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Figure 13: Shows the mounting of the monitors onto the robot. 

 

2.7 Workstation Control 

A standard PID controller was used on every panel. The position, integral and 

derivative gains were tuned for each motor. For the case of the motors with harmonic 

drives, a voltage limit was established and the proportional gain of the controller was set 

to a large number to ensure that full speed was used the majority of the time and only at 

the end of the cycle would the drop in voltage and therefore speed take place. With the 

relatively slow speeds, tuning of the controller for each of these panels was 

straightforward and transients are not a major issue. The other three motor controllers 

were further developed to flow with these motors, but not to reduce the effectiveness of 

their speed. 

The control computations were performed in real time using a Pentium PC, with 

I/O achieved via a commercial ServoToGo interface board. The input signals were 
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amplified by commercial Techron LVC 623 amplifiers. The overall control structure is 

shown in Figure 14. 

 

 
Figure 14: System control structure 

  
The controllers were implemented on a PC with an Intel Pentium 4 Processor, 

operating at 2.86Hz, running QNX 3.2.1 real-time operating system. In this environment, 

QMotor 3.22 allows the user to achieve real-time control response [8], [27]. The control 

algorithm was written in C++. This platform was used because it was simple to perform 

tasks such as data logging and online gain tuning using Qmotor (Figure 15). The software 

also allows the user to easily swap between different control modes. The system was 

initially operated in a set point mode moving between fixed pre-set configurations but 

eventually was converted to full trajectory control.  
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Figure 15: Screen Shot of QMotor and the C++ Skeleton Program (blue screen) 

 

Below, Figure  is a labelled image to show how AWE appears from the front and at the 

base.  In this image there are eight IR sensors.  The label is to the right of one and to the 

far left of another. See Figure 33 for a more detailed look at the IR sensors. The Base 

contains the Control PC which runs the Qmotor progam and sends signals to the control 

box (Figure ) which sends them through and inverting opamp to protect the computer.   

The User PCs control the three screens shown in the frontal view.  Figure  shows the 

control box it sends signals through the digital to analogue channels to the operational 

amplifier to the amplifiers, reads in the IR sensor values through the analogue to digital 

channel, reads the encoder values through the encoder channels and sends a voltage to 

both the amplifiers and the IR sensors. 
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Figure 16: Overall Image 

 

 

Figure 17: Control Box 



25 

 

2.8 Construction and Testing 

The base (Figure 1) was put in using forklifts because each block weighed around 

three hundred pounds.  

 

 

Figure 18: Concrete Base  

 

From this strong foundation, some of the motors and panels were tested. Shown in 

Figure 1 are motors 1 through 5.  In Figures a and b, motors 4, 5 and 8 are being used. 

Motors are numbered from 1 through 8 from the concrete base up. Each motor can move 

the panel above it to change the configuration and adapt to the user’s needs. Figure 1, 

below, shows a configuration similar to the rest configuration as was depicted in Figure 

2.  It is moved slightly from this, almost into a composing configuration. 
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Figure 19: Front view of AWE 

 

 

Figures 20: Two possible configurations for AWE (three panel) 
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The gains for each motor needed to be set. Table 1 shows the maximum speeds 

that the motors assemblies allow. The motor assemblies 0 through 4 and 7 all use the 

same motor. The different max voltage to each motor is because the input torque allowed 

by the harmonic drive attached to the motors differs. 

 

Motor Assembly Number 0 1 2 3 4 5 6 7 

Max Voltage to Motor (V) 3.87 6.11 6.11 7.13 7.13 36 24 15 

Max Output Speed (rpm) 1900 3000 3000 3500 3500 2650 8380 6270 

1. Table 1: Voltages and speeds for each motor 
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CHAPTER THREE 

AWE MOTION PLANNING AND MODES OF USE 

 

The following Chapter will introduce the motion planning and the typical 

configurations for use.  These combine to allow the user to spend less time worrying 

about how the wall should get from one place to another and the general shape it should 

be in when it finishes and allows them to concentrate on the work that they find 

important.  

3.1 Motion Planning 

Because of the redundant nature of the AWE wall robot, there are many possible 

path choices that need to be evaluated.  The robot will not necessarily choose the path 

without an obstacle, with the shortest distance, or with the least torque.  It needs to be 

told what criteria to choose its path based upon.  The following section will explain how 

we have chosen to our criteria.  The first division shows how we coordinated the sections 

and explains why we have chosen this method.  The second explains the testing we have 

done to make sure that the criteria meets our torque limitations. 

For real-time motion planning of AWE, we adopt the resolved rate approach [33], 

[38] based on a conventional Jacobian-based model 

 

[ ( )]J=x q q&&                                                           (1) 
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where q  is the 8 1×  vector of joint (panel) angles, q&  their time velocity, x& is a 

(given) 1m×  task space velocity ( x  defined variously for different AWE modes of 

operation, as discussed below) and [ ]J  is the corresponding AWE  Jacobian.  

The key novelty of the AWE redundancy resolution problem is in the nature of 

the task spaces and tasks required of the “robot-wall” (i.e. ( , )x x& ) rather than the structure 

of [ ]J . Note that for the current AWE hardware implementation, the unconstrained 

structure behaves kinematically as a planar serial rigid-link mechanism. Therefore 

elements of the rows of [ ]J  corresponding to the task space of the 
thk  panel 

[ , , ]T
k k k kx y φ=x are easily established as 
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In the above, the variables ( , )k kx y  are the coordinates of the tip of the thk  panel, 

in a coordinate frame (Fixed at the base of the AWE wall) having its z axis aligned with 

the panels and its y axis vertical. The variable kφ  represents the orientation of the 

thk AWE panel (defined in the ( , )x y  plane perpendicular to the AWE panels and 
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measured counterclockwise from the horizontal x  axis of the above fixed frame). The 

parameter ja  is the known side height (vertical dimension) of the thj AWE panel.  

Therefore the Jacobian elements corresponding to tasks described in any of the 

AWE panel coordinates kx  are readily available and easily computable. The key issue is 

how to exploit this information to achieve the desired motion of AWE for its various 

tasks. 

An unusual aspect of the AWE application is that complete regulation of the “end 

effector” (tip of the AWE wall) position/orientation is rarely the primary consideration. 

More typically, positioning/orienting of screens more proximal to the base represents the 

primary task and only orientation of the tip (to, for example, direct lighting on to screens 

or users) is of primary concern at the tip. Positioning of the final (and other) panel(s) 

therefore becomes a subtask in the redundancy resolution.  This is in contrast to the usual 

serial-link redundancy resolution problem in the literature, where the end effector (tip) 

task is primary and the body motion secondary, to the problem. An additional novel 

feature of AWE is the ability of the panels to connect to the side rails and slide vertically. 

This allows the system to reconfigure into a large number of partially constrained (but 

still kinematically redundant) systems. 

 To encode these requirements in a consistent form and to include other task 

constraints (such as use of the vertical tracks discussed in section II) the task space vector 

x  in (1) is selected as (the non-zero elements of) 

 

[ ]S=x x%  
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where [ ]= 1, 8x x ....x%  and the (24 24)×  matrix [ ] ( )iS diag s= . The Task Selection 

matrix [ ]S  encodes the different modes of AWE operation and transitions between them. 

A non-zero element is  in [ ]S  indicates a specific primary task requirement for the 

corresponding element of x%  in the current AWE mode.  For example, for the 

“Presentation” mode (Figure 23) the non-zero elements of [ ]S  will include 

4 5{ , }s s (representing tip position of panel 2, the “base” of the screen) and 9 12 15{ , , }s s s  

(representing the orientation constraints on panels{3,4,5} , required to keep the screen 

vertical). For modes incorporating the vertical rails, the corresponding non-zero elements 

of [ ]S  will fall in the set 1 4 7 19 22{ , , ,.... , }s s s s s (representing the constraints on the 

horizontal ( x ) directional motion of the panels pinned by the rails). Transitions between 

AWE modes are accommodated by smooth (time) trajectories of the is  , to and around 

zero. Note that this enables smooth transition between the structural changes in (1) 

required as the task space of AWE changes between modes. 

Given a selection of x  as above, real-time trajectory planning is achieved via 

iteratively updating the nominal panel joint velocities q&  (and hence the controlled input 

positions q  via numerical integration) in (1) based on the iterative algorithm 

 

[ ( )] [ ]J I J J+ += + −q q x ε& &                                       (2) 
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where [ ]J + is a (right-sided) generalized inverse of [ ]J  (For example 

1[ ] [ ] ([ ][ ] )T TJ J J J+ −= , the Moore-Penrose inverse) and the 8 1×  vector ε  is arbitrary, to 

be selected according to the particular redundancy resolution scheme adopted (below). 

The vector ε  tunes the “self-motion” term  [ ]I J J+− ε  which exploits  the redundant 

degrees of freedom for subtask performance after satisfying the primary task given by x&  

[33], [38]. 

The above redundancy resolution scheme for AWE affords a number of 

alternative implementations. Ultimately, we envision the task space input x&  to be largely 

directly input by the user(s) via proximity sensors (desired motion orthogonal to panel 

with sensor, speed proportional to proximity of users closest body part). We also plan to 

experiment with alternative input devices such as joysticks and Wii input devices. 

However, at the present time we generate the task space velocities via simulation (next 

section) and send the resulting joint variable information to the controller in real time.  

For the subtask performance (i.e. selection of ε ) numerous approaches have been 

established in the literature [33], [38]. Currently, for the five-panel version of AWE in 

operation, we adopt the gradient projection approach introduced by Yoshikawa [45]to 

configure AWE closest to a pre-assigned desired configuration, subject to satisfying the 

primary task constraints. See the discussion in the following section.  

3.2 Modes of Use typical for AWE 

Given the physical wall (Chapter 2) and its underlying motion planner which is 

mentioned above, the natural question arises: how should the system present itself to and 
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interact with, its users? In this section we review a basic set of “modes” for the wall and 

introduce and describe new sensor-based movement strategies for it. 

There are six fundamental modes of use for the wall that the AWE team 

ultimately concluded should form the basis for its operation.  Each of these modes was 

extrapolated from the results of a study conducted by the Sociology and Psychology team 

members [14].  The specific details of the modes were synthesized via group discussion.  

Each of the eight modes is envisioned to be used as a base configuration for a given type 

of activity involving the wall.  Movements close to and between the base modes are 

supported by the creation of 7 distinct dedicated reference configurations, introduced in 

this Chapter.  Each of these dedicated reference configurations is inspired by biology 

(Figure 2) and is used to guide the robot from one configuration into another smoothly, 

while creating a distinctive “shape profile”.  

The first mode that AWE uses is the wall-like mode introduced in Chapter 1 

(Figure 2).  In some cases, depending on the number of panels employed and the height 

of the ceiling, the wall will conform to the ceiling forming an upside down “L” as shown 

in Figure 21.  This is convenient because now the lighting that is included in more distal 

sections can be used to light up the entire room when the robot wall is not in use. 
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Figure 21: Wall configuration to make allowances for ceiling height 

 

 

Figure 22: Enclosed Composing 

A second mode that AWE uses is the composing mode. This was shown in a 

collaborative environment in Chapter 1 in Figure 3.  An alternate composing mode is 

shown in Figure 3.  It shows a much more enclosed space.  The inclusion of this mode is 

due to the needs established by the sociology study mentioned earlier [14]. 
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The next configuration is the presentation mode.  This allows the user access to a 

flat set of panels that a white screen peripheral could be placed on and projected onto. 

Lighting will be particularly important in presentation mode (Figure 23).  

 
Figure 23: Presentation mode 

 

There are two gaming modes.  One allows for a fellow gamer to be near the other 

person (Figure 24) and the other allows the other user to have an alternate task type 

(Figure 25).  We believe these to be of value because they enable non collaborative 

multiple user functions which are often desired for a single room gaming environment.  
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Figure 24: Gaming mode, possibility of two gamers 

 

 
Figure 25: Multi-user mode, allows for two different task types 

 

As AWE grows and develops more of these tasks can be accomplished.  As you 

can see in Figure 26, the work environment began at its simplest as a very short wall.  It 

has grown into a fully controlled 5 panel segment with screens, sensors, and a desk area 

around it.  Shortly after the completion of this thesis we intend to add the last three panels 

to finish the progression and utilize its full potential.   
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Figure 26: Stages of the prototype  
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CHAPTER FOUR 

EXPERIMENTS 

 

4.1 Simulation Experiments 

In this section, we present the results of simulations of the motion planning 

approach outlined above. One of the novel aspects of the AWE wall is the class of tasks 

required of it in the intelligent workspace environment. In particular, unlike most 

previous applications of kinematically redundant systems, the primary task is not usually 

specified by motion of the most distal (“end effector”) element. For this application, 

typically the primary task is more proximal to the base and the tip motion forms part of 

secondary tasks. This makes the motion planning particularly interesting. 

For example, one envisioned mode for the Animated Work Environment is 

presentation. A screen attachment will be unfolded from an upper panel to provide the 

background for the presentation images (Figure 23). A light from the top of the AWE 

wall may be desired to highlight an object the speaker is talking about, or it may highlight 

the speaker. None if this is in itself particularly novel and can be achieved in a typical 

presentation environment.  However, what if the speaker begins to pace? They may 

remove themselves from the light. People may not be able to see them as well. They 

typical presentation environment remains essentially static. 

The AWE wall, as a robotic workstation, can adapt to the user. It will follow the 

speaker (guided by information from its sensors), maintaining its relative orientation and 

continuing to optimally illuminate them. Note that in this mode, the wall must not only 
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hold the lighting on the speaker, but also hold the screen in its orientation so that the 

audience may pay attention to what has been written as well. We provide an example of 

this behavior in the simulation results below.  

For these simulations we used the Jacobian pseudoinverse-based model (2). 

Different versions of the Jacobian (corresponding to different modes for the wall, as 

discussed in the previous section) were selected for the different experiments. The 

simulation, written in C++, includes the hardware joint limit constraints and singularity 

checking.  They use the assistance of the Blepo computer vision library which is based 

upon the GNU library but written for windows [6].   

The first experiment shown here has 4 panels constrained, corresponding to the 

presentation mode discussed above (Figure 23).  Panels 3, 4, 5 and 8 are all (partially) 

constrained.  Panels 3, 4 and 5 need to maintain their orientation – but not position – to 

maintain the screen orientation and panel 8 must retain its relative orientation to maintain 

the lighting task. This leaves panels 1, 2, 6 and 7 and the remaining degrees of freedom of 

panels 3, 4, 5 and 8 free to move around while holding the other panels in their original 

orientation. The constrained elements in the task space (with corresponding rows 

included in the Jacobian in (2) and components of x&  set to zero in (2)) are the third 

elements of 3 4 5 8{ , , , }x x x x . Thus the overall task is four-dimensional, resulting in a 

degree of redundancy of four in the eight degree of freedom wall. 

The results of this experiment are shown in Figure 2. Two motions are shown, 

corresponding to two desired orientations of the screen (the straight segment centrally 

located) and (simulated) movements of the speaker (regulating the movement of the top 
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panel). It can be seen that the middle panels (3, 4 and 5) successfully maintain their 

posture to support and orient the screen, while the final panel maintains its orientation 

while moving with the speaker. 

 

 
 

Figure 27: Presentation mode motions 

 
The second experiment shows motion planning for the system in “rail” mode.  In 

this example the tip of panel 5 is modeled as inserted to the rail, thus constraining its 

motion to the vertical. Therefore the Jacobian for this example contains the (First) row 

corresponding to the panel 5 task space 5x , with the corresponding element of 

x& commanded to zero (to constrain tip 5 movement in the x direction) in the simulation. 
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The results of this experiment are shown in Figure 2. It can be seen that the self-

motion of the redundant joints adjusts the trajectory to allow the tip of the 5th panel to 

slide vertically while maintaining the horizontal constraint. 

 
Figure 28: Rail constraint motions 

 

The third experiment reported here is that of motion between modes. The robotic 

wall can assume many possible configuration histories, due to the inherent self motion; 

we have explored the notion of different guiding configurations to improve path choice 

from one preassigned desired configuration to another. Eight different dedicated 

reference configurations, along with the preset modes, were selected, to investigate uses 

for self motion in this application. These guiding configurations were biologically 

inspired by the cobra, sequoia ostrich, an elephant’s trunk and the shape of a football to 

reflect the perceived “organic” nature of the wall (Figure 2). All but the sequoia and 
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elephant’s trunk were mirrored over the y plane to create a second new guiding 

configuration in each case. 

  

  

 

Figure 29: Biologically inspired dedicated reference configurations 

 

Recall that the function of a guiding configuration is used to resolve the 

redundancy by providing a “guide” for the wall to be “closest to” during a given 
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movement under the motion planning strategy in (2). So the wall in some sense is 

expected to exhibit the “nature” of the selected guiding configuration during the motion. 

This experiment was performed going from each base configuration to a different one 

through each of the guiding configurations.  Because of the number of configurations and 

the possible guiding configurations, there are over 300 possible combinations. The room 

parameters were factored into the calculations so that the user’s space, walls and ceiling 

would not be encroached on by the wall during the motions. The results were quite 

interesting. Some of the reference configurations worked considerably better than others. 

Figure 30 through Figure 32 show a side view of the wall. The guide configuration is 

represented by a blue line. The green lines depict the path taken by the robot and grow 

lighter as time passes. The red line is the desired mode.  In a black and white copy, this is 

harder to discern.  In Figure 30, the guiding and desired modes are the same and are the 

darkest two lines on the right of the image.  The path taken gets lighter to darker from left 

to right.  In Figure 31 and Figure 32 the reference configuration is the one line in the 

image that seems separated from the robotic progression.  The Desired configuration is 

the dark line amidst the very light lines.  Again, the path taken gets lighter as time goes 

on.  In the algorithm, the tip is moving from its current location linearly toward its ending 

location. The motion of the interior links is based upon the guiding configuration, the 

current mode and the desired mode. In the beginning of the movement, the guide 

configuration has more influence on where the joint will move than the desired 

configuration. The following three figures are one example of how moving from one 

configuration to another can be changed through the use of guide configurations.  
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Figure 30: Composing mode to presenting mode guided by the presenting mode 

 

Figure 30 is a depiction of no guiding configuration. One is being used, but it is 

the same as the ending configuration which negates having one. The robot does not move 

the top motors to relieve the bottom motors of high torque loads.  

 

Figure 31: Composing to presenting mode guided by the gaming mode 
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 As can be seen in Figure 31, the guiding configuration allowed the top and 

middle joints to move into position and slowly allowed the base motors to move. This 

reduced the amount of torque the bottom motors had to overcome with their rotation. 

Figure 32 shows the effect of a less desirable guidance configuration. It has excess 

motion in the bottom two motors. The top joints take longer to move putting more torque 

on the bottom motors. 

 

Figure 32: Composing mode to presenting mode guided by the football inspired mode 

 

4.2 IR Proximity Sensor Experiments 

In addition to being able to have the control system autonomously change from 

one configuration (typically mode) to the next, the user may interact directly with the 

robot through the IR proximity sensors currently located in the centre of the left and the 
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right side of panels 2 through 5 (Figure 33).  These are Sharp sensors model number 

GP2D120.  These sensors can be used to fine tune a mode or for the robot to react to the 

user directly (for example if the user began to stand up in one of the encapsulating 

modes).  This adjustability adds intelligence to the AWE wall because it allows the 

workstation to adjust to individuals controlling it.   

The proximity sensors operate to allow the user fine tune adjustment.  By placing 

his or her hand close enough to the sensor on his right he or she can give the robot its cue 

to move away from him or her; similarly, placing his or her hand over the left sensor will 

command the robot to move toward him or her. Each sensor moves only the panel it sits 

on.  They are currently set up to change the angle of rotation by 5 degrees for each new 

reading.  There is a period of time (dead-zone) which the sensor will not make any new 

fine tune adjusting to ensure that the change is wanted.  This amount of time is adjustable 

like the sensitivity of a mouse; some users will prefer it to be higher or lower.  The 

amount of rotational change (5 degrees) was decided upon because it gives a high amount 

of flexibility to the user for positioning the wall exactly where she or he would like it.  

The proximity sensor mode is not intended to be the prime means of operation (i.e. 

change the configuration every time they would like to move it); though it could be used 

in that manner if someone chose to.  It is intended to allow the user to locally position the 

screen how he or she would like it.    If a resulting setting is very far off from the original 

mode, we anticipate the user would wish to save this setting and use it in the future.   

A second interesting mode is available for use with the proximity sensors.  We 

refer to this mode as the breathing mode.  This mode is envisioned mostly for “cave” 
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operation.  If a person stands under a proximity sensor, the wall will move up to give the 

person breathing room.  The proximity sensor can be activated at a distance that is further 

away than the previous mode.  It will allow the primary user to open up the space to 

another user to enter.  This will be more inviting because the space will become less 

enclosed.  This mode differs from the previously described one because each proximity 

sensor controls the panel it is on and all of the panels below it.  This acts to give the 

movement of the upper panels more speed.  This advantage arises from the motion of the 

lower panels combining with the motion of the upper panels.  We have created again two 

types of sensing for this, one set raising up the robot (repelling mod) and one bringing the 

robot back down (attractive mode).  To reduce the possibility of a person accidentally 

bringing the robot down upon themselves, the range the enclosing sensor has for 

activation is very small.  If the user did accidentally activate it, all they would need to do 

to stop it would be to activate a repelling sensor.  Because its range is set much higher, 

this is easily done.  This mode would ideally be done with sensors whose range was 

bigger than the sensors we currently have for testing.  If sensors with a bigger range were 

implemented (a sensor more like the Sharp GP2Y0A02YK would work ideally around 

the range we would like to use), the wall would have ample warning when a person stood 

so that it could move out of their way and they would not have to worry about standing 

up slowly. 

These sensing modes are works in progress.  The position, range and modes of the 

sensors will be investigated much more extensively before the final prototype has been 

completed.  Currently the number of sensors is limited to 8 in total.  This is because of 
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the hardware that the robot is running on.  Were this to be used in a commercial 

application, a mux board may be used to interoperate the signals and the addition of more 

sensors could help the intelligence of the robot. 

 

Figure 33: An image of AWE with sensors  
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CHAPTER FIVE 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

AWE is a novel workspace that allows the room to conform dynamically to an 

individual users daily work schedule whether that requires privacy, space to collaborate, 

presentation areas, gaming, or space for multiple tasks.  This thesis describes 

contributions to the design, realization, motion planning and initial testing of this novel 

multi-panel robot system. The design is unique in creating, for the first time in hardware 

a kinematically redundant robot surface. The reconfigurable workstation application for 

the system also represents an innovative direction in human-computer interaction in work 

environments. Taken together, the resulting system provides a unique test bed for 

conducting innovative research in redundant robotics and human-computer interaction. 

Chapter 2 described the overall design concept for the wall and detailed its 

construction and interfacing.  The wall is comprised of a modular set of panels and 

motors.  While the kinematics of this robot share similar features with conventional 

industrial like robots [39], the robot is a contribution to the field because it is the first 

time a redundant robot has been created as a surface.  The way in which it will be used 

will vary vastly from previous redundant robot implementations and is highly innovative.  

It will not be used (as most rigid link robots are) to manipulate objects with its end 

effector, but rather allow the surfaces to be formed in such a way that the user may 

manipulate information more intuitively.   
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In Chapter 3, we presented a new and novel approach for motion planning of the 

AWE wall. The resolved rate approach used has been proven through simulation to give 

reliable, interesting and useful behavior.  This approach exploits the similarities between 

the kinematics of the robot and those in previously studied kinematically redundant 

robots.  The way in which the robot is to be used is the key novelty part of this project.  

The approach allows the user to take advantage of the redundancy within the robot while 

manipulating it.  We have also seen how the robot can take on many different forms to 

aid in the creative process.  This robot can adjust to fit the many common workstation 

needs.  It is also shown that the robot can adjust to fit into a variety of different sized 

rooms.  The basic modes of interaction envisioned were shown and explained.  These 

covered a wide variety of tasks identified by the social scientists and architects 

collaborating on the overall project. 

Chapter 4 describes the application of the motion planning approach in 

simulation.  It demonstrates how the robot will move given many constraints.  This 

chapter also covers interactions of the wall with humans. We have demonstrated how 

AWE’s many modes combined with the touch sensor application allow the user a chance 

to easily reconfigure their environment.  It is evident that the user has significantly 

increased flexibility due to the integration of IR proximity sensors.  The two sensor-based 

modes introduced in this thesis are currently being evaluated allow the user more 

freedom to control and manipulate their environment, consistent with the goal for the 

project.  Overall, these contributions have resulted in a successful operational prototype, 

which will form the basis for ongoing research. 
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Directions for future research include refinements to the wall itself, expanding an 

assortment of peripherals and investigations of AWE’s potential for enhancing user 

productivity and satisfaction. These directions are reviewed in the following paragraphs. 

Through usability testing, we have found that many people at the station would 

like to feel more enclosed by the workstation’s screens. They would prefer if the panel 

itself were able to be pulled around them.  Mechanically, if we were to remake the wall, 

we would have each section have two points of contact with the next, especially those 

panels closest to the base.  We might do this by replacing the bottom square part of the 

panel with a rod and use that as the fulcrum to twist the panel about.  The down side to 

this is that the bearings would add extra weight to the system and add the possibility for 

undesired torsion if they did not move freely enough. 

In the short term for the project, a screen attachment will be added to the 

intermediate panels for presentation purposes (Figure 23). Lighting needs have been 

discussed and analyzed and lighting is currently in the process of being added to the 

workstation.  Placement of a projector, speakers and other peripherals is still needed. 

Panel elements not featuring display screens or other equipment will be covered with 

lightweight plastic to reduce the “prototype” appearance, give the system a more 

“playful” look and make it more calming for approaching work. Iterative usability testing 

of the system will continue to better understand how people can use this system and how 

it be better adapted for its users.  Another very important continuance of this work is the 

creation of a GUI, graphical user interface to allow the end user better access to the 

modes of AWE.  Future ideas for this animated environment may be developed and 
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explored through the use of Rhino.  Rhino 3D is a CAD based drafting tool.  It can be 

used to create sill images to scale, or with a plug-in, Bongo, it can be used to animate 

these images as well.  Through scripting in Visual Basic, information from a simulation 

in C++ can be animated.  Because we have created a C++ program to show what AWE is 

currently capable of, we can use that as a base to work from to see how additions might 

work.  However, the code at this point is at the level of someone who has an 

understanding of C++ to work with.  In the long term, the workstation will combine with 

other efforts envisioned by the research team, including a “smart box” (that allows for 

storage and retrieval of both digital and analogue materials) and a programmable, mobile 

continuum wall element (oriented horizontally and complimenting the vertical work 

station described here by defining more precisely the shape of the room). We also intend 

to explore how multiple workstations, smart boxes and continuum wall elements combine 

with programmable lighting and audio as well as select, complimentary IT components 

designed and developed by the wider IT community to create an intelligent workplace at 

the scale of a larger room or office, greatly amplifying the possibilities for working life in 

a digital society.  
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Appendix A: AWEprototype2.cpp 

// AWEprotoype2.cpp : Defines the entry point for the console application. 
// 
 
#include "stdafx.h" 
#include "AWEprotoype2.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __FILE__; 
#endif 
 
///////////////////////////////////////////////////////////////////////////// 
// The one and only application object 
 
CWinApp theApp; 
 
using namespace std; 
 
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 
{ 
 
 int nRetCode = 0; 
 int choice, choice2, choice3; 
 
 // initialize MFC and print and error on failure 
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0)) 
 { 
  // TODO: change error code to suit your needs 
  cerr << _T("Fatal Error: MFC initialization failed") << endl; 
  nRetCode = 1; 
 } 
 else 
 { 
  // TODO: code your application's behavior here. 
  CString fileName; 
  fileName = "D:/marthak/AWEprotoype2/blank white8.5x11.bmp"; 
  for(choice=1; choice < 6; choice++) 
  { 
   for(choice2=1; choice2 < 6; choice2++) 
   { 
    if(choice != choice2) 
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    { 
     for(choice3=1; choice3 < 14 ; choice3++) 
     { 
       
      for(double n=.25; n<.5; n+=.05) 
      { 
       printf("from %d to %d by %d based 
on %d\n",choice,choice2,choice3,(int)(n*100)); 
      
 AWEproject((fileName.GetBuffer(150)), choice,choice2,choice3,n); 
      /*CFileDialog 
openDlg(TRUE,NULL,NULL,OFN_OVERWRITEPROMPT,"All 
(*.pgm;*.jpg*;*.bmp)|*.pgm;*.jpg;*.bmp|Pgm Files (*.pgm)|*.pgm|Jpeg Files 
(*.jpg)|*.jpg|Bitmap Files (*.bmp)|*.bmp|"); 
      int iRet = openDlg.DoModal(); 
      CString fileName; 
      fileName = openDlg.GetPathName(); 
 
      if(iRet == IDOK) 
        AWEproject((fileName.GetBuffer(150))); 
      else 
        MessageBox(openDlg, "No File 
Selected!", NULL, MB_ICONWARNING);*/ 
      } 
     } 
    } 
   } 
  } 
 } 
 
 return nRetCode; 
} 
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Appendix B:  AWEproject.cpp 

#include "stdafx.h" 
#include "AWEprotoype2.h" 
# define imagevisible 1  //1=true (yes), 0=false (no), 2=only for saving, do 
not show 
# define userinfo 2  //0=get no info, 1=hold links still, 2=rails  
 
void AWEproject(char const *picture, int choice,int choice2,int choice3, double 
n_scalar)//F1 
{ 
 int pconfigs=13; //number of possible configurations 
 
 //load picture and get its info 
 ImgGray INimage;// INimage2; 
 Load(picture,&INimage); 
 int w = INimage.Width(); 
 int h = INimage.Height(); 
 int maxit=14000;//max number of itterations 
 int printit=maxit/100; //number of itterations before the display refreshes  
  
 //open up two files for writing in  
 FILE *FileO2,*FileO9,*FileO10,*FileO12,*FileO8, *FileO11; 
 CString 
OutFileName2,OutFileName10,image1,image2,OutFileName12,OutFileName8,OutFileN
ame11; 
 
 image1.Format("data/i_progression%dto%dby%d_%d.jpg", choice, 
choice2,choice3,(int)(n_scalar*100)); 
 image2.Format("data/i_result%dto%dby%d_%d.jpg", choice, 
choice2,choice3,(int)(n_scalar*100)); 
 OutFileName2.Format("data/mkwoka_q_%dto%dby%d_%d.txt", choice, 
choice2,choice3,(int)(n_scalar*100)); 
 OutFileName10.Format("data/AWE_distxy_out%dto%dby%d_%d.txt", choice, 
choice2,choice3,(int)(n_scalar*100)); 
 OutFileName12.Format("data/Torque%dto%dby%d_%d.txt", choice, 
choice2,choice3,(int)(n_scalar*100)); 
  
 FileO2 = fopen(OutFileName2,"w"); 
 FileO10 = fopen(OutFileName10,"w"); 
 FileO12 = fopen(OutFileName12,"w"); 
 FileO9 = fopen("D:/marthak/AWEprotoype2/AWEconfig.txt","r"); 
  
  



57 

 

 int numlinks=0,i, rlink=0; 
 //info from the user 
 if(userinfo==1) 
  numlinks=holdorientation();//F10 
 if(userinfo==2) 
  rlink=holdrail(numlinks); 
  
 numlinks++; 
 MatDbl link(1,numlinks); 
 numlinks--; 
 
 for(i=0; i<numlinks && rlink==0; i++)//shouldnt happen for numlinks==0 
 { 
  do{ 
   printf("which link would you like to be held still(1-8)?\n"); 
   scanf("%lf",&link(0,i)); 
  }while(link(0,i)<1 && link(0,i)>8); 
 } 
  
 const int Jwidth =8;    //number of joints (1-8) 
 const int Jheight=2+numlinks;  //number of dimensions(2+) 
 const int lines=3;     //number of lines to print on 
output image 
 
 //output image setup 
 ImgBgr OUTbgr(w,h); 
 Set(&OUTbgr, Bgr(255,255,255)); 
 ImgBgr OUTbgr2(w,h); 
 Set(&OUTbgr2, Bgr(255,255,255)); 
 
 Figure figOUT("Output Image"); 
 Figure figOUT2("Output Image 2"); 
 
 if(imagevisible!=1)//hide figure if it is not going to be in use 
 { 
  figOUT.SetVisible(0); 
  figOUT2.SetVisible(0); 
 } 
 figOUT2.SetVisible(0); 
 
 MatDbl q(1,Jwidth);    //joint angles 
 MatDbl qf(1,Jwidth);   //final joint angles 
 MatDbl qr(1,Jwidth);   //refrence joint angles 
 MatDbl qdot(1,Jwidth);   //joint velocities 
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 MatDbl temp1(1,Jwidth);   
 MatDbl temp2(1,Jwidth);   
 MatDbl x(1,Jheight);   //end effector positions 
 MatDbl xdot(1,Jheight);   //end effector velocities 
 MatDbl J(Jwidth,Jheight);  //jacobian 
 MatDbl Jplus(Jheight,Jwidth); //pseudoinverse of the jacobian 
 MatDbl epsilon(1,Jwidth);Set(&epsilon, 0);  //arbitrary input used in qdot. 
 MatDbl epsilon2(1,Jwidth);Set(&epsilon2, 0);  //arbitrary input used 
in qdot. 
 MatDbl I;Eye(Jwidth, &I);  //identity matrix with dimensions Jwidth x 
Jwidth 
 MatDbl inconfig(Jwidth, pconfigs); 
 MatDbl printpretty(2,Jwidth); 
 MatDbl sumtheta(Jwidth,3); //summaton of q,qf,qr. summation of thetas array.  
theta[2]=theta1+theta2 
 MatDbl Kappa(Jwidth,Jwidth);Set(&Kappa, 0); 
 MatDbl dpoint(2,lines); //double point--so as to reduce rounding error 
(x/y,reg/final/ref)  
 MatDbl torquestat(2,Jwidth); 
 MatDbl torque(Jwidth,maxit); 
 CPoint point(0,0); 
 TextDrawer OutputText(15,2); 
 double c=pi/180,deltaT =.01,xtemp,xmax;  
 int len[Jwidth];    //length array 
 int y=0,itter,quit=0,color=0; 
 char Itter_text[6]; 
 Point drawpoint[lines*2];  //start and end point per section 
   
 xdot(0,0)=0; xdot(0,1)=0;  //innitialize xdot 
 if(Jheight>2) 
  for(i=2; i<Jheight;i++) 
   xdot(0,i)=0; 
  
 for(i=0; i<pconfigs;i++)    //get configuration 
possibilities from file 
  for(int j=0; j<Jwidth; j++) 
   fscanf(FileO9,"%lf",&inconfig(j,i)); 
  
 for(i=0; i<Jwidth; i++)   //innitialize joint angles and length of 
robot parts 
 { 
  q(0,i)=inconfig(i,choice-1)*c; 
  qf(0,i)=inconfig(i,choice2-1)*c; 
  qr(0,i)=inconfig(i,choice3-1)*c;//(q(0,i)+qf(0,i))/2; 
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  q(0,i)=checkbounds(q(0,i),i); 
  qf(0,i)=checkbounds(qf(0,i),i); 
  qr(0,i)=checkbounds(qr(0,i),i); 
 
  Kappa(i,i)=.1;    //create a diagonal matrix of K 
  qdot(0,i) = 0; 
  if(i==0 ||i==1) 
   len[i]=80;//40 cm*2(scaling) 
  else 
   len[i]=60;//30 cm*2(scaling) 
 
  q(0,i)=checkposition(sumtheta,0,i,len, q(0,i)); 
  qf(0,i)=checkposition(sumtheta,1,i,len,qf(0,i)); 
  qr(0,i)=checkposition(sumtheta,2,i,len,qr(0,i)); 
 
  if(i==0) 
  { 
   sumtheta(i,0)=q(0,i); 
   sumtheta(i,1)=qf(0,i); 
   sumtheta(i,2)=qr(0,i); 
  } 
  else  
  { 
   sumtheta(i,0)= fmod(sumtheta(i-1,0) +  q(0,i),2*pi); 
   sumtheta(i,1)= fmod(sumtheta(i-1,1) + qf(0,i),2*pi); 
   sumtheta(i,2)= fmod(sumtheta(i-1,2) + qr(0,i),2*pi);  
  } 
 } 
  
 for(itter=0; itter<maxit && quit==0; itter++) //for 80000 itterations 
 { 
   
  if(itter%printit==0)//1500 
   
  { 
   color+=2; 
   for(i=0; i<Jwidth; i++) 
   { 
 
    for(int j=0; i==0 && j<lines; j++) 
    { 
     if(itter%printit==0) 
     { 



60 

 

      drawpoint[j*2].x=2*w/3;//startpr.x j*2 
because only want start points to be innitialized 
      drawpoint[j*2].y=2*h/3;//startpr.y 
     } 
     dpoint(0,j)=0;//(x,reg/final/ref) 
     dpoint(1,j)=0;//(y,reg/final/ref) 
    } 
 
    if(itter%printit==0) 
     printimage(i,sumtheta, len, drawpoint,dpoint, 
lines);//F8 
    else 
     printimageb(i,sumtheta, len, dpoint, lines);//F8b 
   
    if(itter%printit==0) 
    { 
     if(maxit<=itter+printit) 
     { 
       
      DrawLine(drawpoint[0],drawpoint[1], 
&OUTbgr2, Bgr(0,0,254), 2);//startp,endp, 
      DrawLine(drawpoint[2],drawpoint[3], 
&OUTbgr2, Bgr(0,254,0), 2);//startpf,endpf 
      DrawLine(drawpoint[4],drawpoint[5], 
&OUTbgr2, Bgr(254,0,0), 2);//startpr,endpr 
      DrawLine(drawpoint[0],drawpoint[1], 
&OUTbgr, Bgr(0,0,254), 2);//startp,endp, 
      DrawLine(drawpoint[2],drawpoint[3], 
&OUTbgr, Bgr(100,100,100), 2);//startpf,endpf 
      DrawLine(drawpoint[4],drawpoint[5], 
&OUTbgr, Bgr(254,0,0), 2);//startpr,endpr 
 
     } 
     else 
     {      
      if(itter==0) 
      
 DrawLine(drawpoint[0],drawpoint[1], &OUTbgr2, Bgr(0,54+color,0), 
2);//startp,endp, 
      DrawLine(drawpoint[0],drawpoint[1], 
&OUTbgr, Bgr(0,54+color,0), 2);//startp,endp, 
      DrawLine(drawpoint[2],drawpoint[3], 
&OUTbgr, Bgr(100,100,100), 2);//startpf,endpf 
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      DrawLine(drawpoint[4],drawpoint[5], 
&OUTbgr, Bgr(254,0,0), 2);//startpr,endpr 
     } 
     if(i==rlink && rlink>0) 
      DrawCircle(drawpoint[0],3, &OUTbgr, 
Bgr(0,0,255),4); 
    } 
     printpretty(0,i)=round(dpoint(0,0)/2);//dpoint(x,reg) 
     printpretty(1,i)=round(dpoint(1,0)/2);//dpoint(y,reg) 
 
       
   } 
    
   GetTorque(Jwidth, itter, len, printpretty, torque,torquestat); 
    
    
   for(i=0;i<Jwidth; i++) 
   { 
    if(i==0) 
    { 
     fprintf(FileO10,"%4d\t%d\t%d",itter, 
(int)printpretty(0,i), (int)printpretty(1,i)); 
     fprintf(FileO12,"%4d\t%d\t%d",itter, 
(int)torque(i,itter), (int)torque(i,itter)); 
    } 
    else if(i != Jwidth-1) 
    { 
     fprintf(FileO10,"\t%d\t%d",(int)printpretty(0,i)-
(int)printpretty(0,i-1),(int)printpretty(1,i)-(int)printpretty(1,i-1)); 
    
 fprintf(FileO12,"\t%d\t%d",(int)torque(i,itter),(int)torque(i,itter)); 
    } 
    else 
    { 
     fprintf(FileO10,"\t%d\t%d\n",(int)printpretty(0,i)-
(int)printpretty(0,i-1),(int)printpretty(1,i)-(int)printpretty(1,i-1)); 
    
 fprintf(FileO12,"\t%d\t%d\n",(int)torque(i,itter),(int)torque(i,itter)); 
    } 
     
   } 
 
   xtemp=(fabs(dpoint(0,0)-dpoint(0,1))+fabs(dpoint(1,0)-
dpoint(1,1)))/4;//|x-xf| + |y-yf| 
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   if (itter==0) 
    xmax=xtemp; 
   xdot(0,0)=(dpoint(0,1)-dpoint(0,0))/xtemp; 
   xdot(0,1)=(dpoint(1,1)-dpoint(1,0))/xtemp;//(x/y,reg/final/ref)  
  } 
   
  Set(&J,0);     //clear Jacobian 
  for(i=0; i<Jwidth; i++) //set Jacobian 
  { 
   for(int n=i; n<Jwidth; n++) 
   { 
    J(i,0)-=len[n]*sin(sumtheta(n,0));//J(0,0)=-A1S1-
A2S12...AJheightS1_thru_height 
    J(i,1)+=len[n]*cos(sumtheta(n,0)); 
 
    if(rlink>i)   //holding in rails (if rlink >0) 
    { 
     if(n==rlink-1) 
      J(i,2)=J(i,0); 
    } 
    else if (rlink>0) 
     J(i,2)=0;     
   } 
    
   for(int k=0; Jheight>2 &&(k<Jheight-2) && rlink==0; k++) 
   { 
    if(link(0,k)>i) 
     J(i,k+2)=1; 
    else 
     J(i,k+2)=0; 
   } 
  } 
 
  double scalar=(xmax-xtemp)/xmax;//(itter)/(double)maxit; 
  double scalar1=(1-scalar) -n_scalar;//.25;//range .75 to 0 
  double scalar2= scalar + n_scalar;//.25;//range .25 to 1 
  if(scalar1<0) 
  { 
   scalar1=0; 
   scalar2=1; 
  } 
  for(i=0;i<Jwidth;i++) 
   temp1(0,i)=(scalar1)*(sumtheta(i,2)-sumtheta(i,0));//sumthetar-
sumtheta 
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  for(i=0;i<Jwidth;i++) 
   temp2(0,i)=(scalar2)*(sumtheta(i,1)-sumtheta(i,0));//sumthetaf-
sumtheta 
 
  epsilon=Kappa*temp1;//(qr-q); 
  epsilon2=Kappa*temp2; 
 
  getJplus(&J,Jplus);//getJplus(&J,Jplus, FileO3, FileO4); 
  
  qdot = Jplus * xdot + (I-(Jplus*J))*(epsilon+epsilon2); 
   
  double Xcheck=0,Ycheck=0; 
 
  for(i=0; i<Jwidth; i++) 
  { 
   //euler's integration could also use runge-Kutta integration if this 
isnt working 
   //get new q 
   q(0,i)=q(0,i)+ qdot(0,i)*deltaT; 
   q(0,i)=checkbounds(q(0,i),i); 
   q(0,i)=checkposition(sumtheta,0,i,len,q(0,i)); 
   if(i==0) 
   { 
    sumtheta(i,0)=q(0,i); 
    //fprintf(FileO7,"\n%lf",sumtheta(i,0)); 
   } 
   else 
   { 
    sumtheta(i,0)= fmod(sumtheta(i-1,0) + q(0,i), 
2*pi);//sumtheta[2]= theta0+theta1+theta2 
    //fprintf(FileO7,"\t%lf",sumtheta(i,0)); 
   } 
 
   if(i==Jwidth-1) 
   { 
    fprintf(FileO2,"%lf\n",q(0,i));//in radians *180/pi); 
   } 
   else 
   { 
    fprintf(FileO2,"%lf\t",q(0,i));//in radians*180/pi); 
   } 
  } 
   
  //show on screen 
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  if(imagevisible) 
  { 
   if((itter==0 || maxit<=itter+printit)) 
    figOUT2.Draw(OUTbgr2); 
   if(itter %printit==0)//1500 
   { 
    sprintf(Itter_text,"%d",itter); 
    figOUT.Draw(OUTbgr); 
    OutputText.DrawText(&OUTbgr, Itter_text, point, 
Bgr(100,100,100),Bgr(0,0,255)); 
     //while(!figOUT.TestMouseClick()) { }; 
   } 
  } 
 
  if(maxit==itter+1 && (imagevisible==0 || imagevisible==2)) 
  { 
   Save(OUTbgr, image1, "jpg"); 
   Save(OUTbgr2, image2, "jpg"); 
  } 
   
  if (itter==maxit-1) 
  { 
   for(i=0; i<Jwidth; i++) 
   { 
    torquestat(0,i)=torquestat(0,i)/(maxit/printit); 
   } 
   fprintf(FileO12,"average 
torque\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",  
   
 torquestat(0,0),torquestat(0,1),torquestat(0,2),torquestat(0,3),torquestat(0,4), 
    torquestat(0,5),torquestat(0,6),torquestat(0,7)); 
   fprintf(FileO12,"max 
torque\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",  
   
 torquestat(1,0),torquestat(1,1),torquestat(1,2),torquestat(1,3),torquestat(1,4), 
    torquestat(1,5),torquestat(1,6),torquestat(1,7)); 
  } 
   
  int count=0;  
  double diff; 
  //singularity check 
  for(i=0; (i<Jwidth-1||count+1>i)&& itter>800 ; i++)//||count>i-2 && 
itter>800 
  { 
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   diff=fabs(sumtheta(i,0)-sumtheta(i+1,0)); 
   if(diff<(1*pi/180)) 
    count++; 
  } 
  if(count==Jwidth-1 || (Jheight>2 && count==Jwidth-2) ) 
  { 
   printf("At a singularity 1 degrees diff.\n"); 
   quit=1; 
  } 
 } 
  
 printf("done\n"); 
 fclose(FileO2);fclose(FileO9);fclose(FileO10);fclose(FileO12); 
} 
void getJplus(MatDbl *mat, MatDbl &matplus)//F2 
{ 
 //MatDbl J(Jwidth,Jheight); 
 const int Jwidth= mat->Width(); 
 const int Jheight= mat->Height(); 
 MatDbl J; 
 J=*mat; 
 
 MatDbl Jt(Jheight,Jwidth), JJti(Jheight,Jheight), JJt(Jheight,Jheight); 
 Transpose(J,&Jt); 
 JJt= J *Jt; 
 Inverse(JJt, &JJti); 
 matplus =Jt*JJti; 
 return; 
} 
 
int round(double num)//F6 
{ 
 int intnum=num; 
 int roundnum=intnum; 
 
 if((num-intnum)>=.5)//if remainder's abs>=.5 
  roundnum=intnum+1; 
 if((num-intnum)<=-.5)//if remainder's abs>=.5 
  roundnum=intnum-1; 
 
 return roundnum; 
} 
double checkbounds(double angle, int joint)//F7 
{ 
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 double modangle; 
 modangle=fmod(angle, (2*pi)); 
  
 //if(modangle != angle) 
 // printf("error with angle...going over 360"); 
 if(modangle<0) 
  modangle+=2*pi; 
 
 //if it is starting to get past the bounds of the hinge make it stop 
/* if(joint==0) 
 { 
  if(modangle>3*pi/2) 
   modangle=0; 
  else if(modangle >pi) 
   modangle=pi; 
 } 
 else */if(modangle>140*pi/180) 
 { 
  //both have 10 degrees leeway so that slippage isnt such a big deal 
  if(modangle<205*pi/180) 
   modangle=140*pi/180; 
  else if(modangle<270*pi/180) 
   modangle=270*pi/180; 
 } 
  
 return modangle; 
} 
double checkposition(MatDbl &sumtheta,int fig, int joint, int *len, double qorig) 
{ 
 double x=0, y=0; 
 double q; 
 joint--; 
 if((joint>=0 && sumtheta(joint,fig)+qorig>pi) || (qorig>pi && joint<0)) 
 { 
  joint++; 
  for(int i=0; i<joint; i++) 
  { 
   x+=cos(sumtheta(i,fig))*(len[i]);//x start for your joint 
   y+=sin(sumtheta(i,fig))*(len[i]);//y start fro your joint 
  } 
  if(joint>0)//i=joint 
  { 
   x+=cos(sumtheta(i-1,fig)+qorig)*(len[i]);//info hasnt been put into 
sumtheta[i] yet 
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   y+=sin(sumtheta(i-1,fig)+qorig)*(len[i]);//but it will be sumtheta(i-
1,fig)+qorig 
  } 
  else 
  { 
   x=cos(qorig)*len[i];//if joint==0 make sure that you are not past pi 
rad. 
   y=sin(qorig)*len[i]; 
  } 
  if(y<0) 
  { 
   double xold,yold;//issues 
   if(joint>0) 
   { 
    yold=y-sin(sumtheta(i-1,fig)+qorig)*(len[i]); 
    xold=x-cos(sumtheta(i-1,fig)+qorig)*(len[i]); 
   } 
   else 
   { 
    yold=y-sin(qorig)*len[i]; 
    xold=x-cos(qorig)*len[i]; 
   } 
 
   q=asin(-yold/len[joint]);//y=0=yold+len[joint]*q 
   if(xold-x>0) 
   { 
    q=pi-q; 
   } 
   if(i>0) 
    q=checkbounds(q-sumtheta(i-1,fig),joint); 
 
  } 
  else 
   q=qorig; 
 } 
 else 
  q=qorig; 
 
 return q; 
  
} 
void printimage(int i,MatDbl &sumtheta,int *len, Point *drawpoint, MatDbl &endp, int 
lines)//F8 
{ 
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 MatDbl start(2,lines);//0=x,1=y and 0=current pos, 1=final pos, 2=ref pos 
 int j; 
 
 for(j=0; j<lines; j++) 
 { 
  start(0,j)=endp(0,j);//(x,reg/final/ref) 
  start(1,j)=endp(1,j);//(y,reg/final/ref) 
  if(i>0) 
  drawpoint[j*2]=drawpoint[j*2+1];//start=end,0,2,4=1,3,5 
 
  endp(0,j)=len[i]*cos(sumtheta(i,j)); 
  endp(1,j)=len[i]*sin(sumtheta(i,j)); 
  drawpoint[j*2+1].x=round(endp(0,j));//left is negative, right is positive*20 
  drawpoint[j*2+1].y=round(-endp(1,j));//up is negative, down is 
positive*20 
 } 
  
 for(j=0; j<lines; j++) 
 { 
  drawpoint[j*2+1]+=drawpoint[j*2];//endp += startp; 
  endp(0,j) += start(0,j); 
  endp(1,j) += start(1,j); 
 } 
 return ;//drawpoint 
} 
void printimageb(int i,MatDbl &sumtheta,int *len, MatDbl &endp, int lines)//F8b 
{ 
 MatDbl start(2,lines);//0=x,1=y and 0=current pos, 1=final pos, 2=ref pos 
 int j; 
 
 for(j=0; j<lines; j++) 
 { 
  start(0,j)=endp(0,j);//(x,reg/final/ref) 
  start(1,j)=endp(1,j);//(y,reg/final/ref) 
 
  endp(0,j)=len[i]*cos(sumtheta(i,j)); 
  endp(1,j)=len[i]*sin(sumtheta(i,j)); 
 } 
 for(j=0; j<lines; j++) 
 { 
  endp(0,j) += start(0,j); 
  endp(1,j) += start(1,j); 
 } 
 return ;//drawpoint 
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} 
int holdrail(int &numlinks)//F9 
{ 
 int rlink=0; 
 do{ 
  printf("do you want any link to be in the rails? no={0} yes={1-8}"); 
  scanf("%d", &rlink); 
 }while (rlink<0 || rlink>8); 
 if(rlink>0) 
  numlinks++; 
 return rlink; 
} 
int holdorientation()//F10 
{ 
 int numlinks=0; 
 do{ 
  printf("how many links would you like to hold orientation for?"); 
  scanf("%d", &numlinks); 
 }while(numlinks<0|| numlinks>5); 
 return numlinks; 
} 
void GetTorque(int Jwidth,int itter, int *len, MatDbl &printpretty, MatDbl 
&torque,MatDbl &torquestat) 
{ 
 int i; 
 double weight[8]; 
 double CoGx,CoGy,oldCoGx,oldCoGy; 
 for(i=0; i<Jwidth; i++) 
  weight[i]=44.48; 
 
 for(i=0; i<Jwidth; i++) 
 { 
  int j=Jwidth-1-i; 
  if(i==0) 
  { 
   torque(j,itter)=0.5*len[i]/20*cos(atan((-
printpretty(1,j)/printpretty(0,j))))*weight[i]; 
   CoGx=(1.5*printpretty(0,j)+.5*printpretty(0,j))/200;//center of 
gravity in the x plane 
   oldCoGy=(1.5*printpretty(1,j)+.5*printpretty(0,j))/200 ; 
CoGy=fabs(oldCoGy); //same in the y plane 
    
  } 
  else 
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  { 
   
   CoGx=(oldCoGx*(i+1)*100+(i+.5)*printpretty(0,j))/((i+2)*100); 
   oldCoGy= 
(oldCoGy*(i+1)*100+(i+.5)*printpretty(1,j))/((i+2)*100); CoGy=fabs(oldCoGy); 
   torque(j,itter)= 
pow((pow(CoGx,2)+pow(CoGy,2)),.5)*cos(atan(fabs(CoGy/CoGx)))*weight[i]; 
  } 
  oldCoGx=CoGx; 
  if(itter==0)      //sum of torque on the 
joint 
  { 
   torquestat(0,j)=torque(j,itter); 
   torquestat(1,j)=torque(j,itter); 
  } 
  else 
  { 
   torquestat(0,j)+=torque(j,itter); 
   if(torquestat(1,j)<torque(j,itter))//max torque on the joint 
    torquestat(1,j)=torque(j,itter); 
  } 
 } 
} 
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Appendix C:  AWEprototype2.h 

 
#if 
!defined(AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__IN
CLUDED_) 
#define 
AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__INCLUDED
_ 
 
#if _MSC_VER > 1000 
#pragma once 
#endif // _MSC_VER > 1000 
 
#include "resource.h" 
#include "C:\ImageProcessing1\blepo\src\blepo.h" 
using namespace blepo; 
#define pi 3.14 
 
void AWEproject(char const *picture,int choice,int choice2,int choice3,double n_scalar); 
void getJplus(MatDbl *mat, MatDbl &matplus); 
int round(double num); 
double checkbounds(double angle, int joint); 
double checkposition(MatDbl &sumtheta,int fig, int joint, int *len, double qorig); 
void printimage(int i,MatDbl &sumtheta,int *len, Point *drawpoint, MatDbl &endp, int 
lines); 
void printimageb(int i,MatDbl &sumtheta,int *len, MatDbl &endp, int lines);//F8b 
int holdrail(int &numlinks); 
int holdorientation(); 
void GetTorque(int Jwidth,int itter, int *len, MatDbl &printpretty, MatDbl 
&torque,MatDbl &sumtorque); 
void printmat(char* matname, MatDbl *mat, FILE* FilePrintLog); 
#endif // 
!defined(AFX_ROBOHIST_H__4674D546_3C8D_4BEB_865E_4DA1D35EE276__IN
CLUDED_) 
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