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Abstract

Let K be a degree n extension of Q, and let OK be the ring of algebraic

integers in K. Let x ≥ 2. Suppose we were to generate an ideal sequence by choosing

ideals from {I ⊆ OK : N(I) ≤ x}, independently and with uniform probability. How

long would our sequence of ideals need to be before we obtain a subsequence whose

terms have a product that is a square ideal in OK? We show that the answer is about

exp
√

2 ln(x) ln ln(x).
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Chapter 1

Introduction

1.1 The Square Threshold Problem in Z

Suppose we were to construct a sequence by randomly selecting integers inde-

pendently and with uniform probability from the set {1 . . . , x}. How many integers

do we need to select before the product of the terms of some subsequence is a square?

For example, consider the following sequence of integers drawn from the set {1, . . . , 9},

2, 7, 5, 3, 6, 3, 8, 9, 9, 4, 1, 7, 3, 9, 3, 2, 5, . . .

The first 5 terms of this sequence contain a subsequence for which the product of

the terms is a square. Namely, the subsequence 2, 6, 3, whose product is 36 = 62.

Sequences having the property that the product of their terms is a square will be

referred to as square dependent.

Given an integer sequence N , constructed by selecting integers independently

and with uniform probability from the set {1 . . . , x}, let Ω be the smallest positive

integer such that the first Ω terms of N contain a square dependent subsequence.

In the example given above, Ω = 5 as the first 5 terms contain a square dependent
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subsequence, and the first 4 do not. The integer Ω is said to be the threshold in which

our sequence of integers goes from not having a square dependent subsequence, to

having a square dependent subsequence.

The Square Threshold problem in Z is concerned with determining probabilis-

tic bounds for Ω for arbitrary sequences of integers drawn from the set {1, . . . , x} in

the manner specified above, where x ≥ 2. This means that we want to determine

an interval (A(x), B(x)), dependent on x, such that the probability Ω ∈ (A(x), B(x))

tends to 1 as x →∞.

While applicability is not a requisite quality for interesting mathematical prob-

lems, a primary motivation in determining probabilistic bounds for Ω has been the

heuristic analysis of the running times for integer factorization algorithms. In many of

these algorithms, for example the Quadratic Sieve, a sequence of integers is generated

until a square dependent subsequence is obtained. As such, an estimate on how long a

generated sequence needs to be in order to obtain a square dependent subsequence is

essential in estimating the overall running time of the algorithm. While the sequence

of integers generated by these integer factorization algorithms may not be random in

the sense we are considering, for the purposes of a heuristic analysis it is fruitful to

assume so [4].

1.2 Current Progress

The first probabilistic bound on Ω has been attributed to R. Schroeppel [4],

who showed for ε > 0, the probability that Ω < (1−ε)L
√

2 tends to 1 as x →∞, where

L = exp(
√

ln(x) ln ln(x)). While Schroeppel’s own proof has not been published, a

proof of this upper bound can be found in [11, Prop. 4.1].
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In 1994, Pomerance gave a probabilistic lower bound for Ω, showing that for

ε > 0, the probability Ω ≤ L
√

2−ε tends to 1 as x → ∞ [13, Thm. 1]. In the same

paper, he also conjectured the existence of threshold function T (x) such that for

ε > 0, the probability that (1 − ε) T (x) < Ω < (1 + ε) T (x) tends to 1 as x → ∞.

In this direction, Croot, Granville, Pemantle, and Tetali [4] have recently made the

following conjecture,

Conjecture 1. For every ε > 0, the probability that

(e−γ − ε)L
√

2 ≤ Ω ≤ (e−γ + ε)L
√

2,

tends to 1 as x →∞, where γ = 0.577 . . . is the Euler-Mascheroni constant.

They prove the upper bound given in Conjecture 1, and a slightly weaker lower bound

of (π/4)(e−γ − ε)L
√

2.

1.3 The Square Threshold Problem in OK

Let K be a degree n extension of Q, and let OK be the ring of algebraic

integers in K. While OK is not necessarily a unique factorization domain, it is well

known that OK is a Dedekind domain. This implies that every ideal I ⊆ OK can

be written uniquely (up to order) as the product of powers of prime ideals. Because

of this, many of the arguments used to determine probabilistic bounds for Ω with

respect to the integers, naturally generalize to ideals of OK .

Define S(x) = {I ⊆ OK : N(I) ≤ x}. Suppose we were to generate an ideal

sequence by choosing ideals from S(x) independently and with uniform probability

(that is, in the same manner previously described for generating integer sequences).

How long would our sequence of ideals need to be before we obtain a square dependent

subsequence? Analogous to the integer case, a sequence of ideals of OK is said to be

3



square dependent if the product of its terms is the square of an ideal in OK . Note

that this is precisely the question we asked with respect to integers, if we let K = Q.

Our primary goal in this paper is to prove the following theorem,

Theorem 1. Let K be a degree n extension of Q, and let OK be the ring of alge-

braic integers in K. Let Ω be the smallest integer such that the first Ω terms of an

ideal sequence generated by randomly and independently selecting ideals with uniform

probability from the set S(x) contains a square dependent subsequence. Then for any

ε > 0 the probability that Ω is in the interval(
L
√

2−ε, L
√

2+ε
)

tends to 1 as x →∞.

The proof of Theorem 1 is given in Chapter 3. Central to the proof of Theorem

1 is the concept of a smooth number, and its generalization, the smooth ideal. In

Chapter 2 we introduce the concept of smooth numbers and smooth ideals, and results

pertaining to these concepts that will be essential to our proof of Theorem 1.
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Chapter 2

Smooth Numbers & Smooth Ideals

2.1 Smooth Numbers

Generally speaking, an integer is said to be smooth if it has no large prime

factors [12]. However, this definition is a little vague as to what constitutes a “large”

prime factor. We will over come this ambiguity with the following definition,

Definition. For y ≥ 2, we say that an integer x is y-smooth if for every prime p | x

we have p ≤ y. In other words, x is said to be y-smooth if x has no prime factors

exceeding y.

For our purposes, we will be interested in the number of y-smooth integers

below a bound x, for a given x and y. We denote the number of such integers by

Ψ(x, y). There is a great deal of literature on Ψ(x, y), which speaks in large part to

the importance of smooth numbers in computational number theory. For excellent

surveys on Ψ(x, y) see [7] and [6]. The earliest, and perhaps most fundamental result

pertaining to Ψ(x, y) is due to K. Dickman. In 1930, Dickman showed that the

proportion of integers less than x that are x1/u smooth, where u > 0, tends to a non
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zero limit as x →∞ [6]. Specifically he proved the following theorem,

Theorem 2.1.1. For each real number u > 0, there is a number ρ(u) > 0 such that

Ψ(x, x1/u) ∼ xρ(u).

In keeping with Dickman’s notation, we will take y = x1/u whenever the function

Ψ(x, y) is considered. In 1949, V. Ramaswami gave a rigorous proof that ρ(u) is in

fact a continuous function for u > 0 [14]. He proved the following,

Theorem 2.1.2. A function ρ(u) defined for all u > 0 exists such that

1.) ρ(u) > 0 for u > 0,

2.) ρ(u) is continuous for u > 0, and

3.) for any fixed u, Ψ(x, x1/u) = xρ(u) + O(x/ ln(x))

The function ρ is commonly referred to as the Dickman-de Bruijn function. In section

2.4 we give a proof of a result similar to Ramaswami’s in the setting of Z[i], where

we define Ψ(x, c) to be the number of Gaussian integers α whose norm is at most x

and whose prime divisors have norm at most xc.

While there is no simple function that gives the value of ρ(u) for all u, there

are numerous approximations, the accuracy of each dependent on the range of u

for which it is defined. For our purposes we will be interested in the following two

approximations of ρ, both due to N.G. de Bruijn. The first approximation comes

from [5, (1.6)],

Theorem 2.1.3. For u > 1, let ξ = ξ(u) be the positive root of the equation

eξ − 1 = uξ. Then,

ρ(u) ∼ eγ

√
2πu

exp

(
−
∫ ξ

0

ses − es + 1

s
ds

)
as u →∞, where γ is Euler’s constant.
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The next approximation is widely used and can be found in the same paper of

de Bruijn [5, (1.8)]

Theorem 2.1.4. For u > 0 we have the following,

ρ(u) = exp

(
−u

(
ln(u) + ln ln(u)− 1 +

ln ln(u)− 1

ln(u)
+ O

(
(ln ln(u))2

(ln(u))2

)))
Our interest in ρ may seem rather arbitrary given our setting is OK , where K

not necessarily Q. However, as we shall see, many of the arguments made in OK can

be recast to the setting of the integers, in which case theorems 2.1.2. and 2.1.3. will

be applicable. Furthermore, in the next section we define a function ΨK(x, y) in OK ,

which is analogous to Ψ(x, y) in Z, and many approximations of this function also

rely on ρ, see [15], [7], and [8].

2.2 Smooth Ideals in OK

Let K be a finite extension of Q of degree n, and let OK be the ring of algebraic

integers in K. Analogous to our definition of smooth numbers, we define a y-smooth

ideal of OK as follows,

Definition. For y ≥ 2, we say that an ideal I ⊆ OK is y-smooth if for every prime

ideal p ⊆ OK with p | I we have N(p) ≤ y. In other words, an ideal I is said to be

y-smooth if I has no prime ideal factors with norm exceeding y.

We define ΨK(x, y) to be the number of ideals in OK with norm at most x, having no

prime ideal divisors with norm exceeding y. As with Ψ(x, y), there is a great deal of

literature regarding ΨK(x, y), the interested reader should see [15], [1], and [8]. For

our purposes, we will only concern ourselves with the following result due to P. Moree

and C.L. Stewart [8, Thm. 2], and Canfield, Erdös, and Pomerance [2, Thm 3.1],
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Theorem 2.2.1. Let K be a finite extension of Q of degree n ≥ 1, and let OK be the

ring of algebraic integers in K. There exists a positive number C1 = C1(K), which

depends upon K, such that for all x ≥ 1 and u ≥ 3,

ΨK(x, x1/u) ≥ x exp

(
−u

(
ln(u) + ln ln(u)− 1 +

ln ln(u)− 1

ln(u)
+ C1

(
ln ln(u)

ln(u)

)2
))

.

Thus far we have not given any motivation for our consideration of smooth

numbers, or more generally, smooth ideals. The utility of such ideals, which will

be discussed in the next section, lies in the fact that they give us a useful crite-

rion for determining if an arbitrary sequence of ideals contains a square dependent

subsequence.

2.3 Determining a Square Dependence

We begin by considering the following question: Suppose we have a sequence

of ideals from OK , I1, . . . , Ik, and we know that this sequence has a square dependent

subsequence. How would we go about determining this subsequence? Well, suppose

we have two ideals I, J ⊆ OK . Since OK is a Dedekind domain, we know that both I

and J have unique factorizations (up to order) into the product of prime powers. Let

I = pe1
1 · · · pem

m and J = pd1
1 · · · pdm

m , where some of the di and ei may be 0. Denote by

v(I) and v(J), the vector consisting of the exponents in the prime ideal factorizations

of I and J , respectively. So, v(I) = (e1, e2, . . . , em) and v(J) = (d1, d2, . . . , dm).

Now, in order for IJ to be a square, the exponent of each prime ideal in the prime

ideal factorization of IJ must be even, in other words, v(IJ) ≡ (0, 0, 0, . . . , 0) mod 2.

Since v(IJ) = v(I)+v(J), this implies that the vectors v(I) and v(J) must be linearly

dependent modulo 2. Therefore, if I
′
1, . . . , I

′

` is a square dependent subsequence of

I1, . . . , Ik, we have

8



∑̀
i=1

v(I
′

i) ≡ (0, 0, 0, . . . , 0) mod 2.

Thus, in order to determine the square dependent subsequence among the ideals

I1, . . . , Ik, we need only determine the linear dependence among the vectors v(I1), . . . , v(Ik).

This is easily done utilizing methods from linear algebra. To see how, consider the

following linear system of equations,

(
v(I1)

T mod 2 , · · · , v(Ik)
T mod 2

)
a1

...

ak

 =


0

...

0


where ai ∈ Z2. Solving for the ai’s, we see that if ai = 1 then Ii is involved in the

square dependency.

Not only does this simple argument from linear algebra give us a means of

determining the square dependence among our sequence x1, . . . , xk, it also gives us an

means of determining if an arbitrary sequence of integers contains a square dependent

subsequence. To see how, let I1, I2, . . . be an arbitrary sequence of ideals from S(x).

For a given y ≥ 2, suppose we are able to find πK(y) + 1 terms of this sequence that

are y-smooth, where πK(y) denotes the number of prime ideals in OK with norm at

most y. Since the exponent vector v(Ii) will have dimension at most πK(y) for each

Ii that is y-smooth, and we have πK(y) + 1 such terms, we are guaranteed to have

a square dependence by recalling the fact that n + 1 vectors from an n dimensional

vector space must contain a linear dependence.

In the next section we prove the existence of a continuous function µ(c) > 0,

satisfying Ψ(x, c) = πxµ(c) + O(x/ ln(x)) for all c > 0, where Ψ(x, c) denotes the

number of xc-smooth Gaussian integers of norm at most x. This proof is analogous

to the proof given by Ramaswami in [14], however, the result is not necessary to prove

Theorem 1, and may be skipped.

9



2.4 The Dickman-de Bruijn Function for Z[i]

We begin with some notation,

p, pr : any prime integer.

π : any Gaussian prime.

S(x, p) : the set of Gaussian integers whose norm is less than x,

divisible by p, and free of prime divisors greater than p.

T (x, p) : the set of Gaussian integers whose norm is less than x

and free of prime divisors greater than p.

N(α) : the norm of the Gaussian integer α

F (t) :
∑

p≤t 1/p

Next we define Ψ(x, c) as follows,

Ψ(x, c) =
∣∣ {α ∈ Z[i] : N(α) < x, π | α ⇒ N(π) < xc}

∣∣.
That is, Ψ(x, c) is the number of Gaussian integers with norm less than x, whose prime

factors have norm at most xc. We wish to prove the following theorem describing

Ψ(x, c),

Theorem 2.4.1. A function µ(c) defined for all c > 0 exists such that

1. for any fixed c,

Ψ(x, c) = πxµ(c) + O
( x

ln x

)
.

2. µ(c) > 0 and continuous for c > 0.

Our previous notation would dictate that we consider the function Ψ(x, x1/u), rather

that Ψ(x, c) with c = 1/u. However, aspects of the proof of Theorem 2.4.1 would make

the notation Ψ(x, x1/u) cumbersome, which is the reason for the change in notation.

Before we prove Theorem 2.4.1, we will first prove a few preliminary lemmas.
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Lemma 1. For c ≥ 1, Theorem 1 is true, and

Ψ(x, c) = πxµ(c) + O ( 3
√

x).

Proof. For c ≥ 1, Ψ(x, c) gives the number of Gaussian integers whose norm is

less than x. This is equivalent to the number of lattice points in a circle of radius

√
x, which has been shown to be asymptotic to πx + O( 3

√
x) by Sierpinski [16]. Since

O( 3
√

x) = O(x/ ln x), Lemma 1 follows by taking µ(c) = 1 for c ≥ 1.

Lemma 2. If p1 6= p2, the sets S(x, p1) and S(x, p2) are distinct.

Proof. Without loss of generality, we may assume p1 < p2. Let α ∈ S(x, p1). Then

the largest prime factor of N(α) is p1, which implies p2 does not divide N(α). Hence

α 6∈ S(x, p2).

Lemma 3.

∣∣S(x, p)
∣∣ =


2
∣∣T (x/p, p)

∣∣− ∣∣T (x/p2, p)
∣∣ if p ≡ 1 (4)

∣∣T (x/p2, p)
∣∣ if p ≡ 3 (4)

Proof. Suppose p ≡ 1 (4), and let ππ = p. Define A = {πβ : β ∈ T (x/p, p)} and

B = {πβ : β ∈ T (x/p, p)}. We want to show that A ∪ B = S(x, p). Let α ∈ A ∪ B.

Then α = πβ or α = πγ for some β, γ ∈ T (x/p, p). Without loss of generality, suppose

α = πβ. Then N(α) = N(π)N(β) < p · (x/p) = x. Moreover, since p | N(α) and p

is the largest prime factor of N(α), we know α ∈ S(x, p). Hence, A ∪ B ⊆ S(x, p).

Conversely, suppose α ∈ S(x, p). Then p | N(α), which implies either π or π divides

α. Without loss of generality, suppose α = πβ. Then N(α) = N(π)N(β) < x, which

implies N(β) < x/p. Furthermore, since the largest prime factor of N(α) is p, we

know that the largest prime factor of N(β) is also p. This implies that β ∈ T (x/p, p),

which in turn implies α ∈ A ∪B. Hence, A ∪B = S(x, p). Therefore,
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|S(x, p) | = |A ∪B | = |A|+ |B| − |A ∩B | = 2 |T (x/p, p) | − |A ∩B |.

Next we want to determine |A ∩ B |. Let C = {ππβ : β ∈ T (x/p2, p)}. Suppose

α ∈ A ∩ B. Then it must be the case that ππ | α, which implies α ∈ C. Conversely,

suppose α ∈ C. Then we can write α = πβ and α = πγ for some β, γ ∈ T (x/p, p).

This implies that α ∈ A and α ∈ B. Therefore C = A ∩ B, and |A ∩ B | = |C| =

|T (x/p2, p) |.

Suppose p ≡ 3 (4). Then p is prime in Z[i], and the map σ : T (x/p2, p) →

S(x, p) defined by σ(α) = pα is bijective. Hence |S(x, p) | = |T (x/p2, p) |.

The next lemma will function as the induction hypothesis in our proof of Theorem

2.4.1.

Lemma 4. If c1 ∈ (0, 1], and Theorem 1 is true for c ≥ c1, then it is true for

c ≥ c1/(1 + c1).

Proof. By hypothesis, µ(c) is defined, continuous, and positive for c ≥ c1. Further-

more, by considering Lemma 1 when c ≥ 1 we have,

Ψ(r, c) =


πxµ(c) + O

( x

ln x

)
for c1 ≤ c < 1

πxµ(c) + O
(

3
√

x
)

for c ≥ 1

(2.1)

Let c2 = c1/(1 + c1). Consider d such that c2 ≤ d ≤ c1. We begin by showing that

there is a function µ(d) such that Ψ(x, d) = πxµ(d) + O(x/ ln x). In order to do so,

we consider the difference Ψ(x, c1)−Ψ(x, d). It follows from Lemma 2 that,

Ψ(x, c1)−Ψ(x, d) =
∑

xd<p≤xc1

p≡1 (4)

|S(x, p) | +
∑

xd/2<p≤xc1/2

p≡3 (4)

|S(x, p) |. (2.2)
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Note that the second sum in (2.2) is over primes p ≡ 3 (4), hence p is itself a

Gaussian prime with N(p) = p2. Therefore we must have xd/2 < p ≤ xc1/2 in order

for xd < N(p) ≤ xc1 . By Lemma 3, (2.2) becomes

∑
xd<p≤xc1

p≡1 (4)

(
2

∣∣∣∣T (x

p
, p

) ∣∣∣∣− ∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ ) +
∑

xd/2<p≤xc1/2

p≡3 (4)

∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ (2.3)

Next, we note that the number of Gaussian integers whose norm in less than x/p2

and free of prime divisors greater than p, is clearly less than or equal to the number

of Gaussian integers whose norm is less than x/p2, with the latter being equivalent to

the number of lattice points in a circle of radius
√

x/p. Hence, we have the following,

∑
xd/2<p≤xc1/2

p≡3 (4)

∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ �
∑

xd/2<p≤xc1/2

p≡3 (4)

x

p2
≤ x

xd
·

( ∑
xd/2<p≤xc1/2

p≡3 (4)

1

)

� x

xd
· xc1/2

ln x
=

x1−d+(c1/2)

ln x
.

Recall that c1 ∈ (0, 1] and that c1/(c1 + 1) ≤ d ≤ c1. Clearly c1/2 ≤ c1/(c1 + 1) ≤ d,

which implies 1− d + c1/2 ≤ 1. Hence,

∑
xd/2<p≤xc1/2

p≡3 (4)

∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ ∈ O
( x

ln x

)
(2.4)

Similarly,

∑
xd<p≤xc1

p≡1 (4)

∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ �
∑

xd<p≤xc1

p≡1 (4)

x

p2
≤ x

x2d
·

( ∑
xd<p≤xc1

p≡1 (4)

1

)

� x

x2d
· xc1

ln x
=

xc1+1−2d

ln x
.

Since c1 + 1− 2d ≤ (c2
1 + 1)/(c1 + 1) ≤ 1, we have
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∑
xd<p≤xc1

p≡1 (4)

∣∣∣∣T ( x

p2
, p

) ∣∣∣∣ ∈ O
( x

ln x

)
. (2.5)

Taking (2.4) and (2.5) into account we can rewrite (2.3) as,

∑
xd<p≤xc1

p≡1 (4)

2

∣∣∣∣T (x

p
, p

) ∣∣∣∣ + O
( x

ln x

)
,

which, by our definition of Ψ, can written as,

∑
xd<p≤xc1

p≡1(4)

2 Ψ

(
x

p
,

ln p

ln x− ln p

)
+ O

( x

ln x

)
. (2.6)

Furthermore, since xd < p we have d(ln x− ln p) < ln p (1− d), which implies d/(1−

d) < ln p/(ln x− ln p). Hence,

ln p

ln x− ln p
>

d

1− d
>

c2

1− c2

= c1.

Therefore, by hypothesis (2.1) we can write (2.6) as,

∑
xd<p≤xc1

p≡1(4)

2πx

p
µ

(
ln p

ln x− ln p

)
+

∑
xd<p<

√
x

p≡1(4)

O

(
x/p

ln x/p

)

+
∑

√
x≤p≤xc1

p≡1(4)

O
(

3
√

x/p
)

+ O
( x

ln x

)
. (2.7)

It is a well known result in number theory that F (t) =
∑

p≤t 1/p = ln ln t + O(1).

Therefore, considering just the second sum in (2.7) for a moment, and assuming
√

x

is not a prime congruent to 1 modulo 4, we get

∑
xd<p<

√
x

p≡1(4)

O

(
x/p

ln x/p

)
= O

( x

ln x

) ∑
xd<p<

√
x

p≡1(4)

1

p
= O

( x

ln x

)
(F (

√
x)− F (xd))

14



= O
( x

ln x

) (
ln ln

√
x− ln ln xd + O (1)

)
= O

( x

ln x

)
(− ln d− ln 2 + O (1)) = O

( x

ln x

)
.

If
√

x is a prime congruent to 1 modulo 4, then the term (F (
√

x) − F (xd)) above

would be replaced by (F (
√

x) − F (xd) − 1/
√

x). However, −1/
√

x = O(1), leaving

the result unchanged. Similarly, for the third sum in (2.7) we have

∑
√

x≤p≤xc1

p≡1(4)

O
(

3
√

x/p
)

= O
(

3
√

x
) ∑
√

x≤p≤xc1

p≡1(4)

1

p3
= O

(
3
√

x
)

= O
( x

ln x

)
.

Hence, equation (2.7) can be reduced to

2πx ·
∑

xd<p≤xc1

p≡1(4)

(
1

p

)
µ

(
ln p

ln x− ln p

)
+ O

( x

ln x

)
,

which can be written as,

2πx ·
∑

xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)(
F (p)− F (p− 1)

)
+ O

( x

ln x

)
. (2.8)

We can further simplify (2.8) by noting,

∑
xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)(
F (p)− F (p− 1)

)

=
∑

xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)(
ln ln p− ln ln(p− 1)

)

+
∑

xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)
O (1) . (2.9)

15



Since, ∑
xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)
O (1) = O

(
xc1 − xd

ln x

)
= O

( x

ln x

)
,

we can write (2.9) as,

∑
xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)(
ln ln p− ln ln(p− 1)

)
+ O

( x

ln x

)
. (2.10)

Hence (2.8) becomes,

2πx ·
∑

xd<p≤xc1

p≡1(4)

µ

(
ln p

ln x− ln p

)(
ln ln p− ln ln(p− 1)

)
+ O

( x

ln x

)
. (2.11)

We would like to write the sum in (2.11) as a Riemann-Stieltjes integral, however, we

must first convince ourselves that such an integral exists.

It was previously shown that ln p/(ln x − ln p) > c1 for all primes satisfying

xd < p ≤ xc1 . However, if p = xd we have ln p/(ln x− ln p) = d/(1−d) ≥ c2/(1−c2) =

c1. Hence ln p/(ln x− ln p) ≥ c1 for all primes p in the closed interval [xd, xc1 ], which

implies µ(ln p/(ln x − ln p)) is continuous in the same interval. Furthermore, since

G(t) = ln ln t is a monotonically increasing function, the sum in (2.11) can be written

as a Riemann-Stieltjes integral. Doing so gives us,

2πx

xc1∫
xd

µ

(
ln t

ln x− ln t

)
dG(t) + O

( x

ln x

)

= 2πx

xc1∫
xd

µ

(
ln t

ln x− ln t

)
dt

t ln t
+ O

( x

ln x

)
(2.12)
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Performing the substitution t = xu, (2.12) becomes

2πx

c1∫
d

µ

(
u

1− u

)
du

u
+ O

( x

ln x

)
. (2.13)

Therefore,

Ψ(x, d) = Ψ(x, c1) − 2πx

c1∫
d

µ

(
u

1− u

)
du

u
+ O

( x

ln x

)
(2.14)

which becomes,

Ψ(x, d) = πx

µ(c1)− 2

c1∫
d

µ

(
u

1− u

)
du

u

 + O
( x

ln x

)
. (2.15)

Since the integral in (2.15) and µ(c1) are defined, the latter by hypothesis, we have

shown that for any c ≥ c1/(1 + c1), there exists a function µ such that Ψ(x, c) =

πxµ(c) + O(x/ ln x). Next we will show that µ(c) > 0 for all c > c1/(1 + c1).

Let c2 = c1/(c1 + 1) ≤ d1 < d2 ≤ c1. We want to show that µ(d2) > 0. By

(2.15) we have,

µ(d2)− µ(d1) = lim
x→∞

Ψ(x, d2)−Ψ(x, d1)

πx

= lim
x→∞

 2

d2∫
d1

µ

(
u

1− u

)
du

u
+ O

(
1

ln x

) = 2

d2∫
d1

µ

(
u

1− u

)
du

u
.

Next we note that if d1 ≤ u ≤ d2, then

u

1− u
≥ d1

1− d1

≥ c2

1− c2

= c1.

17



Therefore, by hypothesis (2.1) we have µ(u/(1− u)) > 0 for all u ∈ [d1, d2], hence

µ(d2)− µ(d1) = 2

d2∫
d1

µ

(
u

1− u

)
du

u
> 0. (2.16)

Note that (2.16) implies that µ is a strictly increasing function for c ≥ c1/(c1 + 1).

Furthermore, we know that µ(c) ≥ 0 for c ≥ c1/(c1 + 1). To see this note that

Ψ(x, c) = ax for some positive a ∈ R. If µ(c) = b < 0, then by our definition we have

Ψ(x, c) = bπx + E, where E is the error term. This implies E = (a− bπ)x = O(x) 6=

O(x/ ln x), a contradiction.

The fact that µ is a strictly increasing non-negative function for c ≥ c1/(c1+1)

implies µ(d2) 6= 0. Hence, for any c > c1/(c1 + 1) we have µ(c) > 0. Note that we

have not shown µ(c) > 0 for c = c1/(c1 + 1), we will return to this later. Next we

want to show that µ(c) is continuous for all c ∈ [c1/(c1 + 1), c1].

Let c ∈ [c1/(c1 + 1), c1] and ε > 0. Since ln(x) is continuous over the interval

[c1/(c1+1), c1], we may choose a δ > 0 such that for any d ∈ [c1/(c1+1), c1] satisfying

|c− d| < δ, we have | ln c− ln d | < ε/2. Hence,

|µ(c)− µ(d)| = 2

∣∣∣∣∣∣
c∫

d

µ

(
u

1− u

)
du

u

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
c∫

d

du

u

∣∣∣∣∣∣
Where the last inequality follows from the fact that µ is a strictly increasing function

for c ≥ c1/(c1 + 1), and by Lemma 1 we know µ(c) = 1 for c ≥ 1 ≥ c1. This gives us,

2

∣∣∣∣∣∣
c∫

d

du

u

∣∣∣∣∣∣ = 2 | ln c− ln d | < 2 · ε

2
= ε.

Therefore, µ(c) is continuous for all c ≥ c1/(c1 + 1).

Now we return to the problem of showing that µ(c1/(c1 + 1)) > 0. So far we

have shown that if Theorem 2.4.1 holds for c ≥ c1, where c1 ∈ (0, 1], then it holds for
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c > c1/(c1+1) = c2. Let c∗ ∈ (c2, c1 ), then Theorem 2.4.1 holds for c ∈ (c∗/(c∗+1), c∗]

by the current Lemma. Since c2 ∈ (c∗/(c∗ + 1), c∗], we have µ(c2) > 0.

We are now in a position to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. By Lemma 1, we know that Theorem 2.4.1 holds for

[1,∞). Therefore, by Lemma 4 we know that Theorem 2.4.1 is true for c ∈ [1/2,∞).

Suppose Theorem 2.4.1 holds for all c ∈ [1/n,∞) for all n ≤ k. By Lemma 4,

Theorem 2.4.1 also holds for all c ∈ [k∗,∞], where,

k∗ =
1/k

1 + 1/k
=

1

k + 1
.

The result follows by induction.
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Chapter 3

The Square Threshold in OK

Let K be a degree n extension of Q, and let OK be the ring of algebraic integers in

K. Recall that L = exp(
√

ln(x) ln ln(x)) and S(x) = {I ⊆ OK : N(I) ≤ x}. The

goal of this chapter is to prove the following theorem,

Theorem 1. Let K be a degree n extension of Q, and let OK be the ring of alge-

braic integers in K. Let Ω be the smallest integer such that the first Ω terms of an

ideal sequence generated by randomly and independently selecting ideals with uniform

probability from the set S(x) contains a square dependent subsequence. Then for any

ε > 0 the probability that Ω is in the interval(
L
√

2−ε, L
√

2+ε
)

tends to 1 as x →∞.

We will prove Theorem 1 by breaking it into two parts. For ε > 0, we will

first prove the upper bound by showing the probability that Ω < (1 + ε)L
√

2 tends to

1 as x → ∞. We will then prove the lower bound by showing the probability that

Ω ≤ L
√

2−ε tends to 0 as x → ∞. Throughout both proofs p, pi ⊆ OK will denote

prime ideals and p, pi ∈ Z will denote prime integers, for all i ∈ N.
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Before we begin, we need to take note of an important theorem due to Edmund

Landau [8], which serves as the analogue of Prime Number Theorem. It gives us an

asymptotic expression for the number of prime ideals with norm below a specified

bound.

Theorem 3.1.1 (Prime Ideal Theorem) Let πK(x) denote the number of prime ideals

in OK with norm at most x. Then,

πK(x) ∼ x

ln(x)

Furthermore, it follows from Theorem 3.1.1 that for x ≥ 2,

πK(x) = Li(x) + O
(
xe−c

√
ln(x)
)

where c > 0 is a constant depending on K only, and Li(x) =
∫ x

2
1/ ln(t) dt [8, (12)].

We are now ready to begin our proof of the upper bound given in Theorem 1.

3.1 The Upper Bound

We begin our proof with a generalization of a result due to N.G. de Bruijn [10, Thm.

2].

Theorem 3.1.2. Let K be a finite extension of Q of degree n ≥ 2, and let OK

be the ring of algebraic integers in K. If c > 1 is constant, we have for x ≥ 2 and

(ln(x))c ≤ y ≤ x,

ln(ΨK(x, y)) ≤ ln(xρ(u)) +
ln(1 + u)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R)

where

R =

∫ ln(y)

1

es(α/ ln(y))V (es) ds; u =
ln(x)

ln(y)
; α = ln(u) + ln ln(u + 1)

and V is a function connected with the error term in the Prime Ideal Theorem.
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Proof. Let Y = {I ⊆ OK : p | I ⇒ N(p) ≤ y}. That is, let Y be the set of ideals

in OK that are y-smooth. Then for any η > 0 we have,

ΨK(x, y) =
∑

N(I)≤x
I∈Y

1 ≤
∑

N(I)≤x
I∈Y

(
x

N(I)

)η

≤
∑
I∈Y

(
x

N(I)

)η

= xη
∑
I∈Y

1

N(I)η
= xη

∏
N(p)≤y

(
1−N(p)−η

)−1
.

That is, for all η > 0 we have,

ΨK(x, y) ≤ xη
∏

N(p)≤y

(
1−N(p)−η

)−1
,

which implies,

ln(ΨK(x, y)) ≤ η ln(x) +
∑

N(p)≤y

ln
((

1−N(p)−η
)−1
)
. (3.1)

We will estimate the sum in (3.1) by the following integral,

∫ y

e

ln
(
(1− t−η)−1

)
dLi(t). (3.2)

In order to do so, we must determine the amount of error that will be incurred by

such an estimate. By the Prime Ideal Theorem, for y ≥ 2 we have

πK(y) = Li(y) + O
(
ye−c

√
ln(y)
)
. (3.3)

where, for convenience, we may take Li(y) =
∫ y

e
1/ ln(t) dt. Noting that,

∫ y

e

e−c
√

ln(t) − ce−c
√

ln(t)

2
√

ln(y)
dt = ye−c

√
ln(y) − e−c+1 = O

(
ye−c

√
ln(y)
)
,
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we can write (3.3) as,

πK(y) = Li(y) + O

(∫ y

e

e−c
√

ln(t) − ce−c
√

ln(t)

2
√

ln(y)
dt

)
. (3.4)

For ease of notation, we will denote e−c
√

ln(t) − ce−c
√

ln(t)/2
√

ln(y) by V (t). Let E

denote the error incurred by approximating of the sum in (3.1) by (3.2). Then,

E =
∑

N(p)≤y

ln
((

1−N(p)−η
)−1
)
−
∫ y

e

ln
(
(1− t−η)−1

)
dLi(t).

Note that we can write the above sum as,

ln
(
(1− 2−η)

−1
)

+
∑

e≤n≤y

ln
((

1− n−η
)−1
)

(πK(n)− πK(n− 1)),

where n ∈ N. Since the function ln
(
(1− n−η)

−1
)

is continuous over [e, y] with respect

to n, and πK is monotonically increasing, we can write the above sum in terms of a

Riemann-Stieltjes integral. Doing so we get,

∑
e≤n≤y

ln
((

1− n−η
)−1
)

(πK(n)− πK(n− 1)) =

∫ y

e

ln
((

1− t−η
)−1
)

dπK(t)

Hence,

E = ln
((

1− 2−η
)−1
)

+

∫ y

e

ln
(
(1− t−η)−1

)
d(πK(t)− Li(t))

= O(1) +

∫ y

e

ln
(
(1− t−η)−1

)
d(πK(t)− Li(t)) (3.5)

For ease of notation, let f(t) = ln ((1− t−η)−1). Performing integration by parts on

the integral in (3.5), we get∫ y

e

f(t)d (πK(t)− Li(t)) = f(t) (πK(t)− Li(t))
∣∣∣y
e
−
∫ y

e

f ′(t) (πK(t)− Li(t)) dt
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= f(y) (πK(y)− Li(y))− f(e) (πK(e)− Li(e))−
∫ y

e

f ′(t) O

(∫ t

e

V (s) ds

)
dt

(3.6)

with the last equality following from (3.4). Considering just the integral in (3.6) for

a moment, we note that

=

∫ y

e

f ′(t) O

(∫ t

e

V (s) ds

)
dt = O

(∫ y

e

−f ′(t)

(∫ t

e

V (s) ds

)
dt

)
.

Performing integration by parts on the right hand side we get,

O

(∫ y

e

−f ′(t)

(∫ t

e

V (s) ds

)
dt

)
= O

(
−f(t)

(∫ t

e

V (s) ds

)∣∣∣∣y
e

+

∫ y

e

f(t)V (t)dt

)

= O

(
−f(y)

∫ y

e

V (s) ds +

∫ y

e

f(t)V (t)dt

)
= O

(∫ y

e

(f(t)− f(y)) V (t)dt

)
Since f(t) is a positive, monotonically decreasing function over the interval [e, y], we

know that ∫ y

e

(f(t)− f(y)) V (t)dt = O

(∫ y

e

f(t)V (t)dt

)
.

Thus, ∫ y

e

f ′(t) O

(∫ t

e

V (s) ds

)
dt = O

(∫ y

e

f(t)V (t)dt

)
. (3.7)

Next we note that,

f(y) (πK(y)− Li(y))− f(e) (πK(e)− Li(e)) = O

(∫ y

e

f(y)V (t)dt

)
+ O(1),

and since, f(y) ≤ f(t) for all t ∈ [e, y], we have

O

(∫ y

e

f(y)V (t)dt

)
= O

(∫ y

e

f(t)V (t)dt

)
.

Therefore, by (3.7) and the above equality, the right hand side of (3.6) becomes,

O

(∫ y

e

f(t)V (t)dt

)
+ O(1),
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which implies that,

E = O

(∫ y

e

f(t)V (t)dt

)
+ O(1) = O

(∫ y

e

ln
(
(1− t−η)−1

)
V (t)dt

)
+ O(1).

Therefore, if we replace the sum in (3.1) with the integral in (3.2), and account for

the resulting error we have the following,

ln(ΨK(x, y)) ≤ η ln(x) +

∫ y

e

ln
((

1− t−η
)−1
)( 1

ln(t)

)
dt

+O

(∫ y

e

ln
(
(1− t−η)−1

)
V (t)dt

)
+ O(1). (3.8)

Let c ∈ R such that c > 1 and restrict the values of x and y by x > ec and

exp

(
c ln ln(x)− c ln(c)

1− c/ ln(x)

)
≤ y < x (3.9)

Recall the function ξ = ξ(u) from Theorem 3.1.1., which is defined to be the positive

root of the equation eξ − 1 = ξu with u = ln(x)/ ln(y) > 1. Let τ = 1 − ξ/ ln(y).

For reasons that will be made clear later on, we would like to let η = τ in (3.8),

however, in order to do so we must first show τ > 0 for x and y satisfying x > ec

and (3.9). Let us fix x. Note that as y increases through the interval given by (3.9),

u = (eξ−1)/ξ decreases, hence, ξ must also be decreasing. Next we want to determine

how large ξ can be for y in (3.9). Plugging in the minimum value of y over (3.9) we

get u = (ln(x) − c)/(c ln ln(x) − c ln(c)), which implies ξ = ln ln(x) − ln(c). Hence,

0 < ξ ≤ ln ln(x)− ln(c). Since τ is minimized when ξ is maximized, we have

τ = 1− ξ/ ln(y) = 1− (eξ − 1)/ ln(x)

≥ 1− (eln ln(x)−ln(c) − 1)/ ln(x) = 1− 1

c
+

1

ln(x)
.
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Since c > 1, we have τ > 0. Hence, we may let η = τ in (3.8), which gives us,

ln(ΨK(x, y)) ≤ ln(x)− ξu +

∫ y

e

ln
((

1− t−τ
)−1
)( 1

ln(t)
+ O

(
V (t)

))
dt + O(1).

(3.10)

Next we would like to show ln ((1− t−τ )−1) = t−τ + O(t−2τ ). To do so, we note the

Mercator series expansion for ln(1 + x), which is valid for −1 < x ≤ 1,

ln (1 + x) =
∞∑

n=1

(−1)n+1xn

n
.

With respect the integral in (3.10), we see that t > 1, and since we have previously

shown that τ > 0, we know that tτ > 1. Therefore, −1 < −1/tτ < 0. Letting

x = −1/tτ in the above Mercator series expansion for ln(1 + x) we get,

ln

(
tτ − 1

tτ

)
= −

∞∑
n=1

1

ntnτ
.

Finally we note that,

ln

(
1

1− 1/tτ

)
= ln

(
tτ

tτ − 1

)
= − ln

(
tτ − 1

tτ

)
=

∞∑
n=1

1

ntnτ
,

which gives us ln ((1− t−τ )−1) = t−τ + O(t−2τ ). Therefore, (3.10) becomes

ln(ΨK(x, y)) ≤ ln(x)− ξu +

∫ y

e

1

tτ ln(t)
dt + O

(∫ y

e

V (t)

tτ
dt

)

+ O

(∫ y

e

1

t2τ ln(t)
dt

)
+ O

(∫ y

e

V (t)

t2τ
dt

)
+ O(1). (3.11)

Since O
(∫ y

e
V (t) dt

)
is defined to be the error term in the Prime Ideal Theorem, that

is, π(y) =
∫ y

e
1/ ln(t)+O(

∫ y

e
V (t)), we have V (t) = O(1/ ln(t)). Hence, we can reduce
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(3.11) further, giving us

ln(ΨK(x, y)) ≤ ln(x)− ξu +

∫ y

e

1

tτ ln(t)
dt + O

(∫ y

e

V (t)

tτ
dt

)
+ O

(∫ y

e

1

t2τ ln(t)
dt

)
+ O(1). (3.12)

Considering just the first integral of (3.12) for a moment, we make the substitution

t = ys/ξ. Doing so we get s = ξ ln(t)/ ln(y) and ds = ξ/(ys/ξ ln(y)), which gives us∫ y

e

1

tτ ln(t)
dt =

∫ ξ

1−τ

(
1

ys/ξ

)τ
ξ

s ln(y)

(
ys/ξ ln(y)

ξ

)
ds =

∫ ξ

1−τ

(
1

ys/ξ

)τ−1
1

s
ds

∫ ξ

1−τ

(
1

ys/ξ

)−ξ/ ln(y)
1

s
ds =

∫ ξ

1−τ

ys/ ln(y) 1

s
ds =

∫ ξ

1−τ

es

s
ds. (3.13)

Recall from Theorem 2.1.3, that

ρ(u) ∼ eγ

√
2πu

exp

(
−
∫ ξ

0

ses − es + 1

s
ds

)
,

as u →∞, where ξ be the positive root of the equation eξ − 1 = uξ and γ is Euler’s

constant. Hence,

ln(ρ(u)) = O(1)− 1

2
ln(u)−

∫ 1−τ

0

ses − es + 1

s
ds−

∫ ξ

1−τ

ses + 1

s
ds +

∫ ξ

1−τ

es

s
ds

which implies,∫ ξ

1−τ

es

s
ds = ln(ρ(u)) +

ln(u)

2
+ O(1) +

∫ 1−τ

0

ses − es + 1

s
ds +

∫ ξ

1−τ

ses + 1

s
ds

= ln(ρ(u)) +
ln(u)

2
+ O(1) +

∫ ξ

0

es ds +

∫ 1−τ

0

1− es

s
ds +

∫ ξ

1−τ

1

s
ds

= ln(ρ(u)) +
ln(u)

2
+ O(1) + eξ − 1 +

∫ 1−τ

0

1− es

s
ds + ln(ξ)− ln(1− τ)

= ln(ρ(u)) +
ln(u)

2
+ O(1) + uξ +

∫ 1−τ

0

1− es

s
ds + ln(ξ)− ln(ξ/ ln(y))

= ln(ρ(u)) +
ln(u)

2
+ O(1) + uξ +

∫ 1−τ

0

1− es

s
ds + ln ln(y)
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Next we note that (1/2) ln(u + 1) = (1/2) ln(u) + O(1), giving us∫ ξ

1−τ

es

s
ds = ln(ρ(u)) +

ln(u + 1)

2
+ O(1) + uξ +

∫ 1−τ

0

1− es

s
ds + ln ln(y).

By (3.9) and the fact that 0 < ξ < ln ln(x) − ln(c), we have 1 − τ = ξ/ ln(y) ≤

1/c − 1/ ln(x) < 1 for all x. Furthermore, by noting that lims→0(1 − es)/s = 1, we

have, ∣∣∣∣∫ 1−τ

0

1− es

s
ds

∣∣∣∣ <

∣∣∣∣∫ 1

0

1− es

s
ds

∣∣∣∣ = O(1)

Hence, ∫ ξ

1−τ

es

s
ds = ln(ρ(u)) +

ln(u + 1)

2
+ O(1) + uξ + ln ln(y).

Plugging the above into (3.12) we get,

ln(ΨK(x, y)) ≤ ln(x) + ln(ρ(u)) + ln ln(y) +
ln(u + 1)

2

+ O

(∫ y

e

1

t2τ ln(t)
dt

)
+ O

(∫ y

e

V (t)

tτ
dt

)
+ O(1). (3.14)

Next we will consider the error terms of (3.14). We begin by letting t = es in the first

error term,

O

(∫ y

e

1

t2τ ln(t)
dt

)
= O

(∫ ln(y)

1

es

e2τss
ds

)
= O

(∫ ln(y)

1

e(1−2τ)s

s
ds

)

Recall that 0 < ξ ≤ ln ln(x) − ln(c) for y in the interval (3.9), where c > 1 is

constant. This implies that ln ln(x) ≥ ξ. Letting ω = 2(ln ln(x)/ ln(y)) − 1, we see

that ω ≥ 2(ξ/ ln(y))− 1 = 1− 2τ . Hence,∫ ln(y)

1

e(1−2τ)s

s
ds = O

(∫ ln(y)

1

eωs

s
ds

)
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Note that if ω < 1/ ln(y), then eωs < e for all s ∈ [1, ln(y)]. In other words, if

ω < 1/ ln(y) then eωs = O(1), which gives us∫ ln(y)

1

eωs

s
ds = O

(∫ ln(y)

1

1

s
ds

)
= O

(
ln ln(y)

)
.

Suppose ω > 1/ ln(y). If ω ≤ 1 we can break up the integral as follows,∫ ln(y)

1

eωs

s
ds =

∫ 1/ω

1

eωs

s
ds +

∫ ln(y)

1/ω

eωs

s
ds.

The first integral is O(ln ln(y)) by the previous argument. Letting ωs = z in the

second integral we get∫ ln(y)

1/ω

eωs

s
ds =

∫ ω ln(y)

1

ez

z
dz = O

(
eω ln(y)

)
,

Next, suppose ω > 1. Since 1/ω > 0 and eωs/s > 0 for all s > 0, we have∫ ln(y)

1

eωs

s
ds ≤

∫ ln(y)

1/ω

eωs

s
ds = O

(
eω ln(y)

)
.

Hence, the first error error term of (3.14) can be written as,∫ y

e

1

t2τ ln(t)
dt = O

(
ln ln(y)

)
+ O

(
eω ln(y)

)
= O

(
ln ln(y)

)
+ O

(
(ln(x))2

y2

)
= O

(
ln ln(y)

)
+ O

(
(ln(x))2

ln(y)

)
. (3.15)

with the last equality following from that fact that y > 1. To get a handle on the

second error term of (3.14), we first let t = es, giving us

∫ y

e

V (es)

esτ
dt =

∫ ln(y)

1

V (es)

es(1−ξ/ ln(y))
ds = O

(∫ ln(y)

1

V (es)es(ξ/ ln(y)) ds

)
. (3.16)

Next we want to replace ξ in (3.16) with ln(u) + ln ln(u + 1). Note that since u =

(eξ − 1)/ξ and u + 1 = (eξ + ξ − 1)/ξ, we have
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ln(u) + ln ln(u + 1) = ln(eξ − 1)− ln(ξ) + ln ln

(
eξ + ξ − 1

ξ

)
.

However, since

lim
ξ→∞

ln(eξ − 1)

ξ
= 1 and lim

ξ→∞

(
ln ln

(
eξ + ξ − 1

ξ

)
− ln(ξ)

)
= 0

we have ln(eξ − 1) ∼ ξ and ln ln((eξ + ξ − 1)/ξ)− ln(ξ) = o(1). Hence,

ξ = ln(u) + ln ln(u + 1) + O(1).

Let α = ln(u) + ln ln(u + 1). Then,

∫ ln(y)

1

V (es)es(ξ/ ln(y)) ds =

∫ ln(y)

1

V (es)es((α+O(1))/ ln(y)) ds

= O

(∫ ln(y)

1

V (es)es(α/ ln(y)) ds

)
. (3.17)

Therefore, by plugging in (3.15) and (3.17) for the first and second error terms of

(3.14), respectively, we get

ln(ΨK(x, y)) ≤ ln(x) + ln(ρ(u)) +
ln(u + 1)

2

+ O(ln ln(y)) + O

(
(ln(x))2

ln(y)

)
+ O

(∫ ln(y)

1

V (es)es(α/ ln(y)) ds

)
. (3.18)

Note that (3.18) is the desired expression in Theorem 3.1.2. All that remains to be

shown is that (3.18) holds in the range specified in Theorem 3.1.2. Note that for

x ≥ 2 satisfying ln(x)/ ln ln(x) ≥ c/ ln(c) for the constant c > 1, we have

exp

(
c ln ln(x)− c ln(c)

1− c/ ln(x)

)
≤ ln(x)c. (3.19)

Let c1 ∈ R be a constant for which (3.19) is satisfied for all x > c1. Then we have

shown for x > c1 with (ln(x))c ≤ y ≤ x the result holds.
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Finally, we note that for 2 ≤ x ≤ c1 with (ln(x))c ≤ y ≤ x, each of the terms

on the right hand side of (3.18) are finite, and ln(x)2/y ≥ ln(2)2/2 > 0, we see that

the result follows trivially for 2 ≤ x ≤ c1 with (ln(x))c ≤ y ≤ x since the O(ln(x)2/y)

term can encompass any possible error.

Now that we have an upper bound for ΨK(x, y), or more accurately an upper

bound for ln(ΨK(x, y)), we will use Theorems 3.1.2 and 2.2.1 to sandwich ΨK(x, y)

and allow us determine an asymptotic equality. This result is a generalization of that

given by Pomerance [13, Thm. 2.1] in the case when K = Q.

Corollary 3.1.3. Let y = x1/u. If ε > 0 is arbitrary, for x ≥ 2 and 3 ≤ u ≤

(1− ε) ln(x)/ ln ln(x), we have

ΨK(x, y) =
|S(x)|

uu(1+o(1))

as u →∞.

Proof. First we will show that ΨK(x, y) = x/uu(1+o(1)) as u → ∞. By Theorem

2.2.1, we have

ΨK(x, x1/u) ≥ x exp

(
−u

(
ln(u) + ln ln(u)− 1 +

ln ln(u)− 1

ln(u)
+ C1

(
ln ln(u)

ln(u)

)2
))

= x exp

(
−u ln(u)

(
1 +

ln ln(u)

ln(u)
− 1

ln(u)
+

ln ln(u)− 1

(ln(u))2
+ C1

(ln ln(u))2

(ln(u))3

))

= x u

(
−u

(
1 +

ln ln(u)

ln(u)
− 1

ln(u)
+

ln ln(u)− 1

(ln(u))2
+ C1

(ln ln(u))2

(ln(u))3

))
=

x

uu(1+o(1))

as u →∞.
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By Theorems 3.1.2 and 2.1.4, we have

ln(ΨK(x, x1/u))

≤ ln

(
x exp

(
−u

(
ln(u) + ln ln(u)− 1 +

ln ln(u)− 1

ln(u)
+ C1

(
ln ln(u)

ln(u)

)2
)))

+
ln(u + 1)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R).

Exponentiating both sides of the inequality, we may apply the same argument as

above giving us

ΨK(x, x1/u) ≤ x

uu(1+o(1))
exp

(
ln(u + 1)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R)

)
.

as u →∞. Hence, it will suffice to show that

exp

(
ln(u + 1)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R)

)
= u−u(o(1))

as u →∞. We have,

exp

(
ln(u + 1)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R)

)

= exp

(
−u ln(u)

(
− ln(u + 1)

u ln(u)
+ O

(
ln ln(y)

u ln(u)

)
+ O

(
(ln(x))2

yu ln(u)

)
+ O

(
R

u ln(u)

)))

= u
−u

(
− ln(u + 1)

u ln(u)
+ O

(
ln ln(y)

u ln(u)

)
+ O

(
(ln(x))2

yu ln(u)

)
+ O

(
R

u ln(u)

))
.

Clearly, − ln(u + 1)/u ln(u) = o(1) as u → ∞, so all that remains to be shown is

that the subsequent terms are also o(1). Note that since y = x1/u, we have ln ln(y) =

ln ln(x)− ln(u) and u = ln(x)/ ln(y). Therefore,

ln ln(y)

u ln(u)
=

ln ln(x)− ln(u)

u ln(u)
=

ln ln(x)

u ln(u)
+ o(1) =

ln ln(x)

u(ln ln(x)− ln ln(y))
+ o(1)

Since u ≥ 3, we have y = x1/u ≤ x1/3. Hence,
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ln ln(x)

u(ln ln(x)− ln ln(y))
+ o(1) ≤ 1

u(1− ln ln(x1/3)/ ln ln(x))
+ o(1).

As u → ∞ we know that x → ∞ as well, hence the right hand side of the above

inequality tends to 0. Thus, ln ln(y)/(u ln(u)) = o(1) as u → ∞. For the next term,

we note that,

(ln(x))2

yu ln(u)
=

(ln(x))2

x1/uu ln(u)
= exp

(
ln(2) + ln ln(x)− ln(x)

u
− ln(u)− ln ln(u)

)
.

Since u ≤ (1− ε) ln(x)/ ln ln(x) < ln(x)/ ln ln(x), we have

exp

(
ln(2) + ln ln(x)− ln(x)

u
− ln(u)− ln ln(u)

)
< exp

(
ln(2) + ln ln(x)− ln ln(x) ln(x)

ln(x)
− ln(u)− ln ln(u)

)
= exp (ln(2)− ln(u)− ln ln(u)).

Since exp (ln(2)− ln(u)− ln ln(u)) → 0 as u →∞, we have (ln(x))2/(yu ln(u)) = o(1)

as u →∞.

Next we consider the term R/(u ln(u)). Recall that,

R =

∫ ln(y)

1

es(α/ ln(y))V (es) ds

where α = ln(u) + ln ln(u + 1) and V is a function connected with the error term in

the Prime Ideal Theorem. Then,

R

u ln(u)
=

1

u ln(u)

∫ ln(y)

1

es(α/ ln(y))V (es) ds.

Performing the substitution t = es in the above integral, we get

1

u ln(u)

∫ ln(y)

1

es(α/ ln(y))V (es) ds =
1

u ln(u)

∫ ln(y)

1

(es)α/ ln(y)−1 V (es)es ds

=
1

u ln(u)

∫ y

e

tα/ ln(y)−1V (t) dt ≤ yα/ ln(y)−1

u ln(u)

∫ y

e

V (t) dt =
eα−ln(y)

u ln(u)

∫ y

e

V (t) dt

=
ln(u + 1)

y ln(u)

∫ y

e

V (t) dt.
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Recalling that, ∫ y

e

V (t) dt = O
(
ye−c

√
ln(y)
)

where c > 0 is a constant depending on K only, we get

ln(u + 1)

y ln(u)

∫ y

e

V (t) dt =
ln(u + 1)

y ln(u)
O
(
ye−c

√
ln(y)
)

= O

(
ln(u + 1)

ln(u)
e−c
√

ln ln(x)

)
with the last equality following from the fact that y = x1/u and u < ln(x)/ ln ln(x).

As mentioned above, since u ≤ (1− ε) ln(x)/ ln ln(x), as u →∞ we know x →∞ as

well. Hence, as u →∞, we have (ln(u + 1))/(ln(u)) → 1 and e−c
√

ln ln(x) → 0. Thus,

R/(u ln(u)) = o(1). Hence, we have shown that

exp

(
ln(u + 1)

2
+ O(ln ln(y)) + O

(
(ln(x))2

y

)
+ O(R)

)
= u−u(o(1))

which implies,

ΨK(x, x1/u)

≤ x

uu(1+o(1))
u
−u

(
− ln(u + 1)

u ln(u)
+ O

(
ln ln(y)

u ln(u)

)
+ O

(
(ln(x))2

yu ln(u)

)
+ O

(
R

u ln(u)

))

=
x

uu(1+o(1))
u−u(o(1)) =

x

uu(1+o(1))
.

Combining this with the inequality derived from Theorem 2.2.1, we have

x

uu(1+o(1))
≤ ΨK(x, x1/u) ≤ x

uu(1+o(1))
,

which implies,

ΨK(x, x1/u) =
x

uu(1+o(1))
.
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In order to replace the x in the numerator of the above with |S(x)|, we note

that |S(x)| is proportional to x asymptotically. Specifically, M.R. Murty and J. Van

Order [9, Thm. 5] show that

|S(x)| = cK x(1 + o(1)), (3.20)

where cK > 0 is a constant dependent only on K. Noting that,

− ln(cK(1 + o(1)))

u ln(u)
= o(1),

we have

cK(1 + o(1)) =
1

uo(1)u
.

Hence,

|S(x)|
u(1+o(1))u

=
cKx(1 + o(1))

u(1+o(1))u
=

(
1

uo(1)u

)
x

u(1+o(1))u
=

x

u(1+o(1))u
.

The utility of Corollary 3.1.3 stems from the following,

Corollary 3.1.4. For a > 0,

ΨK(x, La) =
|S(x)|

L1/2a+o(1)

as x →∞.

Proof. With y = La, we have

u =
ln(x)

ln(y)
=

ln(x)

a ln(L)
=

ln(x)

a
√

ln(x) ln ln(x)
=

√
ln(x)

a
√

ln ln(x)
.

By Corollary 3.1.3 we have,
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ΨK(x, La) = |S(x)|
√

ln(x)

a
√

ln ln(x)

−
√

ln(x)

a
√

ln ln(x)
(1 + o(1))

= |S(x)| exp

(
− ln

( √
ln(x)

a
√

ln ln(x)

)( √
ln(x)

a
√

ln ln(x)

)
(1 + o(1))

)

= |S(x)| exp

(
−
(

1

2
ln ln(x)− ln(a)− 1

2
ln ln ln(x)

)( √
ln(x)

a
√

ln ln(x)

)
(1 + o(1))

)

= |S(x)| exp

(
−
√

ln(x) ln ln(x)

(
1

2a
− ln(a)

a ln ln(x)
− ln ln ln(x)

2a ln ln(x)

)
(1 + o(1))

)

= |S(x)| exp

(
−
√

ln(x) ln ln(x)

(
1

2a
+ o(1)

))
=

|S(x)|
L1/2a+o(1)

.

as x →∞.

Note that in Corollary 3.1.4 we are considering the o(1) term with respect to

x rather than u. This is due to the fact that u =
√

ln(x)/(a
√

ln ln(x)) is a function

of x alone. Corollary 3.1.4 will be crucial in our proof of the upper bound. Let us

restate our claim explicitly,

Theorem 1(a). (The Upper Bound) Let K be a degree n extension of Q, and let OK

be the ring of algebraic integers in K. Let Ω be the smallest integer such that the first

Ω terms of an ideal sequence generated by randomly and independently selecting ideals

with uniform probability from the set S(x) contains a square dependent subsequence.

Then for any ε > 0 the probability that Ω < L
√

2+ε tends to 1 as x →∞.

Proof. Let ε > 0 and x ≥ 2 be given. Suppose we were to generate an ideal

sequence of length [L
√

2+ε] by choosing ideals from S(x) independently and with

uniform probability. For any positive integer k and y ≥ 2, the probability that k

ideals from our sequence are y-smooth is,
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(
[L
√

2+ε]

k

)(
ΨK(x, y)

|S(x)|

)k (
1− ΨK(x, y)

|S(x)|

)[L
√

2+ε]− k

We want to show that there exists a smoothness bound y, such that the probability

we have fewer than πK(y)+1, y-smooth ideals in our sequence, tends to 0 as x →∞.

Let y = L1/
√

2. By Corollary 3.1.4 we have,

ΨK(x, L1/
√

2)

|S(x)|
=

1

L1/
√

2+o(1)

as x → ∞. Hence, the probability that at most πK(L1/
√

2) ideals from our sequence

are y-smooth is

πK(L1/
√

2)∑
k=1

(
[L
√

2+ε]

k

)(
1

L1/
√

2+o(1)

)k (
1− 1

L1/
√

2+o(1)

)[L
√

2+ε]− k
.

By the Prime Ideal Theorem we have πK(L1/
√

2) ≤
√

2(1 + δ)L1/
√

2/ ln(L) for suf-

ficiently large x, where δ > 0 is arbitrary. For ease of notation let N = [
√

2(1 +

δ)L1/
√

2/ ln(L)]. Then the above sum is bounded above by,

N∑
k=1

(
[L
√

2+ε]

k

)(
1

L1/
√

2+o(1)

)k (
1− 1

L1/
√

2+o(1)

)[L
√

2+ε]− k

=
N∑

k=1

(
[L
√

2+ε]

k

)(
1

L1/
√

2+o(1) − 1

)k (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

,

for sufficiently large x, with the last equality following from a rearrangement of terms

and the fact that we can write L
√

2+ε = [L
√

2+ε] + ∆, where 0 ≤ ∆ < 1, and

lim
x→∞

(
1− 1

L1/
√

2+o(1)

)∆

= 1.

That is, considering L
√

2+ε rather than [L
√

2+ε] will not affect the limit. For 1 ≤ k ≤ n

we have the well known inequality
(

n
k

)
< (ne/k)k. Therefore,
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N∑
k=1

(
[L
√

2+ε]

k

)(
1

L1/
√

2+o(1) − 1

)k (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

<
N∑

k=1

(
eL

√
2+ε

kL1/
√

2+o(1)

)k (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

=
N∑

k=1

(
eL1/

√
2+ε+o(1)

k

)k (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

Considering the function (y/k)k with respect to k, we have

d

dk

(y

k

)k

= (ln(y)− ln(k)− 1)
(y

k

)k

.

We can see that (y/k)k is increasing for k ∈ (0, y/e) and has a maximum at k = y/e.

Since N < L1/
√

2+ε+o(1), we see that
(
eL1/

√
2+ε+o(1)/k

)k

is maximized, with respect

to the k in our sum, when k = N . Hence,

N∑
k=1

(
eL1/

√
2+ε+o(1)

k

)k (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

≤
N∑

k=1

(
eL1/

√
2+ε+o(1)

N

)N (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

= N

(
eL1/

√
2+ε+o(1)

N

)N (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

.

Noting that

eL1/
√

2+ε+o(1)

N
=

eLε+o(1) ln(L)√
2(1 + δ)

=

(
e ln(L)√
2(1 + δ)

)
Lε+o(1) = Lε+o(1),

and,

N =

√
2(1 + δ)L1/

√
2

ln(L)
=

(√
2(1 + δ)

ln(L)

)
L1/

√
2 = L1/

√
2+o(1),
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we have

N

(
eL1/

√
2+ε+o(1)

N

)N (
1− 1

L1/
√

2+o(1)

)L
√

2+ε

= exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1)(ε + o(1)) ln (L) + L

√
2+ε ln

(
1− 1

L1/
√

2+o(1)

))

= exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) + L

√
2+ε ln

(
1− 1

L1/
√

2+o(1)

))
.

Recalling that for |x| < 1 we can write ln(1− x) = −
∑∞

`=1 x`/`, we have

exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) + L

√
2+ε ln

(
1− 1

L1/
√

2+o(1)

))

= exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) − L

√
2+ε

∞∑
`=1

1

`L`/
√

2+o(1)

)

= exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) − L1/

√
2+ε+o(1) − Lε+o(1) + o(1)

)
.

Noting that(
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) − L1/

√
2+ε+o(1) − Lε+o(1) + o(1) → −∞,

as x →∞, we have

lim
x→∞

exp

((
1√
2

+ o(1)

)
ln(L) + L1/

√
2+o(1) − L1/

√
2+ε+o(1) − Lε+o(1) + o(1)

)
= 0.

That is, the probability that we have fewer than πK(L1/
√

2)+1 ideals in our sequence

that are y-smooth, tends to 0 as x →∞. Therefore, the probability that we have at

least πK(L1/
√

2) + 1 ideals in our sequence that are y-smooth, tends to 1 as x → ∞.

This implies that the probability our sequence has a square dependent subsequence

also tends to 1 as x →∞, by the argument from linear algebra given in Chapter 2.
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3.2 The Lower Bound

We will now show the probability that Ω ≤ L
√

2−ε tends to 0 as x → ∞. The

argument is a generalization of that given by Pomerance [13, Thm. 1 (lower bound)]

when K = Q. We begin with some preliminary propositions.

Proposition 1. For a given x ≥ 2, let A1, . . . , Ak be subsets of ideals from the set

S(x). Consider a random sequence of ideals from S(x) of length at most `, where the

ideals in the sequence need not be distinct. The probability that this sequence contains

k distinct terms I1, I2, . . . , Ik with I1 ∈ A1, I2 ∈ A2, . . . , Ik ∈ Ak is at most

`k

|S|k
|A1| · · · |Ak|

Proof. For i ∈ {1, 2, . . . , k}, the probability that a given ideal of S(x) is in Ai is

|Ai|
|S(x)|

.

Therefore, the probability that any of the ideals in our sequence of length ` are in Ai

is,

`|Ai|
|S(x)|

.

Hence, the probability that each of the Ai contains an ideal from our sequence is at

most the product of above probabilities for each Ai,

k∏
i=1

`

|S(x)|
|Ai| =

`k

|S(x)|k
|A1| · · · |Ak|.
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Proposition 2. Consider a random ideal sequence drawn from S(x) of length at

most L1.5. The probability it has a term divisible by the square of a prime ideal p with

N(p) > L3 tends to 0 as x →∞.

Proof. Note that if the square of a prime ideal p divides an ideal I with N(I) ≤ x,

it must be the case that N(p) ≤
√

x. Let p be prime ideal with L3 < N(p) ≤
√

x.

We will employ Proposition 1 with k = 1 and A1 = {I ⊆ OK : N(I) ≤ x; p2 | I}.

Doing so we get the probability that our random ideal sequence of length L1.5 has a

term divisible by p2 is at most,

L1.5

|S(x)|
|{I ⊆ OK : N(I) ≤ x; p2 | I}|.

Summing over all prime ideals p with L3 < N(p) ≤
√

x, we see that our desired

probability is at most,

∑
p⊆OK

L3<N(p)≤
√

x

L1.5 · |{I ⊆ OK : N(I) ≤ x; p2 | I}|
|S(x)|

=
∑

p⊆OK

L3<N(p)≤
√

x

L1.5 · |S(x/N(p)2)|
|S(x)|

Consider the set of ideals {IJ : I ∈ S(x/N(p)2); J ∈ S(N(p)2)}, where p is a prime

ideal satisfying L3 < N(p)2 ≤
√

x. Since,

{IJ : I ∈ S(x/N(p)2); J ∈ S(N(p)2)} ⊆ S(x)

we know,

|{IJ : I ∈ S(x/N(p)2); J ∈ S(N(p)2)}| ≤ |S(x)|.

Furthermore,

|{IJ : I ∈ S(x/N(p)2); J ∈ S(N(p)2)}| = |S(x/N(p)2)||S(N(p)2)|,

which gives us,
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∑
p⊆OK

L3<N(p)≤
√

x

L1.5 · |S(x/N(p)2)|
|S(x)|

≤
∑

p⊆OK

L3<N(p)≤
√

x

L1.5 · |S(x/N(p)2)|
|S(x/N(p)2)||S(N(p)2)|

=
∑

p⊆OK

L3<N(p)≤
√

x

L1.5

|S(N(p)2)|
≤

∑
p⊆OK

L3<N(p)≤
√

x

L1.5

(1− o(1))N(p)2
,

with the last inequality following from (3.20). Simplifying further, we have

∑
p⊆OK

L3<N(p)≤
√

x

L1.5

(1− o(1))N(p)2
≤
(

n

(1− o(1))L1.5

) ∑
L3<p≤

√
x

1

p
.

Since
∑

p≤y 1/p = ln ln(y) + B + o(1), with B ≈ 0.2615 being Mertens constant [3,

Thm. 1.4.2], we have(
n

(1− o(1))L1.5

) ∑
L3<p≤

√
x

1

p
≤
(

n

(1− o(1))L1.5

)(
ln ln(

√
x) + B + o(1)

)
Finally we note that,

lim
x→∞

(
n

(1− o(1))L1.5

)(
ln ln(

√
x) + B + o(1)

)
= 0.

Proposition 3. Consider a random ideal sequence drawn from S(x) of length at most

L1.5. The probability it has two terms divisible by a prime ideal p with N(p) > L3

tends to 0 as x →∞

Proof. Let p be a prime ideal with L3 < N(p) ≤ x. By Proposition 1, the probability

that our random ideal sequence of length L1.5 has two terms divisible by p is at most,

L3

|S(x)|2
|{I ⊆ OK : N(I) ≤ x; p | I}|2.

Summing over all prime ideals p with L3 < N(p) ≤ x, we see that our desired

probability is at most,
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∑
p⊆OK

L3<N(p)≤x

L3

|S(x)|2
|{I ⊆ OK : N(I) ≤ x; p | I}|2 =

∑
p⊆OK

L3<N(p)≤x

L3|S(x/N(p))|2

|S(x)|2
.

By (3.20) and the argument given in the proof Proposition 2 we have,∑
p⊆OK

L3<N(p)≤x

L3|S(x/N(p))|2

|S(x)|2
≤ nL3

(1− o(1))

∑
L3<p≤x

1

p2
.

Note that,

nL3

(1− o(1))

∑
L3<p≤x

1

p2
=

nL3

(1− o(1))

∑
m∈N

L3<m≤x

1

m2
(π(m)− π(m− 1))

Since 1/x2 is continuous and π(x) is monotonically increasing on the interval [L3, x],

we can write the above sum in terms of a Reimann-Stieltjes integral,

nL3

(1− o(1))

∑
m∈N

L3<m≤x

1

m2
(π(m)− π(m− 1)) =

nL3

(1− o(1))

∫ x

L3

1

t2
dπ(t).

Performing integration by parts we get,

nL3

(1− o(1))

∫ x

L3

1

t2
dπ(t) =

nL3

(1− o(1))

(
π(x)

x2
− π(L3)

L6
+ 2

∫ x

L3

π(t)

t3
dt

)
.

By a theorem of Chebyshev [3, Thm. 1.1.3] we know that for t ≥ 3 there exists a

positive number B such that π(t) < Bt/ ln(t). Hence,

nL3

(1− o(1))

(
π(x)

x2
− π(L3)

L6
+ 2

∫ x

L3

π(t)

t3
dt

)

<
nL3

(1− o(1))

(
π(x)

x2
− π(L3)

L6
+ 2

∫ x

L3

B

t2 ln(t)
dt

)

≤ nL3

(1− o(1))

(
π(x)

x2
− π(L3)

L6
+

2B

3 ln(L)

∫ x

L3

1

t2
dt

)

=
nL3

(1− o(1))

(
π(x)

x2
− π(L3)

L6
+

2B

3 ln(L)L3
− 2B

3x ln(L)

)

=
n

(1− o(1))

(
π(x)L3

x2
− π(L3)

L3
+

2B

3 ln(L)
− 2BL3

3x ln(L)

)
.
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The result follows by noting that

lim
x→∞

n(1 + o(1))

(
π(x)L3

x2
− π(L3)

L3
+

2B

3 ln(L)
− 2BL3

3x ln(L)

)
= 0.

Suppose a given ideal I ⊆ OK has prime ideal factorization I = p1p2 · · · p`,

where N(p1) ≥ N(p2) ≥ · · · ≥ N(p`). Note that these prime ideals are not necessarily

distinct, and that N(pi) = N(pj) does not imply pi = pj. Given an ordering of the

prime ideals in the factorization of I by norm, let Pk(I) = pk, with Pk(I) = Ok for

k > `.

Proposition 4. For any fixed positive integer k, the number of L3-smooth ideals

I ⊆ OK with N(I) ≤ x, for which N(Pk(I)) ≤ L1/3 is at most |S(x)|/L1.5+o(1).

Proof. Let B be the set of ideals in OK with norm at most x, whose prime ideal

factorization consists of at most k − 1 prime ideals, each with norm in the interval

(L1/3, L3]. Then the ideals that we wish to count, namely, the ideals I ∈ S(x) such

that N(Pk(I)) ≤ L1/3, are of the form JB, where J ⊆ OK is L1/3-smooth and B ∈ B.

The number of such ideals is exactly,

∑
B∈B

ΨK

(
x

N(B)
, L1/3

)
.

By Corollary 3.1.2 and (3.20), we have

ΨK

(
x

N(B)
, L1/3

)
=

S(x/N(B))

L1.5+o(1)
≤ cK(1 + o(1))x

N(B) L1.5+o(1)
=

x

N(B) L1.5+o(1)
,

with the last equality following from the fact that cK(1 + o(1)) = 1/Lo(1). However,

by (3.20) we have

|S(x)|
N(B)L1.5+o(1)

≤ x(1 + o(1))

N(B)L1.5+o(1)
=

x

N(B)L1.5+o(1)
≤ |S(x)|

N(B)L1.5+o(1)
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Thus,

∑
B∈B

ΨK

(
x

N(B)
, L1/3

)
=
∑
B∈B

|S(x)|
N(B) L1.5+o(1)

=
|S(x)|

L1.5+o(1)

∑
B∈B

1

N(B)

Considering just the sum
∑

B∈B 1/N(B) for a moment, we see that

0 <
∑
B∈B

1

N(B)
≤

1 +
∑

L1/3<N(p)≤L3

1

N(p)

k−1

≤

1 + n
∑

L1/3<p≤L3

1

p

k−1

.

Recalling that
∑

p≤x 1/p = ln ln(x) + B + o(1), where B ≈ 0.2615 [3, Thm. 1.4.2].

Hence,1 + n
∑

L1/3<p≤L3

1

p

k−1

=

(
1 + n

(
ln ln(L3)− ln ln(L1/3) + o(1)

))k−1

= (1 + 2n ln(3) + o(1))k−1

Since,

−(k − 1) ln(1 + 2n ln(3) + o(1))

ln(L)
= o(1)

we have,

(1 + 2n ln(3) + o(1))k−1 =
1

Lo(1)
,

which implies,

∑
B∈B

1

N(B)
≤ 1

Lo(1)
.

Hence,

|S(x)|
L1.5+o(1)

∑
B∈B

1

N(B)
≤ |S(x)|

L1.5+o(1)
.
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Proposition 5. For any fixed positive integer k, we have for a ∈ [1/3, 3] and I ∈

S(L3k), that the number of ideals J ∈ S(x), having the properties I | J , J is L3-

smooth, and N(Pk(J)) ≤ La is at most |S(x)|/(N(I) L1/(2a)+o(1)).

Proof. The following proof is very similar to that of the previous proposition. Let

a ∈ [1/3, 3], k ∈ N, and I ∈ S(L3k). Note that if N(Pk(I)) > La, the set of ideals

J satisfying the properties specified in the Proposition would be the empty set, since

I | J implies N(Pk(J)) > La. Therefore, we may assume that N(Pk(I)) ≤ La. Let B

be the set of ideals in OK with norm at most x, that are composed of at most k − 1

prime ideals, each with norm in the interval (La, L3]. Then the ideals that we wish to

count are of the form IHB, where H ⊆ OK is La-smooth and B ∈ B. The number

of such ideals is exactly,

∑
B∈B

ΨK

(
x

N(I)N(B)
, La

)
.

By Corollary 3.1.3 and (3.20), we the can make the same argument as that given in

the proof of Proposition 4 to show

ΨK

(
x

N(B)N(I)
, La

)
=

|S(x)|
N(B)N(I) L1/(2a) + o(1)

.

Thus,

∑
B∈B

ΨK

(
x

N(B)N(I)
, La

)
=
∑
B∈B

|S(x)|
N(B)N(I) L1/(2a) + o(1)

=
|S(x)|

N(I)L1/(2a) + o(1)

∑
B∈B

1

N(B)
.

As in the proof of Proposition 4, we will consider just the sum
∑

B∈B 1/N(B) for a

moment, and note that
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0 ≤
∑
B∈B

1

N(B)
≤

1 +
∑

La<N(p)≤L3

1

N(p)

k−1

≤

1 + n
∑

La<p≤L3

1

p

k−1

=

(
1− n ln(3) + n ln(a) + o(1)

)k−1

.

Since, (1− n ln(3) + n ln(a) + o(1))k−1 = 1/Lo(1), we have

=
|S(x)|

N(I)L1/(2a) + o(1)

∑
B∈B

1

N(B)
≤ |S(x)|

N(I)L1/(2a) + o(1)
.

Proposition 6. For any fixed positive integer k, the number of L3-smooth ideals

I ∈ S(x) such that Pk(I)2 | I, is at most |S(x)|/L
√

2+o(1) as x →∞.

Proof. Let k ∈ N. We begin by counting only those ideals L3-smooth ideals I ∈ S(x)

such that 1/3 < N(Pk(I)) ≤ L3 and Pk(I)2 | I. To do so, we partition the interval

(L1/3, L3] into disjoint intervals of the form (Lai−1 , Lai ], so as to employ Proposition

5. To do so, let T (i) = (ei−1L1/3, eiL1/3], for i = 1, 2, . . . , d(8/3) ln(L)e. Note that

T (i) ∩ T (j) = ∅ for i 6= j, and

d(8/3) ln(L)e⋃
i=1

T (i) =

d(8/3) ln(L)e⋃
i=1

(ei−1L1/3, eiL1/3] ⊇ (L1/3, L3].

Let ai = 1/3 + i/ ln(L). Note that,

Lai = L1/3+i/ ln(L) = L1/3e(i/ ln(L)) ln(L) = eiL1/3.

Hence, T (i) = (Lai−1 , Lai ]. Letting Lai = L3 for i = d(8/3) ln(L)e we have created

our desired partition.

Let A(i) be the set of L3-smooth ideals I ∈ S(x) such that Pk(I)2 | I and

N(Pk(I)) ∈ T (i). If I ⊆ A(i), then it must be the case that I is L3-smooth, I ∈ S(x),
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N(Pk(I)) ≤ Lai , and there exists a prime ideal p ⊆ OK with N(p) ∈ T (i) such

that p2 | I. Note that this is a necessary condition for an ideal to be contained in

A(i), but it is not sufficient. Hence, the set of ideals that satisfy the aforementioned

conditions actually contains the set A(i), however, these conditions allow us to employ

Proposition 5.

Let 1 ≤ i ≤ d(8/3) ln(L)e and p be a prime ideal such that N(p) ∈ T (i).

Since k is a positive integer, ai ∈ [1/3, 3], and p2 ∈ S(L3k), by Proposition 5 the

number of L3-smooth ideals I ∈ S(x), such that N(Pk(I)) ≤ Lai and p2 | I is at most

|S(x)|/(N(p2)L1/(2a)+o(1)). By summing over all prime ideals p with N(p) ∈ T (i), we

get

A(i) ≤
∑

N(p)∈T (i)

|S(x)|
N(p2)L1/(2ai)+o(1)

=
|S(x)|

L1/(2ai)+o(1)

∑
N(p)∈T (i)

1

N(p2)

Considering just the above sum for a moment, we see that

∑
N(p)∈T (i)

1

N(p2)
≤ 1

L2(ai−1)

∑
N(p)∈T (i)

1 ≤ n(Lai − Lai−1)

L2(ai−1)

=
n(L1/3Li/ ln(L) − L1/3L(i−1)/ ln(L))

L2/3L(2i−2)/ ln(L)
=

(
1

L1/3Li/ ln(L)

)
n(1− L−1/ ln(L))

L−2/ ln(L)

=

(
1

L1/3Li/ ln(L)

)
· n
(
L2/ ln(L) − L1 ln(L)

)
=

(
1

Lai

)
· n(e2 − e) (3.21)

Since n(e2 − e) = 1/Lo(1) we have,

A(i) ≤
(

|S(x)|
L1/(2ai)+o(1)

)(
1

Lai+o(1)

)
=

|S(x)|
Lai+1/(2ai)+o(1)

Next we note that a + 1/(2a) has a minimum value of
√

2 when a = 2/
√

2. Hence,

for i = 1, 2, . . . , d(8/3) ln(L)e, we have

A(i) ≤ |S(x)|
L
√

2+o(1)
.

48



Therefore, the number of ideals I ⊆ OK such that N(I) ≤ x, Pk(I)2 | I, and

N(Pk(I)) ∈ (L1/3, L] is at most

≤ d(8/3) ln(L)e |S(x)|
L
√

2+o(1)
.

Noting that d(8/3) ln(L)e = 1/Lo(1), we get

d(8/3) ln(L)e |S(x)|
L
√

2+o(1)
=

(
1

Lo(1)

)
|S(x)|

L
√

2+o(1)
=

|S(x)|
L
√

2+o(1)
.

Finally, we want to consider the number of ideals I ∈ S(x) such that Pk(I)2 | I and

N(Pk(I)) ≤ L1/3. Let C denote this set of ideals. By Proposition 4 we have

|C| ≤ |S(x)|
L1.5+o(1)

Hence, the number of L3-smooth ideals I ∈ S(x) such that Pk(I)2 | I, is at most

|C|+ |S(x)|
L
√

2+o(1)
≤ |S(x)|

L1.5+o(1)
+

|S(x)|
L
√

2+o(1)
=

|S(x)|
L
√

2+o(1)

(
1 +

1

L1.5−
√

2

)
.

The proposition follows by taking x →∞.

We are now ready to prove the lower bound. Let us restate our claim explicitly,

Theorem 1(b). (The Lower Bound) Let K be a degree n extension of Q, and let OK

be the ring of algebraic integers in K. Let Ω be the smallest integer such that the first

Ω terms of an ideal sequence generated by randomly and independently selecting ideals

with uniform probability from the set S(x) contains a square dependent subsequence.

Then for any ε > 0 the probability that Ω ≤ L
√

2−ε tends to 0 as x →∞.

Proof. Let x ≥ 2, and let ε > 0 be given. Suppose we have a sequence of ideals of

length [L
√

2−ε] drawn from S(x) that has a square dependent subsequence. Call this

49



subsequence D. We would like to determine the probability of such a subsequence

existing, and show this probability tends to 0 as x →∞.

We begin by supposing there is an ideal I in D that is not L3-smooth. Since

D is square dependent, there must exist a prime ideal p ⊆ OK with N(p) > L3 such

that either p2 | I or p | I and p | J where J is another ideal of D. However, by

Propositions 2 and 3 we know the probability that D has a term divisible by the

square of a prime ideal p with N(p) > L3, or two terms each divisible by p tends to

0 as x →∞. Hence, we may assume that each term of D is L3-smooth.

Let k ∈ N. Note that by Proposition 4, the probability that N(Pk(I)) ≤ L1/3

where I is a term of D is,

|S(x)|
L1.5+o(1)|S(x)|

=
1

L1.5+o(1)
.

As x →∞, this probability tends to 0. Therefore, for any k ∈ N and each term I of

D, we may assume that N(Pk(I)) > L1/3.

For ease of explanation, let Pr([L
√

2−ε]) denote the probability that a sequence

of length [L
√

2−ε] has a square dependent subsequence D. Then what we have just

shown is that in order for Pr([L
√

2−ε]) to not tend to 0 as x → ∞, it must be the

case that each of the ideals in the square dependent subsequence D are L3-smooth,

and the norm of any prime ideal divisor of an ideal of D must be greater than L1/3.

We will now give an additional necessary condition for a sequence of length [L
√

2−ε]

to have a square dependent subsequence D.

Let k ∈ N. Choose I0 ∈ D such that N(Pk(I0)) is maximal. By Proposition

6, the probability that Pi(I0)
2 | I0 for 1 ≤ i ≤ k is at most

|S(x)|
L
√

2+o(1)|S(x)|
=

1

L
√

2+o(1)
,

which tends to 0 as x →∞. Therefore, we may assume that P1(I0), P2(I0), . . . Pk(I0)

are distinct prime ideals of OK .

50



Since I0 is involved in the square dependency, we know that there are ideals

I1, I2, . . . , Ik of our sequence of length [L
√

2−ε], where we take Ij = OK for j > [L
√

2+ε],

such that P1(I0)P2(I0) · · ·Pk(I0) | I1I2 · · · Ik. Note that it may be the case that for

some j ∈ {1, 2, . . . , k} we have Pi(I0) - Ij for all i ∈ {1, 2, . . . , k}, that is, we may not

need k terms of our original sequence to obtain a multiple of P1(I0)P2(I0) · · ·Pk(I0).

However, we know that we need at most k terms from the original sequence by the

simple argument from linear algebra given in chapter 1.

So given a that our sequence of length [L
√

2−ε] has a square dependent sub-

sequence, for any k ∈ N we can determine a set of k prime ideals p1, . . . , pk with

L1/3 < N(pk) ≤ · · · ≤ N(p1) ≤ L3 and N(p1 · · · pk) ≤ x. From these prime ideals,

we deduced that our sequence must contain a (k + 1)-tuple I0, I1, I2, . . . Ik, such that

p1 · · · pk | I0 and pj | Ij for 1 ≤ j ≤ k. We will show the probability that D contains

such a (k +1)-tuple tends to 0 as x →∞. This will imply the probability that D has

a square dependent subsequence also tends to 0 as x →∞. We begin by determining

an upper bound on the number of (k + 1)-tuples of the form described above.

For a given k ∈ N, let Pk denote the set of all possible k-tuples of distinct prime

ideals p1, . . . , pk, such that L1/3 < N(pk) ≤ · · · ≤ N(p1) ≤ L3 and N(p1 · · · pk) ≤ x.

For a given k-tuple p1, . . . , pk of Pk, let F(p1, . . . , pk) denote the set of (k + 1)-tuples

M0, M1, . . . ,Mk ⊆ Ok where M0 = p1 · · · pk and M1 · · ·Mk is an ordered factorization

of p1 · · · pk, that is, p1 · · · pk = M1 · · ·Mk, where some Mi may be the entire ring Ok.

For a given (k + 1)-tuple (M0, M1, . . . ,Mk) ∈ F(p1, . . . , pk), let C(M0, M1, . . . ,Mk)

denote the set of (k + 1)-tuples I0, I1, . . . , Ik ⊆ OK such that Ii is L3-smooth, L1/3 <

N(Pk(Ii)) ≤ N(pk), and Mi | Ii for all i. Note that (k + 1)-tuples of this form are

exactly those whose existence is a necessary condition for our sequence D to have a

square dependent subsequence.

Hence, the total number of (k + 1)-tuples I0, I1, . . . , Ik ⊆ OK such that Ii is
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L3-smooth, L1/3 < N(Pk(Ii)) ≤ N(Pk), and Mi | Ii for 1 ≤ i ≤ k is

∑
(p1,...,pk)∈Pk

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

| C(M0, M1, . . . ,Mk) |. (3.22)

Let T (i) = (Lai−1 , Lai ] for i = 1, 2, . . . , d(8/3) ln(L)e, as in the proof of Proposition 6.

Then we can write (3.22) as

d(8/3) ln(L)e∑
i=1

∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

| C(M0, M1, . . . ,Mk) |.

Let 1 ≤ i ≤ d(8/3) ln(L)e. For any (k + 1)-tuple (M0, M1, . . . ,Mk) ∈ F(p1, . . . , pk)

we know that N(Mj) ≤ N(p1 · · · pk) ≤ L3k for 0 ≤ j ≤ k. Hence, by Proposition 5,

for 0 ≤ j ≤ k, the number of L3-smooth ideals I with norm at most x, having the

properties that Mj | I and N(Pk(I)) ≤ Lai is at most |S(x)|/(N(Mj)L
1/(2ai)+o(1)) for

0 ≤ j ≤ k. Hence,

∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

| C(M0, M1, . . . ,Mk) |.

≤
∑

(p1,...,pk)∈Pk

N(pk)∈T (i)

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

(
|S(x)|k+1

N(M0)N(M1) · · ·N(Mk)L(k+1)/(2ai)+o(1)

)

=
∑

(p1,...,pk)∈Pk

N(pk)∈T (i)

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

(
|S(x)|k+1

N(p1 · · · pk)2L(k+1)/(2ai)+o(1)

)

As was previously noted, there are ck ∈ N ordered factorizations of p1 · · · pk, where

ck is dependent only on k. Writing the constant ck as 1/Lo(1) we get,

∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

∑
(M0,M1,...,Mk)∈F(p1,...,pk)

(
|S(x)|k+1

N(p1 · · · pk)2L(k+1)/(2ai)+o(1)

)
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=
∑

(p1,...,pk)∈Pk

N(pk)∈T (i)

(
1

Lo(1)

)(
|S(x)|k+1

N(p1 · · · pk)2L(k+1)/(2ai)+o(1)

)

=
∑

(p1,...,pk)∈Pk

N(pk)∈T (i)

(
|S(x)|k+1

N(p1 · · · pk)2L(k+1)/(2ai)+o(1)

)

=

(
|S(x)|k+1

L(k+1)/(2ai)+o(1)

) ∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

1

N(p1 · · · pk)2

Let us consider just the sum for a moment. Note that,

∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

1

N(p1 · · · pk)2
≤

 ∑
N(pk)∈T (i)

1

N(pk)2

 ∑
Lai−1≤N(p)<L3

1

N(p)2

k−1

.

By (3.21) in the proof of Proposition 6 we have,

∑
N(pk)∈T (i)

1

N(pk)2
=

1

Lai+o(1)
.

Hence, ∑
N(pk)∈T (i)

1

N(pk)2

 ∑
Lai−1≤p<L3

1

N(p)2

k−1

=

(
1

Lai+o(1)

) ∑
Lai−1≤p<L3

1

N(p)2

k−1

.

Next we note that, ∑
Lai−1≤p<L3

1

N(p)2

k−1

≤

 n

Lai−1

∑
Lai−1≤p<L3

1

p

k−1

=
( n

Lai−1

)k−1 (
ln ln(L3)− ln ln(Lai−1) + o(1)

)k−1

=
nk−1 (ln(3)− ln(ai−1) + o(1))k−1

L(k−1)ai−1
,
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with the second equality following from the fact that
∑

p≤y = ln ln(y) + B + o(1),

with B ≈ 0.2615 [3, Thm. 1.4.2]. Since,

(k − 1)ai−1 = (k − 1)

(
1

3
+

(i− 1)

ln(L)

)
= (k − 1)ai −

(k − 1)

ln(L)
.

we have,

nk−1 (ln(3)− ln(ai−1) + o(1))k−1

L(k−1)ai−1

=

(
1

L(k−1)ai

)
ek−1nk−1 (ln(3)− ln(ai−1) + o(1))k−1.

Since ai−1 = 1/3 + (i− 1)/ ln(L) → 1/3 as x →∞, we have

ek−1nk−1 (ln(3)− ln(ai−1) + o(1))k−1 =
1

Lo(1)
.

Therefore,(
1

L(k−1)ai

)
ek−1nk−1 (ln(3)− ln(ai−1) + o(1))k−1 =

1

L(k−1)ai+o(1)
.

Putting this all together, we have

∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

1

N(p1 · · · pk)2
≤

 ∑
N(pk)∈T (i)

1

N(pk)2

 ∑
Lai−1≤p<L3

1

N(p)2

k−1

≤
(

1

L(ai+o(1)

)(
1

L(k−1)ai+o(1)

)
=

1

Lkai+o(1)

which implies,(
|S(x)|k+1

L(k+1)/(2ai)+o(1)

) ∑
(p1,...,pk)∈Pk

N(pk)∈T (i)

1

N(p1 · · · pk)2
<

|S(x)|k+1

Lkai+(k+1)/(2ai)+o(1)
.
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Next we will determine an upper bound for |S(x)|k+1/Lkai+(k+1)/(2ai)+o(1) which holds

for all 1 ≤ i ≤ d(8/3) ln(L)e. To do so we note that for any 1 ≤ i ≤ d(8/3) ln(L)e, the

expression |S(x)|k+1/Lkai+(k+1)/(2ai)+o(1) is maximized when kai + (k + 1)/2ai is mini-

mized. This occurs when ai =
√

(k + 1)/2k, giving a minimum value of
√

2k(k + 1).

Hence,

|S(x)|k+1

Lkai+(k+1)/(2ai)+o(1)
≤ |S(x)|k+1

L
√

2k(k+1)+o(1)
. (3.23)

for all 1 ≤ i ≤ d(8/3) ln(L)e.

All that remains is to sum (3.23) for all i. As was shown in the proof of

Proposition 6, d(8/3) ln(L)e = 1/Lo(1). Hence,

d(8/3) ln(L)e∑
i=1

|S(x)|k+1

L
√

2k(k+1)+o(1)
=

(
1

Lo(1)

)
|S(x)|k+1

L
√

2k(k+1)+o(1)
=

|S(x)|k+1

L
√

2k(k+1)+o(1)
.

The above gives us an upper bound on the number of possible (k + 1)-tuples whose

existence is required for our sequence of length [L
√

2−ε] to have a square dependent

subsequence. Therefore, by Proposition 1, the probability that our sequence of length

L
√

2−ε contains at least one of the desired (k + 1)-tuples is at most

L(k+1)(
√

2−ε)|S(x)|k+1

|S(x)|k+1L
√

2k(k+1)+o(1)
= L(k+1)(

√
2−ε)−

√
2k(k+1)+o(1).

Thus far, our choice of k ∈ N has been arbitrary, however, we should note that k can

be at most [L
√

2−ε], as the probability of having a ([L
√

2−ε] + 1)-tuple in a sequence

of length [L
√

2−ε] is obviously 0. Choose k ∈ N such
√

2k/(k + 1) >
√

2 − ε. To see

that such a choice is justified, note that

lim
k→∞

√
2k

k + 1
=
√

2.

In choosing k in such a manner, we see that

(k + 1)(
√

2− ε)−
√

2k(k + 1) = (k + 1)(
√

2− ε−
√

2k/(k + 1)) < 0
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Hence, the probability that our sequence of length [L
√

2−ε] contains at least one of

the desired (k + 1)-tuples, which is given by

= L(k+1)(
√

2−ε)−
√

2k(k+1)+o(1),

tends to 0. As noted previously, this implies the probability of our sequence of length

[L
√

2−ε] having a square dependent subsequence tends to 0 as well.
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