5 X
6 X
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Facility 7 did not respond to the age prioritization question.

As expected, all facilities indicated that their disaster plans specified transferring medical records,

medication, and equipment with patients. Four of the facilities (including the smallest and the

largest hospitals) indicated that the nearest facility to shelter its patients was within 5 miles. The

296-bed facility indicated that the closest facility was within 5 miles, but if there was no room for

their patients at this receiving facility, patients would have to be transferred out of the state.

The survey included questions about the types of transportation vehicles available. All would have

access to ambulances for an evacuation. Public busses, personal and facility-owned vehicles, and

helicopters would also be available to some of the facilities. The two largest hospitals - along with

one other facility - indicated that they had resources that would allow them to move more than

10 people at a time. Two other facilities estimated that they would be capable of moving between

20 and 25 people at a time. Only two facilities indicated that they could only move up to 5 and 6

patients at a time.

Each of the facilities require annual evacuation training for their personnel. Six of the six responses

to this question indicated that nurses were required to be trained annually, but only 3 of the 6

indicated that doctors were required to be trained annually.

4.3 Survey Conclusions

The limited response to the survey was disappointing but helpful, and it indicated and foreshadowed

the limited focus in this research area. The survey, however, provided us with a baseline knowledge

of facility sizes and helped us identify points of contact with an interest in our work. Over the

next two years, discussions with clinicians and presentations at healthcare conferences continued to

confirm that patient prioritization during facility evacuations are rarely discussed - likely because of

the associated highly ethical decisions and liabilities - but most everyone we presented the research
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idea to confirmed the potential research benefits.
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Chapter 5

Markov Decision Process Model,

Dynamic Programming, and

Simulation

This chapter presents a basic, single server model used for determining priorities for evacuation

selection decisions. The basic model is discussed and tested with dynamic programming and sim-

ulation. Most of the information within this chapter is based on a paper that was selected for

publication in the Transportation Research Record [28].

First, the model parameters and assumptions are introduced. Next, the dynamic programming

model is described and tested with six scenarios. Then, the optimal policies from the dynamic

program are analyzed with discrete-event simulation. An additional simulation discussion follows

where patient selection decisions are based on the time remaining in the evacuation window (as

opposed to state-dependent policies resulting from the dynamic program).
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5.1 Model Introduction

A complete evacuation from a healthcare facility would very likely be accomplished by multiple

unit-, department-, or floor-level evacuations occurring simultaneously. Within each evacuation, an

evacuation team - or multiple evacuation teams - would be responsible for moving the patients to

safety, and these evacuation teams would likely consist of some subset of the clinicians who usually

staff that area. The model presented in this chapter will be used to examine policies and create

assumptions for evacuation guidelines. The model is designed to prioritize patients within floors or

units instead of choosing patients from the entire set of patients throughout the facility as teams

are unlikely to leave their patients.

Consider a system in which there are N jobs (patients) to be serviced (evacuated). After each

evacuation, there are (N - 1) patients remaining in the system. In addition, a patient death also

reduces the number of patients remaining in the system. Assuming that the evacuation and death

transition rates are exponentially distributed, the system can be modeled as a Markov chain. If

the N jobs are divided into groups that are classified by their transition rates (i.e., N1 + N2 =

N), the state of the system can be represented by the number of both types of patients awaiting

evacuation. When there are rewards and costs associated with decisions and transitions from each

state, the system can be modeled as a Markov decision process. Therefore, there is an optimal

sequence of selecting jobs for service. In this work, the optimal sequence of patient evacuations will

maximize the overall expected reward.

In the case of a healthcare facility evacuation, patients abandon the system if they 1) are success-

fully transferred to another facility, 2) die waiting for evacuation, or 3) die during the evacuation.

In the case of a forecasted emergency that requires an evacuation (i.e., hurricane), it is likely that

the facility will discharge as many patients as possible to reduce the number of patient evacuations.
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5.2 Model Parameters and Assumptions

During an evacuation, the staff must decide where they will allocate their resources for evacuating

the next patient. The following parameters are used to determine how resources should be allocated.

Let λi denote the rate of evacuating type i patients. The evacuation rate represents the time

needed for the team to complete a patient transfer before starting a new patient. This rate can be

interpreted differently and updated according to the role of the evacuation team. For example,

• Some evacuation teams may only be in charge of prepping patients for transfer, and separate

teams of facility workers or emergency medical services (EMS) crews may transport patients

from their rooms. Remember in Chapter 2, the minimum and maximum times to prepare a

patient for transport were presented based on estimates from Johnson [83];

• An evacuation team could prep a patient in his room and then take him to a designated

staging point for transport. Johnson [83] also presented estimates for the walking speeds to

transport patients alone, in a wheelchair, or in a bed;

• An evacuation team may travel with a patient to the receiving facility and then return to the

evacuating facility. In this case, λi is the time required for a round trip.

This rate may also include the time required to order and prepare medications, collect the medical

record and any equipment, and physically prepare the patient for transportation.

During the evacuation process, there is a risk of mortality based on the patient’s medical condition

or the transportation conditions. Assume that a type i patient can be successfully evacuated with

probability pi (and, likewise, a patient will die during evacuation or transport with probability

(1 − pi)). Based on these parameters, the effective rate of a successful evacuations is λipi for

patient type i. During the evacuation process, the classification status of patients can also change

as they wait for medical staff to move them to safety. Such transitions could occur because of

a change in the patient’s health status or because of his relative location to the emergency (i.e.

non-critical care patients that are located close to a fire or exposed to a chemical or toxin could take
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longer to evacuate and have an increased death rate). Therefore, assume that a patient transitions

to the other patient class at rate βi. Such a transition would decrease the number of type i patients

(Xi − 1) and increase the number of type j patients (Xj + 1). Finally, patients may perish as they

wait for evacuation, and we denote the rate at which type i patients die as αi. This can be thought

of as the usual mortality rate of the patients though the rate may be increased due to the nature

of the emergency. For example, exposure to a hazardous chemical could increase the patient death

rates. In summary,

• Xi - denotes the number of type i patients in the system;

• λi - denotes the rate of evacuating type i patients;

• pi - denotes the probability of a successful evacuation of a type i patient;

• βi - represents the rate at which a type i patient becomes the other type; and

• αi - denotes the death rate for type i patients while waiting for evacuations.

Each successful evacuation is associated with a reward, lei , and each death is associated with a cost,

ldi . These are assigned at the time a patient leaves the system. There could also be costs associated

with holding type i patients in the system, so let hi denote the cost of holding a type i. The

holding rates are charged after every transition based on the number remaining to be evacuate. In

summary,

• lei - denotes the reward for a patient i evacuation;

• ldi - denotes the cost for a patient i death; and

• hi - denotes the cost of holding a type i patient in the system.
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5.3 Basic Two-Class Model

The dynamic programming and simulation models in this section consider evacuations where pa-

tients can be classified into one of two patient classes, usually assumed to be critical and non-critical

care patients. It is fair to assume that certain scenarios, however, will alter these assumptions, and

these will be discussed as they are presented.

In addition, the numeric tests described in this chapter will assume that there are 20 critical care

patients and 20 non-critical care patients to be evacuated. Some of the values of the parameters

listed in the previous section will be based on observations from two local mock evacuations since

there is not data available for the models otherwise (see Appendix B for a discussion of data col-

lected at mock evacuations). Most tests will assume that between 1 - 4 critical care patients can be

evacuated per hour and between 2 - 6 non-critical care patients can be evacuated per hour. Because

few of the papers described in Chapter 2 discuss any transportation-related deaths, the probability

of a successful evacuation is assumed to be high.

The objectives of the models are to maximize a value. This can be thought of as a profit when

holding costs are included for patients in the system. Without holding costs, the objective can

be considered as maximizing reward where every successful evacuation contributes to the overall

reward and every death costs.

Assume that there are N patients in the system that require service, and that these patients belong

to either classification group, so there are N1 Type 1 patients and N2 Type 2 patients to be evacu-

ated where N1 + N2 = N . The continuous-time state description of such a system can be defined

by (X1(t), X2(t)), where X1(t) denotes the number of Type 1 patients remaining in the system

(X1(t) ∈ {0, 1, . . . , N1}) at time t, and X2(t) denotes the number of Type 2 patients remaining in

the system (X2(t) ∈ {0, 1, . . . , N2}) at time t.
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5.3.1 Model Description

As previously mentioned, transitions can occur at any point in time t, so the state description in-

cludes continuous-time parameters. With uniformization techniques, the problem can be converted

to an equivalent discrete-time problem. First used by Lippman in 1975 [102], all of the transition

rates are scaled by the maximum rate of transition (refereed to as γ in this research). After uni-

formization is applied, “fictitious” transitions may be introduced, and all transitions happen at the

same rate. If it was not time for the system to transition, the state will remain unchanged based

on the fictitious transition. The state of the system for the discrete-time problem is (X1, X2) where

Xi denotes the number of type i patients remaining in the system.

Let the policy π describe how to allocate resources for evacuating the next patient, based on the

current state. Policy π is therefore a sequence of decisions π = {a1, a2, . . .}, where ak is a vector

of actions to be taken based on the current state. Let Π be the set of all such policies. For the

discrete time problem, let (X1, X2) represent the state of the system at time n and ak denote the

actions taken at time k under policy π. The resulting n-stage expected reward is given by

vn(X1, X2) = Eπ(X1,X2)

[
n−1∑
k=0

r(x1k, x2k, ak(x1k, x2k))

]
, (5.1)

where r() denotes the reward achieved at stage or time k. This leads to the optimal n-stage expected

reward of

v∗n(X1, X2) = sup
π∈Π

vπn(X1, X2). (5.2)

For the evacuation prioritization decision making problem, the evacuation teams can choose from

which patient class to evacuate the next patient. This leads to the following decision at any epoch:

π =

 (λ1, 0) evacuate type 1 next - Policy 1

(0, λ2) evacuate type 2 next - Policy 2
, (5.3)

where λi denotes the selected evacuation rate and implies selection of a type i patient. Figure 5.1
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below represents the state transition diagram if Policy 1 is applied at all decision points for a single

server evacuation. For the purpose of the figure, assume that each patient class has 20 patients to

be evacuated. The dashed lines represent the fictitious transitions used in uniformization. For this

problem, the maximum rate of transition, γ = λ1 + λ2 + N1α1 + N2α2, is used to scale the rates

in the Equation (5.3.1). Remember that Ni represents the total number of type i patients to be

evacuated, and Xi represents the number of type i patients remaining in the system. Therefore, the

fictitious transition rate - shown as a dashed line in Figure 5.1 - is (N1−X1)α1 + (N2−X2)α2 +λ2

when Policy 1 is chosen and (N1 −X1)α1 + (N2 −X2)α2 + λ1 when Policy 2 is chosen (not shown

in a transition diagram).

Figure 5.1: Transition diagram for the single server model when Policy 1 is chosen.

The optimality equation for the single server finite horizon evacuation decision problem shown

below in Equation (5.3.1).

ν(X1, X2) = X1α1

[
ν(X1 − 1, X2)− ld1

]
+X2α2

[
ν(X1, X2 − 1)− ld2

]
− h1X1 − h2X2

+max

 λ1p1 [ν(X1 − 1, X2) + le1] + λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+ [(N1 −X1)α1 + (N2 −X2)α2 + λ2]ν(X1, X2)

λ2p2 [ν(X1, X2 − 1) + le2] + λ2(1− p2)
[
ν(X1, X2 − 1)− ld2

]
+ [(N1 −X1)α1 + (N2 −X2)α2 + λ1]ν(X1, X2)

The first two terms in Equation (5.3.1) represent patient deaths while waiting for evacuation. Based
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on the number of patients remaining in the system, a patient death - unrelated to the evacuation

decision but dependent on the normal operations of the facility or the emergency type - will occur.

When a patient death occurs, the number of patients waiting in the system is reduced and a penalty

is assigned. The next two terms represent the costs of holding each patient type in the system.

The final term represents the choice: either evacuate a Type 1 patient or a Type 2 patient. With

both choices, there is a chance of an unsuccessful evacuation, so the number of patients in the

system will be reduced, and either a reward or penalty will be assigned based on the probability

of a successful evacuation. In addition, each decision is associated with a fictitious transition rate

that is used for uniformization.

5.4 Numeric Tests and Initial Patient Selection Decisions

A dynamic program was created based on the work of Mayorga et al. [106]. The program reads the

input parameters from a text file and returns the value of Policy 1 at each combination of (X1, X2),

the value of executing Policy 2 at each combination of (X1, X2), the value of the optimality equation

at each combination of (X1, X2), and the optimal sequence of decisions based on those parameters.

See Appendix C for an example of the input and output files as well as discussion of the dynamic

programming code.

For the purpose of continuity, assume that the floor, unit, or department has 20 critical care pa-

tients and 20 non-critical care patients to be evacuated. Within the following sections, the optimal

patient selection policy is shown in a diagram. These diagrams indicate which patient should be

evacuated (Type 1 or Type 2) for any combination of (X1,X2) which represents the number of Type

1 and Type 2 patients remaining in the system at that point in time. For these tests, values for

(X1,X2) can range from (0,0) to (20,20). It is assumed, however, that a floor-, unit-, or department-

level evacuation would not consist of 40 patients. Because dynamic programming works by solving

problems recursively, the policy diagrams still apply for any subset of patients.
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It is fair to assume that non-critical care patients have quicker evacuation rates, higher probabil-

ities of successful evacuations, and slower death rates than critical care patients. Table 5.1 below

summarizes the test parameters that will be used for the initial tests described in the remainder of

this chapter.

Table 5.1: Summary of Test Parameters.

Parameter Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

λ1 2.5/hour 2.5/hour 2.5/hour 2.5/hour 2.5/hour 2.5/hour
λ2 4/hour 4/hour 4/hour 4/hour 4/hour 4/hour
p1 0.99 0.99 0.99 0.99 0.99 0.99
p2 0.999 0.999 0.999 0.999 0.999 0.999
α1 0.055 0.1 0.1 0.1 0.1 0.1
α2 0.055 0.055 0.055 0.055 0.055 0.055
h1 0 0 0.02 0.035 0.035 0.035
h2 0 0 0.02 0.02 0.02 0.02
le1 1 1 1 1 0 1
ld1 1 1 1 1 0 2
le2 1 1 1 1 0 1
ld2 1 1 1 1 0 2

5.4.1 Maximizing Saved Lives

Let us first consider a case where the objective is to maximize the number of lives. In this case, the

reward for a saved life is the same for both patient classes, and it is equal to the cost of a patient

death for both patient classes (lei = ldi = 1 for i = 1, 2). Assume that there is no cost for holding

either type of patient in the system (hi = 0 for i = 1, 2) and that patients will never transition to

the other type of patient (βi = 0 for i = 1, 2). In most evacuation settings, it is logical to assume

that patient transfer times are lower for the less critical patients, and that this group of patients

is less likely to die during transport (have higher probabilities of successful evacuation). However,

assume the unlikely case that these patients also have a quicker rate of death while waiting for

evacuation. Therefore, assume that

• The rate of a successful evacuation rate is higher for Type 2 patients than it is for Type 1

patients, and
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• Type 2 patients die at a quicker rate while waiting for evacuation than Type 1 patients.

These observations lead to the following property:

Property 1. For a 2-class system as shown in Equation (5.3.1), λipi ≥ λjpj and αi ≥ αj implies

priority should always be given to type i patients.

Though this property has not yet been proven, intuitively, however, it makes sense that removing

such patients first would maximize the objective function. Consider the parameters given for Test

1 in which the conditions of Property 1 are satisfied. Priority should be given to all Type 2 patients

first. This means that all Type 2 patients should be evacuated first before beginning to evacuate

any Type 1 patients. Figure 5.2 shows the optimal policy diagram for this “greedy” policy. In

a greedy policy, the choice is to completely evacuate all of one patient type before beginning to

evacuate any from the other.

Figure 5.2: Initial observations - Test 1 policy decisions.
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To illustrate Property 1, we have assumed that Type 1 and Type 2 patients die at the same rate

for Test 1. While this could occur based on the type of threat and the location of the patients in a

facility, α1 = α2 is not the typical case. Instead, it is fair to assume that critical care patients would

die at a faster rate than non-critical care patients. To examine this more typical case, assume the

Test 2 parameters. Now, assume α1 > α2, and all other conditions are the same as described above

for Test 1. The objective is still to maximize the number of evacuees that leave the system. The

policy structure for this case is shown in Figure 5.3. Notice how the optimal sequence of decisions

chooses non-critical care patients when there are larger numbers of both patient classes still in the

system waiting to be evacuated. As we transfer the non-critical care patients - and patients from

both groups die while waiting to be evacuated - there will be a point at which priority should switch

to the critical care patients. All critical care patients remaining in the system would be evacuated

before returning attention to non-critical care patients.

Figure 5.3: Initial observations - Test 2 policy decisions.
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5.4.1.1 Including Holding Costs

In Section 5.4.1, the objective was to maximize the number of lives saved (where le1 = ld1 = le2 =

ld2 = 1), with no consideration for how long each patient waits in the system for evacuation. By

including non-zero holding costs (hi 6= 0) in Equation (5.3.1), the model now considers the speed

at which patients are leaving the system to avoid penalties from holding them in the system. As

mentioned before, holding rates are charged after every transition based on the number still in the

system, while rewards and penalties are assigned when a patient leaves the system. Now, the model

is driven by getting the most number of evacuees out as quickly as possible.

Using the same parameter values for Test 2, we now include h1 = h2 = 0.02 for Test 3 (please

refer back to Table 5.1 for parameter values). In this case the policy is greedy and recommends

evacuating all patient non-critical patients first (the policy diagram is not shown as it is the same

as Test 1, shown in Figure 5.2). Recall that the optimal policy in Test 2 requires switching between

choosing Type 2 and Type 1 depending on how many patients remain in the system. By including

holding costs, we now choose to evacuate all non-critical care patients first (i.e., the policy is greedy

and is optimal for both Tests 1 and 3). Since these patients have a higher evacuation rate, we can

add more value to the objective function by getting more patients out quickly.

Note that “equal holding costs” does not imply that the group that can be evacuated more quickly

will always be chosen for transport first. The resulting policy depends on the other input parame-

ters discussed in this section, but it has been shown that the addition of holding costs can change a

switching policy to a greedy policy. As a comparison, the following test sets unequal holding costs

for the critical and non-critical care patients. Assuming that it costs more to hold a critical care

patient in the system (h1 = 0.035 and h2 = 0.02), Test 4 is discussed again in the following section,

and Figure 5.4 contains the optimal policy structure for selecting patients for evacuation.
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Figure 5.4: Initial observations - Tests 3 and 4 policy decisions.

5.4.2 Initial Ethical Observations

One of the more interesting pieces of this research is determining the objective that best balances

the ethical principles. This involves considering the information available in the medical record,

estimating costs and rewards, and determining the best way to incorporate these into the model.

In this section, consider how we place and model value on transferring patients, patient deaths, and

keeping patients in the system. As shown in the previous sections, the optimal policies can change

with the addition of and choices for evacuation rewards, death penalties, and holding costs.

In Figure 5.5, we compare three scenarios for how rewards and costs are weighed into the objective

function. Beginning with Test 4 (h1 = 0.035 > h2 = 0.02) as discussed in the previous section,

the optimal policy varies between selecting a critical care or non-critical care patient next based

on the remaining number in each class. In Test 5, we then consider a case that places no value

on saved or lost lives (i.e., only holding costs are used). Since this objective focuses on the cost

of those patients not evacuated yet, we would more often want to evacuate non-critical patients
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as opposed to critical patients. This is observed by the slight shift in the threshold for when the

policy switches between Type 1 and 2. Finally, Test 6 compares making a death twice as costly as

the saving of a life (as opposed to Test 4 where the cost and reward are the same). All other input

parameters are identical for the tests. Now, we observe that critical care patients have more of an

increased priority than in Test 4 (i.e., the shaded region of 1s is larger).

Figure 5.5: Initial observations - Tests 4, 5, and 6 policy decisions.

5.4.3 Additional Dynamic Programming Observations

First, note that when the optimal policy is a switching policy, the Type 1 regions form triangles.

In their research, Argon et al. [10] show that the “triangle heuristic” os a good representation of

the optimal policy.

While we can make several valuable observations concerning which patient class to transfer at

various time epochs, we can also discern evacuation performance by modeling these policies using

simulation. Note that the above analysis assumes an infinite horizon. In reality, there is likely some

finite time available for decisions to be made. In some situations, patients may be left behind. An

impending threat could mean that every patient dies when the disaster occurs. In other situations,
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patients may not die, but the availability of quality healthcare would decrease and therefore their

death rates would likely increase. Now, such situations can be described and modeled using simu-

lation.

5.5 Patient Selection Decisions with Simulation

This section describes a simulation model that was created to 1) test the policies generated by the

dynamic program and 2) examine other scenarios that complicate a dynamic programming model.

For a discussion of how the simulation model works, please see Appendix D.

Again, each test considers a population of 40 (N1= 20 critical care patients and N2 = 20 non-

critical care patients). The tests in the following sections, Sections 5.5.1, 5.5.2, and 5.5.3 are for

250 replications each. This resulted in extremely small confidence intervals on the true mean of

each performance measure recorded (typically, the half-width value for the number of evacuees was

less than 0.3 and less than 0.2 for deaths and evacuation times).

5.5.1 Simulating Dynamic Programming Policies

The dynamic program generates a policy structure but does not return any statistics that represent

the performance of that policy. Therefore, the suggested patient selection decisions are embedded

into the simulation to determine the number of evacuees and deaths as well as the time to complete

the evacuation process. Based on the input values including the number of patients in each class to

be evacuated, the evacuation rates, the death rates, and the probability of a successful evacuation;

the evacuation window; and the prioritization strategy (see Appendix D), the simulation returns

the following statistics:

• The percentage of incomplete evacuations based on the given evacuation window;

• The total number of Type 1 and Type 2 evacuees;
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• The total number of Type 1 and Type 2 deaths; and

• The average completion time (the time taken to completely clear the system of all patients).

Table 5.2 summarizes the performance measures of the policies suggested for Tests 1 - 6 in the previ-

ous section. We run each test as if there are two evacuation windows: 8 and 16 hours. In some cases,

there may not be enough time to completely evacuate, and this is reflected in the table as well under

the “Complete” column. This column indicates the percentage of completed evacuations - or the

percentage of runs in which the system was completely cleared during the given evacuation window.

Table 5.2: Average Performance Measures of Dynamic Programming Policies.
Evacuation
Window

Test
No.

Complete
(%)

Total
Type 1
Evacuees

Total
Type 2
Evacuees

Total
Type 1
Deaths

Total
Type 2
Deaths

Number
of Lives
Saved

Average Com-
pletion Time
(hours)

8 hours 1 31.6 9.272 16.18 7.548 3.82 14.084 7.7843
8 hours 2 55.2 9.5680 14.232 9.828 4.804 9.168 7.3556
8 hours 3 60.8 7.924 16.216 10.808 3.784 9.548 7.2988
8 hours 4 57.6 8.372 15.092 10.488 4.492 8.484 7.2947
8 hours 5 54.4 7.5720 15.608 10.7 4.236 8.244 7.3771
8 hours 6 60 8.656 14.908 10.412 4.592 8.56 7.287

16 hours 1 100 12.008 16.18 7.992 3.82 16.378 8.8993
16 hours 2 100 10.0960 15.128 9.904 4.872 10.448 7.8266
16 hours 3 100 8.98 16.216 11.02 3.784 10.392 7.7652
16 hours 4 100 9.328 15.484 10.672 4.516 9.6124 7.7775
16 hours 5 100 8.984 15.756 11.016 4.244 9.48 8.0304
16 hours 6 100 9.456 15.368 10.544 4.632 9.648 7.7539

Tests 1 and 3 are greedy policies and are run by evacuating all non-critical patients before starting

to evacuate critical patients. The input parameters are the same for both tests except α1. For Test

2 and each test after, the death rate increases to almost twice the rate for critical care patients.

Notice that Tests 1 and 2 have the highest percentage of incomplete evacuations in an 8-hour evac-

uation window; these are the only two tests that do not consider holding costs.

Tests 2, 4, 5, and 6 have similar switching curves, so their performance is very similar. It is inter-

esting, however, to note the effect of the objective on the results. For example, the only difference

in the parameters of Tests 2 and 3 is that holding costs are introduced in Test 3. We see that doing

this actually saves fewer lives (10.392 versus 10.448 for a 16-hour window), but the objective is
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weighted to reduce the total number waiting, not simply the total number evacuated as in Test 2.

Figure 5.7 graphically depicts the simulation results from Test 2. It shows the number of evacuees

of each patient type for evacuation windows between 1 and 16 hours as well as the percentage of

incomplete evacuations in a given time window (over 250 replications).

Figure 5.6: Simulation results for DP policy - Test 1.

Tests 3 and 4 have the same input parameters except it is more expensive to hold Type 1 patients

in Test 4. This changes the policy from a greedy policy (Test 3) to another switching policy where

it is better to evacuate non-critical care patients when there are greater numbers of both types

of patients in the system and evacuate critical patients when the number of patients remaining in

both classes is low.
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Figure 5.7: Simulation results for DP policy - Test 2.
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Figure 5.8: Simulation results for DP policy - Test 3.
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Figure 5.9: Simulation results for DP policy - Test 4.
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Figure 5.10: Simulation results for DP policy - Test 5.
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Figure 5.11: Simulation results for DP policy - Test 6.
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5.5.2 Policy Comparisons with Simulation

In this section, the performance of the dynamic programming policies, including the number of

evacuees, deaths, and saved lives, as well as the average evacuation completion time (as shown

in Table 5.2 above), is compared to the performance of the all-or-nothing, greedy policies that

suggested in the literature or used in practice. For each combination of parameters, there are two

additional simulation runs to compare to the optimal policy: all Type 1 patients are evacuated

first and all Type 2 patients are evacuated first. Table 5.3 represents an 8-hour evacuation window,

and Table 5.4 represents a 16-hour window. The simulation only uses the rates of evacuation and

death, as well as the probabilities of successful evacuation as input parameters. Because the only

difference in Tests 2 - 6 were the rewards and costs, the simulation output for a greedy Type 1

policy is the same for Tests 2 - 6, and the simulation output for a greedy Type 2 policy is the

same. However, they are listed in the table to compare to the results of simulation of the dynamic

programming policies.

Table 5.3: Comparison of the Optimal Policies with Greedy Policies - 8 Hours.
Evacuation
Window

Test
No.

Complete
(%)

Total
Type 1
Evacuees

Total
Type 2
Evacuees

Total
Type 1
Deaths

Total
Type 2
Deaths

Number
of Lives
Saved

Average Com-
pletion Time
(hours)

Type 1 1 28.4 14.78 7.696 5.076 7.604 9.796 7.7829
DP 1 31.6 9.272 16.18 7.548 3.82 14.084 7.7843
Type 2 1 31.6 9.272 16.18 7.548 3.82 14.084 7.7843

Type 1 2 45.6 12.96 9.42 7.004 7.484 7.892 7.5874
DP 2 55.2 9.5680 14.232 9.828 4.804 9.168 7.3556
Type 2 2 60.8 7.924 16.216 10.808 3.784 9.548 7.2988

Type 1 3 45.6 12.96 9.42 7.004 7.484 7.892 7.5874
DP 3 60.8 7.924 16.216 10.808 3.784 9.548 7.2988
Type 2 3 60.8 7.924 16.216 10.808 3.784 9.548 7.2988

Type 1 4 45.6 12.96 9.42 7.004 7.484 7.892 7.5874
DP 4 57.6 8.372 15.092 10.488 4.492 8.484 7.2947
Type 2 4 60.8 7.924 16.216 10.808 3.784 9.548 7.2988

Type 1 5 45.6 12.96 9.42 7.004 7.484 7.892 7.5874
DP 5 54.4 7.5720 15.608 10.7 4.236 8.244 7.3771
Type 2 5 60.8 7.924 16.216 10.808 3.784 9.548 7.2988

Type 1 6 45.6 12.96 9.42 7.004 7.484 7.892 7.5874
DP 6 60 8.656 14.908 10.412 4.592 8.56 7.287
Type 2 6 60.8 7.924 16.216 10.808 3.784 9.548 7.2988

First, notice that a 16-hour window was enough to completely evacuate all patients at the input
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Table 5.4: Comparison of the Optimal Policies with Greedy Policies - 16 Hours.
Evacuation
Window

Test
No.

Complete
(%)

Total
Type 1
Evacuees

Total
Type 2
Evacuees

Total
Type 1
Deaths

Total
Type 2
Deaths

Number
of Lives
Saved

Average Com-
pletion Time
(hours)

Type 1 1 100 14.912 11.944 5.088 8.056 13.712 8.9077
DP 1 100 12.008 16.18 7.992 3.82 16.376 8.8993
Type 2 1 100 12.008 16.18 7.992 3.82 16.376 8.8993

Type 1 2 100 12.992 12.192 7.008 7.808 10.363 8.3098
DP 2 100 10.0960 15.128 9.904 4.872 10.4448 7.8266
Type 2 2 100 8.98 16.216 11.02 3.784 10.392 7.7652

Type 1 3 100 12.992 12.192 7.008 7.808 10.363 8.3098
DP 3 100 8.98 16.216 11.02 3.784 10.392 7.7652
Type 2 3 100 8.98 16.216 11.02 3.784 10.392 7.7652

Type 1 4 100 12.992 12.192 7.008 7.808 10.363 8.3098
DP 4 100 9.328 15.484 10.672 4.516 9.6124 7.7775
Type 2 4 100 8.98 16.216 11.02 3.784 10.392 7.7652

Type 1 5 100 12.992 12.192 7.008 7.808 10.363 8.3098
DP 5 100 8.984 15.756 11.016 4.244 9.48 8.0304
Type 2 5 100 8.98 16.216 11.02 3.784 10.392 7.7652

Type 1 6 100 12.992 12.192 7.008 7.808 10.363 8.3098
DP 6 100 9.456 15.368 10.544 4.632 9.648 7.7539
Type 2 6 100 8.98 16.216 11.02 3.784 10.392 7.7652

value settings chosen for these simulation runs. Therefore, examine Table 5.4 and notice that the

number of saved lives is as good as or greater than the number of saved lives when one of the greedy

policies is chosen for Tests 1 and 2. These are the only two tests that did not include holding costs.

In Tests 3 - 6, holding costs were included so that the objective included more than just a reward for

an evacuee and a penalty for a patient death (in Test 5, however, only holding costs are considered;

remember that there was no reward for an evacuee or cost for a death). When the holding costs are

introduced in the models, additional costs are incurred at every transition based on the number of

patients remaining in the system.

The differences in the performance are at the heart of one of the issues surrounding this research:

any policy decisions that maximize the number of saved lives would likely be preferred to those

that include additional costs by most stakeholders, except for perhaps the administrators. The fact

that the number of saved lives is similar for the greedy policies and the switching policies — and

the time to complete an evacuation is similar — is likely due to the fact that the rates at which

the two patient types are leaving the system are similar for the values chosen. For example, Type

1 patients are evacuated at a rate of 2.5/hour, and they die while waiting at a rate of 0.1 per hour;
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and Type 2 patients are evacuated at a rate of 4/hour, and they die while waiting at a rate of 0.055

per hour (the probability of a successful evacuation was very high for both at 0.99 and 0.999 for

Type 1 and Type 2 patients, respectively). These results prompt the need for further testing and

comparisons.

5.5.3 Patient Selection with Simulation

For the following tests, consider now that the policy is based on the amount of time until the

disaster occurs rather than the number of patients in the system. In order to test these policies,

a switch time is imposed for stopping the evacuation of one group and beginning the evacuation

of the other. That is, the evacuation begins by evacuating either type of patient. For example,

assume that the evacuation begins with Type 2 patients. At the switch time, the simulation would

switch to Type 1 patient evacuations and clear this group before completing any remaining Type

2 evacuations.

Each 15-minute increment of time between the start of the evacuation and the end of the evacuation

window is evaluated as a possible switch time. Using Arena’s OptQuest optimization package, the

optimal switch time is determined to be the time that maximizes the number of evacuees minus

the number of deaths.

First, two of the tests from the previous sections, Tests 1 and 2, were chosen for testing in order

to compare the number of evacuees when the optimal policy decisions are based on the number

of patients remaining in the system (Table 5.2) to a policy driven by time (see Table 5.5 below).

Table 5.5 includes the new information on the switch time as well as the number of lives saved

when the switch is made at that time. In addition, two new scenarios, Tests 7 and 8, are presented

in which slower death and evacuation rates were used. In particular, the death rates are now set to

between 0.004 deaths/hour and 0.01 deaths/hour and more accurately represent non-catastrophic

emergency events and provide a sense of how frequently deaths could occur within a controlled,
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mass patient transfer or evacuation. As a result, the simulations also now require a 24-hour win-

dow since a full evacuation cannot be completed in 16 hours (patients do not perish as quickly and,

therefore, must still be evacuated).

Table 5.5: Suggested Switching Times.
Test
No.

λ1 p1 α1 λ2 p2 α2 Evacuation
Window
(hours)

Number
of Saved
Lives
- Start
with
Type 1

Time
to
Switch
From
1 - 2

Number
of Saved
Lives
- Start
with
Type 2

Time
to
Switch
From
2 - 1

1 2.5 0.99 0.055 4 0.999 0.055 8 13.9 0 13.0 3.25
1 2.5 0.99 0.055 4 0.999 0.055 16 16.3 0 16.0 3.25
2 2.5 0.99 0.1 4 0.999 0.055 8 10.3 0 9.3 2.0
2 2.5 0.99 0.1 4 0.999 0.055 16 11.3 1.0 11.3 0.25
7 1.33 0.99 0.01 3 0.999 0.004 8 16.6 0 15.2 6.0
7 1.33 0.99 0.01 3 0.999 0.004 16 26.5 0.5 23.5 4.25
7 1.33 0.99 0.01 3 0.999 0.004 24 29.5 7.0 29.4 0
8 2 0.99 0.006 2 0.999 0.006 8 12.7 0.75 12.7 5.0
8 2 0.99 0.006 2 0.999 0.006 16 26.7 2.25 26.6 2.25
8 2 0.99 0.006 2 0.999 0.006 24 30.4 2.0 30.5 0

Consider Test 1. If the plan is to start evacuating Type 1 patients, the simulation shows an optimal

switch time at t = 0 which implies that we should start evacuating Type 2 patients first. Remem-

ber that the dynamic program suggested this greedy policy as well. For an 8-hour evacuation, the

simulations show 13.8 lives saved (evacuees minus deaths) in Table 2 and 13.9 lives saved in Table

5.5. The times to switch from Type 2 to Type 1 are 3.25 hours for both evacuation windows as a

full evacuation takes approximately 8 hours.

It is expected that the time to switch from Type 1 patients to Type 2 patients would increase

and the time to switch from Type 2 patients to Type 1 patients would decrease as the available

evacuation window increased when Type 1 patient die at a faster rate (Tests 7 and 8).

In Test 8, the patient types have the same parameters except for the probabilities for successful

evacuation, and therefore the switch time is not as important and the number of lives saved is

similar during each evacuation window.
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5.6 Conclusions from the Single Server Model

This chapter presented and discussed the first dynamic programming and simulation tests for

healthcare facility evacuations. Based on these tests, the following trends were observed:

• A policy can be categorized as either 1) a greedy, Type 1 policy; 2) a greedy, Type 2 policy;

or 3) a switching policy.

• There is at most one switch.

• Any switching policy for critical and non-critical care patients starts by evacuating non-critical

care patients and then switches to evacuate all remaining critical care patients.

The results presented in this chapter has limited ability for direct implementation by practitioners,

and it would be unfair to assume that the clinical staff would have all of the suggested input

parameters to run these models. Therefore, the aim of the following chapters is to identify generic

policies or characteristics of the optimal policy that would improve decision making during an

emergency evacuation.
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Chapter 6

Properties of the Single Server Model

The purpose of this chapter is to further investigate the single server evacuation model (presented

in the previous chapter) and determine properties of the optimal solutions that will in turn provide

insights into patient selection decisions. Section 6.1 describes a sensitivity analysis for critical and

non-critical care patients, and the trends and observations from these tests are discussed in Section

6.2. For the discussion in this chapter, it is assumed that the reward resulting from a complete

patient evacuation is the same for both patient classes, and in addition, the value is equal in mag-

nitude to the cost of a lost life from either of the patient classes. That is, le1 = le2 = ld1 = ld2 =

1. This assumption follows the utilitarian logic: every patient counts equally towards the greater

good such that no patient is considered more valuable than another.

When patients are categorized as critical and non-critical care patients, it is assumed that

1. Non-critical patients can be evacuated more quickly than critical care patients.

• λ1 < λ2

2. Non-critical patients have a higher probability of a successful evacuation.

• p1 < p2

3. Critical care patients die while waiting at a quicker rate than non-critical patients.

• α1 > α2
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6.1 Sensitivity Analysis

In order to investigate how the input parameters affect the optimal policy, a sensitivity analysis

was performed to examine the location of the switching curve in the optimal policy diagram (the

switching curve may be so low or so high that a switch does not exist; therefore, the optimal policy

is a greedy policy). Figures 6.1 and 6.2 illustrate the movement of the switching curve. Incremental

changes to the input parameters can create small shifts in the location of the switching curve and

therefore the size of the classification regions, and eventually the relationships may lead to greedy

policies.

Figure 6.1: Optimal policy diagrams: Switching curve moving down.

A full factorial design of experiments (DOE) was created to study the effects of the input param-

eters. In order to decrease the number of runs, the ratios of the eight input parameters (λ1/λ2,

p1/p2, α1/α2 and h1/h2) were selected as the adjustable factors. The parameters for the Type 2

patients were held constant while the parameters for the Type 1 patients were varied. With three
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Figure 6.2: Optimal policy diagrams: Switching curve moving up.

levels for each of the ratios - low, medium, and high - required only 81 runs to account for ratio

changes as opposed to 6,561 if all eight parameters were examined separately!

6.1.1 Sensitivity Analysis Setup and Output

The design of experiments tests are described below, and then a discussion of the additional anal-

ysis follows. The values chosen to remain constant for the Type 2 patients are shown in Table 6.1,

and Table 6.2 includes the parameter settings chosen to be varied.

Table 6.1: Constant DOE Parameters for Sensitivity Analysis of the Single Server Model

λ2 p2 α2 h2

4 patients/hour 1.0 0.001 patients/hour 0.02

An example of the output for one run is shown here, and the output from the other runs has been

submitted in the electronic appendices (please see the file “Sensitivity Analysis.xlsx”). The first
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Table 6.2: Variable DOE Parameters for Sensitivity Analysis of the Single Server Model

Parameter Low Medium High
λ1 2 3 3.5
p1 0.5 0.75 0.95
α1 0.025 0.05 0.075
h1 0.01 0.02 0.03

run (DOE #1) was chosen to be an example for the discussion of the steps taken in the sensitivity

analysis. The parameter settings for DOE #1 were as shown in Table 6.3.

Table 6.3: Parameters Settings for DOE Test #1
Type λ p α h

1 2 patients/hour 0.5 0.05 patients/hour 0.02
2 4 patients/hour 1.0 0.001 patients/hour 0.02

The dynamic program generates multiple output files including a list of the resulting value func-

tion at each combination of (X1, X2) (see Figure 6.3). This value represents the expected average

reward associated with starting to evacuate patients in that particular state. These values, for each

(X1, X2) can be copied into Excel relatively quickly and arranged in a matrix of corresponding X1

and X2 rows and columns (see Figure 6.4). Though not labeled, the rows represent a fixed number

of Type 1 patients, and the columns represent a fixed number of Type 2 patients. Therefore, the

value circled in the figure represents the expected average reward of an evacuation starting with

four Type 1 patients and nineteen Type 2 patients remaining in the system. This format is opposite

of the method for displaying the optimal policy diagrams. In addition, the optimal policy diagrams

reduce to (0, 0) in the bottom, left corner, and the figure shows the value for (0, 0) in the bottom,

right corner.

In addition to the list of values, the dynamic program generates a text file with the optimal policy

choice (1 or 2) for each (X1, X2). These values are copied into a template to create the optimal

policy diagrams that were introduced in Chapter 5. In order to better visualize the trends, two

graphs were created: one that shows the value function at fixed values of X1 and another that
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Figure 6.3: Sample output file: “DataOUT.txt” for DOE Run #1.

Figure 6.4: Sample value function output: DOE Run #1.

shows the value function at fixed values of X2. So that the graphs do not appear convoluted, only

increments of 5 are displayed. Figures 6.5 and 6.6 illustrate sample plots for fixed values of X1 and

X2 (Xi = 0, 5, 10, 15, and 20 for i = 1, 2).
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Figure 6.5: Property 1: Sample value functions for selected fixed values of X1: DOE Run #1.

Figure 6.6: Property 1: Sample value functions for selected fixed values of X2: DOE Run #1.

6.1.2 Sensitivity Analysis Results

The parameters used for each run as well as the optimal policy and resulting value function are

shown in the tables below. A greedy policy is indicated by either “1” or “2.”
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Each set of tests shown in the tables represents a unique combination of parameters with only one

parameter varied so that a low, medium, and high ratio is achieved. Each subgroup is listed so that

the holding costs are varied; the lowest ratio is shown first, the medium ratio is shown second, and

the highest ratio shown third. Notice that within each group, for the set of parameters chosen, a

greedy Type 1 policy (denoted by “1”) is never optimal for the low ratio within each set.

In addition, within each group, if the policy changes, it changes along the order of “Type 2,”

“Switch,” and then “Type 1.” This does not imply that a “Switch” policy always follows a “Type

2” policy, but it does imply that the switching curve is moving upwards as the ratios are increasing.

For example, consider the set of parameters listed third to last in Figure 6.5 (Tests #73 - #75).

Figure 6.7 illustrates the optimal policies for the low, medium, and high ratio settings (from left

to right). Therefore if a “Switch” policy is optimal at the low settings, the only possibilities for

the medium setting would be a second “Switch” policy (with a larger region associated with Type

1 patients than was observed in the low settings ) or a “Type 1” policy. If a “Type 1” policy is

shown to be the optimal policy for any of the levels, then the optimal policy at each subsequently

higher level will also be “Type 1.”

Figure 6.7: Sample policy diagrams at the low, medium, and high ratio settings.
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For the set of parameters chosen for the sensitivity analysis, the optimal policy for the lowest values

of λ1 most often observed is a greedy, Type 2 policy. In only 3 of the 27 tests at this setting was

the optimal policy a switching policy, and each of these occurred at the highest settings of h1. All

three policy options are most often observed at the highest values of λ1 (λ1 = 3.5). We also note

that, within each subgroup, the value function is decreasing. This was expected as each subgroup

represents increasing Type 1 holding costs.

The results were analyzed in Minitab to determine if there were any significant predictors of the

optimal policy. First, the DOE was analyzed to determine which factors had a significant effect

on the policy (each policy was coded categorically where 1 represented a greedy, Type 1 policy; 2

represented a greedy, Type 2 policy; and 0 represented a switching policy). Figure 6.8 represents

the Minitab summary output. In the figure, factors A, B, C, and D represent the ratios of the λ, p,

α, and h values, respectively. Any p-value less than 0.05 represents a factor that has a significant

effect on the response. As expected, and based on the previous discussion, the rate of evacuation

(Factor A) and the holding cost (Factor D) have the most significant effect on the policy. However,

the death rate (Factor C) also significantly impacts the optimal policy. In addition, the interaction

between the rate of evacuation and the holding cost (Factor A*D) also significantly impacts the

optimal policy.

The results of the factorial design were also analyzed to study the effect on the value function. As

expected, each primary factor, as well as most interactions, have a significant effect on the value

function. An additional analysis showed that there is no correlation between the value function

and the optimal policy.

6.1.3 Additional Sensitivity Tests

In this section, the effects of the parameters on the location of the switching curve are further ex-

amined. From the sensitivity analysis tests, the parameter combinations that resulted in a similarly
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Figure 6.8: Factorial design analysis for impact on policy response.

sized region of Type 1 patients were chosen (i.e., the switching curve is located in approximately

the same place). In the additional tests, three of the ratios were held constant at the initial settings

while the fourth was incrementally increased. The tests chosen for further investigation are listed

in Table 6.6, and the increments chosen are listed in Table 6.7.

For each additional test, four figures are shown together: one includes the incremental changes to

λ1, one includes the incremental changes to p1, one includes the incremental changes to α1, and

one includes the incremental changes to h1. Within each diagram, the original size of the Type 1
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Figure 6.9: Factorial design analysis for impact on value response.
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region is represented by the solid line. In addition, if a particular linetype is shown in the legend

but not in the diagram, this indicates that this particular parameter combination resulted in a

greedy, Type 1 policy.

Figure 6.10: Incremental changes to DOE #18.
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Figure 6.11: Incremental changes to DOE #24.
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Figure 6.12: Incremental changes to DOE #27.

105



Figure 6.13: Incremental changes to DOE #41.
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Figure 6.14: Incremental changes to DOE #44.
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Figure 6.15: Incremental changes to DOE #59.
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Figure 6.16: Incremental changes to DOE #62.
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Changes to λ1 show a fairly consistent trend in the movement and location of the switching curve.

As expected, as the ratio λ1/λ2 increases, an incremental increase to h1 becomes increasingly im-

portant to the location of the switching curve. In other words, faster evacuation rates for critical

care patients results in holding costs increases having a larger impact.

One of the more noticeable trends during the testing phase was that incremental increases in α1

have less and less of an effect on the location of the switching curve. Based on the values chosen

for the sensitivity analysis, Tables 6.4 and 6.5 lead to the assumption that increasing the ratios

increased the size of the Type 1 priority region. This would be true if holding costs were not in-

cluded. During these further analyses, however, it was observed that as the value of α1 (the death

rate while waiting for evacuation) increased, the location of the switching curve seem to approach

a limiting or bounding location on the (X1, X2) diagram. This observation lead to additional tests,

that indicate that, when holding costs are included, additional incremental increases to α1 actually

cause the switching curve to start moving downward, thereby increasing the region in which Type

2 patients are given priority. This result is intuitive, however. Increasing the rate of a Type 1

patient evacuation, or increasing the probability of a successful Type 1 patient evacuation, encour-

ages the selection of Type 1 patients. Likewise, increasing the holding costs associated with these

patients makes it more expensive not to choose Type 1 patients for transport. It makes sense that,

eventually, if the rate at which Type 1 patients die while waiting for evacuation is high enough,

it will not be optimal to choose these patients. It should be noted however, that the α1 rates at

which the switching curve started moving downward were between 600 - 800 times the death rate

of a Type 2 patient. This could be a realistic scenario, however, if a localized threat were to put

some patients in immediate danger. At some point, the danger is just too great to put resources

into moving these patients when efforts to move the other patients would provide value.
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6.2 Structural Properties

Based on the 81 runs from the formalized design of experiments - and more than 25 other runs

with randomly chosen values for the input parameters - several properties of the single-server model

were identified. The electronic attachments include tabs where these relationships were identified

with conditional statements. In this section, these properties and their implications for patient

selection decisions are discussed. Though it has been difficult to attempt to prove mathematically,

the following properties have been shown computationally:

1. The value function, ν(X1, X2), is concave in X1 and X2. For all (X1, X2),

(a) ν(X1 + 1, X2)− ν(X1, X2) ≤ ν(X1, X2)− ν(X1 − 1, X2)

(b) ν(X1, X2 + 1)− ν(X1, X2) ≤ ν(X1, X2)− ν(X1, X2 − 1)

2. (Supermodularity) For all (X1, X2),

(a) ν(X1, X2 + 1)− ν(X1, X2) ≥ ν(X1 + 1, X2 + 1)− ν(X1 + 1, X2)

3. (Diagonal Dominance) For all (X1, X2)

(a) ν(X1 + 1, X2 + 1)− ν(X1, X2) ≥ ν(X1 + 1, X2 + 2)− ν(X1, X2 + 1)

(b) ν(X1 + 1, X2 + 1)− ν(X1, X2) ≥ ν(X1 + 2, X2 + 1)− ν(X1 + 1, X2)

Refer back to Figures 6.5 and 6.6 to see these properties within the plots.

Concavity in X1 and X2 implies that the marginal change in the value associated with evacuating

a patient is increasing as the number of patients in the system decreases. That is, the change in

the value of evacuating a Type 1 patient is greater at a lower value of X1 than a higher value of

X1, and the change in the value of selecting a Type 2 patient for evacuation is greater at a lower

value of X2 than at a higher value of X2.

The supermodularity relationship implies that the action chosen is a function of the state; and in

this case, the marginal change in the value of evacuating a Type 2 patient becomes greater as the
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number of Type 1 patients in the system decreases. That is, as more Type 1 patients are removed

from the system, the marginal change in the value of choosing a Type 2 patient is increasing. Simi-

larly, the marginal change in the value associated with evacuating a Type 1 patient becomes greater

as the number of Type 2 patients in the system decreases. That is, as more Type 2 patients are re-

moved from the system, the marginal change in the value of choosing a Type 1 patient is increasing.

The diagonal dominance relationship refers to the change in the value as a change is made to both

X1 and X2. Though patient selection decisions cannot be made diagonally, the property may be

helpful in future work. Again, the marginal change associated with a diagonal change is increasing

as the number of patients in the system decreases. That is, the change in the value function asso-

ciated with removing a patient from both groups is greater at lower values of both X1 and X2.

The insights for practitioners based on these relationships will be discussed in Chapter 8.

6.2.1 Policy Determination when Holding Costs are Excluded

In previous, informal testing of the optimality equation, the optimal policies were often shown to

be either a switching policy or a greedy, Type 2 policy. The fact that all 81 DOE tests showed

a greedy, Type 1 policy was initially surprising, but upon further examination and comparison

to other policies, it was determined that a greedy policy could be predicted by examining a ratio

consisting of the Type 1 and Type 2 parameter values. Similar to the cµ rule ([80] and [165]), which

gives priority to jobs with the largest value of ciµi (where ci is the reward if a job is completed and

µi is the service rate for jobs i = 1, 2, ..., I), the optimal policy for the evacuation systems can be

predicted by considering the following relationship.

λ1p1α1

λ2p2α2
(6.1)

In all 81 DOE cases, the ratio of the input parameters ranges from 6.25 to 62.34375. As a com-

parison, more tests were run, and the ratios were calculated. Tables 6.8, 6.9, and 6.10 contain the
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input parameters for Type 1 policies, Type 2 policies, and switching policies, respectively.
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It makes sense that, without holding costs, the patient group with the higher value of λpα will more

quickly contribute to the reward or incur a penalty; therefore, these patients should be evacuated

first. It should be noted, however, that none of these ratios predicts that a switching policy will

be optimal. Based on extensive testing, if the ratio is between 1 and 1.3, a switching policy may

occur and the model should be run to determine if a switch would in fact be optimal.

In summary, if h1 = h2 = 0 and λ1p1α1/λ2p2α2 is

• > 1.3, a greedy, Type 1 policy is likely the optimal policy,

• > 1 and < 1.3, a switching policy may occur, or

• < 1, a greedy, Type 2 policy is likely the optimal policy.

6.3 Policy Possibilities

Because the more interesting cases are for when holding costs are considered in the optimality equa-

tion, the discussions in the remainder of this chapter will assume that holding costs are included

as input parameters.

As discussed in the previous sections, the switching curve moves up or down depending on the

selected input parameters. The switching curve implies a monotone switching policy. That is, a

switch can only be made up to one time. In addition, if a switch does occur, it will only be after the

evacuation has begun with Type 2 patients, and a switch can be made to evacuate Type 1 patients.

Once it is optimal to begin evacuating Type 1 patients after switching from Type 2 patients, it

will be optimal to continue evacuating Type 1 patients until there are no more patients from this

group remaining in the system. If the evacuation begins with Type 1 patients, the policy will be

a greedy, Type 1 policy. That is, a switch from Type 1 patients to Type 2 patients is never optimal.

Tables 6.11 and 6.12 show the possible policies for critical and non-critical care patients. It has

been difficult to prove that these switching relationships hold and therefore show that a switch can
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only occur up to one time.

6.4 Model Properties Conclusions

Because the appropriate input parameters are unknown, the purpose of this chapter was to examine

the behavior and properties of the single server model. The model was discussed from two perspec-

tives: without holding costs and with holding costs included. Without holding costs, increasing the

values of the input parameters for either patient type moves the switching curve in favor of that

patient. When holding costs are included, only increases to the rate of evacuation, probability of a

successful evacuation, and holding cost move the switching curve in favor of that patient type. At

lower values, increases to the death rate do move the switching curve to create a larger region of

priority for that patient type. Eventually, however, increases in α approach some bounding point,

and then the switching curve starts to move in the other direction thereby decreasing the region of

priority for that patient. At higher evacuation rates, the model is more sensitive to the changes in

the holding costs.

Several relationships were identified through extensive testing including concavity, supermodular-

ity, and diagonal dominance for all (X1, X2). These relationships give insight into the marginal

changes associated with choosing patients. Because the value function is concave in X1 and X2,

the change in the value function when there are greater numbers of patients in the system is less

than when there are less number of patients in the system. That is to say that when there are fewer

patients remaining in the system, the choice has more of an impact on the overall reward. The

supermodularity relationship implies that the marginal change associated with choosing Type 2 pa-

tients increases as the number of Type 1 patients in the system decreases. Similarly, the marginal

change associated with choosing Type 1 patients for evacuation is increases as the number of Type 2

patients in the system decreases. The diagonal dominance relationship does not have any relevance

for the two possible choices in our models, but the property will likely be valuable as the items

presented in this chapter are proven in future work.
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Table 6.4: Sensitivity Analysis Results for the Single Server Model, 1 of 2

Test # λ1 λ2 p1 p2 α1 α2 h1 h2 Policy ν(20, 20)

1 2 4 0.5 1 0.025 0.001 0.01 0.02 2 -1.865708
2 2 4 0.5 1 0.025 0.001 0.02 0.02 2 -12.663737
3 2 4 0.5 1 0.025 0.001 0.03 0.02 2 -23.461765

4 2 4 0.5 1 0.05 0.001 0.01 0.02 2 -4.245748
5 2 4 0.5 1 0.05 0.001 0.02 0.02 2 -14.054585
6 2 4 0.5 1 0.05 0.001 0.03 0.02 2 -23.863421

7 2 4 0.5 1 0.075 0.001 0.01 0.02 2 -6.171733
8 2 4 0.5 1 0.075 0.001 0.02 0.02 2 -15.282833
9 2 4 0.5 1 0.075 0.001 0.03 0.02 2 -24.393932

10 2 4 0.75 1 0.025 0.001 0.01 0.02 2 6.06414
11 2 4 0.75 1 0.025 0.001 0.02 0.02 2 -4.733889
12 2 4 0.75 1 0.025 0.001 0.03 0.02 2 -15.531917

13 2 4 0.75 1 0.05 0.001 0.01 0.02 2 2.261068
14 2 4 0.75 1 0.05 0.001 0.02 0.02 2 -7.547769
15 2 4 0.75 1 0.05 0.001 0.03 0.02 2 -17.356605

16 2 4 0.75 1 0.075 0.001 0.01 0.02 2 -0.715164
17 2 4 0.75 1 0.075 0.001 0.02 0.02 2 -9.826263
18 2 4 0.75 1 0.075 0.001 0.03 0.02 Switch -18.937356

19 2 4 0.95 1 0.025 0.001 0.01 0.02 2 12.408018
20 2 4 0.95 1 0.025 0.001 0.02 0.02 2 1.609989
21 2 4 0.95 1 0.025 0.001 0.03 0.02 2 -9.18804

22 2 4 0.95 1 0.05 0.001 0.01 0.02 2 7.466521
23 2 4 0.95 1 0.05 0.001 0.02 0.02 2 -2.342316
24 2 4 0.95 1 0.05 0.001 0.03 0.02 Switch -12.151153

25 2 4 0.95 1 0.075 0.001 0.01 0.02 2 3.650091
26 2 4 0.95 1 0.075 0.001 0.02 0.02 2 -5.461008
27 2 4 0.95 1 0.075 0.001 0.03 0.02 Switch -14.565383

28 3 4 0.5 1 0.025 0.001 0.01 0.02 2 -2.376871
29 3 4 0.5 1 0.025 0.001 0.02 0.02 2 -13.186388
30 3 4 0.5 1 0.025 0.001 0.03 0.02 1 -22.312013

31 3 4 0.5 1 0.05 0.001 0.01 0.02 2 -4.77049
32 3 4 0.5 1 0.05 0.001 0.02 0.02 2 -14.794561
33 3 4 0.5 1 0.05 0.001 0.03 0.02 Switch -23.487185

34 3 4 0.5 1 0.075 0.001 0.01 0.02 2 -6.757877
35 3 4 0.5 1 0.075 0.001 0.02 0.02 Switch -16.191394
36 3 4 0.5 1 0.075 0.001 0.03 0.02 Switch -24.405677

37 3 4 0.75 1 0.025 0.001 0.01 0.02 2 5.826339
38 3 4 0.75 1 0.025 0.001 0.02 0.02 2 -4.983177
39 3 4 0.75 1 0.025 0.001 0.03 0.02 1 -13.098592

40 3 4 0.75 1 0.05 0.001 0.01 0.02 2 2.104769
41 3 4 0.75 1 0.05 0.001 0.02 0.02 Switch -7.919256
42 3 4 0.75 1 0.05 0.001 0.03 0.02 1 -14.977056
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Table 6.5: Sensitivity Analysis Results for the Single Server Model, 2 of 2

Test # λ1 λ2 p1 p2 α1 α2 h1 h2 Policy ν(20, 20)

43 3 4 0.75 1 0.075 0.001 0.01 0.02 2 -0.909969
44 3 4 0.75 1 0.075 0.001 0.02 0.02 Switch -10.248319
45 3 4 0.75 1 0.075 0.001 0.03 0.02 1 -16.698915

46 3 4 0.95 1 0.025 0.001 0.01 0.02 2 12.388908
47 3 4 0.95 1 0.025 0.001 0.02 0.02 2 1.579391
48 3 4 0.95 1 0.025 0.001 0.03 0.02 1 -5.727855

49 3 4 0.95 1 0.05 0.001 0.01 0.02 2 7.604976
50 3 4 0.95 1 0.05 0.001 0.02 0.02 Switch -2.314622
51 3 4 0.95 1 0.05 0.001 0.03 0.02 1 -8.122454

52 3 4 0.95 1 0.075 0.001 0.01 0.02 2 3.768357
53 3 4 0.95 1 0.075 0.001 0.02 0.02 Switch -5.019843
54 3 4 0.95 1 0.075 0.001 0.03 0.02 1 -10.277683

55 3.5 4 0.5 1 0.025 0.001 0.01 0.02 2 -2.923233
56 3.5 4 0.5 1 0.025 0.001 0.02 0.02 2 -13.921185
57 3.5 4 0.5 1 0.025 0.001 0.03 0.02 1 -20.186991

58 3.5 4 0.5 1 0.05 0.001 0.01 0.02 2 -5.294799
59 3.5 4 0.5 1 0.05 0.001 0.02 0.02 Switch -15.540821
60 3.5 4 0.5 1 0.05 0.001 0.03 0.02 1 -21.505387

61 3.5 4 0.5 1 0.075 0.001 0.01 0.02 2 -7.282293
62 3.5 4 0.5 1 0.075 0.001 0.02 0.02 Switch -16.848547
63 3.5 4 0.5 1 0.075 0.001 0.03 0.02 1 -22.756697

64 3.5 4 0.75 1 0.025 0.001 0.01 0.02 2 5.362605
65 3.5 4 0.75 1 0.025 0.001 0.02 0.02 Switch -5.63015
66 3.5 4 0.75 1 0.025 0.001 0.03 0.02 1 -10.870981

67 3.5 4 0.75 1 0.05 0.001 0.01 0.02 2 1.695826
68 3.5 4 0.75 1 0.05 0.001 0.02 0.02 Switch -8.055043
69 3.5 4 0.75 1 0.05 0.001 0.03 0.02 1 -12.76471

70 3.5 4 0.75 1 0.075 0.001 0.01 0.02 2 -1.309
71 3.5 4 0.75 1 0.075 0.001 0.02 0.02 Switch -9.94716
72 3.5 4 0.75 1 0.075 0.001 0.03 0.02 1 -14.508837

73 3.5 4 0.95 1 0.025 0.001 0.01 0.02 2 11.991275
74 3.5 4 0.95 1 0.025 0.001 0.02 0.02 Switch 1.222262
75 3.5 4 0.95 1 0.025 0.001 0.03 0.02 1 -3.418173

76 3.5 4 0.95 1 0.05 0.001 0.01 0.02 2 7.288326
77 3.5 4 0.95 1 0.05 0.001 0.02 0.02 Switch -1.467301
78 3.5 4 0.95 1 0.05 0.001 0.03 0.02 1 -5.772169

79 3.5 4 0.95 1 0.075 0.001 0.01 0.02 Switch 3.470242
80 3.5 4 0.95 1 0.075 0.001 0.02 0.02 1 -3.696098
81 3.5 4 0.95 1 0.075 0.001 0.03 0.02 1 -7.910549
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Table 6.6: Sensitivity Runs Selected for Additional Analysis.

Run # λ Ratio p Ratio α Ratio h Ratio

18 Low Medium High High
24 Low High Medium High
27 Low High High High
41 Medium Medium Medium Medium
44 Medium Medium High Medium
59 High Low Medium Medium
62 High Low High Medium

Table 6.7: Values Chosen for the Additional, Incremental Analysis.

Parameter Change

λ1 0.25
p1 0.05
α1 0.025
h1 0.01
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Table 6.8: Parameter Ratios for Greedy, Type 1 Policies with No Holding Costs.

Test # λ1 λ2 p1 p2 α1 α2 Ratio

1 4 5 0.6 0.95 0.002 0.001 1.010526
2 2 15 0.75 0.95 0.01 0.001 1.052632
3 2 7 0.75 0.95 0.005 0.001 1.12782
4 2 10 0.6 0.95 0.01 0.001 1.263158
5 5 5 0.6 0.95 0.002 0.001 1.263158
6 2.7 4 0.95 0.999 0.11 0.056 1.307558
7 3.1 4 0.8 0.999 0.12 0.056 1.329901
8 3 16 0.75 0.95 0.01 0.001 1.480263
9 2 10 0.75 0.95 0.01 0.001 1.578947
10 6 12 0.4 0.999 0.16 0.017 1.884237
11 2 8 0.75 0.95 0.01 0.001 1.973684
12 4.5 16 0.8 0.9 0.08 0.01 2.000
13 6.635 12.5 0.4 0.999 0.16 0.017 2.000306
14 2 6 0.8 0.999 0.15 0.02 2.002002
15 4 6 0.8 0.999 0.075 0.02 2.002002
16 4 6 0.8 0.999 0.15 0.04 2.002002
17 2 6 0.8 0.999 0.15 0.02 2.002002
18 5 10 0.8 0.999 0.15 0.03 2.002002
19 6 12 0.08 0.999 0.15 0.03 2.002002
20 12 12 0.4 0.999 0.15 0.03 2.002002
21 6 12 0.4 0.999 0.15 0.015 2.002002
22 6.61 12.4 0.4 0.999 0.16 0.017 2.00884
23 3.75 4 0.8 0.999 0.15 0.056 2.01094
24 4.3 15 0.8 0.9 0.08 0.01 2.038519
25 4.6 16 0.8 0.9 0.08 0.01 2.044444
26 6.8 12.5 0.4 0.999 0.16 0.017 2.05005
27 4.5 16 0.7 0.95 0.01 0.001 2.072368
28 6.4 12 0.4 0.999 0.16 0.017 2.009853
29 3 9 0.6 0.95 0.01 0.001 2.105263
30 7 12 0.4 0.999 0.163 0.017 2.198277
31 10 12.4 0.4 0.999 0.16 0.017 3.039092
32 4 8 0.75 0.95 0.01 0.001 3.947368
33 1 16 0.9 0.5 0.09 0.017 5.955882
34 10 12.4 0.4 0.999 0.05 0.017 9.497163
35 10 12.4 0.4 0.999 0.9 0.017 17.09489
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Table 6.9: Parameter Ratios for Greedy, Type 2 Policies with No Holding Costs.

Test # λ1 λ2 p1 p2 α1 α2 Ratio

1 2 5.999 0.25 0.99 0.591 0.999 0.049806
2 2 5.999 0.25 0.99 0.29 0.05 0.488297
3 4 12 0.75 0.95 0.002 0.001 0.5263166
4 2 7 0.75 0.95 0.0025 0.001 0.56391
5 2 10 0.75 0.95 0.01 0.0025 0.631579
6 2 10 0.75 0.95 0.004 0.001 0.631579
7 2 12 0.75 0.95 0.01 0.002 0.657895
8 2 7 0.75 0.95 0.004 0.001 0.9022556
9 3.2 4 0.8 0.999 0.11 0.75 0.939606
10 3 4 0.85 0.999 0.11 0.073 0.961578
11 4 6 0.25 0.99 0.29 0.05 0.976431
12 4.097 6 0.25 0.99 0.29 0.051 0.980499
13 2 16 0.75 0.95 0.01 0.001 0.986842
14 2 8 0.75 0.95 0.01 0.002 0.986842
15 1 8 0.75 0.95 0.01 0.001 0.986842
16 4.05 6 0.25 0.99 0.29 0.05 0.988636
17 4.06 6 0.25 0.99 0.29 0.05 0.991077
18 3.2 0.5 0.99 0.99 0.11 0.071 0.991549
19 3.2 4 0.8 0.999 0.11 0.071 0.992542
20 4.07 6 0.25 0.99 0.29 0.05 0.993519
21 3.1 4 0.85 0.999 0.11 0.073 0.993631
22 3.3 5 0.99 0.99 0.11 0.073 0.994521
23 2 5.999 0.25 0.99 0.591 0.05 0.995115
24 5 6 0.25 0.99 0.35 0.074 0.995313
25 4.08 6 0.25 0.99 0.29 0.05 0.99596
26 3.2 4 0.85 0.999 0.11 0.075 0.998332
27 4.09 6 0.25 0.99 0.29 0.05 0.998401
28 4.095 5.999 0.25 0.99 0.29 0.05 0.999788
29 4.0955 5.999 0.25 0.99 0.29 0.05 0.99991
30 4.0958 5.999 0.25 0.99 0.29 0.05 0.999983
31 4.096 6 0.25 0.99 0.29 0.05 0.999865
32 4.097 6 0.25 0.99 0.29 0.05 1.000109
33 4.097 5.999 0.25 0.99 0.29 0.05 1.000276
34 3 4 0.75 0.999 0.1 0.056 1.00547
35 3.1 4 0.85 0.999 0.11 0.71 1.02162
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Table 6.10: Parameter Ratios for Switching Policies with No Holding Costs.

Test # λ1 λ2 p1 p2 α1 α2 Ratio

1 2.5 4 0.9 0.999 0.1 0.056 1.00547
2 3.1 4 0.85 0.999 0.11 0.072 1.007431
3 3.3 4 0.8 0.999 0.11 0.07 1.38181
4 2.25 4 0.999 0.999 0.1 0.055 1.022727
5 3.1 4 0.85 0.999 0.11 0.07 1.036215
6 3.2 4 0.8 0.999 0.11 0.068 1.03633
7 2.5 4 0.999 0.999 0.1 0.06 1.041667
8 2.6 4 0.9 0.999 0.1 0.056 1.045689
9 3.2 4 0.9 0.999 0.11 0.066 1.067734
10 3.2 4 0.8 0.999 0.11 0.065 1.084161
11 3.2 4 0.8 0.999 011 0.065 1.084161
12 2.8 4 0.8 0.999 0.11 0.056 1.101101
13 2.5 4 0.9 0.999 0.11 0.0526 1.106017
14 2.5 4.1 0.999 0.999 0.1 0.055 1.108647
15 2.5 4 0.999 0.999 0.1 0.056 1.116071
16 2.5 4 0.999 0.999 0.1 0.055 1.136364
17 2.9 4 0.8 0.999 0.11 0.056 1.140426
18 2.6 4 0.9 0.999 0.11 0.056 1.150257
19 2.5 4 0.999 0.999 0.1 0.054 1.157407
20 3.1 4 0.85 0.89 0.11 0.07 1.163122
21 2.5 3.9 0.999 0.999 0.1 0.055 1.165501
22 3.2 4 0.8 0.999 0.11 0.06 1.174508
23 3 4 0.8 0.999 0.11 0.056 1.179751
24 2.7 4 0.9 0.999 0.11 0.056 1.194498
25 3.1 4.4 0.8 0.999 0.12 0.056 1.209001
26 3.2 4 0.8 0.999 0.11 0.058 1.215008
27 2.7 4 0.9 0.999 0.11 0.055 1.216216
28 3.1 4 0.8 0.999 0.11 0.056 1.219076
29 3.2 4 0.8 0.999 0.11 0.057 1.236324
30 2.5 4 0.999 0.999 0.1 0.05 1.25
31 2.5 4 0.999 0.999 0.11 0.055 1.25
32 3.2 4 0.8 0.999 0.11 0.056 1.258401
33 2.7 4 0.95 0.999 0.11 0.056 1.260859
34 2.7 4 0.95 0.999 0.11 0.0555 1.272218
34 2.7 4 0.95 0.999 0.11 0.055 1.283784

Table 6.11: Possible Policies for the Single Server Model based on Changes in X1.

Scenario Policy at (X1, X2) Policy at (X1 + 1, X2) Possible?

1 1 1 yes
2 2 2 yes
3 1 2 yes
4 2 1 no
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Table 6.12: Possible Policies for the Single Server Model based on Changes in X2.

Scenario Policy at (X1, X2) Policy at (X1, X2 + 1) Possible?

1 1 1 yes
2 2 2 yes
3 1 2 yes
4 2 1 no
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Chapter 7

Modeling Extensions

This chapter proposes and discusses extensions to the basic model discussed in Chapters 5 and

6. The two additional models include a two-server model and a model that accounts for patient

transitions between classes.

7.1 Two-server Model

There will likely be multiple teams available to evacuate patients during a unit-, floor-, or department-

level evacuations. In this section, a model for assigning two servers - or evacuation teams - is

examined with dynamic programming. Assume that that there are two evacuation teams available

to move patients, and that the two teams can be allocated to patient evacuations according to any

one of the following three policies: either both teams can evacuate Type 1 patients, the teams can

be split so that one team is dedicated to moving Type 1 and one team is dedicated to moving Type

2 patients, or both teams can evacuate Type 2 patients. This leads to the following decision at any

epoch:
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π =


(2λ1, 0) both teams evacuate Type 1 patients - Policy 1

(λ1, λ2) teams split between both patient types - Policy 2

(0, 2λ2) both teams evacuate Type 2 patients - Policy 3

, (7.1)

The state description as well as the n-stage expected reward remains the same as in the previously

discussed models. The uniformization rate, based on the maximum rate of transition, used for this

model is γ = 2λ1 + 2λ2 +N1α1 +N2α2. The transition diagram is similar to the one shown for the

single server model in Chapter 5 though the transition rates are different. The fictitious transition

rate in this case is (N1 − X1)α1 + (N2 − X2)α2 + 2λ2 when Policy 1 is chosen, (N1 − X1)α1 +

(N2−X2)α2 +λ1 +λ2 when Policy 2 is chosen, and (N1−X1)α1 + (N2−X2)α2 + 2λ1 when Policy

3 is chosen. The optimality equation used to determine how the two evacuation teams should be

allocated and therefore prioritize the patients for evacuation is shown in Equation (7.2) below.

ν(X1, X2) = X1α1

[
ν(X1 − 1, X2)− ld1

]
+X2α2

[
ν(X1, X2 − 1)− ld2

]
− h1X1 − h2X2

+max



2λ1p1 [ν(X1 − 1, X2) + le1] + 2λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+[(N1 −X1)α1 + (N2 −X2)α2 + 2λ2]ν(X1, X2)

λ1p1 [ν(X1 − 1, X2) + le1] + λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+λ2p2 [ν(X1, X2 − 1) + le2] + λ2(1− p2)

[
ν(X1, X2 − 1)− ld2

]
+[(N1 −X1)α1 + (N2 −X2)α2 + λ1 + λ2]ν(X1, X2)

2λ2p2 [ν(X1, X2 − 1) + le2] + 2λ2(1− p2)
[
ν(X1, X2 − 1)− ld2

]
+[(N1 −X1)α1 + (N2 −X2)α2 + 2λ1]ν(X1, X2)

(7.2)

As before, the first two terms of the optimality equation represent patient deaths while waiting for

evacuation, and the second two terms represent the costs of holding all remaining patients of both

types in the system. The final term represents the choice between the three allocation options, and

each includes a fictitious transition rate.
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7.1.1 Dynamic Programming Results for the Two-server Model

The two-server model was tested at each of the parameter settings used in the single server sensi-

tivity analysis. The resulting policies are presented in two tables below. These tables also include

the single server results as previously shown in Chapter 6 for comparison. As before, a “1” or “2”

in the Policy1 column represents a greedy Type 1 policy or a greedy Type 2 policy, respectively.

In column Policy2, a “1” indicates a greedy policy that chooses all Type 1 patients first, a “2”

represents that the evacuation teams should be split, and a “3” represents a greedy policy that

chooses to evacuate Type 2 patients first. The superscripts “1” and “2” represent the single server

model and two-server model, respectively.

The table does not completely represent the fact that policy 2 is never optimal. That is, it is never

optimal to split the evacuation teams between both patients. Therefore, a “Switch” in column

Policy2 represents an evacuation that begins by giving priority to Type 2 patients (both teams

evacuate Type 2 patients) and then switches so that both teams evacuate Type 1 patients. The

optimal policy is a switching policy for the following tests: #44, #53, #62, #68, #71, #77, and

#80. These policy diagrams are shown below in Figures 7.1 - 7.4.

Figure 7.1: Optimal policies for the two-server: DOE Runs #44 and #53.
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Table 7.1: Sensitivity Analysis Results for the Single Server Model, 1 of 2
Test # λ1 λ2 p1 p2 α1 α2 h1 h2 Policy1 ν(20, 20)1 Policy2 ν(20, 20)2

1 2 4 0.5 1 0.025 0.001 0.01 0.02 2 -1.8657 3 -0.3598
2 2 4 0.5 1 0.025 0.001 0.02 0.02 2 -12.6637 3 -11.817
3 2 4 0.5 1 0.025 0.001 0.03 0.02 2 -23.4617 3 -23.275

4 2 4 0.5 1 0.05 0.001 0.01 0.02 2 -4.2457 3 -1.8065
5 2 4 0.5 1 0.05 0.001 0.02 0.02 2 -14.0545 3 -12.594
6 2 4 0.5 1 0.05 0.001 0.03 0.02 2 -23.8634 3 -23.381

7 2 4 0.5 1 0.075 0.001 0.01 0.02 2 -6.1717 3 -3.0690
8 2 4 0.5 1 0.075 0.001 0.02 0.02 2 -15.2828 3 -13.3157
9 2 4 0.5 1 0.075 0.001 0.03 0.02 2 -24.3939 3 -23.5623

10 2 4 0.75 1 0.025 0.001 0.01 0.02 2 6.0641 3 8.4961
11 2 4 0.75 1 0.025 0.001 0.02 0.02 2 -4.7338 3 -2.9615
12 2 4 0.75 1 0.025 0.001 0.03 0.02 2 -15.5319 1 -14.4193

13 2 4 0.75 1 0.05 0.001 0.01 0.02 2 2.2610 3 -6.1221
14 2 4 0.75 1 0.05 0.001 0.02 0.02 2 -7.5477 3 -4.6654
15 2 4 0.75 1 0.05 0.001 0.03 0.02 2 -17.3566 3 -15.453

16 2 4 0.75 1 0.075 0.001 0.01 0.02 2 -0.7151 3 4.0888
17 2 4 0.75 1 0.075 0.001 0.02 0.02 2 -9.8262 3 -6.1577
18 2 4 0.75 1 0.075 0.001 0.03 0.02 Switch -18.9373 3 -16.4044

19 2 4 0.95 1 0.025 0.001 0.01 0.02 2 12.4080 3 15.5809
20 2 4 0.95 1 0.025 0.001 0.02 0.02 2 1.6099 3 4.1232
21 2 4 0.95 1 0.025 0.001 0.03 0.02 2 -9.1880 3 -7.3344

22 2 4 0.95 1 0.05 0.001 0.01 0.02 2 7.4665 3 12.4650
23 2 4 0.95 1 0.05 0.001 0.02 0.02 2 -2.3423 3 1.6774
24 2 4 0.95 1 0.05 0.001 0.03 0.02 Switch -12.1511 3 -9.1100

25 2 4 0.95 1 0.075 0.001 0.01 0.02 2 3.6500 3 9.8151
26 2 4 0.95 1 0.075 0.001 0.02 0.02 2 -5.4610 3 -0.4314
27 2 4 0.95 1 0.075 0.001 0.03 0.02 Switch -14.5653 3 -10.6781

28 3 4 0.5 1 0.025 0.001 0.01 0.02 2 -2.3768 3 -0.9119
29 3 4 0.5 1 0.025 0.001 0.02 0.02 2 -13.1863 3 -12.2154
30 3 4 0.5 1 0.025 0.001 0.03 0.02 1 -22.3120 1 -21.5288

31 3 4 0.5 1 0.05 0.001 0.01 0.02 2 -4.7704 3 -2.3231
32 3 4 0.5 1 0.05 0.001 0.02 0.02 2 -14.7945 3 -13.1258
33 3 4 0.5 1 0.05 0.001 0.03 0.02 Switch -23.4871 1 -22.1731

34 3 4 0.5 1 0.075 0.001 0.01 0.02 2 -6.7578 3 -3.5827
35 3 4 0.5 1 0.075 0.001 0.02 0.02 Switch -16.1913 3 -13.9628
36 3 4 0.5 1 0.075 0.001 0.03 0.02 Switch -24.4056 1 -22.8021

37 3 4 0.75 1 0.025 0.001 0.01 0.02 2 5.8263 3 8.1149
38 3 4 0.75 1 0.025 0.001 0.02 0.02 2 -4.9831 3 -3.1884
39 3 4 0.75 1 0.025 0.001 0.03 0.02 T 1 -13.0985 1 -11.9429

40 3 4 0.75 1 0.05 0.001 0.01 0.02 2 2.1047 3 5.8787
41 3 4 0.75 1 0.05 0.001 0.02 0.02 Switch -7.9192 3 -4.92387
42 3 4 0.75 1 0.05 0.001 0.03 0.02 1 -14.9770 1 -12.9597
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Table 7.2: Sensitivity Analysis Results for the Single Server Model, 2 of 2
Test # λ1 λ2 p1 p2 α1 α2 h1 h2 Policy1 ν(20, 20)1 Policy2 ν(20, 20)2

43 3 4 0.75 1 0.075 0.001 0.01 0.02 2 -0.9099 3 3.9092
44 3 4 0.75 1 0.075 0.001 0.02 0.02 Switch -10.2483 Switch -6.4708
45 3 4 0.75 1 0.075 0.001 0.03 0.02 1 -16.6989 1 -13.9262

46 3 4 0.95 1 0.025 0.001 0.01 0.02 2 12.3889 3 15.3364
47 3 4 0.95 1 0.025 0.001 0.02 0.02 2 1.5793 3 4.0330
48 3 4 0.95 1 0.025 0.001 0.03 0.02 1 -5.7278 1 -4.2742

49 3 4 0.95 1 0.05 0.001 0.01 0.02 2 7.6049 3 12.44033
50 3 4 0.95 1 0.05 0.001 0.02 0.02 Switch -2.3146 3 1.6376
51 3 4 0.95 1 0.05 0.001 0.03 0.02 1 -8.1224 1 -5.5889

52 3 4 0.95 1 0.075 0.001 0.01 0.02 2 3.7683 3 9.90274
53 3 4 0.95 1 0.075 0.001 0.02 0.02 Switch -5.0198 Switch -0.4768
54 3 4 0.95 1 0.075 0.001 0.03 0.02 1 -10.2776 1 -6.8254

55 3.5 4 0.5 1 0.025 0.001 0.01 0.02 2 -2.9232 3 -1.488
56 3.5 4 0.5 1 0.025 0.001 0.02 0.02 2 -13.9211 3 -12.9441
57 3.5 4 0.5 1 0.025 0.001 0.03 0.02 1 -20.1869 1 -19.3687

58 3.5 4 0.5 1 0.05 0.001 0.01 0.02 2 -5.2947 3 -2.8718
59 3.5 4 0.5 1 0.05 0.001 0.02 0.02 Switch -15.5408 3 9.8151
60 3.5 4 0.5 1 0.05 0.001 0.03 0.02 1 -21.5053 1 -20.0616

61 3.5 4 0.5 1 0.075 0.001 0.01 0.02 2 -7.2822 3 -4.1161
62 3.5 4 0.5 1 0.075 0.001 0.02 0.02 Switch -16.8485 Switch -14.7115
63 3.5 4 0.5 1 0.075 0.001 0.03 0.02 1 -22.7566 1 -20.7342

64 3.5 4 0.75 1 0.025 0.001 0.01 0.02 2 5.3626 3 7.5892
65 3.5 4 0.75 1 0.025 0.001 0.02 0.02 Switch -5.630 3 -3.8668
66 3.5 4 0.75 1 0.025 0.001 0.03 0.02 1 -10.8709 1 -9.7263

67 3.5 4 0.75 1 0.05 0.001 0.01 0.02 2 1.6958 3 5.4127
68 3.5 4 0.75 1 0.05 0.001 0.02 0.02 Switch -8.0550 Switch -5.5675
69 3.5 4 0.75 1 0.05 0.001 0.03 0.02 1 -12.7647 1 -10.7455

70 3.5 4 0.75 1 0.075 0.001 0.01 0.02 2 -1.309 3 3.4786
71 3.5 4 0.75 1 0.075 0.001 0.02 0.02 Switch -9.9471 -6.8777
72 3.5 4 0.75 1 0.075 0.001 0.03 0.02 1 -14.5088 1 -11.7175

73 3.5 4 0.95 1 0.025 0.001 0.01 0.02 2 11.9912 3 14.8511
74 3.5 4 0.95 1 0.025 0.001 0.02 0.02 Switch 1.2222 3 3.3950
75 3.5 4 0.95 1 0.025 0.001 0.03 0.02 1 -3.4181 1 -2.0124

76 3.5 4 0.95 1 0.05 0.001 0.01 0.02 2 7.2883 3 12.0404
77 3.5 4 0.95 1 0.05 0.001 0.02 0.02 Switch -1.46730 Switch 1.3145
78 3.5 4 0.95 1 0.05 0.001 0.03 0.02 1 -5.7721 1 -3.2927

79 3.5 4 0.95 1 0.075 0.001 0.01 0.02 Switch 3.4702 3 9.5545
80 3.5 4 0.95 1 0.075 0.001 0.02 0.02 1 -3.6960 Switch -0.1199
81 3.5 4 0.95 1 0.075 0.001 0.03 0.02 1 -7.9105 1 -4.5042
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Figure 7.2: Optimal policies for the two-server: DOE Runs #62 and #68.

Figure 7.3: Optimal policies for the two-server: DOE Runs #71 and #77.
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Figure 7.4: Optimal policies for the two-server: DOE Run #80.

It can be shown mathematically that the optimal policy for the two-server model is to allocate the

two evacuation teams to the same patient group such that two patient evacuations from the same

class occur simultaneously.

7.1.2 Optimal Server Allocation

As shown in the previous section, the optimal policy for the two-server model is either Policy 1

or Policy 3 (evacuation teams should both be allocated to evacuate Type 1 patients or Type 2

patients, respectively). It is never optimal to split the evacuation teams between the two patient

groups (Policy 2). Though the structural properties of the optimality equations are difficult to

prove, it is relatively easy to show that the evacuation teams should be allocated to the same

patient group.

Theorem 1. The optimal policy for Equation (7.2) is either to assign both evacuation teams to

Type 1 patients or to assign both evacuation teams to Type 2 patients; therefore, it is never optimal

to split the two evacuation teams between the two patient groups so that one team evacuates Type

1 patients and one team evacuates Type 2 patients.
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Proof. From the two-server optimality equation (Equation [7.2]), we see that the choice is between

three options, and ν(X1, X2) is optimized by determining the maximum of applying Policies 1, 2,

and 3. With a bit of algebra, this implies a comparison of

max


2λ1v(X1 − 1, X2) + 2λ2v(X1, X2)

λ1v(X1 − 1, X2) + λ2v(X1, X2 − 1) + (λ1 + λ2)v(X1, X2)

2λ2v(X1, X2 − 1) + 2λ1v(X1, X2)

(7.3)

First, suppose that applying Policy 1 results in a higher value than applying Policy 3. This implies

that

2λ1v(X1 − 1, X2) + 2λ2v(X1, X2) > 2λ2v(X1, X2 − 1) + 2λ1v(X1, X2) (7.4)

from Equation (7.3). Dividing both sides of Equation (7.4) by 2, results in the following:

λ1v(X1 − 1, X2) + λ2v(X1, X2) > λ2v(X1, X2 − 1) + λ1v(X1, X2), (7.5)

and by adding λ2ν(X1, X2) to both sides, the following is obtained:

λ1v(X1 − 1, X2) + 2λ2v(X1, X2) > λ2v(X1, X2 − 1) + (λ1 + λ2)v(X1, X2). (7.6)

Next, by adding λ2ν(X1 − 1, X2) to both sides of Equation (7.6), a final inequality is obtained:

2λ1v(X1−1, X2) + 2λ2v(X1, X2) > λ1v(X1−1, X2) +λ2v(X1, X2−1) + (λ1 +λ2)v(X1, X2). (7.7)

Note that the left hand side of Equation (7.7) still represents the value of applying Policy 1, but

now the right hand side of Equation (7.7) is equal to the value of applying Policy 2. Therefore, to

assume that Policy 1 results in a greater value than Policy 3 is also to assume that Policy 1 results

in a greater value than Policy 2.
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Now suppose that Policy 3 results in a higher value than applying Policy 1. Similar logic shows

that if Policy 3 results in a greater value than Policy 1, the value from applying Policy 3 must also

be greater than the value from applying Policy 2. First, suppose that applying Policy 3 results in

a higher value than applying Policy 1. This implies that

2λ2v(X1, X2 − 1) + 2λ1v(X1, X2) > 2λ1v(X1 − 1, X2) + 2λ2v(X1, X2) (7.8)

from Equation (7.3). Dividing both sides of Equation (7.8) by 2, the following is obtained

λ2v(X1, X2 − 1) + λ1v(X1, X2) > λ1v(X1 − 1, X2) + λ2v(X1, X2), (7.9)

and by adding λ1ν(X1, X2) to both sides, the following is obtained:

λ2v(X1, X2 − 1) + 2λ1v(X1, X2) > λ1v(X1 − 1, X2) + (λ1 + λ2)v(X1, X2), (7.10)

Next, by adding λ2ν(X1, X2 − 1) to both sides of the equation, a final inequality is obtained:

2λ2v(X1, X2−1)+2λ1v(X1, X2) > λ1v(X1−1, X2)+λ2v(X1, X2−1)+(λ1 +λ2)v(X1, X2) (7.11)

Note that the left hand side of Equation (7.11) still represents the value of applying Policy 3, but

now the right hand side of Equation (7.11) is equal to the value of applying Policy 2. Therefore, to

assume that Policy 3 results in a greater value than Policy 1 is also to assume that Policy 3 results

in a greater value than Policy 2.

Therefore, the optimal policy decision in the two-server model is either to allocate both teams to

evacuate Type 1 patients or to allocate both teams to evacuate Type 2 patients.
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7.2 Patient Transitions between Classes

As mentioned in Chapter 5, there is a chance that the patients’ classification could change dur-

ing the course of the evacuation. For example, a patient’s health status could diminish from a

non-critical care patient or a patient could be relocated so that their physical position relative to

location of the emergency within the facility changes their rates for evacuation and chances for

survival while waiting to be evacuated. In addition, the standard of care could change so that some

critical care patients are treated like non-critical care patients.

In this section, the model formulations are only set up (there is no discussion or testing) and include

the βi parameter to represent the rate at which type i patients become a type j patient. Such a

transition would decrease the number of type i patients (Xi − 1) and increase the number of type

j patients (Xj + 1).

7.2.1 Single Server Beta Model

Equation (7.12) presents the optimality equation for the single server beta model.

ν(X1, X2) = X1α1

[
ν(X1 − 1, X2)− ld1

]
+X2α2

[
ν(X1, X2 − 1)− ld2

]
+X1β1 [ν(X1 − 1, X2 + 1)] +X2β2 [ν(X1 + 1, X2 − 1)]− h1X1 − h2X2

+ max



λ1p1 [ν(X1 − 1, X2) + le1] + λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+[(N1 −X1)α1 + (N2 −X2)α2 + (N1 −X1)β1 + (N2 −X2)β2 + λ2]ν(X1, X2)

λ2p2 [ν(X1, X2 − 1) + le2] + λ2(1− p2)
[
ν(X1, X2 − 1)− ld2

]
+[(N1 −X1)α1 + (N2 −X2)α2 + (N1 −X1)β1 + (N2 −X2)β2 + λ1]ν(X1, X2)

(7.12)

First, the model was tested with β1 = β2 = 0 to ensure the optimal policies were consistent with

the results presented in Chapter 5.
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7.2.2 Two-server Transitions Model

Though no formal tests have been completed, Equation (7.13) presents the optimality equation for

the the two-server beta model.

ν(X1, X2) = X1α1

[
ν(X1 − 1, X2)− ld1

]
+X2α2

[
ν(X1, X2 − 1)− ld2

]
+X1β1[ν(X1 − 1, X2 + 1) +X2β2[ν(X1 + 1, X2 − 1)− h1X1 − h2X2

+ max



2λ1p1 [ν(X1 − 1, X2) + le1] + 2λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+[(N1 −X1)α1 + (N2 −X2)α2 + (N1 −X1)β1 + (N2 −X2)β2 + λ2]ν(X1, X2)

λ1p1 [ν(X1 − 1, X2) + le1] + λ1(1− p1)
[
ν(X1 − 1, X2)− ld1

]
+λ2p2 [ν(X1, X2 − 1) + le2] + λ2(1− p2)

[
ν(X1, X2 − 1)− ld2

]
+[(N1 −X1)α1 + (N2 −X2)α2 + (N1 −X1)β1 + (N2 −X2)β2 + λ1]ν(X1, X2)

2λ2p2 [ν(X1, X2 − 1) + le2] + 2λ2(1− p2)
[
ν(X1, X2 − 1)− ld2

]
+[(N1 −X1)α1 + (N2 −X2)α2 + λ1]ν(X1, X2)

(7.13)
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Chapter 8

Findings, Implications, and

Conclusions

Over the course of developing this research, it has become obvious to me that the most difficult piece

of this problem to discuss, write, or model is the ability of clinicians and healthcare administrators

to actually make patient prioritization decisions - whether it be because the resources to make the

decisions or carry out the decisions are unavailable, or because clinicians themselves have ethical

concerns or even liability concerns. Therefore, it seems that there is a need and significance for this

research. In June 2010, the South Carolina Hospital Association held a meeting: the “Summit on

Lessons Learned from the H1N1 Outbreak and Making Medical Decisions During Incidents with

Scarce Resources.” The purpose of the meeting was to discuss the state’s response to the recent

H1N1 outbreak from the hospitals’ perspectives. The first presentation, given by Joseph Barbera,

MD and Associate Professor of Engineering Management from George Washington University, dis-

cussed “Critical Care Delivery in the Scarce Resource Situation” [12]. In this presentation, the

standard of care during emergency situations was discussed, and it was obvious that there are

a variety of liability concerns and ethical conflicts associated with making such decisions. There

were no fixed conclusions for how scarce resources should be allocated — “in emergency type x do

y,”— but there was consensus that data-driven, ethical models are needed well in advance of an

emergency situation in which they could be put to use. In addition, clinicians want consensus on
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what decisions should and can be made — from all levels of their management all the way up to the

accrediting and licensing agencies — for protection of their own decisions during actual emergency

events.

The purpose of this research is therefore to provide insights into the problem of patient prioritiza-

tion during complete evacuations from healthcare facilities. To date, this problem has been rarely

discussed - likely due to the fact that most facilities have system redundancies in place (to protect

their patients, equipment, supplies, pharmacy, etc. so that an emergency does not create the need

for an evacuation) as well as the highly ethical nature of the prioritization discussion. In the few

cases where patient prioritization strategies are suggested or explained, there is a lack of consensus

about (1) which patients should be selected first and (2) which patients were selected first during

actual emergency evacuations.

Every prioritization policy discussed in the literature, however, is an all-or-nothing, greedy policy.

That is, the policies in the literature choose either critical care or non-critical care patients for

evacuation. It has been shown, however, that a greedy policy is not always optimal. In his pre-

sentation, Dr. Barbera challenged the audience multiple times to avoid “all-or-nothing” decisions

when making scarce resource allocation decisions. Instead of decisions that just benefit one person

(or group), creative solutions that give more opportunities to the patients are necessary. Though

speaking specifically about ventilator allocation during a pandemic influenza outbreak, the point

translates to this research.

During an actual emergency evacuation event, transportation decisions would likely depend on

more than the number and classification of the patients in the system. The availability of trans-

portation resources and beds at receiving facilities are likely a large determinant of how patients

are chosen for evacuation. For example, if an ambulance capable of transporting an ICU patient is

available, and an ICU bed is open at a neighboring facility, it is highly unlikely that this ambulance

would transport a non-critical care patient. Particularly during a regional disaster, it is likely that
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evacuation prioritization decisions will be very highly dependent on the transportation resources

that can even be made available to the patients since multiple facilities often have contracts with

the same transportation services and will therefore be competing for their use. Reducing the prior-

itization problem to a decision based on the number of the patients in the system — as presented

in Chapters 5 - 7 — is an unlikely representation of the system in practice, but it is the first step

in understanding the problem. During an evacuation, clinicians and hospital administrators would

be required to make a variety of decisions under uncertainty, continually changing conditions, and

incomplete information. Having understood and practiced the insights from this research may en-

able decision makers to be more comfortable with the patient prioritization problem.

8.1 Modeling Conclusions and Insights for Practitioners

The following section summarizes the insights from the literature review as well as the models that

were presented and tested in Chapters 5 - 7.

There is a lack of consensus about which patient type should be given priority during a complete

healthcare facility evacuation. Some papers suggest that critical care patients should be trans-

ported away from the facility first, and others recommend that non-critical care patients be given

evacuation priority. The dynamic programming models indicate that such greedy policies are not

always optimal for patient selection decisions.

Clinicians generally make ethical decisions based on values and virtues. Their jobs are to care

for patients, and therefore prioritization decisions may be difficult for nurses and doctors. Public

policy decisions, however, are based on the utilitarian principle of doing the most good for the most

amount. In this framework, ethical decisions are resolved by considering how the overall utility

can be maximized, and at times, the resolutions to which virtues and values lead may be in direct

conflict.

136



The optimal policies for the evacuation dynamic programming model can be characterized as one

of three different policy types: either a greedy, Type 1 policy; a switching policy; or a greedy, Type

2 policy. In fact, the switching curve is embedded even within the greedy policies, but it has either

located so far down and to the left or up and to the right so that only one policy is shown for

all decision points (except when there are 0 patients remaining of a certain patient type; then the

only other choice is to evacuate the other patient type). In the context of critical and non-critical

care patients, a downward shift in the location of the switching curve results in a greedy policy in

favor of the non-critical care patients. A shift upwards results in a greedy policy in favor of the

critical care patients. This implies that a switching policy should begin with the evacuation team

— or teams — selecting non-critical care patients first for evacuation. At some point, depending on

the patient classification rates, a switch should be made so that all remaining critical care patients

are selected for evacuation. Once all critical care patients have been removed from the system, all

remaining non-critical care patients should be transported away from the facility. When holding

costs are not considered, it has been shown that using the dynamic programming policies saves

more lives than using a greedy policy similar to those suggested in the literature.

When holding costs are not included as a variable for determining which patients should be chosen,

and in the event that a patient group can be evacuated more quickly and also die more quickly

while waiting to be evacuated, it is obvious that this patient group should be given priority. Such

a scenario could occur based on the patients’ relative location to the hazard. It is more likely,

however, that patients will be categorized as critical or non-critical care patients. This assumes

that non-critical care patients can be evacuated more quickly, that non-critical care patients have a

higher probability of a successful evacuation, and that critical care patients die while waiting to be

evacuated more quickly than non-critical care patients. When holding costs are not considered, a

greedy policy can very likely be predicted by considering the ratio of the input parameters. When

the ratio λ1p1α1/λ2p2α2 < 1, a greedy, Type 2 policy is most likely optimal. If λ1p1α1/λ2p2α2 > 1

and λ1p1α1/λ2p2α2 < 1.3, a switching policy is much more likely to occur, and the model should

be run to determine the exact patient prioritization scheme. If λ1p1α1/λ2p2α2 > 1.3, it is likely
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that a greedy, Type 1 policy is optimal.

When discussing our models, I have heard it said that cost should not be considered when making

evacuation decisions. Whether the actual monetary costs should be included may be debatable,

but it is certain that there are costs associated with choosing one patient group over another. For

example, choosing to evacuate non-critical care patients leaves critical care patients in the facility,

and these patients require more resources. When holding costs are included, it is more difficult to

predict whether a greedy or a switching policy is optimal. When examining the output of more

than 100 tests, however, a number of common properties were identified for the single server model

(both with and without holding costs) as well as the two-server model. It was shown that the

value function is concave in both X1 and X2 and that supermodularity and diagonal dominance

relationships exist (both with and without holding costs).

In terms of critical and non-critical care patients, the concavity relationships imply that the change

in the average reward per patient associated with selecting a critical or non-critical care patient

increases as the number of critical or non-critical care patients in the system, respectively, de-

creases. The supermodularity relationship implies that the change in the average value resulting

from evacuating non-critical care patients increases as the number of critical care patients in the

system decreases. Similarly, the change in the value associated with evacuating critical care patients

becomes greater as the number of non-critical care patients in the system decreases. Therefore, as

the number of patients in the system decreases, the decisions between the two patient groups have

more of an impact than those decisions made at the beginning of the evacuation.

The models are most sensitive to holding costs, and the holding costs have a more significant impact

on the location of the switching curve when the ratio of λ1/λ2 is increased. Incremental increases to

the rates of evacuation, probability of a successful evacuation, and holding costs move the switching

curve in favor of that particular patient type. For example, in the sensitivity analysis from Chapter

7, these parameters were increased for Type 1 patients, and as a result, the switching curve moved
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up in turn creating a larger region of Type 1 priorities. If these parameters had been increased

for the Type 2 patients, the switching curve would have moved downward and therefore created a

larger region of Type 2 priorities. Eventually, incremental increases to these parameters result in

greedy policies. This is not true, however, of the α values. At certain values, incremental changes

to α “work in favor” of that patient type. Eventually, the switching curve will start to move in the

other direction and therefore decrease the region of priority for that patient type. For example,

when α1 was increased in the sensitivity analysis, the switching curve starting moving upwards and

created a larger region of Type 1 priorities. However, at a certain point — the exact values have

not yet been determined — the switching curve started moving back down and therefore decreasing

the Type 1 region. If the death rate of one patient group is very large, at some point, it is not

optimal to use resources to attempt to evacuate these patients but instead save the patients who

will contribute to the overall reward.

When there are two evacuation teams available to move patients, the optimal policy is either to

assign both teams to transport Type 1 patients or to assign both teams to evacuate Type 2 pa-

tients; it is never optimal to split the evacuation teams between the two patient groups. However,

a switching policy may still be the optimal choice, and in the case of critical and non-critical care

patients, a switching policy should begin with non-critical care patient evacuations followed by a

switch to critical care patient evacuations.

8.2 Need for Future Research

There are certainly opportunities for a variety of modeling extensions. The current model looks

only at the prioritization decision; a more realistic model would consider the availability of trans-

portation resources as well as the availability of beds at receiving facilities.

It may be beneficial to extend the number of patient classifications. For example, there are neonatal

intensive care unit (NICU) babies that are likely to have different requirements and characteristics
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than those of adult ICU patients. Along those same lines, the rewards for the patient classifica-

tions could be expanded further solely than counting the number of saved lives. For example, the

number of life years after the evacuation, quality-adjusted life years, or some other measure would

allow for further prioritization within the groups. In addition, the effects of incorrectly classifying a

patient as a critical or non-critical care patient — or incorrectly assigning the input parameters —

need consideration. Regardless of how the models are altered, a better understanding of the actual

values for the input parameters would improve the modeling efforts. While the rates of evacuation

chosen in the previous chapters were based on observations at mock evacuations, there are no data

available for estimating the holding costs. Knowing the input values would allow a better analysis

of the location and movement of the switching curve.

A major assumption of these models is that the input parameters are stationary. In reality, the

rates at which patients can be evacuated, the rates at which patients die while waiting to be evacu-

ated, and the probability of a successful evacuation are likely to change over time as the evacuation

window decreases.

Maybe most importantly, there needs to be continued discussion among healthcare workers about

the ethical dilemmas associated with making evacuation decisions as well as other scarce resource

allocation decisions. Even if the insights from this research were presented to a hospital staff,

clinicians are not likely to be comfortable making these decisions because of the ethical dilemmas

and potential legal consequences. Without support from all levels and management, as well as

accrediting and licensing agencies, data-driven optimization models and research will not be as

beneficial as possible.

8.3 Concluding Remarks

These models may not yet be ready for implementation, but they are certainly ready for discussion.

It has been shown that the optimal policy resulting from the dynamic programs may be different
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from those described in the literature. Switching policies may be considered a more ethical ap-

proach than greedy policies to a virtues-based thinker, and when optimal, they are also the best

policies from a utilitarian perspective. Making data-driven evacuation decisions is improvement,

and continued discussion, data collection, and modeling efforts can help clinicians improve evacu-

ations. The hope is that the insights from this research have laid a foundation and will encourage

discussions for improving existing emergency plans.
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Appendix A Hospital Evacuation Survey

Information Concerning Participation in a Research Study

Evacuation Survey for Healthcare Facilities

Dr. Kevin Taaffe and Ashley Kay Childers, Clemson University

Dr. Eva Njoku and Dr. Innocent Nkwocha, South Carolina State University

You are invited to participate in a research study conducted by Dr. Kevin Taaffe and Ashley Kay Childers

of Clemson University and Drs. Eva Njoku and Innocent Nkwocha of South Carolina State University. The

purpose of this research is to examine the decisions that are made for prioritizing patients for evacuation

during emergencies.

Your participation will involve completing the survey included and submitting your facility’s evacuation

plans. The survey should take only a few minutes for a person who is familiar with your facility’s evacuation

plan.

Potential benefits

Reviewing your evacuation plans will help us to understand the structure of evacuation plans and help us

identify any current policies for determining the order to transport patients when there is a limited window

for evacuation.

For your participation, we will provide your facility with any of the results of our research. In the short-term,

we will only be evaluating evacuation plans. In the long-term, we hope to develop guidelines to aid healthcare

officials in evacuation decision making.

Voluntary participation

Your participation in this research study is voluntary. You may choose not to participate and you may

withdraw your consent to participate at any time. You will not be penalized in any way should you decide

not to participate or to withdraw from this study.

Contact information

If you have any questions or concerns about this study or if any problems arise, please contact Ashley Kay

Childers (akchild@clemson.edu).
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Appendix B Mock Evacuation Experiences

In the Spring and Fall semesters of 2008, an undergraduate Creative Inquiry team gathered data

at two mock evacuations. The data collected is included below in Tables 1 and 2. Patient types are

listed as “Non” to represent inpatients from floors, and “Critical” represents those patients that

were transferred from an ICU bed.

Table 1: Mock Evacuation Data Collection - Facility 1.

Type Start Prep [min] Move [min] Stage [min] Load [min] Depart

Non 8:04 7.17 2.83 0 0.75 8:15
Non 8:10 12.0 2.0 0 0.5 8:25
Non 8:22 28.6 4 0 1.43 8:56
Non 8:35 14.48 5.98 0.1 0.4 8:56
Non 9:11 9.95 3.48 0.17 0.67 9:28
Non 9:29 12.1 3.21 0 0.87 9:45
Non 9:40 5.87 3.93 0 0.8 9:49
Non 9:55 3.32 4.93 0 0.88 10:04
Non 10:08 4 3.33 2 2.5 10:20
Non 10:17 9.78 2.88 1.45 0.57 10:29
Non 9:22 9.3 4 0 0.38 10:36
Non 10:15 23 3.38 0 1.17 10:45
Non 10:42 5.4 3.12 0 1.43 10:53
Non 10:49 3.3.5 5.97 0 0.73 11:01
Non 11:06 10.07 5.55 1.7 0.5 11:24
Non 11:20 4.2 6.08 0.72 1.08 11:33
Non 11:32 14.1 2.45 0 0 11:50
Non 11:44 7.72 3.68 0.52 1.33 11:57
Non 11:52 3 2.72 3.07 0.53 12:02
Non 12:24 4.95 3 1.65 0.95 12:34
Non 12:27 9 5.12 0 1.0 12:43
Non 12:47 8 4.28 0 1.42 1:01
Non 1:02 13.85 5.22 0.33 1.33 1:23

Critical 8:10 27 4.83 0 0.5 8:43
Critical 8:03 35 5.75 0 1.5 8:45
Critical 8:35 19 3.6 15.83 3.25 9:16
Critical 8:57 24 7.67 0 0 9.31
Critical 9:25 25.72 3.97 0 1.85 9:57
Critical 10:32 16.5 3.23 0 0.57 10:54
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Table 2: Mock Evacuation Data Collection - Facility 2.

Type Start Prep [min] Move [min] Stage [min] Load [min] Depart

Non unknown 3.97 1.72 1.05 0.72 unknown
Non unknown 5.75 2.23 0.77 1.23 unknown
Non 10:18 5.0 2.0 2.0 1.0 10:31
Non 10:28 5.55 2.5 0.78 2.9 10:40
Non 10:42 2.0 2.98 0.33 0.63 10:51
Non 11:02 4.0 2.0 2.0 1.0 11:15
Non 11:12 14.82 1.63 0.67 1.35 11:31
Non 11:21 7.0 3.0 1.0 1.0 11:37
Non 11:54 6.17 4.2 0.68 1.75 12:07
Non 12:15 10.0 2.45 0.7 0.8 12:38
Non 12:16 3.32 2.12 0.48 1.12 12:25
Non 12:17 7.0 2.0 1.0 1.0 12:28
Non 12:37 5.0 3.0 2.0 1.0 12:48
Non 12:44 4.08 3.83 0.75 1.7 12:55
Non 1:03 3.55 2.38 1.38 0.97 1:13

Critical 9:12 8.0 8.0 1.0 1.0 9:30
Critical 9:28 7.5 2.03 2.08 1.52 9:44
Critical 9:33 9.33 3.53 2.5 2.0 10:03
Critical 9:36 1.0 7.0 1.0 1.0 9:56
Critical 10:05 14.15 1.85 0.5 0.47 10:21
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Appendix C Dynamic Programming Models

The code for solving the dynamic program was written in Microsoft Visual Studio. A description

of the code follows:

• Declare the number of critical and non-critical care patients to be evacuated.

• Declare global variables and functions.

– For example, the variables “VOLD[N1+1][N2+1]” and “VNEW[N1+1][N2+1]” track the

value of the function at the previous and current iterations.

• The rates are scaled to convert the continuous-time problem to an equivalent discrete-time

problem.

• The main program consists of the following functions, and they are called in the following

order:

– Read-data - Reads values from the text file “DataIn.txt” in the following order:

∗ λ1 - the rate Type 1 patients are evacuated

∗ λ2 - the rate Type 2 patients are evacuated

∗ p1 - the probability of a successful evacuation of a Type 1 patient

∗ p2 - the probability of a successful evacuation of a Type 2 patient

∗ α1 - the death rate while waiting of a Type 1 patient

∗ α2 - the death rate while waiting of a Type 2 patient

∗ r1 - the reward or penalty for an evacuee or death of a Type 1 patient

∗ r2 - the reward or penalty for an evacuee or death of a Type 2 patient

– Initialize - the value function is set to 0

– Formulation - evaluates the value function for all policy options

– Iteration - determines if an iteration should be included for (X1, X2)

– Exchange - if an iteration is carried out, the value function is updated
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– Find Policy - determines which policy maximizes the value function

– Store - writes data to output files

• The program returns the following output files:

– “DataOut.txt” - returns the value at each combination of X1 and X2

– “DataPolicy.txt” - returns the optimal policy at each combination of X1 and X2

– “FinalPolicy1.txt” - returns the value of choosing Policy 1 at each combination of X1

and X2

– “FinalPolicy2.txt” - returns the value of choosing Policy 2 at each combination of X1

and X2
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Appendix D Simulation

This section describes the simulation used to test the optimal policies or examine “switch times.”

Figure 1: Simulation screen shot: Patient creation and classification.

Figure 2: Simulation screen shot: Hold then evacuate.

Figures 1 and 2 represent the main portion of the simulation logic for patient evacuations. At

the beginning of the simulation, patients are split into their categories and then held according

to appropriate policy. For example, the following conditions were used to hold patients for Test

2 described in Chapter 5. Figure 2 shows the remainder of the evacuation portion of the simulation.

For example, Figure 3 shows the logic used to hold Type 1 patients while Type 2 patients are given

priority for evacuation.

Figures 4 and 5 show the “background” portion of the simulation. There are two control entities

that search the Type 1 and Type 2 holding queues to remove patients; this represents αi, or the
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Figure 3: Simulation logic: Hold Type 1 patients and evacuate Type 2.

death rate while waiting for an evacuation for a type i patient. There is a third control entity that

determines the percentage of incomplete evacuations; that is, the proportion of runs in which the

facility was not completely cleared of all of its patients.

Figure 4: Simulation screen shot: Remove patients from evacuation queues.

The simulation output includes

• The number of successful Type 1 evacuations.

• The number of successful Type 2 evacuations.

• The number of Type 1 patients that died during evacuation.
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Figure 5: Simulation screen shot: Control entity to determine incomplete evacuations.

• The number of Type 2 patients that died during evacuation.

• The number of Type 1 patients that died while waiting to be evacuated.

• The number of Type 2 patients that died while waiting to be evacuated.

• The average time to completely clear the patients from the system.

• The percentage of incomplete evacuations.

In addition to running simulations of the optimal policies from the dynamic program, the simulation

was also used to determine the optimal switch time. In these cases, the decisions are based on the

time rather than the state of the system. There are two different models to examine the switch

time: one that begins by evacuating Type 1 patients and another that begins by evacuating Type

2 patients. A variable to represent the “switch time” is included. In these models, the holding

conditions are based on whether the switch time has passed and whether there are still patients in

the other queue.
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Appendix E Electronic Attachments

E.1 Sensitivity Analysis Files

The electronic attachments include the results of the design of experiments tests. Because the DOE

was created as a list of randomized trials, the order in which the tests were run does not correspond

to how the tests are presented in Tables 6.4 and 6.5. The following table maps the order of the

runs in the Excel file to the order in which they are displayed in this document.
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Table 3: List of Randomized Sensitivity Analysis Trials for the Single Server Model, 1 of 2

In Document In File
1 14
2 51
3 52
4 65
5 1
6 23
7 63
8 3
9 16
10 50
11 5
12 18
13 44
14 34
15 71
16 54
17 9
18 42
19 61
20 49
21 64
22 33
23 27
24 59
25 19
26 78
27 55
28 48
29 77
30 13
31 12
32 15
33 30
34 56
35 25
36 8
37 69
38 62
39 68
40 60
41 39
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Table 4: List of Randomized Sensitivity Analysis Trials for the Single Server Model, 2 of 2

In Document In File
42 21
43 36
44 53
45 46
46 80
47 37
48 40
49 41
50 76
51 70
52 43
53 24
54 22
55 28
56 26
57 38
58 29
59 20
60 7
61 11
62 72
63 6
64 35
65 75
66 81
67 73
68 74
69 58
70 17
71 79
72 32
73 66
74 45
75 31
76 47
77 57
78 4
79 10
80 2
81 67
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