




Figure 9.5: Virtual Machine Bridged Networking: The physical hardware NIC was operated in
promiscuous mode, allowing the virtual machines layer 2 connectivity to the physical network.

were running on the hosted VOC. This decrease could be attributed to inter-node MPI communi-

cations, which would have consumed a portion of the network resources. The decrease in measured

bandwidth between VMs was more significant, dropping from 708 Mbps to 636 Mbps for communi-

cations between VMs hosted by different physical nodes. Communications between two VMs sharing

the same bridge were found to have substantially lower available bandwidth, with only 499 Mbps

(roughly half the nominal bandwidth of Gigabit Ethernet) available when not under load. During

the HPL tests, this intra-bridge bandwidth fell to an available level of 206 Mbps. Bandwidth as mea-

sured under load by the Random-Ring benchmarking was substantially lower in all cases: 544 Mbps

for the physical hosts, and 24 Mbps to 32 Mbps for the VMs. Lower bandwidth was observed when

the MPI rings included intra-bridge links (SB column of the table) than when only inter-bridge links

(links between VMs hosted by different physical systems) were included in the MPI rings. Unlike the

Iperf tests, the Random-Ring test data for bandwidth across intra-bridge links is also averaged with

the available bandwidth between bridges; without this averaging, it is likely that the intra-bridge

links would have shown lower available bandwidth, based upon the Iperf tests.

Latency between nodes was found to be higher between virtual hosts than between the

underlying physical hosts. Measuring the Round-Trip Time (RTT) of the ping (ICMP echo) oper-

ation yielded an average of 106 µs without load, increasing to 191 µs under load. Ping operations

across a single bridge (intra-bridge) required longer times to execute: 215 µs in the absence of load,

increasing to 360 µs under load. RTTs for ping operations between VMs on different hosts were

the longest, beginning at 312 µs and increasing to 484 µs under load, suggesting that inter-bridge
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Table 9.7: Bandwidth and latency (ping RTT) as measured on the physical and virtual clusters.
Condition No-Load Under Load
Parameter P SB BTB P SB BTB
Iperf (Mbps) 941 499 708 882 206 636
RRB (Mbps) N/A 544 24 32
Ping RTT (µs) 106 215 312 191 360 484
RRL (µs) N/A 54 379 233

Key: P – Physical, SB – Virtual links across the Same Bridge, BTB – Virtual links from one bridge
(physical host) to another, RRB – RandomRing Bandwidth, RRL – RandomRing Latency

communications incurred the greatest latency. However, the Random-Ring benchmarks indicated

greater latency between VMs sharing a single bridge, with bridge-to-bridge latencies 146 µs lower

at 233 µs. Both VM latency figures were an order of magnitude higher than the measured 54 µs

latency on the physical network.

One significant limitation of the network architecture used for the first implementation was

identified as a result of the test procedures. Two VMs and one physical host were configured to share

one physical Ethernet NIC on each physical node. Thus, parallel communication between two pairs of

VMs on two separate physical hosts would have been converted to sequential networking operations,

with packet queuing needed either at the bridges or at the physical switch. Queuing, in turn, could

have introduced added latency into the communications, which may have reduced MPI performance.

Moreover, an increase in queuing could have increased packet transmission time, thus causing the

TCP protocol used by MPI to place more packets in flight to fill the sliding sender window. Such

an increase in packet saturation on the network used in the test cluster has been shown to increase

queuing delays, thereby increasing latency and further aggravating communications difficulties [116].

The combination of virtual machine overhead, latency introduced by the bridged networking,

and delay properties of the underlying physical network resulted in a network environment that could

not support MPI or other latency-sensitive applications inside VOCs. Latency in the underlying

physical network was already on the order of 50 µs for one-way unicast traffic. VOC traffic latency

was greatly increased as a result of the addition of the emulated NIC, the use of the Linux bridge

facility, and the reassignment of low-level network processing from the physical NIC to the host CPU.

The unsatisfactory performance results obtained from this experiment indicated that an alternative

mechanism for providing network connectivity to VMs, such as VMM-bypass networking [106], would

be needed if VOCs were to support HPC jobs.
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Figure 9.6: Testbed architecture for the dynamic provisioning tests

9.2 Dynamic Provisioning System

A prototype of the dynamic Virtual Organization Cluster scheduler was implemented, and

tests of the system were conducted using synthetic workloads. For analytical simplicity, the system

only supported a single VO, with a single virtual machine slot per physical host, for a total limit

of 16 slots. This simplifying design assumption permitted the use of a minimalistic physical system

policy, so that the performance and behavior of the unrestricted mechanism could be observed. As

a further simplification, the VMs used for the VOC in this test were all spawned from a single 20

GB image on a shared filesystem. Figure 9.6 depicts the architecture of the test system hardware.

Several sets of tests were conducted using the prototype system, the first of which was an

analysis of the approximate time required to boot each VOC such that it joined the Condor pool.

Since all VMs started from an identical state — the result of using a single virtual disk image to

spawn all VMs — the boot times were assumed to be constant for all members of the same VOC.

Two test suites were employed to observe job scheduling behavior. In the first suite, jobs were

submitted locally: that is, directly to the Condor queue, without any use of Globus. Globus was

used as the vehicle for job submission in the second suite, allowing its effects to be observed.

Each test suite consisted of five tests, in which the periodicity of job submission, size of each

job group submission, and run length of each job were varied. These tests were arranged as follows:
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• Two submission groups of 50 jobs each were submitted with sufficient temporal separation so

as to execute the vast majority of jobs from the first submission group, prior to execution of

the second submission group. This test was designed to simulate submitting large groups of

jobs in which the results of the first group were retrieved before submitting the second group.

• Periodic submission of 10 jobs, each with a 10-second execution time, 90 seconds apart

• Periodic submission of 10 jobs, each with a 10-second execution time, 30 seconds apart

• Periodic submission of 10 jobs, each with a 1-second execution time, 30 seconds apart

The purpose of the latter three tests was to observe the behavior of the system under regular periodic

loads, with variations in the period, job size, and per-job execution time. Execution times were varied

in order to determine the sensitivity of the system to the boot time latency, while period and size

variations were performed to test the responsiveness of the watchdog.

9.2.1 VM Boot Times

Tests were performed using local job submission (directly to the Condor queue) to measure

the boot times for the VMs comprising the VOC. Submissions were performed in groups of 10 one-

second jobs, with a period of 30 seconds between groups. The boot process for a VM was considered

to be complete once it joined the Condor pool, as observed by the watchdog. As shown in figure 9.7,

the first VM booted in response to incoming jobs joined the pool approximately 60 seconds after the

first job was submitted, or about 55 seconds after the watchdog observed the first job and started

the VM.

Since the watchdog required approximately 6 seconds to start all 10 initial VMs, a corre-

sponding delay of approximately 7 seconds was observed between the time at which the first VM

joined the Condor pool and the time at which the tenth VM joined the Condor pool. At a test wall

time of approximately 38 seconds, the watchdog responded to the second batch of submitted jobs

and began to increase the size of the VOC, continuing until the 44 second mark, at which point the

16 VM slots were exhausted. The additional 6 VMs joined the Condor pool between wall clock times

of 92 and 101 seconds, corresponding to boot times in the range of 54 to 57 seconds. No additional

VMs could be started once the slots were exhausted at 101 seconds, after which point the 16 running

VMs were able to complete the remaining 1-second jobs quickly.
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Figure 9.7: Virtual Machine boot delays relative to job submission time. VMs are started in response
to jobs arriving in the queue. Since each VM is a virtual Linux machine, there is a boot delay between
VM start time and the time at which the VM joins the Condor pool and is ready to accept jobs.
The total count of these booted machines corresponds to the size of the Condor pool for the VOC.

Variations in VM boot time were expected, owing to dynamic processes that must occur

during VM boot. These processes include the allocation of memory to the VM, initialization of the

VM kernel, acquisition of a DHCP lease by the VM, and the starting of run-time services. Based on

the test results, a conservative upper bound of 60 seconds was attributed to the VM boot process.

9.2.2 Jobs Submitted Locally

To effect completion of the first test suite, batches of jobs were submitted locally. The first

test utilized two groups of 50 jobs each, with a sufficiently long delay between submission to allow

all but two of the first batch to complete before submitting the second batch. As shown in figure

9.8, the watchdog started the maximum number of VOC nodes by 20 seconds into the test. The

majority of the first set of jobs completed rapidly between 162 and 198 seconds wall clock time, or

about 178 seconds after submission. Given the 60-second boot time assumption, the total run time

for 48 10-second jobs on 16 VMs was approximately 118 seconds. Between sets, the watchdog was

observed to reduce the size of the VOC from 16 VMs to 2 VMs. The second set of jobs completed

in approximately half the time as the first, with a clear “step-down” pattern observed in the Condor

queue between 280 and 310 seconds. While this pattern might have been partly attributed to the

need to reboot the VMs that were stopped during VOC contraction, it is important to remember that
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Condor only schedules jobs on a periodic basis, as it is designed for high job throughput, not high

performance. Therefore, some of the “step-down” behavior could have been attributed to Condor

simultaneously starting fewer jobs than were slots available.

As shown in figures 9.9 through 9.11, the watchdog continued to exhibit predictable behavior

similar to that observed in the first test. Whenever the number of jobs waiting in the queue dropped

below the number of running VMs in the VOC, the VOC was contracted by terminating VMs.

Conversely, whenever more jobs were waiting than VMs were running, as long as VM slots remained

available, the watchdog expanded the VOC by adding VMs. A noticeable delay between queue size

and VM count was observed in both cases, which was the exact behavior expected from the periodic

sampling done by the watchdog. Longer delays were observed between initial job submission and

job completion, owing to the time required to boot the VMs.

The effect of extremely short jobs, or exceptionally long periods related to job execution

length, were evident in the results, as illustrated in figures 9.9 and 9.11. Since the watchdog employed

a simplistic VM scheduling policy, it terminated VMs as soon as VOC sizes were found to exceed

queue sizes. This aggressive VM termination had a negative effect on throughput, as illustrated

by comparing figure 9.9 to figure 9.10 and figure 9.10 to figure 9.11. In the case of relatively

long periodicity relative to execution time, it was necessary to re-expand the previously contracted

VOC, thereby incurring VM boot delays. For exceptionally short-running jobs submitted regularly,

the initial cluster of submissions completed quickly, allowing the entire VOC to be removed from

operation. Two interesting, but mutually disadvantageous, phenomena were observed after the next

group of jobs arrived in the queue (figure 9.11 at approximately 130 seconds wall time). Due to

caching of the virtual machine monitor process, and its initial read-only VM data, on the physical

host, the VOC nodes were able to boot somewhat faster during VOC re-start. However, the rapid

job execution and simplistic scheduling algorithm in the watchdog combined to limit the total size

of the VOC to 10 nodes following the re-start. The result of this combination of properties was

exceptionally low throughput following the restart.

9.2.3 Jobs Submitted Through Globus

A second suite of identical tests was executed using the Globus job manager as the submis-

sion vehicle. In order to avoid Globus errors resulting from multiple simultaneous job submissions,

it was necessary to introduce a small delay of two seconds between the submissions of individual
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Figure 9.8: Two submissions of 50 jobs, 10-second execution time, submitted locally

Figure 9.9: Submitted 10 jobs every 90 seconds, 10-second execution time, submitted locally

Figure 9.10: Submitted 10 jobs every 30 seconds, 10-second execution time, submitted locally

Figure 9.11: Submitted 10 jobs every 30 seconds, 1-second execution time, submitted locally
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Figure 9.12: Two submissions of 50 jobs, 10-second execution time, submitted through Globus

Figure 9.13: Submitted 10 jobs every 90 seconds, 10-second execution time, submitted through
Globus

Figure 9.14: Submitted 10 jobs every 30 seconds, 10-second execution time, submitted through
Globus

Figure 9.15: Submitted 10 jobs every 30 seconds, 1-second execution time, submitted through Globus
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jobs. As a result, the process of submission of a batch of jobs through the Globus system was longer

than the process of local submission, resulting in the slower queue size growth visible in figures 9.12

through 9.15. In addition, some non-constant delays were observed between submission of jobs to

Globus and the time at which the jobs were delivered to Condor. This delay, especially evident

in the queue size jitter shown in figure 9.13, was not particularly alarming, once again due to the

emphasis taken by both systems on high throughput, as opposed to high performance.

Although net throughput was slightly reduced by the late arrival of the last set of jobs, the

addition of Globus as a “buffer” reduced the extremity of the VOC contraction. While the size of

the VOC was reduced, necessitating the rebooting of some nodes, the VOC was never completely

removed from operation as it was in the local test. This buffering effect was not observed with

extremely short jobs, as depicted in figure 9.15, where the VOC was briefly completely terminated.

9.3 Overlay Scheduling

Although the overhead of adding virtualization to grid systems had previously been evalu-

ated [54], and the overhead of using the IPOP network overlay had been independently studied [72],

the combination of both overheads in an overlaid scheduling environment with Virtual Organization

Clusters had not been measured. Since the overhead of virtualization would primarily affect job

service time in a grid system with sufficient physical resources to handle all jobs concurrently, a

chief concern was the amount of latency that might be added by the overlay scheduling system,

which necessitated the use of an overlay network. In order to ensure that this overlay overhead

would not have unexpected detrimental impacts on compute-bound jobs running within the virtual

machines, tests were conducted using an Open Science Grid (OSG) [125] site configured to support

virtualization. The OSG grid site was configured with 16 dual-core compute nodes, each with an

Intel Xeon 3070 CPU and 4 binary gigabytes (GiB) of Random Access Memory (RAM), with the

Kernel-based Virtual Machine (KVM) [129] hypervisor running within a 64-bit installation of Cen-

tOS 5.2. Virtual machine images were configured with 32-bit CentOS 5.2 and located on a shared

Parallel Virtual FileSystem (PVFS) [28] store. Virtual machine instances were booted directly from

the image located on the shared filesystem, without first staging the image to the local compute

nodes, using the “snapshot” mode of KVM. These shared images were made available in a read-only

configuration, with non-persistent writes redirected to a temporary file on local disk storage at each
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compute node. Internet connectivity for the test site was provided by an edge router using Network

Address Translation (NAT), with the physical compute nodes isolated in a private IPv4 subnetwork.

OSG connectivity was provided through the standard OSG software stack including Globus [64].

A VOC head node was constructed using a virtual machine hosted by an off-site laboratory

workstation. Condor [155] was installed on the head node to serve as a scheduler, and synthetic

workload jobs were submitted directly to the VOC local pool. A watchdog daemon process, using

the naive greedy watchdog algorithm with added support to maintain a minimum number of running

VMs at all times, was run on the same head node. This watchdog created pilot jobs, which were

submitted through a Globus client to the OSG test site, in response to the arrival of synthetic

workload jobs in the VOC Condor queue. The pilot jobs started virtual compute nodes, which

joined an IPOP network anchored at the workstation by contacting its bootstrap service. Once

connected to the private IPOP network, the virtual compute nodes joined the Condor pool created

by the collector on the VOC head node (the workstation-hosted virtual machine, also joined via

IPOP), and Condor scheduled and executed the actual test jobs. Whenever the watchdog daemon

determined that an excess number of pilot jobs were running in comparison to the size of the Condor

queue, the pilot jobs were instructed to terminate, causing the virtual machines to be terminated.

9.3.1 Overlay Scheduling and Networking

To measure the relative performance difference of using a VOC with overlay scheduling and

IPOP overlay networking, two sets of tests were conducted. A synthetic workload consisting of a 10-

minute sleep procedure was devised, in order to approximate compute-bound jobs without incurring

potential variations in service times that could result from running an actual compute-bound job

within a virtual machine. In the control trials, a batch of 50 sleep jobs was submitted directly to

the local scheduler on the physical grid site head node. For the experiment trials, the same batch

of 50 jobs was submitted directly to the Condor central manager running within the VOC. Total

makespan times were collected for both sets of trials, and each trial was repeated 10 times to reduce

the effects of random variation in observed makespan lengths. Descriptive and relative statistics were

computed for the makespan times. Throughput measures in jobs per second were also computed.

Results of the trials, summarized in table 9.8, indicated a slight increase in average makespan

time (less than one half of one percent) for jobs submitted through the overlay scheduling system,

compared to jobs submitted directly to the physical cluster scheduler. This increased makespan
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Table 9.8: Observed makespan lengths and system throughputs for 10 overlay experiment trials
Test Overlay Change

None IPOP Absolute Relative
Minimum Makespan (s) 2706 2714 8.000 0.2956 %
Median Makespan (s) 2709 2720 11.00 0.4061 %
Maximum Makespan (s) 2710 2737 27.00 0.9963 %
Mean Makespan (s) 2708 2722 13.50 0.4985 %
Makespan Standard Deviation (s) 1.414 7.735 6.321 447.0 %
Minimum Throughput (Jobs · s−1) 1.845× 10−2 1.827× 10−2 −1.820× 10−4 - 0.9865 %
Median Throughput (Jobs · s−1) 1.846× 10−2 1.839× 10−2 −7.467× 10−5 - 0.4045 %
Maximum Throughput (Jobs · s−1) 1.848× 10−2 1.842× 10−2 −5.447× 10−5 - 0.2948 %
Mean Throughput (Jobs · s−1) 1.846× 10−2 1.837× 10−2 9.000× 10−5 - 0.4954 %
Throughput Standard Deviation 9.644× 10−6 5.207× 10−5 4.243× 10−5 439.9 %

Figure 9.16: Autonomic VOC size adjustment behavior when executing long jobs without an overlay
network (average of 10 repetitions of the experiment).

length corresponded to a similarly small decrease in job throughput resulting from the addition of the

overlay. In the worst case observed in all trials, the maximum makespan and minimum throughput

were affected by less than one percent. Variations in makespan and throughput observations between

trials was substantially increased by over 400% when the overlay scheduler and network were added,

likely due to the addition of a second layer of interval scheduling with the additional Condor pool

overlaid on top of the physical Condor pool. Plotted traces of mean observations (figures 9.16 and

9.17) further confirmed the minimal overhead of the VOC overlay system.

9.3.2 VOC Adjustment Policy

A second experiment was performed to evaluate the behavior of the watchdog daemon when

monitoring the private scheduler queue and adjusting the size of the Virtual Organization Cluster.

As illustrated in figure 9.18, the simple greedy watchdog algorithm proved to be over-responsive

when batches of microbenchmark (10-second) jobs were submitted to the scheduler. The VOC was
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Figure 9.17: Autonomic VOC size adjustment behavior when executing short jobs privately sched-
uled using the IPOP overlay network (average of 10 repetitions of the experiment).

rapidly expanded to use all 16 available processor cores at the first watchdog interval. A delay of

approximately 60 seconds was observed while the VOC nodes booted, after which the short user

jobs quickly ran to completion. Even though additional jobs arrived in the queue while the VOC

nodes were booting, all jobs from the first two batches had completed within 140 seconds. At this

time, the size of the VOC was shrunk to zero, causing the virtual machines to vacate the physical

systems completely. When another batch of short jobs arrived at 180 seconds into the test, all 16

virtual machines had to be restarted, resulting in another boot delay.

To provide a buffer against excessively short jobs, a Delayed Response adaptation algorithm

was devised. This policy resulted in the immediate creation of a pair of VOC nodes to remain active

at all times for the handling of instantaneously short (by design or by failure) jobs. In addition,

the VOC was expanded by only one node at a time, and expansion only occurred if the size of the

Condor scheduler queue exceeded the VOC size for at least 10 watchdog intervals. Similarly, the

VOC was decreased by one node at a time, to a minimum size of two nodes, only when the size of

the VOC exceeded the size of the Condor queue for at least 10 watchdog intervals. The results of

submitting two batches of short jobs have been illustrated in figure 9.19, which shows a slow increase

in the number of VOC nodes in response to the first batch of jobs. A slow decrease in the number

of VOC nodes was observed between batches, followed by another slow increase as the second batch

of jobs arrived. Once all jobs from the second batch completed, the VOC size slowly declined to the

minimum size (two) specified by the policy.
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Figure 9.18: Simple Greedy Algorithm for autonomic VOC size adjustment: VMs are started when-
ever there are excess jobs in the scheduler queue and free physical nodes available. Once the jobs
complete and the queue size decreases, VMs are terminated quickly.

Figure 9.19: Delayed Response Algorithm for autonomic VOC size adjustment: a minimum of 2
VMs are kept in operation at all times, and VMs are started and stopped in response to queue size
trends over a time series of samples.
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Figure 9.20: Short operational test (44 hours) with the physical cluster configured to support a
16-node Virtual Organization Cluster dedicated to the Engage Virtual Organization.

9.4 Operational Tests

After completion of the prototype performance tests with synthetic workloads, the prototype

cluster was configured for operational tests. In these experiments, Virtual Organization Clusters were

transparently provided to specific Virtual Organizations on the Open Science Grid, and jobs from

those VOs were executed in 32-bit CentOS virtual machines. On June 1, 2009, a short operational

test was started, in which a single VOC was placed into service on behalf of the Engage VO, using

the delayed response watchdog provisioning algorithm with a minimum of two VMs and a maximum

of sixteen VMs. After approximately 44 hours of testing, the VOC was removed from service on

June 3, 2009. As visualized in figure 9.20, several bursts of jobs arrived during the test period, and

these bursts were accommodated by increasing the size of the VOC to the maximum specified level

(16 nodes).

Following the short operational test, a long operational deployment – approximately two

months in length – was effected using the same watchdog algorithm. Two VOCs were attached to

the Open Science Grid, with one VOC dedicated to the Engage VO and the other VOC dedicated

to the NanoHub VO. Both VOCs were set to a minimum size of two VMs and a maximum size of

sixteen VM, which resulted in utilization of all 32 physical CPU cores whenever both VOCs were at
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Figure 9.21: Long operational test: Engage VO. A second operational VOC, dedicated to the
NanoHub VO, was sharing the same hardware.

maximum size. The long-running operational experiment commenced on June 4, 2009 and completed

on August 17, 2009.

As illustrated in figure 9.21, jobs associated with the Engage VO continued to arrive in bursts

for the first two thirds of the test period, resulting in temporary increases in VOC size. Bursts of jobs

associated with the NanoHub VO (figure 9.22) were less frequent, significantly smaller in size, and

limited to the first third of the test period. Subsequent analysis determined that most NanoHub jobs,

and an increasingly larger number of Engage jobs, required 64-bit operating environments. Since

the prototype VOCs provided 32-bit environments, fewer jobs were sent to the prototype system as

August approached.

After completion of the operational tests, the prototype system became obsolete for research

purposes. The Intel Xeon processors installed in the physical compute nodes were equipped with

the first generation of virtualization extensions, which did not include extended page tables or vir-

tualized Input/Output devices. Rather than immediately discarding the hardware, a single Virtual

Organization Cluster was deployed for the STAR VO [6], using a custom virtual machine image

provided by the VO administrators. In this deployment, the VOC was still provided transparently

on OSG by the system, although the VO provided the software stack in a sort of “semi-transparent”
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Figure 9.22: Operational test: NanoHub VO. A second operational VOC, dedicated to the Engage
VO, was sharing the same hardware.

arrangement. Thus, the prototype implementation was converted into a production system, and it

was still in service as of October 2009.

9.5 System Management with Stoker2

Once the prototype system was constructed and placed into operational service, ongoing sys-

tem maintenance was performed using the Stoker remote administration tool. In order to measure

overhead created by the resolution and threading management processes and to assess the perfor-

mance improvement of parallelizing the Stoker command execution process, several tests were con-

ducted. The first test, with results shown in figure 9.23, parallelized a short-running /bin/hostname

task. Parallel execution was found to be of limited utility beyond 4–6 threads in this case due to

the extremely short run time of the program (≈ 0.001s) relative to the total time necessary to

spawn a thread and execute a remote command via SSH (≈ 0.225s). This test was conducted on a

low-latency network inside a private computing cluster.

The next test (figure 9.24) involved a longer running job: a ten-second process sleep that

was engineered to simulate the restart procedure of a network service. This test was conducted on
2The contents of this section have been published in [114].
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Figure 9.23: Stoker performance on a low-latency 16-node cluster when parallelizing a hostname job

the same private, low-latency cluster as the first test. Performance was measured to the limit of one

thread per target (16 nodes in this case). It should be noted that no performance improvement was

measured for 8–15 threads.

Since the 10-second sleep procedure had a known run time, network and SSH overhead

could be measured. As shown in figure 9.25, these overheads generally decreased in an absolute

sense until 14 threads were utilized. Beyond this point, the overhead of spawning new threads began

to increase. However, overhead as a percentage of the total time remained constant until 16 threads,

the limit for this test, were utilized.

To determine whether overheads would be more significant across a higher latency network,

another 10-second sleep test was conducted on 27 public laboratory workstations. Results of this

test, summarized in figure 9.26, showed improvements in performance as threads increased from 1 to

6. Performance improvements declined beyond 6 threads, even through 27 machines were targeted

with the 10-second sleep job. After further testing, including manual execution of the same job using

shell scripts instead of Stoker, it was determined that SSH authentication latency was increasing as

the number of simultaneous SSH processes was increased. The root cause of this behavior was found

to be serialization of the SSH authentication requests resulting from the use of a single Network File

System (NFS) share for storing the SSH keys used for authentication. Since the single NFS server

was also utilized for unrelated purposes, additional latency was added to the authentication process.

As shown in figure 9.27, overhead as a percentage of total execution time increased with increasing
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Figure 9.24: Stoker performance on a low-latency 16-node cluster when parallelizing a 10-second
sleep operation

0 2 4 6 8 10 12 14 16 18

Number of Threads

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
e
rc

e
n
ta

g
e

Normalized Overhead Overhead Relative to Total Time

Figure 9.25: Comparative overheads of network and SSH with respect to the remote job being
executed on a low-latency 16-node cluster. The normalized overhead is expressed as a percentage
of the maximum observed overhead, which occurred when the number of threads was equal to 1.
Relative overhead is expressed as the percentage of network and SSH overhead present in the total
execution time of a 10-second sleep job.
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Figure 9.26: Stoker performance on a high-latency group of 27 public laboratory workstations

parallelism, effectively negating the benefits of additional Stoker actor threads.
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Figure 9.27: Comparative overheads of network and SSH with respect to the remote job being
executed on a high-latency 27-node group of public workstations.
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Chapter 10

Conclusions

Virtual Organization Clusters provide a mechanism by which individual Virtual Organiza-

tions may operate and administer virtual computational clusters that support the computing needs

of VO-affiliated users. As re-illustrated in figure 10.1, VOCs are deployable in both transparent

(non-participating) and participating contexts. In the transparent case, grid sites are able to sepa-

rate the complexity of user-facing software stacks from the underlying services required to provide

network connectivity and basic computational services. When VOs choose to make use of VOCs

directly, pilot jobs are used to lease resources from physical sites, and the leased resources are joined

via an overlay network to form a virtual cluster. Within this overlay cluster, the VO is able to

make scheduling and resource allocation decisions for its users, who submit jobs to a dedicated VOC

Computing Element.

Virtual Organization Clusters enable the execution of long-lived customized computational

environments, which may span Grid sites to make best use of available physical fabric to provide

cloud computing resources for user applications. Although VOCs will directly benefit users by im-

proving job compatibility across sites, the implementation details of this new architecture will remain

transparent to the users. Instead of forcing users to create and manage explicit leases, VOCs auto-

nomically adapt to changing resource demands, allowing users to focus on their own domain-specific

research. Since these systems consist entirely of dynamically allocated virtual environments execut-

ing on remote grid infrastructure, Virtual Organization Clusters exist as self-provisioned clouds on

the grid.

Conclusions regarding the utility and viability of VOCs are presented in section 10.1. Sec-
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Figure 10.1: The architecture of Virtual Organization Clusters, revisited.
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tion 10.2 describes the direct impacts of VOCs on grid systems, after which section 10.3 discusses

the broader impacts of this research. Finally, section 10.4 provides a brief overview of related op-

portunities for future research. Information about the software packages included as attachments to

this dissertation follows in the appendices.

10.1 Utility and Viability of Virtual Organization Clusters

As demonstrated by the prototype results (chapter 9), VOCs can execute High-Throughput

Computing (HTC) grid jobs with reasonable overheads under 9%. Although High Performance

Computing (HPC) applications that use latency-sensitive MPI library routines experience substan-

tially greater overheads, VOCs still enable execution on physical sites that lack MPI support. This

overhead represents a trade-off between performance and environment flexibility: whenever a job is

directly compatible with the physical system environment at a grid site, the addition of the VOC

layer will reduce execution performance for that job. However, when the requirements of a job

cannot be met by the environment present on the physical site, the addition of the VOC

layer enables job execution when it would be otherwise impossible, as demonstrated by the

simulation results (chapter 8). The reduced execution performance in this case would be superior

to the lack of execution that would otherwise occur.

The use of pilot jobs and IPOP overlay networking enables the provisioning of

Virtual Organization Clusters with overlay scheduling, permitting each Virtual Orga-

nization to make resource allocation and job priority decisions within its private virtual

environment (chapters 6 and 7). In this regard, VOCs are similar to pilot job frameworks used

by High-Energy Physics (HEP) experiments (section 4.3.2). As demonstrated through tests using

the prototype grid-connected system, the added overhead of the scheduling and network overlay is

negligible for compute-bound grid jobs. Simulation results using actual trace data from the En-

abling Grids for E-sciencE (EGEE) grid indicate that widespread VOC deployment on a grid system

would not adversely affect the aggregate behavior of the grid, even though virtualization systems

add execution overhead. VOCs reduce total aggregate queuing by making all jobs compatible with

all sites composed of machines with the same instruction set architecture. Moreover, the virtual

head node for each VOC creates a single submission point for all jobs affiliated with a particular

VO, simplifying job submission for grid users.
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10.2 Direct Impacts

Virtual Organization Clusters are a promising mechanism for delivering the benefits of grid

virtualization systems, including environment customization, VO isolation, and legacy application

support [57], to existing production grids without large-scale disruption. Through the use of overlay

scheduling, individual VOs would be able to make resource allocation decisions for their members,

allowing site and VO policies to be independent. Furthermore, the customization capabilities of-

fered by virtualization would empower VOs to provide the software stacks required by their users,

instead of forcing users to adapt applications to the available software environments installed by site

administrators. As a result, existing computational grids could be made more useful for domain ap-

plications and more accessible to domain experts, without forcing users into system administration

roles.

VOCs enable VOs to create and customize entire computational clusters for end users,

which must be reachable through existing middleware. However, since the VOC Model does not

proscribe other interfaces for submitting workloads to VOCs, a VO could provide a computational

cloud directly to a set of users. Submission of jobs through an alternate interface to this cloud

could bypass the existing grid middleware altogether, further simplifying the experience for end

users. However, such a mechanism also would bypass the existing grid accounting and security

mechanisms, in the same way such mechanisms can be bypassed by pilot job frameworks [143].

Thus, the new paradigm of grid utilization provided by this architecture requires a

new conceptualization of the grid as a provider of resource abstractions. Instead of

providing full computational services to end users, a grid system using VOCs could provide back-

end computational fabric to VOs, which would then serve users directly.

10.3 Broader Impacts

The deployment of Virtual Organization Clusters on accessible grid systems would have

broader impacts on the scientific community and society at large. As defined by the National Science

Foundation [119], these impacts can be classified into five main areas: integration of research and

education, broadening participation, enhancing infrastructure, broad dissemination, and benefits to

society.

Virtual Organization Clusters can be used to integrate research with education by enabling
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cluster construction in the classroom environment. Students would be able to construct computa-

tional clusters on top of grid systems using nothing more than a laptop with commodity Internet

access and virtualization software. The dedicated hardware, cooling, power, networking, and other

physical infrastructure required to construct a physical computational cluster, along with the soft-

ware challenges inherent with its setup, are not present. Instead, students would be able to construct

a VOC image within a few class periods, after which they would be able to instantiate virtual clusters

on a commodity grid or a dedicated educational grid. Computational jobs spanning a wide range

of disciplines, from computer science to the physical sciences, can be submitted by different student

groups as part of an educational experience that demonstrates the benefits grid computing provides

to diverse disciplines.

A second benefit to the modest requirements of VOCs hosted by cloud systems is that

VOCs would be widely accessible to a large audience, regardless of the availability of cluster hard-

ware or specialized networking at any given site. VOCs are therefore suitable for all educational

institutions, from research universities to technical and community colleges, without requiring the

availability of infrastructure, space, or dedicated support staff. This technology is ideal for broad-

ening participation among institutions that might not otherwise have access to customized parallel

computing resources, including rural institutions, institutions primarily serving underrepresented mi-

nority groups, and institutions participating in the EPSCoR program [118]. Moreover, the modest

requirements of VOCs would enable participation at the K-12 level, allowing teachers and students to

deploy custom services to support specific lesson plans. Use of VOC technologies at the preparatory

level would have the benefit of exposing young people to the breadth and power of cloud comput-

ing, increasing awareness and interest in computational technologies as key enablers in both future

scientific discoveries and future industries. VOCs enable the creation of internationally distributed

systems by individuals or small groups, enabling creative opportunities that could appeal to both

genders equally while crossing cultural, ethnic, and racial barriers.

VOCs would provide new mechanisms to enhance and extend current grid infrastructures,

without requiring disruptive middleware and system replacements. Existing physical cluster systems

could be multiplexed among different custom virtual clusters instead of using a shared multiprogram-

ming model to multiplex hardware-based systems among users. The resulting customization would

increase the utility of these systems to end users, since the environments used by the domain sci-

entists would contain self-selected libraries and application software sets. Domain scientists would
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thus be able to match the systems to their needs, instead of adapting their research applications to

the capabilities provided by the system. Moreover, the lower technical entry barriers of VOCs would

enable groups of domain scientists could form new, highly specialized Virtual Organizations that

are focused on narrow problem areas. The resulting increased collaboration among such scientists

would yield greater research productivity.

Both VOCs and the research behind them are designed for broad dissemination. VOCs

themselves exist in the cloud and may be replicated across a wide range of systems, effectively be-

coming a new form of scientific communication. Dissemination of initial software and VOC research

results has already occurred. The Stoker distributed management system [35] and SimVOC simula-

tor [3] are freely available under open-source licenses. In addition, the following publications have

resulted from VOC and related research:

• M. Murphy and S. Goasguen. “Virtual Organization Clusters: Self-Provisioned Clouds on the

Grid.” To appear, Future Generation Computer Systems.

• M. Murphy, L. Abraham, M. Fenn, and S. Goasguen. “Autonomic Clouds on the Grid.”

Journal of Grid Computing, 8(1): 1-18, 2009. [113]

• L. Stout, M. Murphy, and S. Goasguen. “Kestrel: An XMPP-based Framework for Many Task

Computing Applications.” MTAGS 2009. [149]

• M. Fenn, M. Murphy, and S. Goasguen. "A Study of a KVM-based Cluster for Grid Comput-

ing." ACMSE ’09. [54]

• M. Murphy, B. Kagey, M. Fenn, and S. Goasguen. "Dynamic Provisioning of Virtual Organi-

zation Clusters." CCGrid ’09 (21% acceptance rate). [117]

• M. Murphy, M. Fenn, L. Abraham, J. Canter, B. Sterrett, and S. Goasguen. "Distributed

Management of Virtual Cluster Infrastructures." SMTPS ’09. [114]

• M. Murphy, M. Fenn, and S. Goasguen. "Virtual Organization Clusters." PDP 2009 (42%

acceptance rate). [115]

• M. Fenn, M. Murphy, J. Martin, and S. Goasguen. "An Evaluation of KVM for Use in Cloud

Computing." ICVCI ’08. [55]

150



• E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall. “The Efficacy of Live Virtual

Machine Migrations over the Internet.” VTDC ’07. [79]

Additionally, two journal articles and one additional conference proceeding, all directly related to

Virtual Organization Clusters, are under review at the time of this writing.

If widely deployed, Virtual Organization Clusters would have profound positive impacts on

society. By separating parallel computational environments from the underlying physical hardware,

it would be possible to locate computational clusters in geographic areas that optimize the use of

energy resources and minimize carbon production. Since VOCs can be moved between physical sites,

it would be possible to respond to changing resource availability, enabling optimal use of renewable

energy. For example, with future efficient photovoltaic technologies, it might be possible to migrate

grid computing jobs world-wide on a constant basis, exclusively utilizing solar energy. With existing

energy technologies, virtualized cluster systems can be located in areas with higher nuclear and

renewable components to grid power, minimizing the fraction of computing performed using fossil

fuels. Similarly, VOCs can be migrated geographically to take advantage of excess energy available

during regional off-peak periods. In addition to these environmental benefits, the direct benefit of

software environments customized for domain scientists will be better results from scientific modeling

and prediction systems, which will in turn translate into discoveries that improve quality of life.

10.4 Future Work

Virtual Organization Clusters provide a new architecture for grid computing, which improves

the usability of grid resources through the addition of virtualization technology. However, this new

architecture and VOC research to date raise new questions that are not answered by the VOC Model

itself. These issues may be loosely aggregated into four major areas: evaluation of the impact of

VOCs, efficiency of VOC implementations, system security, and migration of the VOC concept to

generic cloud systems that are not part of a grid architecture.

Although the VOC Model provides a foundation for reasoning about the performance im-

pacts of VOCs, a priori evaluation of the impacts of VOC deployment in specific situations is still

difficult, while large-scale VOC deployments are not likely to be embraced on federated grid systems

without some performance assurances. Improved simulation systems and the creation of analytical

models could provide a more accurate estimate of VOC impacts than the current model and imple-
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mentation of SimVOC are able to produce. Better heuristics for mapping production grids would

improve simulation fidelity, as would a more accurate implementation of simulated scheduler com-

ponents. Although simulation is the preferred mechanism for evaluating experimental architectures

in the grid community [25], a rigorous analytical model based on queuing theory also could provide

insight into the effects of virtualization overhead and overlay scheduling on production grids.

Implementations of VOCs could benefit from further research into optimal VOC sizing and

adjustment algorithms, which would balance sizing responsiveness with the costs of booting virtual

machines. More efficient virtualization systems and mechanisms for bypassing the hypervisor when

performing I/O operations would reduce the performance impacts of VOCs. An adaptive, fault-

tolerant scheduling system that is robust to continuously changing environments and tuned for

VOC use would enable more efficient scheduling of user jobs within the cloud. In terms of human

factors, the design of best practices for VO system administration could optimize procedures for

managing the software stacks made available to end users, thus improving user experience.

Another major area of research opportunity for grid systems utilizing the VOC architecture

– and for cloud computing systems in general – is that of security, authorization, and data privacy.

The addition of virtual machines to a production grid site may raise security concerns when inse-

cure services, such as the Network File System, are made available on the local private network.

Mechanisms for enforcing isolation of VMs will be needed to address the concerns of physical sys-

tem administrators. Procedures and systems for validating VM images provided by the VOs will

be needed, in order to ensure that a VM image is not compromised by an intermediate attacker.

Infrastructure for ensuring the privacy of potentially sensitive end user data will be necessary before

VOCs (or other cloud systems) could be used for sensitive activities.

Finally, an ultimate objective of research into self-provisioned clouds for scientific computing

would be to move the virtual clusters to generic cloud computing hosts, eliminating reliance upon the

grid entirely. Although scientific clusters constructed in this way would not be VOCs according to the

definition presented in chapter 5, the same transparency and autonomic management principles could

be used to create entity-dedicated clusters without incurring direct hardware expenses. These clouds

would utilize readily available hosting services, such as Amazon EC2 [11], to provide compatible

environments for large-scale simulations and other domain-specific applications, leading to improved

productivity for end users and decreased costs for system stakeholders.
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Appendix A Electronic Attachments

Several software applications and data sets are provided as electronic attachments to this

dissertation. These attachments include:

• A copy of the Stoker distributed management application, in Python source form

• A copy of the SimVOC simulation system, in Python source form

• Pre-processed trace data sets for the Enabling Grids for E-sciencE (EGEE) production system,

for use with SimVOC

• Operational data logs from the Clemson University Cyberinfrastructure Research Group’s

Furnace cluster with transparent VOCs deployed

License agreements for these attachments are provided in the next appendix. Both Stoker and

SimVOC are released under the Apache License, version 2 (appendix B.3). EGEE trace data is

provided under a license required by the Grid Observatory, which is listed in appendix B.1. Finally,

the operational data logs are licensed under an MIT-style license, provided in appendix B.2.
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Appendix B License Agreements

EGEE simulation data sets are provided by the Grid Observatory subject to the agreement

in section B.1. Trace data from the Furnace cluster is supplied by the Cyberinfrastructure Research

Group in the Clemson University School of Computing. Data are copyright 2008-2009 Clemson

University and released under an MIT-style license (section B.2).

The Stoker and SimVOC applications that accompany this dissertation are released under

the Apache License, version 2. A copy of this license is provided in section B.3.

B.1 Grid Observatory Data

The following conditions apply to data provided from the Grid Observatory:

All information, software and documentation are provided "as-is". The use of the material

is restricted to scientific research. Significant use of the material for publication requires acknowl-

edgement by the following citation: The datasets used in this work have been provided by the Grid

Observatory (www.grid-observatory.org). The Grid Observatory is part of the EGEE-III EU project

INFSO-RI-222667.

B.2 MIT License

Data sets provided by the Clemson University Cyberinfrastructure Research Group are

released under the following license:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
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CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-

WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

B.3 Apache License, version 2.0

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,

are controlled by, or are under common control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the direction or management of such

entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted

by this License.

"Source" form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated documentation, and

conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available

under the License, as indicated by a copyright notice that is included in or attached to the work (an

example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based

on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or

other modifications represent, as a whole, an original work of authorship. For the purposes of this

License, Derivative Works shall not include works that remain separable from, or merely link (or

156



bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work

and any modifications or additions to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or

Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this

definition, "submitted" means any form of electronic, verbal, or written communication sent to the

Licensor or its representatives, including but not limited to communication on electronic mailing

lists, source code control systems, and issue tracking systems that are managed by, or on behalf of,

the Licensor for the purpose of discussing and improving the Work, but excluding communication

that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly

perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell,

sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by

combination of their Contribution(s) with the Work to which such Contribution(s) was submitted.

If You institute patent litigation against any entity (including a cross-claim or counterclaim in a

lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses granted to You under this License for

that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works

thereof in any medium, with or without modifications, and in Source or Object form, provided that

You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
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License; and

(b) You must cause any modified files to carry prominent notices stating that You changed

the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all

copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding

those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative

Works that You distribute must include a readable copy of the attribution notices contained within

such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in

at least one of the following places: within a NOTICE text file distributed as part of the Derivative

Works; within the Source form or documentation, if provided along with the Derivative Works;

or, within a display generated by the Derivative Works, if and wherever such third-party notices

normally appear. The contents of the NOTICE file are for informational purposes only and do not

modify the License. You may add Your own attribution notices within Derivative Works that You

distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such

additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-

ditional or different license terms and conditions for use, reproduction, or distribution of Your

modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and

distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms

and conditions of this License, without any additional terms or conditions. Notwithstanding the

above, nothing herein shall supersede or modify the terms of any separate license agreement you

may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,

service marks, or product names of the Licensor, except as required for reasonable and customary

use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-

censor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, includ-
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ing, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MER-

CHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the Work and assume any risks associated

with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential damages of any character arising as a result

of this License or out of the use or inability to use the Work (including but not limited to damages

for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial

damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative

Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,

indemnity, or other liability obligations and/or rights consistent with this License. However, in

accepting such obligations, You may act only on Your own behalf and on Your sole responsibility,

not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each

Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by

reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with

the fields enclosed by brackets "[]" replaced with your own identifying information. (Don’t include

the brackets!) The text should be enclosed in the appropriate comment syntax for the file format.

We also recommend that a file or class name and description of purpose be included on the same

"printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
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ANYKIND, either express or implied. See the License for the specific language governing permissions

and limitations under the License.
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