

21

Figure 13: Shows the mounting of the monitors onto the robot.

2.7 Workstation Control

A standard PID controller was used on every panel. The position, integral and

derivative gains were tuned for each motor. For the case of the motors with harmonic

drives, a voltage limit was established and the proportional gain of the controller was set

to a large number to ensure that full speed was used the majority of the time and only at

the end of the cycle would the drop in voltage and therefore speed take place. With the

relatively slow speeds, tuning of the controller for each of these panels was

straightforward and transients are not a major issue. The other three motor controllers

were further developed to flow with these motors, but not to reduce the effectiveness of

their speed.

The control computations were performed in real time using a Pentium PC, with

I/O achieved via a commercial ServoToGo interface board. The input signals were

22

amplified by commercial Techron LVC 623 amplifiers. The overall control structure is

shown in Figure 14.

Figure 14: System control structure

The controllers were implemented on a PC with an Intel Pentium 4 Processor,

operating at 2.86Hz, running QNX 3.2.1 real-time operating system. In this environment,

QMotor 3.22 allows the user to achieve real-time control response [8], [27]. The control

algorithm was written in C++. This platform was used because it was simple to perform

tasks such as data logging and online gain tuning using Qmotor (Figure 15). The software

also allows the user to easily swap between different control modes. The system was

initially operated in a set point mode moving between fixed pre-set configurations but

eventually was converted to full trajectory control.

23

Figure 15: Screen Shot of QMotor and the C++ Skeleton Program (blue screen)

Below, Figure is a labelled image to show how AWE appears from the front and at the

base. In this image there are eight IR sensors. The label is to the right of one and to the

far left of another. See Figure 33 for a more detailed look at the IR sensors. The Base

contains the Control PC which runs the Qmotor progam and sends signals to the control

box (Figure) which sends them through and inverting opamp to protect the computer.

The User PCs control the three screens shown in the frontal view. Figure shows the

control box it sends signals through the digital to analogue channels to the operational

amplifier to the amplifiers, reads in the IR sensor values through the analogue to digital

channel, reads the encoder values through the encoder channels and sends a voltage to

both the amplifiers and the IR sensors.

24

Figure 16: Overall Image

Figure 17: Control Box

25

2.8 Construction and Testing

The base (Figure 1) was put in using forklifts because each block weighed around

three hundred pounds.

Figure 18: Concrete Base

From this strong foundation, some of the motors and panels were tested. Shown in

Figure 1 are motors 1 through 5. In Figures a and b, motors 4, 5 and 8 are being used.

Motors are numbered from 1 through 8 from the concrete base up. Each motor can move

the panel above it to change the configuration and adapt to the user’s needs. Figure 1,

below, shows a configuration similar to the rest configuration as was depicted in Figure

2. It is moved slightly from this, almost into a composing configuration.

26

Figure 19: Front view of AWE

Figures 20: Two possible configurations for AWE (three panel)

27

The gains for each motor needed to be set. Table 1 shows the maximum speeds

that the motors assemblies allow. The motor assemblies 0 through 4 and 7 all use the

same motor. The different max voltage to each motor is because the input torque allowed

by the harmonic drive attached to the motors differs.

Motor Assembly Number 0 1 2 3 4 5 6 7

Max Voltage to Motor (V) 3.87 6.11 6.11 7.13 7.13 36 24 15

Max Output Speed (rpm) 1900 3000 3000 3500 3500 2650 8380 6270

1. Table 1: Voltages and speeds for each motor

28

CHAPTER THREE

AWE MOTION PLANNING AND MODES OF USE

The following Chapter will introduce the motion planning and the typical

configurations for use. These combine to allow the user to spend less time worrying

about how the wall should get from one place to another and the general shape it should

be in when it finishes and allows them to concentrate on the work that they find

important.

3.1 Motion Planning

Because of the redundant nature of the AWE wall robot, there are many possible

path choices that need to be evaluated. The robot will not necessarily choose the path

without an obstacle, with the shortest distance, or with the least torque. It needs to be

told what criteria to choose its path based upon. The following section will explain how

we have chosen to our criteria. The first division shows how we coordinated the sections

and explains why we have chosen this method. The second explains the testing we have

done to make sure that the criteria meets our torque limitations.

For real-time motion planning of AWE, we adopt the resolved rate approach [33],

[38] based on a conventional Jacobian-based model

[()]J=x q q&& (1)

29

where q is the 8 1× vector of joint (panel) angles, q& their time velocity, x& is a

(given) 1m× task space velocity (x defined variously for different AWE modes of

operation, as discussed below) and []J is the corresponding AWE Jacobian.

The key novelty of the AWE redundancy resolution problem is in the nature of

the task spaces and tasks required of the “robot-wall” (i.e. (,)x x&) rather than the structure

of []J . Note that for the current AWE hardware implementation, the unconstrained

structure behaves kinematically as a planar serial rigid-link mechanism. Therefore

elements of the rows of []J corresponding to the task space of the
thk panel

[, ,]T
k k k kx y φ=x are easily established as

1

1
1 1

1

2
1 1

3

() sin()

() cos()

() 1
(1,..,)

jk i

i j k
j k

jk i

i j k
j k

i

J a q

J a q

J
i k

− +

= =

− +

= =

= −

=

=
=

∑ ∑

∑ ∑

q

q

q

In the above, the variables (,)k kx y are the coordinates of the tip of the thk panel,

in a coordinate frame (Fixed at the base of the AWE wall) having its z axis aligned with

the panels and its y axis vertical. The variable kφ represents the orientation of the

thk AWE panel (defined in the (,)x y plane perpendicular to the AWE panels and

30

measured counterclockwise from the horizontal x axis of the above fixed frame). The

parameter ja is the known side height (vertical dimension) of the thj AWE panel.

Therefore the Jacobian elements corresponding to tasks described in any of the

AWE panel coordinates kx are readily available and easily computable. The key issue is

how to exploit this information to achieve the desired motion of AWE for its various

tasks.

An unusual aspect of the AWE application is that complete regulation of the “end

effector” (tip of the AWE wall) position/orientation is rarely the primary consideration.

More typically, positioning/orienting of screens more proximal to the base represents the

primary task and only orientation of the tip (to, for example, direct lighting on to screens

or users) is of primary concern at the tip. Positioning of the final (and other) panel(s)

therefore becomes a subtask in the redundancy resolution. This is in contrast to the usual

serial-link redundancy resolution problem in the literature, where the end effector (tip)

task is primary and the body motion secondary, to the problem. An additional novel

feature of AWE is the ability of the panels to connect to the side rails and slide vertically.

This allows the system to reconfigure into a large number of partially constrained (but

still kinematically redundant) systems.

 To encode these requirements in a consistent form and to include other task

constraints (such as use of the vertical tracks discussed in section II) the task space vector

x in (1) is selected as (the non-zero elements of)

[]S=x x%

31

where []= 1, 8x xx% and the (24 24)× matrix [] ()iS diag s= . The Task Selection

matrix []S encodes the different modes of AWE operation and transitions between them.

A non-zero element is in []S indicates a specific primary task requirement for the

corresponding element of x% in the current AWE mode. For example, for the

“Presentation” mode (Figure 23) the non-zero elements of []S will include

4 5{ , }s s (representing tip position of panel 2, the “base” of the screen) and 9 12 15{ , , }s s s

(representing the orientation constraints on panels{3,4,5} , required to keep the screen

vertical). For modes incorporating the vertical rails, the corresponding non-zero elements

of []S will fall in the set 1 4 7 19 22{ , , ,.... , }s s s s s (representing the constraints on the

horizontal (x) directional motion of the panels pinned by the rails). Transitions between

AWE modes are accommodated by smooth (time) trajectories of the is , to and around

zero. Note that this enables smooth transition between the structural changes in (1)

required as the task space of AWE changes between modes.

Given a selection of x as above, real-time trajectory planning is achieved via

iteratively updating the nominal panel joint velocities q& (and hence the controlled input

positions q via numerical integration) in (1) based on the iterative algorithm

[()] []J I J J+ += + −q q x ε& & (2)

32

where []J + is a (right-sided) generalized inverse of []J (For example

1[] [] ([][])T TJ J J J+ −= , the Moore-Penrose inverse) and the 8 1× vector ε is arbitrary, to

be selected according to the particular redundancy resolution scheme adopted (below).

The vector ε tunes the “self-motion” term []I J J+− ε which exploits the redundant

degrees of freedom for subtask performance after satisfying the primary task given by x&

[33], [38].

The above redundancy resolution scheme for AWE affords a number of

alternative implementations. Ultimately, we envision the task space input x& to be largely

directly input by the user(s) via proximity sensors (desired motion orthogonal to panel

with sensor, speed proportional to proximity of users closest body part). We also plan to

experiment with alternative input devices such as joysticks and Wii input devices.

However, at the present time we generate the task space velocities via simulation (next

section) and send the resulting joint variable information to the controller in real time.

For the subtask performance (i.e. selection of ε) numerous approaches have been

established in the literature [33], [38]. Currently, for the five-panel version of AWE in

operation, we adopt the gradient projection approach introduced by Yoshikawa [45]to

configure AWE closest to a pre-assigned desired configuration, subject to satisfying the

primary task constraints. See the discussion in the following section.

3.2 Modes of Use typical for AWE

Given the physical wall (Chapter 2) and its underlying motion planner which is

mentioned above, the natural question arises: how should the system present itself to and

33

interact with, its users? In this section we review a basic set of “modes” for the wall and

introduce and describe new sensor-based movement strategies for it.

There are six fundamental modes of use for the wall that the AWE team

ultimately concluded should form the basis for its operation. Each of these modes was

extrapolated from the results of a study conducted by the Sociology and Psychology team

members [14]. The specific details of the modes were synthesized via group discussion.

Each of the eight modes is envisioned to be used as a base configuration for a given type

of activity involving the wall. Movements close to and between the base modes are

supported by the creation of 7 distinct dedicated reference configurations, introduced in

this Chapter. Each of these dedicated reference configurations is inspired by biology

(Figure 2) and is used to guide the robot from one configuration into another smoothly,

while creating a distinctive “shape profile”.

The first mode that AWE uses is the wall-like mode introduced in Chapter 1

(Figure 2). In some cases, depending on the number of panels employed and the height

of the ceiling, the wall will conform to the ceiling forming an upside down “L” as shown

in Figure 21. This is convenient because now the lighting that is included in more distal

sections can be used to light up the entire room when the robot wall is not in use.

34

Figure 21: Wall configuration to make allowances for ceiling height

Figure 22: Enclosed Composing

A second mode that AWE uses is the composing mode. This was shown in a

collaborative environment in Chapter 1 in Figure 3. An alternate composing mode is

shown in Figure 3. It shows a much more enclosed space. The inclusion of this mode is

due to the needs established by the sociology study mentioned earlier [14].

35

The next configuration is the presentation mode. This allows the user access to a

flat set of panels that a white screen peripheral could be placed on and projected onto.

Lighting will be particularly important in presentation mode (Figure 23).

Figure 23: Presentation mode

There are two gaming modes. One allows for a fellow gamer to be near the other

person (Figure 24) and the other allows the other user to have an alternate task type

(Figure 25). We believe these to be of value because they enable non collaborative

multiple user functions which are often desired for a single room gaming environment.

36

Figure 24: Gaming mode, possibility of two gamers

Figure 25: Multi-user mode, allows for two different task types

As AWE grows and develops more of these tasks can be accomplished. As you

can see in Figure 26, the work environment began at its simplest as a very short wall. It

has grown into a fully controlled 5 panel segment with screens, sensors, and a desk area

around it. Shortly after the completion of this thesis we intend to add the last three panels

to finish the progression and utilize its full potential.

37

Figure 26: Stages of the prototype

38

CHAPTER FOUR

EXPERIMENTS

4.1 Simulation Experiments

In this section, we present the results of simulations of the motion planning

approach outlined above. One of the novel aspects of the AWE wall is the class of tasks

required of it in the intelligent workspace environment. In particular, unlike most

previous applications of kinematically redundant systems, the primary task is not usually

specified by motion of the most distal (“end effector”) element. For this application,

typically the primary task is more proximal to the base and the tip motion forms part of

secondary tasks. This makes the motion planning particularly interesting.

For example, one envisioned mode for the Animated Work Environment is

presentation. A screen attachment will be unfolded from an upper panel to provide the

background for the presentation images (Figure 23). A light from the top of the AWE

wall may be desired to highlight an object the speaker is talking about, or it may highlight

the speaker. None if this is in itself particularly novel and can be achieved in a typical

presentation environment. However, what if the speaker begins to pace? They may

remove themselves from the light. People may not be able to see them as well. They

typical presentation environment remains essentially static.

The AWE wall, as a robotic workstation, can adapt to the user. It will follow the

speaker (guided by information from its sensors), maintaining its relative orientation and

continuing to optimally illuminate them. Note that in this mode, the wall must not only

39

hold the lighting on the speaker, but also hold the screen in its orientation so that the

audience may pay attention to what has been written as well. We provide an example of

this behavior in the simulation results below.

For these simulations we used the Jacobian pseudoinverse-based model (2).

Different versions of the Jacobian (corresponding to different modes for the wall, as

discussed in the previous section) were selected for the different experiments. The

simulation, written in C++, includes the hardware joint limit constraints and singularity

checking. They use the assistance of the Blepo computer vision library which is based

upon the GNU library but written for windows [6].

The first experiment shown here has 4 panels constrained, corresponding to the

presentation mode discussed above (Figure 23). Panels 3, 4, 5 and 8 are all (partially)

constrained. Panels 3, 4 and 5 need to maintain their orientation – but not position – to

maintain the screen orientation and panel 8 must retain its relative orientation to maintain

the lighting task. This leaves panels 1, 2, 6 and 7 and the remaining degrees of freedom of

panels 3, 4, 5 and 8 free to move around while holding the other panels in their original

orientation. The constrained elements in the task space (with corresponding rows

included in the Jacobian in (2) and components of x& set to zero in (2)) are the third

elements of 3 4 5 8{ , , , }x x x x . Thus the overall task is four-dimensional, resulting in a

degree of redundancy of four in the eight degree of freedom wall.

The results of this experiment are shown in Figure 2. Two motions are shown,

corresponding to two desired orientations of the screen (the straight segment centrally

located) and (simulated) movements of the speaker (regulating the movement of the top

40

panel). It can be seen that the middle panels (3, 4 and 5) successfully maintain their

posture to support and orient the screen, while the final panel maintains its orientation

while moving with the speaker.

Figure 27: Presentation mode motions

The second experiment shows motion planning for the system in “rail” mode. In

this example the tip of panel 5 is modeled as inserted to the rail, thus constraining its

motion to the vertical. Therefore the Jacobian for this example contains the (First) row

corresponding to the panel 5 task space 5x , with the corresponding element of

x& commanded to zero (to constrain tip 5 movement in the x direction) in the simulation.

41

The results of this experiment are shown in Figure 2. It can be seen that the self-

motion of the redundant joints adjusts the trajectory to allow the tip of the 5th panel to

slide vertically while maintaining the horizontal constraint.

Figure 28: Rail constraint motions

The third experiment reported here is that of motion between modes. The robotic

wall can assume many possible configuration histories, due to the inherent self motion;

we have explored the notion of different guiding configurations to improve path choice

from one preassigned desired configuration to another. Eight different dedicated

reference configurations, along with the preset modes, were selected, to investigate uses

for self motion in this application. These guiding configurations were biologically

inspired by the cobra, sequoia ostrich, an elephant’s trunk and the shape of a football to

reflect the perceived “organic” nature of the wall (Figure 2). All but the sequoia and

42

elephant’s trunk were mirrored over the y plane to create a second new guiding

configuration in each case.

Figure 29: Biologically inspired dedicated reference configurations

Recall that the function of a guiding configuration is used to resolve the

redundancy by providing a “guide” for the wall to be “closest to” during a given

43

movement under the motion planning strategy in (2). So the wall in some sense is

expected to exhibit the “nature” of the selected guiding configuration during the motion.

This experiment was performed going from each base configuration to a different one

through each of the guiding configurations. Because of the number of configurations and

the possible guiding configurations, there are over 300 possible combinations. The room

parameters were factored into the calculations so that the user’s space, walls and ceiling

would not be encroached on by the wall during the motions. The results were quite

interesting. Some of the reference configurations worked considerably better than others.

Figure 30 through Figure 32 show a side view of the wall. The guide configuration is

represented by a blue line. The green lines depict the path taken by the robot and grow

lighter as time passes. The red line is the desired mode. In a black and white copy, this is

harder to discern. In Figure 30, the guiding and desired modes are the same and are the

darkest two lines on the right of the image. The path taken gets lighter to darker from left

to right. In Figure 31 and Figure 32 the reference configuration is the one line in the

image that seems separated from the robotic progression. The Desired configuration is

the dark line amidst the very light lines. Again, the path taken gets lighter as time goes

on. In the algorithm, the tip is moving from its current location linearly toward its ending

location. The motion of the interior links is based upon the guiding configuration, the

current mode and the desired mode. In the beginning of the movement, the guide

configuration has more influence on where the joint will move than the desired

configuration. The following three figures are one example of how moving from one

configuration to another can be changed through the use of guide configurations.

44

Figure 30: Composing mode to presenting mode guided by the presenting mode

Figure 30 is a depiction of no guiding configuration. One is being used, but it is

the same as the ending configuration which negates having one. The robot does not move

the top motors to relieve the bottom motors of high torque loads.

Figure 31: Composing to presenting mode guided by the gaming mode

45

 As can be seen in Figure 31, the guiding configuration allowed the top and

middle joints to move into position and slowly allowed the base motors to move. This

reduced the amount of torque the bottom motors had to overcome with their rotation.

Figure 32 shows the effect of a less desirable guidance configuration. It has excess

motion in the bottom two motors. The top joints take longer to move putting more torque

on the bottom motors.

Figure 32: Composing mode to presenting mode guided by the football inspired mode

4.2 IR Proximity Sensor Experiments

In addition to being able to have the control system autonomously change from

one configuration (typically mode) to the next, the user may interact directly with the

robot through the IR proximity sensors currently located in the centre of the left and the

46

right side of panels 2 through 5 (Figure 33). These are Sharp sensors model number

GP2D120. These sensors can be used to fine tune a mode or for the robot to react to the

user directly (for example if the user began to stand up in one of the encapsulating

modes). This adjustability adds intelligence to the AWE wall because it allows the

workstation to adjust to individuals controlling it.

The proximity sensors operate to allow the user fine tune adjustment. By placing

his or her hand close enough to the sensor on his right he or she can give the robot its cue

to move away from him or her; similarly, placing his or her hand over the left sensor will

command the robot to move toward him or her. Each sensor moves only the panel it sits

on. They are currently set up to change the angle of rotation by 5 degrees for each new

reading. There is a period of time (dead-zone) which the sensor will not make any new

fine tune adjusting to ensure that the change is wanted. This amount of time is adjustable

like the sensitivity of a mouse; some users will prefer it to be higher or lower. The

amount of rotational change (5 degrees) was decided upon because it gives a high amount

of flexibility to the user for positioning the wall exactly where she or he would like it.

The proximity sensor mode is not intended to be the prime means of operation (i.e.

change the configuration every time they would like to move it); though it could be used

in that manner if someone chose to. It is intended to allow the user to locally position the

screen how he or she would like it. If a resulting setting is very far off from the original

mode, we anticipate the user would wish to save this setting and use it in the future.

A second interesting mode is available for use with the proximity sensors. We

refer to this mode as the breathing mode. This mode is envisioned mostly for “cave”

47

operation. If a person stands under a proximity sensor, the wall will move up to give the

person breathing room. The proximity sensor can be activated at a distance that is further

away than the previous mode. It will allow the primary user to open up the space to

another user to enter. This will be more inviting because the space will become less

enclosed. This mode differs from the previously described one because each proximity

sensor controls the panel it is on and all of the panels below it. This acts to give the

movement of the upper panels more speed. This advantage arises from the motion of the

lower panels combining with the motion of the upper panels. We have created again two

types of sensing for this, one set raising up the robot (repelling mod) and one bringing the

robot back down (attractive mode). To reduce the possibility of a person accidentally

bringing the robot down upon themselves, the range the enclosing sensor has for

activation is very small. If the user did accidentally activate it, all they would need to do

to stop it would be to activate a repelling sensor. Because its range is set much higher,

this is easily done. This mode would ideally be done with sensors whose range was

bigger than the sensors we currently have for testing. If sensors with a bigger range were

implemented (a sensor more like the Sharp GP2Y0A02YK would work ideally around

the range we would like to use), the wall would have ample warning when a person stood

so that it could move out of their way and they would not have to worry about standing

up slowly.

These sensing modes are works in progress. The position, range and modes of the

sensors will be investigated much more extensively before the final prototype has been

completed. Currently the number of sensors is limited to 8 in total. This is because of

48

the hardware that the robot is running on. Were this to be used in a commercial

application, a mux board may be used to interoperate the signals and the addition of more

sensors could help the intelligence of the robot.

Figure 33: An image of AWE with sensors

49

CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

AWE is a novel workspace that allows the room to conform dynamically to an

individual users daily work schedule whether that requires privacy, space to collaborate,

presentation areas, gaming, or space for multiple tasks. This thesis describes

contributions to the design, realization, motion planning and initial testing of this novel

multi-panel robot system. The design is unique in creating, for the first time in hardware

a kinematically redundant robot surface. The reconfigurable workstation application for

the system also represents an innovative direction in human-computer interaction in work

environments. Taken together, the resulting system provides a unique test bed for

conducting innovative research in redundant robotics and human-computer interaction.

Chapter 2 described the overall design concept for the wall and detailed its

construction and interfacing. The wall is comprised of a modular set of panels and

motors. While the kinematics of this robot share similar features with conventional

industrial like robots [39], the robot is a contribution to the field because it is the first

time a redundant robot has been created as a surface. The way in which it will be used

will vary vastly from previous redundant robot implementations and is highly innovative.

It will not be used (as most rigid link robots are) to manipulate objects with its end

effector, but rather allow the surfaces to be formed in such a way that the user may

manipulate information more intuitively.

50

In Chapter 3, we presented a new and novel approach for motion planning of the

AWE wall. The resolved rate approach used has been proven through simulation to give

reliable, interesting and useful behavior. This approach exploits the similarities between

the kinematics of the robot and those in previously studied kinematically redundant

robots. The way in which the robot is to be used is the key novelty part of this project.

The approach allows the user to take advantage of the redundancy within the robot while

manipulating it. We have also seen how the robot can take on many different forms to

aid in the creative process. This robot can adjust to fit the many common workstation

needs. It is also shown that the robot can adjust to fit into a variety of different sized

rooms. The basic modes of interaction envisioned were shown and explained. These

covered a wide variety of tasks identified by the social scientists and architects

collaborating on the overall project.

Chapter 4 describes the application of the motion planning approach in

simulation. It demonstrates how the robot will move given many constraints. This

chapter also covers interactions of the wall with humans. We have demonstrated how

AWE’s many modes combined with the touch sensor application allow the user a chance

to easily reconfigure their environment. It is evident that the user has significantly

increased flexibility due to the integration of IR proximity sensors. The two sensor-based

modes introduced in this thesis are currently being evaluated allow the user more

freedom to control and manipulate their environment, consistent with the goal for the

project. Overall, these contributions have resulted in a successful operational prototype,

which will form the basis for ongoing research.

51

Directions for future research include refinements to the wall itself, expanding an

assortment of peripherals and investigations of AWE’s potential for enhancing user

productivity and satisfaction. These directions are reviewed in the following paragraphs.

Through usability testing, we have found that many people at the station would

like to feel more enclosed by the workstation’s screens. They would prefer if the panel

itself were able to be pulled around them. Mechanically, if we were to remake the wall,

we would have each section have two points of contact with the next, especially those

panels closest to the base. We might do this by replacing the bottom square part of the

panel with a rod and use that as the fulcrum to twist the panel about. The down side to

this is that the bearings would add extra weight to the system and add the possibility for

undesired torsion if they did not move freely enough.

In the short term for the project, a screen attachment will be added to the

intermediate panels for presentation purposes (Figure 23). Lighting needs have been

discussed and analyzed and lighting is currently in the process of being added to the

workstation. Placement of a projector, speakers and other peripherals is still needed.

Panel elements not featuring display screens or other equipment will be covered with

lightweight plastic to reduce the “prototype” appearance, give the system a more

“playful” look and make it more calming for approaching work. Iterative usability testing

of the system will continue to better understand how people can use this system and how

it be better adapted for its users. Another very important continuance of this work is the

creation of a GUI, graphical user interface to allow the end user better access to the

modes of AWE. Future ideas for this animated environment may be developed and

52

explored through the use of Rhino. Rhino 3D is a CAD based drafting tool. It can be

used to create sill images to scale, or with a plug-in, Bongo, it can be used to animate

these images as well. Through scripting in Visual Basic, information from a simulation

in C++ can be animated. Because we have created a C++ program to show what AWE is

currently capable of, we can use that as a base to work from to see how additions might

work. However, the code at this point is at the level of someone who has an

understanding of C++ to work with. In the long term, the workstation will combine with

other efforts envisioned by the research team, including a “smart box” (that allows for

storage and retrieval of both digital and analogue materials) and a programmable, mobile

continuum wall element (oriented horizontally and complimenting the vertical work

station described here by defining more precisely the shape of the room). We also intend

to explore how multiple workstations, smart boxes and continuum wall elements combine

with programmable lighting and audio as well as select, complimentary IT components

designed and developed by the wider IT community to create an intelligent workplace at

the scale of a larger room or office, greatly amplifying the possibilities for working life in

a digital society.

53

APPENDICES

54

Appendix A: AWEprototype2.cpp

// AWEprotoype2.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include "AWEprotoype2.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// The one and only application object

CWinApp theApp;

using namespace std;

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{

 int nRetCode = 0;
 int choice, choice2, choice3;

 // initialize MFC and print and error on failure
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
 {
 // TODO: change error code to suit your needs
 cerr << _T("Fatal Error: MFC initialization failed") << endl;
 nRetCode = 1;
 }
 else
 {
 // TODO: code your application's behavior here.
 CString fileName;
 fileName = "D:/marthak/AWEprotoype2/blank white8.5x11.bmp";
 for(choice=1; choice < 6; choice++)
 {
 for(choice2=1; choice2 < 6; choice2++)
 {
 if(choice != choice2)

55

 {
 for(choice3=1; choice3 < 14 ; choice3++)
 {

 for(double n=.25; n<.5; n+=.05)
 {
 printf("from %d to %d by %d based
on %d\n",choice,choice2,choice3,(int)(n*100));

 AWEproject((fileName.GetBuffer(150)), choice,choice2,choice3,n);
 /*CFileDialog
openDlg(TRUE,NULL,NULL,OFN_OVERWRITEPROMPT,"All
(*.pgm;*.jpg*;*.bmp)|*.pgm;*.jpg;*.bmp|Pgm Files (*.pgm)|*.pgm|Jpeg Files
(*.jpg)|*.jpg|Bitmap Files (*.bmp)|*.bmp|");
 int iRet = openDlg.DoModal();
 CString fileName;
 fileName = openDlg.GetPathName();

 if(iRet == IDOK)
 AWEproject((fileName.GetBuffer(150)));
 else
 MessageBox(openDlg, "No File
Selected!", NULL, MB_ICONWARNING);*/
 }
 }
 }
 }
 }
 }

 return nRetCode;
}

56

Appendix B: AWEproject.cpp

#include "stdafx.h"
#include "AWEprotoype2.h"
define imagevisible 1 //1=true (yes), 0=false (no), 2=only for saving, do
not show
define userinfo 2 //0=get no info, 1=hold links still, 2=rails

void AWEproject(char const *picture, int choice,int choice2,int choice3, double
n_scalar)//F1
{
 int pconfigs=13; //number of possible configurations

 //load picture and get its info
 ImgGray INimage;// INimage2;
 Load(picture,&INimage);
 int w = INimage.Width();
 int h = INimage.Height();
 int maxit=14000;//max number of itterations
 int printit=maxit/100; //number of itterations before the display refreshes

 //open up two files for writing in
 FILE *FileO2,*FileO9,*FileO10,*FileO12,*FileO8, *FileO11;
 CString
OutFileName2,OutFileName10,image1,image2,OutFileName12,OutFileName8,OutFileN
ame11;

 image1.Format("data/i_progression%dto%dby%d_%d.jpg", choice,
choice2,choice3,(int)(n_scalar*100));
 image2.Format("data/i_result%dto%dby%d_%d.jpg", choice,
choice2,choice3,(int)(n_scalar*100));
 OutFileName2.Format("data/mkwoka_q_%dto%dby%d_%d.txt", choice,
choice2,choice3,(int)(n_scalar*100));
 OutFileName10.Format("data/AWE_distxy_out%dto%dby%d_%d.txt", choice,
choice2,choice3,(int)(n_scalar*100));
 OutFileName12.Format("data/Torque%dto%dby%d_%d.txt", choice,
choice2,choice3,(int)(n_scalar*100));

 FileO2 = fopen(OutFileName2,"w");
 FileO10 = fopen(OutFileName10,"w");
 FileO12 = fopen(OutFileName12,"w");
 FileO9 = fopen("D:/marthak/AWEprotoype2/AWEconfig.txt","r");

57

 int numlinks=0,i, rlink=0;
 //info from the user
 if(userinfo==1)
 numlinks=holdorientation();//F10
 if(userinfo==2)
 rlink=holdrail(numlinks);

 numlinks++;
 MatDbl link(1,numlinks);
 numlinks--;

 for(i=0; i<numlinks && rlink==0; i++)//shouldnt happen for numlinks==0
 {
 do{
 printf("which link would you like to be held still(1-8)?\n");
 scanf("%lf",&link(0,i));
 }while(link(0,i)<1 && link(0,i)>8);
 }

 const int Jwidth =8; //number of joints (1-8)
 const int Jheight=2+numlinks; //number of dimensions(2+)
 const int lines=3; //number of lines to print on
output image

 //output image setup
 ImgBgr OUTbgr(w,h);
 Set(&OUTbgr, Bgr(255,255,255));
 ImgBgr OUTbgr2(w,h);
 Set(&OUTbgr2, Bgr(255,255,255));

 Figure figOUT("Output Image");
 Figure figOUT2("Output Image 2");

 if(imagevisible!=1)//hide figure if it is not going to be in use
 {
 figOUT.SetVisible(0);
 figOUT2.SetVisible(0);
 }
 figOUT2.SetVisible(0);

 MatDbl q(1,Jwidth); //joint angles
 MatDbl qf(1,Jwidth); //final joint angles
 MatDbl qr(1,Jwidth); //refrence joint angles
 MatDbl qdot(1,Jwidth); //joint velocities

58

 MatDbl temp1(1,Jwidth);
 MatDbl temp2(1,Jwidth);
 MatDbl x(1,Jheight); //end effector positions
 MatDbl xdot(1,Jheight); //end effector velocities
 MatDbl J(Jwidth,Jheight); //jacobian
 MatDbl Jplus(Jheight,Jwidth); //pseudoinverse of the jacobian
 MatDbl epsilon(1,Jwidth);Set(&epsilon, 0); //arbitrary input used in qdot.
 MatDbl epsilon2(1,Jwidth);Set(&epsilon2, 0); //arbitrary input used
in qdot.
 MatDbl I;Eye(Jwidth, &I); //identity matrix with dimensions Jwidth x
Jwidth
 MatDbl inconfig(Jwidth, pconfigs);
 MatDbl printpretty(2,Jwidth);
 MatDbl sumtheta(Jwidth,3); //summaton of q,qf,qr. summation of thetas array.
theta[2]=theta1+theta2
 MatDbl Kappa(Jwidth,Jwidth);Set(&Kappa, 0);
 MatDbl dpoint(2,lines); //double point--so as to reduce rounding error
(x/y,reg/final/ref)
 MatDbl torquestat(2,Jwidth);
 MatDbl torque(Jwidth,maxit);
 CPoint point(0,0);
 TextDrawer OutputText(15,2);
 double c=pi/180,deltaT =.01,xtemp,xmax;
 int len[Jwidth]; //length array
 int y=0,itter,quit=0,color=0;
 char Itter_text[6];
 Point drawpoint[lines*2]; //start and end point per section

 xdot(0,0)=0; xdot(0,1)=0; //innitialize xdot
 if(Jheight>2)
 for(i=2; i<Jheight;i++)
 xdot(0,i)=0;

 for(i=0; i<pconfigs;i++) //get configuration
possibilities from file
 for(int j=0; j<Jwidth; j++)
 fscanf(FileO9,"%lf",&inconfig(j,i));

 for(i=0; i<Jwidth; i++) //innitialize joint angles and length of
robot parts
 {
 q(0,i)=inconfig(i,choice-1)*c;
 qf(0,i)=inconfig(i,choice2-1)*c;
 qr(0,i)=inconfig(i,choice3-1)*c;//(q(0,i)+qf(0,i))/2;

59

 q(0,i)=checkbounds(q(0,i),i);
 qf(0,i)=checkbounds(qf(0,i),i);
 qr(0,i)=checkbounds(qr(0,i),i);

 Kappa(i,i)=.1; //create a diagonal matrix of K
 qdot(0,i) = 0;
 if(i==0 ||i==1)
 len[i]=80;//40 cm*2(scaling)
 else
 len[i]=60;//30 cm*2(scaling)

 q(0,i)=checkposition(sumtheta,0,i,len, q(0,i));
 qf(0,i)=checkposition(sumtheta,1,i,len,qf(0,i));
 qr(0,i)=checkposition(sumtheta,2,i,len,qr(0,i));

 if(i==0)
 {
 sumtheta(i,0)=q(0,i);
 sumtheta(i,1)=qf(0,i);
 sumtheta(i,2)=qr(0,i);
 }
 else
 {
 sumtheta(i,0)= fmod(sumtheta(i-1,0) + q(0,i),2*pi);
 sumtheta(i,1)= fmod(sumtheta(i-1,1) + qf(0,i),2*pi);
 sumtheta(i,2)= fmod(sumtheta(i-1,2) + qr(0,i),2*pi);
 }
 }

 for(itter=0; itter<maxit && quit==0; itter++) //for 80000 itterations
 {

 if(itter%printit==0)//1500

 {
 color+=2;
 for(i=0; i<Jwidth; i++)
 {

 for(int j=0; i==0 && j<lines; j++)
 {
 if(itter%printit==0)
 {

60

 drawpoint[j*2].x=2*w/3;//startpr.x j*2
because only want start points to be innitialized
 drawpoint[j*2].y=2*h/3;//startpr.y
 }
 dpoint(0,j)=0;//(x,reg/final/ref)
 dpoint(1,j)=0;//(y,reg/final/ref)
 }

 if(itter%printit==0)
 printimage(i,sumtheta, len, drawpoint,dpoint,
lines);//F8
 else
 printimageb(i,sumtheta, len, dpoint, lines);//F8b

 if(itter%printit==0)
 {
 if(maxit<=itter+printit)
 {

 DrawLine(drawpoint[0],drawpoint[1],
&OUTbgr2, Bgr(0,0,254), 2);//startp,endp,
 DrawLine(drawpoint[2],drawpoint[3],
&OUTbgr2, Bgr(0,254,0), 2);//startpf,endpf
 DrawLine(drawpoint[4],drawpoint[5],
&OUTbgr2, Bgr(254,0,0), 2);//startpr,endpr
 DrawLine(drawpoint[0],drawpoint[1],
&OUTbgr, Bgr(0,0,254), 2);//startp,endp,
 DrawLine(drawpoint[2],drawpoint[3],
&OUTbgr, Bgr(100,100,100), 2);//startpf,endpf
 DrawLine(drawpoint[4],drawpoint[5],
&OUTbgr, Bgr(254,0,0), 2);//startpr,endpr

 }
 else
 {
 if(itter==0)

 DrawLine(drawpoint[0],drawpoint[1], &OUTbgr2, Bgr(0,54+color,0),
2);//startp,endp,
 DrawLine(drawpoint[0],drawpoint[1],
&OUTbgr, Bgr(0,54+color,0), 2);//startp,endp,
 DrawLine(drawpoint[2],drawpoint[3],
&OUTbgr, Bgr(100,100,100), 2);//startpf,endpf

61

 DrawLine(drawpoint[4],drawpoint[5],
&OUTbgr, Bgr(254,0,0), 2);//startpr,endpr
 }
 if(i==rlink && rlink>0)
 DrawCircle(drawpoint[0],3, &OUTbgr,
Bgr(0,0,255),4);
 }
 printpretty(0,i)=round(dpoint(0,0)/2);//dpoint(x,reg)
 printpretty(1,i)=round(dpoint(1,0)/2);//dpoint(y,reg)

 }

 GetTorque(Jwidth, itter, len, printpretty, torque,torquestat);

 for(i=0;i<Jwidth; i++)
 {
 if(i==0)
 {
 fprintf(FileO10,"%4d\t%d\t%d",itter,
(int)printpretty(0,i), (int)printpretty(1,i));
 fprintf(FileO12,"%4d\t%d\t%d",itter,
(int)torque(i,itter), (int)torque(i,itter));
 }
 else if(i != Jwidth-1)
 {
 fprintf(FileO10,"\t%d\t%d",(int)printpretty(0,i)-
(int)printpretty(0,i-1),(int)printpretty(1,i)-(int)printpretty(1,i-1));

 fprintf(FileO12,"\t%d\t%d",(int)torque(i,itter),(int)torque(i,itter));
 }
 else
 {
 fprintf(FileO10,"\t%d\t%d\n",(int)printpretty(0,i)-
(int)printpretty(0,i-1),(int)printpretty(1,i)-(int)printpretty(1,i-1));

 fprintf(FileO12,"\t%d\t%d\n",(int)torque(i,itter),(int)torque(i,itter));
 }

 }

 xtemp=(fabs(dpoint(0,0)-dpoint(0,1))+fabs(dpoint(1,0)-
dpoint(1,1)))/4;//|x-xf| + |y-yf|

62

 if (itter==0)
 xmax=xtemp;
 xdot(0,0)=(dpoint(0,1)-dpoint(0,0))/xtemp;
 xdot(0,1)=(dpoint(1,1)-dpoint(1,0))/xtemp;//(x/y,reg/final/ref)
 }

 Set(&J,0); //clear Jacobian
 for(i=0; i<Jwidth; i++) //set Jacobian
 {
 for(int n=i; n<Jwidth; n++)
 {
 J(i,0)-=len[n]*sin(sumtheta(n,0));//J(0,0)=-A1S1-
A2S12...AJheightS1_thru_height
 J(i,1)+=len[n]*cos(sumtheta(n,0));

 if(rlink>i) //holding in rails (if rlink >0)
 {
 if(n==rlink-1)
 J(i,2)=J(i,0);
 }
 else if (rlink>0)
 J(i,2)=0;
 }

 for(int k=0; Jheight>2 &&(k<Jheight-2) && rlink==0; k++)
 {
 if(link(0,k)>i)
 J(i,k+2)=1;
 else
 J(i,k+2)=0;
 }
 }

 double scalar=(xmax-xtemp)/xmax;//(itter)/(double)maxit;
 double scalar1=(1-scalar) -n_scalar;//.25;//range .75 to 0
 double scalar2= scalar + n_scalar;//.25;//range .25 to 1
 if(scalar1<0)
 {
 scalar1=0;
 scalar2=1;
 }
 for(i=0;i<Jwidth;i++)
 temp1(0,i)=(scalar1)*(sumtheta(i,2)-sumtheta(i,0));//sumthetar-
sumtheta

63

 for(i=0;i<Jwidth;i++)
 temp2(0,i)=(scalar2)*(sumtheta(i,1)-sumtheta(i,0));//sumthetaf-
sumtheta

 epsilon=Kappa*temp1;//(qr-q);
 epsilon2=Kappa*temp2;

 getJplus(&J,Jplus);//getJplus(&J,Jplus, FileO3, FileO4);

 qdot = Jplus * xdot + (I-(Jplus*J))*(epsilon+epsilon2);

 double Xcheck=0,Ycheck=0;

 for(i=0; i<Jwidth; i++)
 {
 //euler's integration could also use runge-Kutta integration if this
isnt working
 //get new q
 q(0,i)=q(0,i)+ qdot(0,i)*deltaT;
 q(0,i)=checkbounds(q(0,i),i);
 q(0,i)=checkposition(sumtheta,0,i,len,q(0,i));
 if(i==0)
 {
 sumtheta(i,0)=q(0,i);
 //fprintf(FileO7,"\n%lf",sumtheta(i,0));
 }
 else
 {
 sumtheta(i,0)= fmod(sumtheta(i-1,0) + q(0,i),
2*pi);//sumtheta[2]= theta0+theta1+theta2
 //fprintf(FileO7,"\t%lf",sumtheta(i,0));
 }

 if(i==Jwidth-1)
 {
 fprintf(FileO2,"%lf\n",q(0,i));//in radians *180/pi);
 }
 else
 {
 fprintf(FileO2,"%lf\t",q(0,i));//in radians*180/pi);
 }
 }

 //show on screen

64

 if(imagevisible)
 {
 if((itter==0 || maxit<=itter+printit))
 figOUT2.Draw(OUTbgr2);
 if(itter %printit==0)//1500
 {
 sprintf(Itter_text,"%d",itter);
 figOUT.Draw(OUTbgr);
 OutputText.DrawText(&OUTbgr, Itter_text, point,
Bgr(100,100,100),Bgr(0,0,255));
 //while(!figOUT.TestMouseClick()) { };
 }
 }

 if(maxit==itter+1 && (imagevisible==0 || imagevisible==2))
 {
 Save(OUTbgr, image1, "jpg");
 Save(OUTbgr2, image2, "jpg");
 }

 if (itter==maxit-1)
 {
 for(i=0; i<Jwidth; i++)
 {
 torquestat(0,i)=torquestat(0,i)/(maxit/printit);
 }
 fprintf(FileO12,"average
torque\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",

 torquestat(0,0),torquestat(0,1),torquestat(0,2),torquestat(0,3),torquestat(0,4),
 torquestat(0,5),torquestat(0,6),torquestat(0,7));
 fprintf(FileO12,"max
torque\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",

 torquestat(1,0),torquestat(1,1),torquestat(1,2),torquestat(1,3),torquestat(1,4),
 torquestat(1,5),torquestat(1,6),torquestat(1,7));
 }

 int count=0;
 double diff;
 //singularity check
 for(i=0; (i<Jwidth-1||count+1>i)&& itter>800 ; i++)//||count>i-2 &&
itter>800
 {

65

 diff=fabs(sumtheta(i,0)-sumtheta(i+1,0));
 if(diff<(1*pi/180))
 count++;
 }
 if(count==Jwidth-1 || (Jheight>2 && count==Jwidth-2))
 {
 printf("At a singularity 1 degrees diff.\n");
 quit=1;
 }
 }

 printf("done\n");
 fclose(FileO2);fclose(FileO9);fclose(FileO10);fclose(FileO12);
}
void getJplus(MatDbl *mat, MatDbl &matplus)//F2
{
 //MatDbl J(Jwidth,Jheight);
 const int Jwidth= mat->Width();
 const int Jheight= mat->Height();
 MatDbl J;
 J=*mat;

 MatDbl Jt(Jheight,Jwidth), JJti(Jheight,Jheight), JJt(Jheight,Jheight);
 Transpose(J,&Jt);
 JJt= J *Jt;
 Inverse(JJt, &JJti);
 matplus =Jt*JJti;
 return;
}

int round(double num)//F6
{
 int intnum=num;
 int roundnum=intnum;

 if((num-intnum)>=.5)//if remainder's abs>=.5
 roundnum=intnum+1;
 if((num-intnum)<=-.5)//if remainder's abs>=.5
 roundnum=intnum-1;

 return roundnum;
}
double checkbounds(double angle, int joint)//F7
{

66

 double modangle;
 modangle=fmod(angle, (2*pi));

 //if(modangle != angle)
 // printf("error with angle...going over 360");
 if(modangle<0)
 modangle+=2*pi;

 //if it is starting to get past the bounds of the hinge make it stop
/* if(joint==0)
 {
 if(modangle>3*pi/2)
 modangle=0;
 else if(modangle >pi)
 modangle=pi;
 }
 else */if(modangle>140*pi/180)
 {
 //both have 10 degrees leeway so that slippage isnt such a big deal
 if(modangle<205*pi/180)
 modangle=140*pi/180;
 else if(modangle<270*pi/180)
 modangle=270*pi/180;
 }

 return modangle;
}
double checkposition(MatDbl &sumtheta,int fig, int joint, int *len, double qorig)
{
 double x=0, y=0;
 double q;
 joint--;
 if((joint>=0 && sumtheta(joint,fig)+qorig>pi) || (qorig>pi && joint<0))
 {
 joint++;
 for(int i=0; i<joint; i++)
 {
 x+=cos(sumtheta(i,fig))*(len[i]);//x start for your joint
 y+=sin(sumtheta(i,fig))*(len[i]);//y start fro your joint
 }
 if(joint>0)//i=joint
 {
 x+=cos(sumtheta(i-1,fig)+qorig)*(len[i]);//info hasnt been put into
sumtheta[i] yet

67

 y+=sin(sumtheta(i-1,fig)+qorig)*(len[i]);//but it will be sumtheta(i-
1,fig)+qorig
 }
 else
 {
 x=cos(qorig)*len[i];//if joint==0 make sure that you are not past pi
rad.
 y=sin(qorig)*len[i];
 }
 if(y<0)
 {
 double xold,yold;//issues
 if(joint>0)
 {
 yold=y-sin(sumtheta(i-1,fig)+qorig)*(len[i]);
 xold=x-cos(sumtheta(i-1,fig)+qorig)*(len[i]);
 }
 else
 {
 yold=y-sin(qorig)*len[i];
 xold=x-cos(qorig)*len[i];
 }

 q=asin(-yold/len[joint]);//y=0=yold+len[joint]*q
 if(xold-x>0)
 {
 q=pi-q;
 }
 if(i>0)
 q=checkbounds(q-sumtheta(i-1,fig),joint);

 }
 else
 q=qorig;
 }
 else
 q=qorig;

 return q;

}
void printimage(int i,MatDbl &sumtheta,int *len, Point *drawpoint, MatDbl &endp, int
lines)//F8
{

68

 MatDbl start(2,lines);//0=x,1=y and 0=current pos, 1=final pos, 2=ref pos
 int j;

 for(j=0; j<lines; j++)
 {
 start(0,j)=endp(0,j);//(x,reg/final/ref)
 start(1,j)=endp(1,j);//(y,reg/final/ref)
 if(i>0)
 drawpoint[j*2]=drawpoint[j*2+1];//start=end,0,2,4=1,3,5

 endp(0,j)=len[i]*cos(sumtheta(i,j));
 endp(1,j)=len[i]*sin(sumtheta(i,j));
 drawpoint[j*2+1].x=round(endp(0,j));//left is negative, right is positive*20
 drawpoint[j*2+1].y=round(-endp(1,j));//up is negative, down is
positive*20
 }

 for(j=0; j<lines; j++)
 {
 drawpoint[j*2+1]+=drawpoint[j*2];//endp += startp;
 endp(0,j) += start(0,j);
 endp(1,j) += start(1,j);
 }
 return ;//drawpoint
}
void printimageb(int i,MatDbl &sumtheta,int *len, MatDbl &endp, int lines)//F8b
{
 MatDbl start(2,lines);//0=x,1=y and 0=current pos, 1=final pos, 2=ref pos
 int j;

 for(j=0; j<lines; j++)
 {
 start(0,j)=endp(0,j);//(x,reg/final/ref)
 start(1,j)=endp(1,j);//(y,reg/final/ref)

 endp(0,j)=len[i]*cos(sumtheta(i,j));
 endp(1,j)=len[i]*sin(sumtheta(i,j));
 }
 for(j=0; j<lines; j++)
 {
 endp(0,j) += start(0,j);
 endp(1,j) += start(1,j);
 }
 return ;//drawpoint

69

}
int holdrail(int &numlinks)//F9
{
 int rlink=0;
 do{
 printf("do you want any link to be in the rails? no={0} yes={1-8}");
 scanf("%d", &rlink);
 }while (rlink<0 || rlink>8);
 if(rlink>0)
 numlinks++;
 return rlink;
}
int holdorientation()//F10
{
 int numlinks=0;
 do{
 printf("how many links would you like to hold orientation for?");
 scanf("%d", &numlinks);
 }while(numlinks<0|| numlinks>5);
 return numlinks;
}
void GetTorque(int Jwidth,int itter, int *len, MatDbl &printpretty, MatDbl
&torque,MatDbl &torquestat)
{
 int i;
 double weight[8];
 double CoGx,CoGy,oldCoGx,oldCoGy;
 for(i=0; i<Jwidth; i++)
 weight[i]=44.48;

 for(i=0; i<Jwidth; i++)
 {
 int j=Jwidth-1-i;
 if(i==0)
 {
 torque(j,itter)=0.5*len[i]/20*cos(atan((-
printpretty(1,j)/printpretty(0,j))))*weight[i];
 CoGx=(1.5*printpretty(0,j)+.5*printpretty(0,j))/200;//center of
gravity in the x plane
 oldCoGy=(1.5*printpretty(1,j)+.5*printpretty(0,j))/200 ;
CoGy=fabs(oldCoGy); //same in the y plane

 }
 else

70

 {

 CoGx=(oldCoGx*(i+1)*100+(i+.5)*printpretty(0,j))/((i+2)*100);
 oldCoGy=
(oldCoGy*(i+1)*100+(i+.5)*printpretty(1,j))/((i+2)*100); CoGy=fabs(oldCoGy);
 torque(j,itter)=
pow((pow(CoGx,2)+pow(CoGy,2)),.5)*cos(atan(fabs(CoGy/CoGx)))*weight[i];
 }
 oldCoGx=CoGx;
 if(itter==0) //sum of torque on the
joint
 {
 torquestat(0,j)=torque(j,itter);
 torquestat(1,j)=torque(j,itter);
 }
 else
 {
 torquestat(0,j)+=torque(j,itter);
 if(torquestat(1,j)<torque(j,itter))//max torque on the joint
 torquestat(1,j)=torque(j,itter);
 }
 }
}

71

Appendix C: AWEprototype2.h

#if
!defined(AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__IN
CLUDED_)
#define
AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__INCLUDED
_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "resource.h"
#include "C:\ImageProcessing1\blepo\src\blepo.h"
using namespace blepo;
#define pi 3.14

void AWEproject(char const *picture,int choice,int choice2,int choice3,double n_scalar);
void getJplus(MatDbl *mat, MatDbl &matplus);
int round(double num);
double checkbounds(double angle, int joint);
double checkposition(MatDbl &sumtheta,int fig, int joint, int *len, double qorig);
void printimage(int i,MatDbl &sumtheta,int *len, Point *drawpoint, MatDbl &endp, int
lines);
void printimageb(int i,MatDbl &sumtheta,int *len, MatDbl &endp, int lines);//F8b
int holdrail(int &numlinks);
int holdorientation();
void GetTorque(int Jwidth,int itter, int *len, MatDbl &printpretty, MatDbl
&torque,MatDbl &sumtorque);
void printmat(char* matname, MatDbl *mat, FILE* FilePrintLog);
#endif //
!defined(AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__IN
CLUDED_)

72

REFERENCES

[1] E. Aarts and S. Marzano. 2003, The New Everyday: Views on Ambient
Intelligence, Rotterdam: 010 Publishers.

[2] P. Antonelli. 2001, Workspheres: Design and Contemporary Work Styles,
New York, NY Museum of Modern Art

[3] R. M. Baecker. 1995, Readings in Human-Computer Interaction: Toward the
Year 2000.

[4] H. Beyer, & K. Holtzblatt. 1999, Contextual Design: Defining Customer-
Centered Systems. San Francisco, CA: Morgan Kaufman Publishers.

[5] T. Binder, G. De Michelis, M. Gervautz, G.Jacucci, K. Matkovic, T. Psik, & I.
Wagner. 2004, Supporting configurability in a mixed-media environment for design
students, In Personal Ubiquitous Computing, Vol. 8, Issue 5pp. 310-325.

[6] Blepo computer vision library. http://www.ces.clemson.edu/~stb/blepo/.

[7] O. Bondarenko & R. Janssen. 2005, Documents at Hand: Learning from Paper
to Improve Digital Technologies. In Proceedings of the Computer-Human-Interaction
(CHI) 2005 Conference, Association for Computing Machinery.

[8] Clemson University, Department of Electrical and Computer Engineering.
Http://www.ces.clemson.edu/ece/crb/research/realtimesoftware/qmotor/index.htm.

[9] deCOI. Aegis Hypersurface. 2004, In Mark Galthorpe/dECOi, Precise
Indeterminacy, Praxis: Journal of Writing and Building, Issue 6.

[10] A. Ganz, Principal Investigator, NeTS: Animated Spaces for the Digital
Society: The ASPEN Architecture, NSF Award Abstract - #0434985.
http://www.sciencestorm.com/award/0434985.html

73

[11] D. Garlan, D. Siewiorek, A. Smailagic, & P. Steenkiste. June 2002, Project
Aura: Toward Distraction-Free Pervasive Computing. In IEEE Pervasive Computing,
April-, pp. 22-30.

[12] K.E. Green, L.J. Gugerty, I.D. Walker, and J.C. Witte. 2005, AWE
(Animated Work Environment): Ambient Intelligence in Working Life, In Proc.
Ambience, 1-7.

[13] K. E. Green, L. J. Gugerty, J. C. Witte, I. D. Walker, H. Houayek, J.
Rubinstein, R. Daniels, J. Turchi, M. Kwoka, I. Dunlop, and J. Johnson. 2008,
Configuring an “Animated Work Environment”: a user-Centered Design Approach, The
4th IET International Conference on Intelligent Environments (IE 08). “to appear”

[14] K. Green, I. Walker, L. Gugerty and J. Witte. 2006, Three robot-rooms: The
AWE project. Conference on Human Factors in Computing Systems, pp. 809-814.

[15] K.E. Green, I.D.,Walker, L.J.Gugerty, J.C. Witte. 2007, A Prototype
Animated Work Environment Supporting Working Life in a Digital Society, CHI 2007.

[16] S. Hirose. 1993, Biologically Inspired Robots: Snake-Like Locomotors and
Manipulators. Oxford University Press.

[17] Hyper Body Research Group. Muscle Body. 2005,
http://www.protospace.bk.tudelft.nl/live/pagina.jsp?id=351cc397-e203-4fd8-8620-
218ca9500807&lang=nl

[18] IBM Blue Space Research. 2005, http://www.research.ibm.com/bluespace

[19] IDEO. Q for Steelcase. 1998, http://www.ideo.com/portfolio/re.asp?x=12378

[20] A. Ijspeert, J. Buchli, A. Crespi, L. Righetti and Y. Bourquin. 2005, Institute
presentation: Biologically inspired robotics group at EPFL. International Journal of
Advanced Robotics Systems 2(2), pp. 175–199.

74

[21] B. Johanson, A. Fox and T. Winograd. 2002, The interactive workspaces
project: Experiences with ubiquitous computing rooms. Pervasive Computing, IEEE 1(2),
pp. 67-74.

[22]J. Johnson, Automated Work Environment, Departmental B.S. Honors Thesis,
Department Mechanical Engineering, Clemson University, December 2007.

[23] J. Johnson, M. Kwoka, H. Houayek, I. D., Walker, and K. E. Green.
November 2007, Design, Construction, and Testing of a Novel Robotic Workstation,
Fourth International Conference on Computational Intelligence, Robotics, and
Autonomous Systems (CIRAS), Palmerston North, New Zealand.

[24] M. Kwoka, J. Johnson, H. Houayek, I. Dunlap, I. D. Walker, and K. E.
Green. 2008, The AWE Wall: A Smart Reconfigurable Robotic Surface, The 4th IET
International Conference on Intelligent Environments (IE 08). “to appear”

[25] K. Larson, House_n Current Projects, post date. 2004,
http://architecture.mit.edu/~kll/Project%20List%20Sept-2004.pdf

[26] A. Lauletta. The Basics of Harmonic Drive Gearing. Apr. 2006. 11 Apr.
2007, http://www.gearproductnews.com/issues/0406/harmonic_drive_gearing.pdf.

[27] M. Loffler, N. Costescu and D. Dawson. 2002, QMotor 3.0 and the QMotor
robotic toolkit: A PC-based controlplatform. Control Systems Magazine, IEEE 22(3), pp.
12-26.

[28] P. Luff, C. Heath, H. Kuzuoka, K. Yamazaki and J. Yamashita. 2006,
Handling documents and discriminating objects in hybrid spaces. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems pp. 561-570.

[29] MIT Media Lab/FPC. 2002, Media House Project: BCN 26.09-06.10,
Barcelona: FPC.

[30] W. J. Mitchell. 2000, City of Bits. Cambridge, MA: MIT.

75

[31] W. J. Mitchell. 2003, ME++. Cambridge, MA: MIT.

[32] Mitchell. 2000,W.J. e-topia, Cambridge, MA.

[33] D. Nenchev. 1989, Redundancy resolution through local optimization: A
review. J. Robot. Syst. 6(6), pp. 769-798.

[34] R. K. Niranjan & A. Ganz. 2004, Animated Space Architecture for
Multimedia Experience – ASkME. In Proceedings, Broadnets 2004, San Jose, pp. 1-6.

[35] K. Oosterhuis. 2003, Hyperbodies: Toward an E-Motive Architecture. Basel,
Switzerland: Birkäuser.

[36] Rachael Daniels and Leo Gugerty. August 2007, Task Analysis of
Information Flow for Teachers, Accountants and Architects.

[37] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin and H. Fuchs. 1998, The
office of the future: A unified approach to image-based modeling and spatially immersive
displays. Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques pp. 179-188.

[38] B. Siciliano. 1990, Kinematic control of redundant robot manipulators: A
tutorial. Journal of Intelligent and Robotic Systems 3(3), pp. 201-212.

[39] M. W. Spong, S. Hutchinson and M. Vidyasagar. 2006, Robot modeling and
control. Industrial Robot: An International Journal, pp 33-35,

[40] N. A. Streitz, P. Rexroth and T. Holmer. 1997, Does" Roomware" Matter?:
Investigating the Role of Personal and Public Information Devices and their Combination
in Meeting Room Collaboration.

76

[41] N. A. Streitz, P. Tandler, C. Müller-Tomfelde and S. Konomi. 2001,
Roomware: Towards the next generation of human-computer interaction based on an
integrated design of real and virtual worlds. Human-Computer Interaction in the New
Millennium pp. 553–578.

[42] Washington Medical Center, Microsoft Research. 2004, posting date.
http://www.microsoft.com/business/executivecircle/content/casestudydetail.aspx?csid=14
967

[43] webmaster.birg@epfl.ch. 2007,Biologically inspired Robotics Group:
Roombots.

[44] D. Wigdor, C. Shen, C. Forlines and R. Balakrishnan. 2006, Effects of
display position and control space orientation on user preference and performance.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems pp.
309-318.

[45] T. Yoshikawa. 1984, Analysis and control of robot manipulators with
redundancy. Robotics Research: The First International Symposium pp. 735-747.

[46] R. Ziola. 2006, My MDE: configuring virtual workspace in multi-display
environments. CHI 2006, ACM Press 1481-1486.

