Diatom Diversity in Savannah River Oxbows: A Pilot and Exploratory Survey

Katie M. Johnson1, Oscar P. Flite2, John Hains2, Alyssa Thomson3, Chalisa Nestell1

1 Phinizy Center for Water Sciences, 2 Clemson University, 3 Georgia College & State University

Introduction

Diatoms are commonly used as a biological indicators of aquatic ecosystem health because they are fairly easy to identify to species level as compared to other types of algae and they are more sensitive to changes in water chemistries than macroinvertebrates. Therefore, we are assessing diatoms as part of a food web study in four oxbows along the Savannah River. Pollutants and disturbances can influence these primary producers’ assemblages which can impact higher trophic levels of life. Gathering baseline data at oxbows along the Savannah River could yield better insights to changes in riverine systems and monitoring higher trophic levels of life on which we depend for natural and economic resources.

Objectives

The Phinizy Center for Water Sciences is conducting a fish community survey in four oxbows along the Savannah River. Historically, it is thought that oxbows connected to the river would have similar taxa (e.g., Fish, macroinvertebrates and algae) to the river and each other, and would differ in taxa from those found in disconnected areas. This exploratory pilot study aims to:

1) Identify genera that are present at each site
2) Create a picture key or guide of the diatom species/genera found at each oxbow
3) Provide evidence for continuing project for long term monitoring in order to answer the question: Are sites with similar regimes (connected vs. disconnected) similar in diatom taxa?

Answering this question will allow a better understanding of impacts on fish populations and a more precise analysis of diatom diversity along the Savannah River.

Methods

• One preliminary sampling event October 2015
• Diatometers placed at all four sites
• Nitric acid and hydrogen peroxide digestion method for diatom cleaning and processing
• Zyaxx mounting media for permanent slides
• 200 valves counted for each site

Study Sites

• Four oxbows along the Savannah River in Screven County Georgia
• Created by Army Corps of Engineers for commercial navigation from 1950s-70s by dredging
• Two are connected to the river (Miller and Whirligig); and two are considered disconnected from the river (Conyers and Possum Eddy)

Results

1) Connectivity may not play as large a role as other environmental factors in diatom community dynamics (e.g., depth or surface area). Data from more sampling events would need to be incorporated to fully test hypotheses on connectivity and taxa
2) High number of pinnates could be due to sampling methods. Diatomers may select for certain species that can attach themselves to slides (i.e., have a raphe) so future methods could include composite sampling of all habitat types.
3) Understanding more about the primary producers at each site could yield insight into Southeastern riverine systems such as nutrients in aquatic systems that can cause harmful algal blooms.
4) Future sampling events could aid in predictive modelling of independent variables that significantly impact diatom communities and possibly those depending on primary producers for resources.

• 31 genera were found (5 centric and 26 pinnate)

Conclusions

Figure 1. The four oxbow lakes studied in Screven County, Georgia

Figure 2. Identification plate for Miller Lake

Figure 3. Dendrogram of sites clustered by Jaccard similarity

Figure 4. Histogram of genera counts for oxbow Whirligig

Figure 5. Histogram of genera counts for oxbow Miller

Figure 6. Histogram of genera counts for oxbow Possum Eddy

Acknowledgements

We would like to thank: Dr. Kalina Manoylov from Georgia College & State University, Lakeside Laboratory, and Georgia Department of Natural Resources. Without everyone’s efforts and gift of time this study would not have been possible. Also Thank you Liam Wolf for contributing your figure of aerial views of the oxbows.