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ABSTRACT

This paper studies models of the chemical evolution of the Galaxy for a star formation rate proportional to
the square of the mass of gas. The first objective is to find analytic solutions to the gas mass and star mass for
time-dependent rates of gaseous infall onto the disk. The second objective is to compare these quadratic
models to models having linear star formation rates. I do this by comparing m(t), S(t), Z(t), S(<Z), and
r(*33U)/r(**®U) for comparison models that have the same initial disk mass, the same infall rate, and the same

final gas fraction.

Subject headings: abundances — galaxies: Milky Way — nucleosynthesis — stars: formation

I. INTRODUCTION

This study is motivated in part by the desire to find analytic
solutions to simplified models of the chemical evolution of
galaxies. Clayton (1984a, b) has discussed this general objective
and has provided many families of analytic solutions for the
physical case in which the rate of star formation is proportion-
al to the amount of gas available in the disk for star formation
(the linear model) while the total mass is being continuously
increased by metal-poor infall onto the disk. Those models,
constructed with the simplifying assumptions of constant
initial mass function and instantaneous recycling, provide a
useful parameter space for explicit evaluation of the common
tests of chemical evolution, which are described thoroughly by
Tinsley (1980) and selectively by Clayton (1984a, b).

The present study attempts the same thing for quadratic star
formation—a star formation rate proportional to the square of
the gas mass. This has been a popular point of discussion ever
since Schmidt’s (1959) study suggesting it as a result of his
analysis of the variation of star formation with height above
the galactic midplane. Although one cannot really argue that
the complicated star forming processes depend upon any single
power of the gas mass, a contrast between linear and quadratic
models at least increases understanding of the effect of nonlin-
earity upon the usual tests of chemical evolution. This com-
parison is another of the objectives of this work.

The search for analytic solutions to the quadratic case (as
well as higher powers) is only partially successful. I will
describe a successful generator of exact solutions to the gas
mass for selected families of infall rates. I find that one of these
families of analytic solutions also allows an analytic expression
for the mass of stars (or of total mass), so that the gas/star ratio
can be evaluated analytically. The parameter space of these
solutions can describe many physically different infall rates; so
this objective is achieved. However the metallicity Z(t) and the
concentrations of radioactive nuclei do not seem to also admit
of easy solutions. At least I have not found them. But their
evaluation by numerical integration is made easier by having
the star formation rate y(t) and the gas mass M(t) both
explicit known functions of time.

To compare these solutions with those of the linear model I
chose a linear star formation rate coefficient w, such that, with

identically the same infall f(t) and with the same initial disk
mass, the gas mass reaches the same final fraction. In this way I
compare exactly the same physical problem and boundary
conditions, except for the change of the star formation pre-
scription.

II. QUADRATIC MODELS

By quadratic models 1 imply a star formation rate that is
proportional to the square of the gas mass M4(t), which may
itself be thought of either as the gas mass of the total system or
as the gas in a solar annulus of a disk. Thus the stellar birthrate
W(t) = cM 42, where c is some constant. If the rate of mass infall
into the defined system is f(¢), and if the return fraction has the
value R, following Tinsley’s (1980) notations, then the gas mass
satisfies

dMg
dt

where I have assumed a constant initial mass function so that
R is a constant, and I have assumed instantaneous recycling so
that the fraction R is given back instantaneously. Letting the
constant k = ¢(1 — R) simplifies equation (1) to
M
—S = kMG +f. )
dt
It is additionally useful to define a constant w = kM, having
units of inverse time, where M, is an arbitrary measure of mass
which will, however, be taken to be the initial gas mass M, =
M ;(0) for this formulation. Then equation (1) reads
dMg )
— = —— Mg* + 3
e R 3)
which can be made more pleasing by measuring the gas mass in
units of the initial disk mass: m = M4(t)/M,. For then

dm_ S0

= —om

dt M,
is the general version of equation (1) in which all masses are
measured in terms of the initial mass. That is, m(0) = 1. The
constant w is, physically interpreted, the initial rate for con-

=—(1—=RWt)+f@, 1)

)
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verting gas to stellar remnants. The time scale for converting
gas to remnants is defined

1 1/dm

which has the value w initially, but is at later times moderated
by the factor m owing to the quadratic dependence of star
formation upon mass.

a) Generator of Analytic Solutions

There appears to be no general way of solving equation (4)
for arbitrary infall rate f(¢), in contrast to the case of the linear
model (e.g., eq. [4] of Clayton 1984b). However I have found a
way to generate useful analytic solutions. To do this one gives
up total arbitrariness of f(¢) and instead asks for simply par-
ameterized families of functions f(¢) that do admit of analytic
solutions. The solutions are then useful if the families of exact
solutions can, through the parameters scaling f(t), match f(¢) to
physically meaningful forms. I have previously (Clayton 1984a,
b) exploited this same philosophy in generating exact solutions
to the linear model.

The Ansatz that accomplishes this aim is to define

fO/My = m(t)g(t) (6)

where ¢g(t) is an arbitrary function of time, because then equa-
tion (4) is separable

d
=0+ g0l )

with solutions

t
1 =1+ owt— fg(t’)dt’ . (8)
m 0

It will be clear that higher mass dependences than quadratic
can be solved in the same way.

Any form of g(t) that is analytically integrable will yield an
analytic form for m(t) as well. Not all of these will be inter-
esting, of course. It is necessary to choose g(t) such that equa-
tion (8) does not vanish (m = o0). Such a runaway is easily
possible, as we will see for a specific useful choice, because
equation (6) warns us that the Ansatz chosen requires that
when m increases, the infall increases in proportion to m?
unless g(t) is such as to cut it down. Furthermore, the inter-
esting choices for g(t) will lead to functional forms m(t) and f(¢)
that decline smoothly toward zero after first experiencing a
single maximum.

A form for g(t) that accomplishes these objectives is

A n
g(t) = wf([_*__A> ) 9)

where n is a positive integer and A is an arbitrary time par-
ameter. The notation w, for a parameter that measures the
strength of the infall at t = 0 comes from noting that at r = 0,
when g = w, and when m = 1, equations (4) and (6) lead to the
limit

1 dm

——— -0+ o;

— (att=0),

(10)

so that w represents the initial time scale for remnant forma-
tion and w, represents the initial time scale for increasing the
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mass of the system by infall. For the gas mass to grow initially,
one wants w, > w. Forn = 1, 2, 3, ... the solutions of equation
(8) are:

t+ A

=l+wt—wAln (n=1) (11)

|~

and

1_ oA _A
m—1+wt—n_1[1—<[+A> } n>1). (12)

These solutions m(t) also yield the infall rates for which m(t) is
the exact solution: namely,

f@_ Ay

M, (t)wf<t+A> :
Many other forms for g(t) will generate simple exact solutions
[e.g., g(t) = w, exp (—t/T,) or a polynomial in ¢ that decreases
to zero and remains zero thereafter); however, I find equation
(9) to be adequate for a study of the observable differences
between quadratic and linear star formation. In fact, in what
follows I make the specific choice n = 2, not only because it
still allows two free parameters but also because it will allow
analytic solution of the remnant star mass S(t).

b) Casen =2

With the choice n =2 we have g(1) = o [A/(t + A)]* and
equation (12) can be written more simply

(13)

t
=1+a)t—wa<t+—A> (n=2) (14)

flo) A \? t -2
Fo—a)f<m> |:1+wt_wa<t+A>:| . (15

The function m(t) begins at m(0) =1 and increases to a
maximum at t,,, = A[(w,/w)"> — 1], whereafter it declines
smoothly toward zero. This physically desired behavior
requires that the parameters not be chosen such that the right-
hand side of equation (14) can vanish. From equation (14) it
follows that

|-

and

(1 + o)t +A) —w;A#0 (16)

is a condition that ensures that m does not run away to infinity.
Because the vanishing of equation (16) would require infinite
mass at t equal to

t, =Qw) {—(1 + wA — v A)
+ [(1 + A — 0, A)P? — 4Aw]"?}
we see that ¢ cannot lie on the positive real axis unless both
14+ 0A—-—w,A<0 (17a)
and
(1 4+ wA—w,A)P?>4Ao. (17b)

Thus w, w,, and A should be chosen such that the conditions of
equation (17) are not both satisfied.

Figure 1 shows two examples from the large space spanned
by these parameters. Both m(t) and f(¢) are displayed there for
the same choices, @ = 0.3 and A = 4 (in units 10° yr), but for
two different values of o, = 0.8 and 1.0. For both choices of w,
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Fi1G. 1.—The functions f(t) and m(t) shown for two different values of the
initial infall rate, w, = 0.8 and 1.0, computed for the parameters w = 0.3 and
A =4 Gyr. Both f and m rise, for these choices of parameters, to a single
maximum and then decline smoothly toward zero. For the case v, = 0.8 the
star mass S(t) is also shown. This model is the one used for comparison with
the linear star formation model.

the first condition of equation (17) is satisfied but the second is
not; therefore, the mass does not diverge. Figure 1 shows that
m(t) and f(t) both rise to a maximum and then decline, a rea-
sonable possibility for galactic growth. Although w, = 1.0 only
barely exceeds w, = 0.8, the curves m and f show much more
pronounced peaks. The choice A = 4 causes t,,,, = A[(w,/w)'?
—1]=33 for w, = 1. It is immediately evident that other
choices of these free parameters would enable one to shape f(¢)
according to one’s wish, so that the family of solutions n = 2 is
not very restrictive.

Another interesting feature of n = 2 families is that the mass
S(¢) of stellar remnants can also be expressed analytically. It is

S() = f (L= R(t)dr
()]

t
= f wm*(t)dt'  (in units of M)
0
x x2dx
= wA 5 7
1 [0AX* 4+ (1 — wA —w,;A)x + 0w, A]
t+A
X=—. (18)

This integral is found in standard tables, but its form depends
upon the discriminant of the quadratic polynomial
X =ax*+ bx + ¢ in the denominator. For those choices
leading to large integrated infall, the discriminant
b* —4ac <0, where b=1— wA —w,;A, a=wA, and ¢ =
w;A. This discriminant is, for example, negative in both
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cases shown in Figure 1. If b> — dac < 0 the solution is, with
x = (t + A)/A,

(b2 — 2ac)x + be 3 b? — 2ac + bc N dac
(4ac — bHX (4ac — b?) (4ac — b?)3?

2ax + b tan- ! 2a+b :|

8 [tanl (dac— b2 " (dac — b3

(19)

This solution is also shown in Figure 1 for the case w, = 0.8.
The value of S at t = 15 has risen to 5.73 (in units of M),
whereas m has fallen to m = 0.336, giving a total galactic mass
of 6.06. The gas is 5.56% of the total mass at that time. I will
later use this as a model of the solar neighborhood today. For
the case w, = 1, on the other hand, S rises to 30.14 at t = 15,
and m falls to 0.427, so that the gas is only 1.40% of the total
mass at t = 15 in that model. For both of these examples,
however, the infall has increased the total mass by a large
factor. For those interested in numerically exploring this par-
ameter space, I list in Table 1 a program in Microsoft Basic to
calculate these quantities for t = 1 to 15 for either sign of the
discriminant b? — 4ac and for any choices of the DATA o, Wy,
A. One need only be sure that both of conditions (eq. [17]) are
not satisfied by the choices w, w, A.

For linear models Clayton (19844, b) was able to find exact
analytic solutions not only for f(t), m(t), S(t), but also for the
metallicity Z(t) and for the radioactive “remainders” r(t) =
Z;(t)/Z(¢). The differential equation is in general

iz _ YO /(1)
a -7 =R M(t) M)’

where 4 is the radioactive decay rate and Z is the value of Z in

S(t) =

—iZ—(Z—-2Z,) (20)

TABLE 1
BASIC PROGRAM FOR f, m, S

10 READ W,WF,DEL
20 DATA 3,84

21 A=W*DEL

22 B=1-W*DEL—WF*DEL

23 C=WF*DEL

24 D=B"2—4*A*C

25 P=(—B+(ABS(D)) .5)/(2*A)

26 Q=(—B—(ABS(D)).5)/(2*A)

27 TMAX=DEL*(WF/W)"5—1)

30 LPRINT “for w=";W;“wf=";WF;“Del=";DEL;" t(max)=";TMAX
35 LPRINT “a=";Ab=";B,"c=";C,"b 2—4dac=";D,"p=";P,"q=";Q
40 FOR T=1 TO 15

45 X=(T+DEL)/DEL

47 Y=A*X"2+B*X+C

50 M=(1+W*T+C*1/X—-1) -1

55 F=WF*M/X)2

60 S1=(2*A*C—B 2)/D*X/Y —1)—B*C/D*(1/Y —1)

61 IF D<0 GOTO 67

65 S2=—2*A*C/D" 1.5*LOG(ABS((X — P)/(1 — P)/(X — Q)*(1 — Q)))

66 GOTO 70

67 PHI=ATN((2*A + B)/SQR(—D))

68 S2=4*A*C/(— D) 1.5%(ATN((2*A*X + B)/SQR(—D))— PHI)

70 S=S1+8S2

75 LPRINT “t=";T m=";M“f="F“S=":S*M_,=":S+M

77 LPRINT

80 NEXT T

85 LPRINT

90 END
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the infalling matter (which I again take to be Z, = 0 in this
study). For the quadratic models this becomes

dz

L om(t) — AZ — (Z — Zm(t)g(t) ,
an equation that I have been unable to solve, either for the
n = 2 family discussed here or for other functional forms for
g(t). In making the usual tests of galactic evolution, therefore, I
have integrated this equation numerically, which is a trivial
task since m(t) and g(t) are known functions of ¢.

21

III. COMPARISON WITH LINEAR MODEL

The next purpose of this paper is to compare observable
quantities of galactic evolution for the contrasting cases of
quadratic and linear star formation. At first sight this seems, to
some astrophysicists, hopeless. For one thing the form of f(z) is
not known for our Galaxy; and if it were, one would simply
integrate everything numerically. For another thing, the
assumptions of these models—instantaneous recycling, con-
stant initial mass function, no radial mixing—may be violated.
And on top of this, star formation is a complicated physical
process involving different phases of the ISM and pertur-
bations of those phases, so that its rate probably cannot be well
represented by any fixed power of the gas mass. But I argue
that these caveats do not devalue the physical insights that
result from comparing two models

Because so many quantities depend strongly on the relative
masses of stars and of gas, the most meaningful comparison
would seem to be between linear and quadratic models that
today have identical gas fractions by mass. Furthermore,
because the infall rate f(¢) is a given of the circumstances of
galaxy formation, even though it is not known, the comparison
should be between linear and quadratic models subjected to
identically the same infall. For the quadratic model of the
comparison I take the w, w,, A = 0.3, 0.8, 4 solution that was
shown in Figure 1. The function f(¢) shown there and expressed
by equation (15) is also taken to be the infall rate for a linear
comparison model of galactic evolution. For that linear model
(1 — RW(t) = w,m, rather than wm? so that I found by
numerical integration of equation (1) the linear conversion rate
w,; and the gas mass m,(t) that also produces m, = 0.336, or
5.6% of the total galactic mass, at ¢t = 15. That value is w, =
0.2385 (in contrast to w = 0.3 to achieve a final 5.6% for m in
the quadratic model). These then are the comparison models,
one quadratic with w = 0.3 and one linear with w,; = 0.2385,
but both yielding m = 0.336 at t = 15 after evolving from
m(0) = 1 with the same infall rate f(¢). Figure 2 shows f(¢) on an
expanded scale [the same f(t) as in Fig. 1], as well as the rate
for forming stellar remnants in the comparison models. The
star formation rate wm? in the quadratic model has a peak
value almost twice as great as the corresponding rate, w,m;, in
the linear model; but in the latter half of the galactic lifetime,
the star formation rate in the quadratic model is only about
half of the star formation rate in the linear model. (Note that
because the final star mass at t =15 is S =5.73 for both
models, the areas under the two star formation curves are
equal.) Thus a first conclusion of the comparison is that if the
solar neighborhood evolved via quadratic star formation the
stellar birthday spectrum is older than if it evolved by linear star
formation. Or stated somewhat differently, the fraction of dwarf
stars that are young is greater if the star formation was linear.
Figure 2 shows the differences to be appreciable. However, this
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um? = (1-R)Y,

w,m; = (1-R)Y,

Lo’y

F1G. 2—The infall f(t) is the same as in Fig. 1. The rates for forming stellar
remnants are shown for linear and quadratic models that both achieve 5.6%
final gas mass and a final total mass that is 6.06 times greater than the initial
disk mass. The quadratic star formation rate is earlier. Shown also is
[Z] = Z(1)/Z(15) for both models, showing that the quadratic model growth is
faster at early times.

result does depend upon properties of f(r)—that it peaks rela-
tively early and has declined to a low value (relatively) today.
To see that this is the case, one need only consider the limiting
case of constant infall matched by constant star formation; for
in this case the distribution of dwarf ages would be flat,
whether the star formation were linear or quadratic. It is only
when m(t) is in fact time-dependent that the dwarf ages must
concentrate more toward the peak of m(t) in the quadratic case.

To compare the metallicity Z(t) with age between the two
models, I numerically integrated equation (20) for the linear
model, with (1 — R ,(t)/M4(t) = w,, and equation (21) for the
quadratic model. These results are also displayed in Figure 2.
Here we see that [Z,], defined as Z,(t)/Z,(15), initially grows
more rapidly for the quadratic model than does the corre-
sponding solution for the linear model. This again is no sur-
prise and can be stated as a second conclusion of the
comparisons; namely, because nucleosynthesis has a larger
early/late proportion for the quadratic model, that model also has
a larger early/late proportion in the growth of Z(t) than does the
linear model. However, one again sees by considering the con-
stant infall and star formation counterexample that this con-
clusion depends on the shape of f(t), because in that example
with constant f(t) the functions Z(t) grow at exactly the same
rate in the two cases.

The number of stars S(< Z) having metallicity < Z is not so
obvious, however. Figure 3 shows that the linear model has a
greater percentage of low-Z stars than does the quadratic model;
even though the star formation occurs earlier in the quadratic
model, the larger early metallicity of the quadratic model more
than compensates in the function S(<Z). The difference is,
moreover, potentially observable, because in the range near
[Z] = Z/Z(15) ~ 0.2, near the lower end of the Population I
distribution, the percentages S(<0.2) differ by a factor of 2.
Both models, by the way, have many fewer low-Z stars than
does the closed model with no infall. So either model helps
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(2] = 2/2(15)

FIG. 3.—The fraction S(<Z) of stars that formed with metallicity <Z is
shown for both comparison models as a function of [Z] = Z/Z(15). The quad-
ratic model has a smaller percentage of low-Z stars.

solve “the G-dwarf problem,” but the quadratic model does it
more effectively. Before this test can be used, however, it will be
necessary to know with conviction the exact primary cause for
the paucity of low-Z dwarfs—initial metallicity, infall, variable
IMF, metal enhanced star formation, or some complicated
combination of these or other causes.

Another possible test of the difference between linear and
quadratic star formation lies in nuclear cosmochronology. I
will here concentrate on 233U (A = 0.972) and 2*%U (1 = 0.154).
Equations (20) and (21) were integrated numerically for both
values of A. The straightforward difference can be seen in the
235U “remainder ” at t = 15, defined as the ratio of its actual
concentration to the concentration it would have had were it
stable: 1(t) = Z,(t)/Z ;- o(t). For the quadratic model of Figure
1 the final remainder is r,;5(15) = 0.0508. In contrast, the cor-
responding (w,; = 0.2385) linear model reaches r,;5(15) =
0.0913, a value almost twice as great. That difference is, in
principle, measurable. The chronometric information must
usefully be expressed as the ratio of the 233U remainder to that
of 238U, however, because the absolute production of 235U is
too difficult to calculate with sufficient confidence to predict
the abundance 233U would have were it stable. The relative
production rates can be calculated with greater confidence,
although even that ratio remains too uncertain to fix the galac-
tic chronology absolutely. But Figure 4 shows the remainder
ratio r,35(t)/r,35(t) for both linear and quadratic models. Also
shown is the horizontal band r,;5(tg)/r235(to) = 0.22 + 0.03
that is believed (see Clayton 1984q, b for discussion of this
ratio) to have been applicable to the solar neighborhood at the
time t of solar formation. The linear model passes through
the center of that band at ry = 12.5, whereas the quadratic
model does so at t; =9.0. This may be stated as another
conclusion for this f(t): the Galaxy appears to be 3.5 billion
years older in the linear model than in the quadratic model. Tt
matters little, stated this way, that the correct value for
r235/T238 15 unknown because the production ratio y,;s/y,3s is
uncertain, because, whatever the correct production ratio,
whatever the correct horizontal value for the ratio of remain-
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ders, the quadratic model passes through it several billion
years earlier than the linear model does.

A related remark applies to the extinct radioactivities (e.g.,
107pq, 1297 244pyy). Their remainders measure the ratios of
their average concentrations in the solar annulus to the con-
centrations they would have had were they stable. These
remainders are commonly estimated as the ratio t/T of the
radioactive lifetime to the age of the Galaxy, an exact result for
a closed linear model. Clayton (1984a) showed the ratio t/T to
be too small by a factor (k + 1) in his analytic standard linear
models with continuing infall; but Clayton (1984b) showed
that if infall ceased at some distant past time, the underestimate
is not as great. It is of interest in this context to see what the
present comparison models yield. Evaluated at T = 15 they
give

'+ 135¢T

Fi=o0

(linear model)

= 0.726t/T (quadratic model) .

This comparison, important to such astrophysical issues as the
1291/127] ratio, yields a final conclusion: the concentrations of
extinct radioactivities are roughly half as large if star formation
has been quadratic than they are if it has been linear.

IV. CONCLUSION

The comparisons between linear and quadratic star forma-
tion have been performed for the identical infall rate f(¢) given
by equation (15) with w, w,, A =0.3, 0.8, 4. The new exact
solutions of quadratic models presented in this work allow this
infall to be easily identified with analytic forms of m(t) and S(z)
that show 5.6% gas at t = 15 billion years. The linear star
formation model having rate w, = 0.2385 also gives 5.6% gas
at t = 15 with the same infall rate. Both models started with a
gaseous disk that was 16.5% of the total final mass at t = 15.
The models thus provide exact physical comparisons between
star formation rates proportional to first and second powers of
the gas mass.

The comparison has been made for an infall f(¢) that is

r(235U)

r(238U)

6 8 10 12 14
tao® yr

F1G. 4.—Ratios of residuals for uranium isotopes. The band 0.22 + 0.3 is
the most likely value at the time of solar formation (Clayton 1984a, b). One
sees that whatever the exact ratio, the quadratic galaxy is several billion years
younger than the linear model.
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concentrated into the first half of the galactic lifetime, fully
80% of the infall having occurred by ¢t = 4. Infall still occurs
today in this example, but only at a rate so slow that 84 billion
years would be required at that rate to add an amount equal to
today’s gas mass. So the infall has almost ceased in the example
comparison. I emphasize this because the conclusions drawn
are valid only for an infall rate having these general features. A
model at the other extreme, infall occurring at a constant rate
that just balances a constant rate of star formation, would
show no distinctions between linear and quadratic star forma-
tion. Nonetheless, the conclusions drawn from the comparison
are of physical interest, because a sizable augmentation of the
disk mass after star formation has begun in the disk but in the
first several billion years is quite plausible. With that

CLAYTON

restriction upon f(t), the major results of the comparison are as
follows:

1. The average dwarf age is greater in the quadratic model.

2. The metallicity Z(t) grows initially faster in the quadratic
model.

3. The quadratic model has a smaller percentage of low-Z
dwarfs.

4. The 235U/?3%U isotopic ratio indicates a younger quad-
ratic model.

5. The concentrations of extinct radioactivities are smaller
in a quadratic model.
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