Introduction

The National Integrated Drought Information System (NIDIS) and Carolinas Integrated Sciences and Assessments (CISA) are partnering to develop and support a Carolinas Drought Early Warning System (DEWS) pilot project. Initial activities have included understanding drought in the region, a stakeholder workshop and development of pilot projects. This poster report on progress made to date.

Focus on Coastal Ecosystems

The project’s focus is coastal ecosystems. In the Carolinas, drought effects on environmental resources, particularly in coastal areas, are not as well understood, or as well-integrated into existing drought planning and response processes, as other impacts and resources (e.g., agriculture, surface water supplies). Key concerns related to drought and coastal systems focus on water quality and quantity, habitats, species, and estuarine processes. Drought contributes to increased salinity and saltwater intrusion, reduced flushing or assimilation of pollutants, and overall water quality changes. Ecosystem impact concerns center on habitat loss or conversion and consequent effects on recruitment, distribution and migration patterns as well as on primary and secondary production. Saltwater intrusion, low stream flows, and low water levels contribute to impacts and are attributed to both drought and human actions (e.g., changes in dam releases due to drought).

Carolina’s Integrated Sciences & Assessments

CISA is one of 12 NOAA National Integrated Science and Assessments (NISA) sites. We work with a variety of stakeholders to incorporate climate information into decision-making processes. Core focus areas include:

- **Drought**
- **Climate and Watershed Modeling**
- **Coastal Assessment**
- **Health**
- **Adaptation**

CISA’s drought work seeks to improve monitoring methods, to develop a more comprehensive understanding of drought-related impacts, and to develop drought planning and response processes to better address drought-related risks and warning needs. Several projects have been initiated to advance regional and local capacity to cope with drought and to improve understanding of drought-related impacts on social and environmental systems.

- **Development of the Dynamic Drought Index Tool (DDIT), a web-based drought mapping tool that displays multiple drought indices for different time scales and across user-specific regions**
- **Development of a web-based Decision Support System (DDSS PRISM2) (Pee Dee River and Atlantic Integrated Sciences and Assessments) (PDSI) Model) for stakeholder and government agency use in evaluating potential changes in the hydrologic system of the Pee Dee River under different climatic scenarios**
- **Completion of the Drought and Coastal Ecosystems State of Knowledge Report: to better understand literature gaps and research needs**

National Integrated Drought Information System

The National Integrated Drought Information System (NIDIS) Act, signed into law in 2006. calls for an interagency, multi-partner approach to drought monitoring and forecasting. NIDIS consolidates data on drought’s physical, hydrological and socio-economic impacts for critical, drought-sensitive areas to enable proactive planning. Regional early warning systems pilots or prototype systems are being developed to provide drought awareness and strengthen capacities across states, counties, agencies, and tribal communities for developing, managing and using drought early warning information. These systems support the following functions at regional, watershed and local scales:

1) communication and education
2) integrating monitoring and forecasting products, impacts assessments and decision support tool development
4) drought portal development
5) engaging preparedness communities, i.e., embedding information flows (1) through (4) into planning and implementation strategies

Elements of a Drought Early Warning System

- Monitoring – hydrological & meteorological
- Forecasting/Outlook - onset, intensification and recovery
- Management triggers
- Anticipated impacts
- Effective communication to stakeholders

Drought Monitoring and Outlook

Drought early warning can be used to identify climate and water supply trends leading to the emergence or intensification of drought. This information can reduce impacts if delivered to decision makers in a timely and appropriate format.

Drought early warning is more useful if mitigation measures and preparedness plans are in place. Stakeholders who monitor various early warning indicators can help to develop and implement more effective and efficient drought-relief interventions. The process below provides an overview of the steps taken to date by CISA and NIDIS for development of a drought early warning system (DEWS) for coastal ecosystems in the Carolinas.

Understanding Drought in the Region

- **Spring 2010 - Stakeholder workshop held to identify needs for a drought early warning system**
- **The impact of Drought on Coastal Ecosystems in the Carolinas State of Knowledge Report (Gilbert et al., 2012) was a result of workshop participants indicating a need for greater availability of appropriate drought data and information to manage coastal resources during drought**

National Drought Warning System

- Scoping workshop steering committee meeting held at Fort Johnson, SC May 1, 2012
- Identified interested organizations, agencies and individuals for the scoping workshop
- Identified priority topics for generation of pilot project ideas during World Café style breakout sessions
- DEWS Scoping Workshop held in Wilmington, NC July 15 – August 1, 2012 to generate pilot project ideas

Scoping Workshop Activities: Pilot Project Selection Process

Scoping workshop participants generated pilot project ideas during World Café style breakout sessions on the first day of the workshop. Each World Café table discussion centered on a specific topic related to drought and coastal ecosystems in the Carolinas (see table below). On the second day, moderators reported back to the full group on pilot ideas generated for each topic. Workshop participants voted on pilot ideas generated for each topic. Workshop participants voted on pilot projects using the Turning Technologies Audience Response System, which provides real-time results integrated into a PowerPoint presentation. The workshop discussed project pilot selection criteria and metrics for success in selecting projects. Ultimately, four projects were selected to move forward.

Pilot Project 1: Evaluation of Drought Indicators and Indices

Many of the commonly used drought indices were not developed with the unique characteristics of coastal ecosystems in mind. Predicting the onset, intensification and recovery of a drought could be improved with more knowledge of drought indicators and indices in coastal ecosystems. The goals developed by workshop participants for this particular pilot project will be:

- Determine which current drought indicators and indices are appropriate for assessing drought in coastal ecosystems
- Investigate the benefits and feasibility of creating a drought index based on real-time salinity data

Pilot Project 2: Seafloor Sediment Monitoring

During drought, freshwater flows are reduced and water temperatures rise. Impacts of these changes include increases of pollutants, decreases in salinity, changes in pH, increases in harmful algal blooms (HABs), increases in shellfish predator populations, increases in Vibrio bacteria and Cyanobacteria. All of these changes, and others not listed here, can have harmful effects on shellfish. This project would address these impacts.

- Provide an early warning system for commercial, recreational and subsistence fishermen who harvest drought-sensitive seafood in both fresh and salt waters in the coastal regions of the Carolinas

Pilot Project 3: Drought Forecasting Communications

Numerous drought, hydrometeorological and climate products are available to stakeholders in the Carolinas. However, stakeholders may not be aware of all products which are available, may not have the products they need to make decisions (i.e. the regional or temporal scale may not be adequate), or may not know how to use these products to their region’s advantage. This project pilot idea was designed by workshop participants to:

- Introduce stakeholders to current products used for drought forecasting
- Determine what additional drought forecasting products stakeholders need and what time scales are of most interest to them
- Determine the best way to deal with uncertainty resulting from forecast data, including how uncertainty is conveyed to stakeholders
- Determine the best methods to relay information about drought forecasting tools

Pilot Project 4: Drought Impact Reporting

Participants identified many possible benefits of improving drought reporting to include improving drought monitoring, building stakeholder awareness and engagement, building linkages between drought indicators and impacts, and addressing the need to improve understanding of the economic benefits of preparedness activities related to the NDDS pilot. The project will involve the following activities:

- Assess ways in which drought impacts might be monitored through stakeholder engagement and citizen science
- Investigate ways to improve the communication of coastal ecosystem drought impacts

References

1 Carolinas Integrated Sciences and Assessments, abrennen@csc.edu
2 National Integrated Drought Information System, lisadarby@ncsea.gov
3 Department of Geography, University of South Carolina
4 Department of Biological Sciences, University of South Carolina