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ABSTRACT 

Although water shortages are becoming a severe problem in Northern China, the 

agricultural sector, China’s biggest consumer of water in the nation, uses water 

inefficiently. Adopting water-saving land improvement technologies may help to 

alleviate water shortages in Northern China. Determinants for farmers’ choice of 

water-saving land improvements in Northern China are analyzed with a sample survey 

of 401 villages. The analysis focuses on two aspects of adoption, whether to adopt and 

if a technology is adopted, how much land the technology is applied to.  

In the first stage, “whether to adopt”, multinomial logit models are applied to 

analyze the discrete choice of alternative land improvement strategies. In the second 

stage of adoption, “how much to adopt”, both sample selection models and OLS 

models are utilized to measure the adoption extent of field leveling, use of borders, 

and use of furrows. The econometric results of this study indicate that farmers are 

willing to adopt water-saving land improvements and change water use behavior 

when water is less abundant. Water availability has a positive impact on both the 

probability and the intensity of adoption of water-saving land improvements. 

Government interventions such as extension service, demonstration fields, or 

provision of subsidies or loans boost the adoption of water-saving land improvements. 

In addition, farmers with more arable land are less likely to adopt traditional 

water-saving land improvements and more likely to switch to modern water-saving 
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land improvements. Another interesting finding in this study is that while the amount 

of arable land per household is negative and significant in the discrete choice model 

on the choice of traditional water-saving land improvements, it is positive and 

significant in the continuous choice model, which implies a threshold value for arable 

land per household. 

Nonetheless, this study provides some policy implications for the Chinese policy 

makers. Although the adoption rate of water-saving land improvements in Northern 

China is relative low, with the right incentive farmers are willing to switch to more 

efficient water-saving land improvements. Government can subsidize or issue loans to 

induce the adoption of modern water-saving land improvements which require a 

sizable upfront investment that Chinese farmers usually cannot afford to. 

Demonstration fields also provide an effective way to encourage farmers’ adoption of 

water-saving land improvements. The land rental market which emerged in rural 

China starting in the 1990s can induce land circulation and the achievement 

economies of scale in farming and in turn increase the adoption of more efficient 

water-saving land improvements. Finally, the nine-year compulsory education 

program in China will benefit farmers and likely increase technology adoption. 

Continued government support of each of these programs will encourage increased 

adoption of water-saving land improvements. 

Although whether or not adopting modern water-saving land improvements such 

as sprinkler or drip irrigation conserves water is still debated, Caswell and Zilberman 
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(1986) found that switching to sprinkler or drip irrigation from border or furrow 

irrigation saves water at the field level under certain circumstances. Therefore, under 

some hydrologic conditions, adopting water-saving land improvements, either 

traditional or modern may, lead to water saving in the field. 
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CHAPTER ONE: INTRODUCTION 

With the world’s largest population at 1.3 billion people, China is among the 

countries with the scarcest water resources in the world (Crook and Diao, 2000). 

Although China’s total quantity of water, including both surface water and ground 

water, ranks sixth in the world, water availability per capita is 1,945 cubic meters, just 

one quarter of the world average (Statistic Bulletin of Water Resources, 2006). 

 Uneven spatial distribution of water between the southern and the northern parts 

of the country makes the situation even more critical. Northern China, with 64% of 

total cultivated land (95 million hectare), has only 19% of the nation’s water (Ministry 

of Water Resources, 2004). Water availability per capita is 300 cubic meters, less than 

one twentieth of the world average (Statistic Bulletin of Water Resources, 2006). Most 

of Northern China is either arid or semi-arid area. The annual rainfall averages less 

than 300 mm in Northwest China and 400-600 mm in other parts of Northern China 

(Feng et al, 1999, Deng et al 2004). Even though the two staple foods in Northern 

China, wheat and maize, are relatively less water-consuming than rice, the annual 

precipitation is barely sufficient for these crops. Furthermore, the rainfall concentrates 

in late summer, leaving the crops relatively dry in winter and spring (Feng et al, 1999, 

Deng et al, 2004). In short, irrigation is critical to agricultural success in Northern 

China. 

During the last several decades, Northern China has experienced both increasing 
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water demand and decreasing water supply (Wang et al 2005, Huang et al 2006). 

Gross domestic product in Northern China has increased more than ten times since the 

1950s and the gross domestic product in the agricultural sector has increased more 

than five times (China National Bureau of Statistics 2002). The growing industrial 

sector and the increase in living standards have both increase water demand (Wang et 

al 2005). At the same time, the ground water table has fallen dramatically due to 

overexploitation during the last several decades in Northern China where ground 

water is the major source of irrigation water (Ministry of Water Resources, World 

Bank, and AusAID, 2001). From 1958 to 1998, the ground water table dropped by 50 

meters in shallow aquifers and by 90 meters in the deep aquifers of the Hai River 

Basin, which provides water for 92 million people who live in two metropolitan areas, 

Beijing and Tianjin, and Hebei Province (Ministry of Water Resources, World Bank, 

and AusAID, 2001, Crook and Diao, 2000). 

Despite the scarcity, China’s water resources are poorly managed. The largest 

water consumer, the agricultural sector, consumes 65% of nation’s water, yet uses 

irrigation water inefficiently (Wang et al 2005). Irrigation efficiency, an index 

calculated by dividing the effective amount of water used by a crop by the actual 

amount of water applied to the crop, is about 0.46 for China, far below the average 

value of 0.8 among developed countries (Statistic Bulletin of Water Resources, 2006). 

One reason for the low irrigation efficiency is that water had not been treated as a 

commodity and had not been priced for agriculture users until the 1970s (Lohmar et al 
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2003). Even though water began to be priced after the agricultural reform launched in 

1978, the price for agriculture users was and is still very low compared to domestic 

and industrial users (Lohmar et al 2003, Huang et al 2006). More importantly, in most 

areas agriculture users are charged based on field size rather than on a volumetric 

basis for water. In short, the water pricing system in the agricultural sector provides 

little incentive for farmers to conserve water. 

In response to the water scarcity problem, the Chinese government has put more 

effort in increasing the water supply during the past several decades (Lohmar et al 

2003, Wang et al 2005). The Chinese government has invested more than USD 100 

billion to develop new water resources since the 1950s (Wang, 2000). Most recently, 

the government recently launched China’s South-North Water Transfer Project (Nan 

Shui Bei Diao) to transfer water from the Yangtze River to the Northern China Plain at 

a cost of more than USD 50 billion (Wang et al, 2005). 

Some economists suggest that the government should increase the water price to 

address the demand side of the water scarcity problem and that increasing water prices 

is the only effective way for farmers to conserve water (Lomar et al 2003). Huang et 

al (2006) recently studied the water scarcity problem in Hebei Province, China and 

found that a price increase would reduce water consumption by farmers and alleviate 

the scarcity problem. Others, however, argue that water for agriculture is a price 

inelastic good (Ogg and Gollehon, 1989; Kendy et al 2003b) and increasing water 

price would only increase revenue for the government with little impact on the 
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consumption of water (Lohmar et al, 2003).  

Even if increasing water price alleviated the water scarcity problem, it will not 

likely be favored in the near future politically. Huang et al (2006) found that, although 

increasing the price of water decreases water consumption, production of major crops 

decreases and farmers’ net income declines. Net crop income decreases by almost 

3.5% when irrigation cost increases by 10%. Worrying about the increasing income 

gap between urban and rural areas, the Chinese government launched a series of 

policies to alleviate farmers’ burden in recent years. The government cut taxes and 

fees for agricultural production in 2004 and cancelled all taxes and fees for 

agricultural production starting Jan 1st 2006. Increasing water prices or taxing water 

use would create a conflicting image with government efforts to alleviate farmers’ 

burden. In addition, due to the small average plot size in China, installing and 

maintaining water measurement gates on each field would be very costly. Therefore, 

government officials believe that promoting water-saving technologies might be a 

more promising way to address the water scarcity problem in the foreseeable future. 

Indeed, the government has already spent 3.5 billion Yuan to promote water 

saving technologies since 1985 (Zhang et al 2005), but the promotion has not worked 

well (Lomar et al 2003). The adoption rate for water-saving technologies in Northern 

China is still low. Blanke et al (2007) and Lomar et al (2003) found that many farmers 

in Northern China have yet to adopt the most rudimentary water-saving technologies 

such as border or furrow irrigation, to say nothing of more technically efficient 
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irrigation technologies such as sprinkler and drip irrigation. Although there is a lot of 

research focusing on water resource problems in China, little is focused on 

quantitative analysis of the adoption of water-saving land improvement technologies. 

The overall goal of this research is to determine what factors influence farmers’ 

decision to use alternative water-saving land improvements. This research will help 

policy makers have a better understanding of which factors influence the adoption 

decision and what incentives are needed for farmers to voluntarily adopt water-saving 

land improvement technologies.  

The remainder of the dissertation is organized as follows: in the next section, the 

definitions of water-saving land improvements analyzed here are provided. Previous 

empirical studies on adoption of water-saving land improvement technologies most 

relevant to this analysis are summarized in Chapter Three. This is followed by 

development of the theoretical model and description of the data sources and variables 

used in this study. Estimation results of the analysis of the discrete choice of adopting 

water-saving land improvements are presented in Chapter Six, while Chapter Seven 

explains the sample selection model and the empirical results explaining farmers’ 

continuous choice of traditional water-saving land improvements. This is followed by 

conclusions and policy implications. 
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CHAPTER TWO: WATER-SAVING LAND IMPROVEMENTS  

In this study, five water-saving land improvements are addressed: field leveling, 

use of borders, use of furrows, sprinkler irrigation, and drip irrigation. While focus of 

this analysis is investments in land where farmers have access to irrigation water, 

fifteen percent of the sample villages did not have irrigation water. Nonetheless, these 

land improvements can save water whether a farmer irrigates or relies on rainwater. 

The benchmark irrigation technology is flood irrigation, the most primitive irrigation 

technology, in which farmers let water flood the field with no constraints or controls. 

Five technologies analyzed are more technically efficient than flood irrigation (Deng 

et al 2004, Yang et al 2003). The five technologies studied here help crops utilize 

irrigation water or rainwater more efficiently. Field leveling, use of borders, and use 

of furrows are considered traditional water-saving land improvements while sprinkler 

irrigation and drip irrigation are defined as modern water-saving land improvements.  

Traditional water-saving land improvements are more labor intensive and less 

capital intensive than modern water-saving land improvements (Yang et al 2003, 

Berson et al 1981, Negri and Brooks 1990, Lichtenberg, 1985). Farmers who use 

sprinkler or drip irrigation do not need to develop small ditches to deliver the water 

from the branch canal to the field, thus these technologies require less labor both 

initially and for maintenance than traditional irrigation. On the other hand, the capital 

cost for sprinkler or drip irrigation is higher. Lohmar et al (2003), for example, found 
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that it took 3,000 Yuan per hectare to install sprinklers in China in 2000, while for 

border or furrow irrigation, capital costs are low.  

 

2.1 Definitions of Water-saving Land Improvements  

1. Traditional Water-saving Land Improvements 

Field leveling involves farmers using any artificial way to smooth an entire field. 

Field leveling allows water to be delivered more smoothly and evenly without 

designing bunds or channels to direct water flow (Blanke et al 2005, 2007). Field 

leveling in this study does not include laser field leveling, which has a higher water 

use efficiency than traditional field leveling (Blanke et al 2005, 2007). Deng et al 

(2004) found that flood irrigation with field leveling can increase water infiltration 

and reduce soil erosion compared with flood irrigation without field leveling. Li (2002) 

states that field leveling can improve irrigation uniformity and increase water use 

efficiency compared to flood irrigation without field leveling. 

When using border irrigation, farmers develop different zones in the field 

separated by raised dirt borders, and irrigate each zone sequentially, rather than 

flooding the entire field at once (Blanke et al 2005). The objective of border irrigation 

is to improve irrigation uniformity, decrease irrigation time, and reduce percolation by 

shortening field length, decreasing field width, and splitting the land into small basins 

(Hao, 2006). An example of field borders is shown in Figure 2.1.1. 
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Source: Chinese Academy of Agricultural Science, 2006 

Figure 2.1.1: Border Irrigation 

 

When using furrow irrigation, farmers develop furrows, or ditches, close to the 

crops and use the ditches to deliver water to the crop rather than flooding the whole 

field (Blanke et al 2005). Furrows are usually 0.5-0.8 meter wide and have shorter 

lengths in areas with sandy soil in comparison to areas with clay soil due to the 

difference in water holding capacity (Li, 2002). An example of use of furrows is 

shown in Figure 2.1.2.  

Note that field leveling, use of borders, and use of furrows can be used in fields to 

improve the utilization of rainwater on non-irrigated land. For example, in plots that 

are rain-fed, borders or furrows are used to trap rainwater and increase the amount of 

water available to crops. In addition, use of borders or furrows reduces rainwater 

losses to infiltration and percolation and improves the land productivity even when no 
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irrigation water is available (Deng et al 2004, Hao, 2006).  

 

  

Source: Center for Chinese Agricultural Policy, Chinese Academy of Science 

Figure 2.1.2: Furrow Irrigation 

 

2 Modern Water-saving Land Improvement 

Sprinkler irrigation requires higher pressure to distribute water to the fields. 

Villages typically need to build a water tower to achieve sufficient pressure for 

distributing water and install piping networks and sprinkler heads (Blanke et al 2005, 

2007). An example of a water tower is shown on the left-hand picture in Figure 2.1.3, 

and an example of a sprinkler head is shown on the right-hand picture in Figure 2.1.3. 

Besides these relatively high capital costs, the use of sprinkler irrigation requires field 

coordination of many farmers because of the small average field size in rural China 

(Blanke et al 2005, 2007). Therefore, sprinkler irrigation in China is usually adopted 
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by the whole community rather than by individual households (Blanke et al 2005). 

While common in the United States and other advanced agricultural economies, 

central-pivot sprinkler irrigation and micro sprinkler irrigation are not common in 

Northern China and were not utilized by any of the villages of this study. 

 

 

Source: Center for Chinese Agricultural Policy 

Figure 2.1.3: Sprinkler Irrigation 

 

Unlike sprinkler irrigation, drip irrigation does not need high pressure to 

distribute water. Drip irrigation applies water slowly to the roots of plants through a 

network of pipes, tubes, and emitters (Hao, 2006). Drip irrigation can precisely and 

uniformly deliver water to the crop root zone to increase water use efficiency and 

increase yield (Hao, 2006). 

Drip irrigation is more technically efficient than sprinkler irrigation and sprinkler 
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irrigation is more technically efficient than border or furrow irrigation (Deng et al 

2004). Researchers have found that sprinkler and drip irrigation not only can increase 

water use efficiency but also save labor (Zuo, 1997). Because of the higher fixed costs 

of sprinkler irrigation and drip irrigation, these two technologies are most commonly 

applied to vegetables and fruits and in greenhouses, as shown in Figure 2.1.4 (Deng et 

al 2004, Hao, 2006). 

 

 
Source: Chinese Academy of Agricultural Science, 2006 

Figure 2.1.4: Drip Irrigation 

 

 

2.2 Irrigation Efficiency and Water Use Efficiency 

One measure of the technical efficiency of irrigation technologies is called 

irrigation efficiency. Irrigation efficiency is the effective volume of water used by a 
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crop divided by the actual volume of water applied to the crop (Dickey 1981). The 

irrigation efficiency for each irrigation technology depends on a variety of factors 

such as crop choices, soil quality, field slope, and climate. Overall, the irrigation 

efficiency for border irrigation and furrow irrigation in the western United States is 

about 0.6. The irrigation efficiency for sprinkler irrigation is about 0.85, and 0.95 for 

drip irrigation (Dickey, 1981). Evans (2006) provided a range of irrigation efficiency 

for some irrigation technologies in USA. For example, the irrigation efficiency for 

furrow irrigation, central pivot sprinkler irrigation, and drip irrigation, ranges from 

0.35-0.65, 0.6-0.85, and 0.8-0.98, respectively. 

In China, researchers usually use crop water use efficiency (WUE), biological 

production per cubic meter of applied water (kg/m3), to measure the efficiency of an 

irrigation technology. Li (2002) found that after applying border irrigation, the overall 

crop WUE can be increased to 1.7 kg/m3 from 1.13 kg/m3 under flood irrigation, a 

50.4% yield increase for the same amount of applied water. Moreover, to achieve a 

given wheat yield of Y kg/hm2, the water usage under border irrigation would be 34% 

less than if flood irrigation was used. The 34% of water saving is calculated 

as
7.1

13.1
1

13.1/

7.1/13.1/
34.0 




Y

YY
. 

Wang et al (2004) find that changing from flood irrigation to furrow irrigation for 

winter wheat in Shandong Province can improve crop WUE from 1.51-1.67 kg/m3 to 

1.96-1.99 kg/m3, which corresponds to about 30% water saving. Liu et al (2003) 

found that the WUE of winter wheat under sprinkler irrigation can be increased by 
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48% compared to border irrigation, which corresponds to water saving of 32% 

( )
48.1

1
1%32  . Wang et al (2003) found that the WUE under drip irrigation for 

potato cultivation is 7.72 kg/m3 compared to only 1.47 kg/m3 under furrow irrigation, 

which corresponds to water saving of 81%. Thus, the field research on WUE in China 

indicates border or furrow irrigation is more technically efficient than flood irrigation, 

and sprinkler or drip irrigation is more technically efficient than border or furrow 

irrigation. Although the units of analysis are different, the estimation of water use 

from water use efficiency used by Chinese researchers is conceptually and empirically 

consistent with U.S. irrigation efficiency estimates.  

   

2.3 Debate over Water Saving 

Some researchers argue that more efficient irrigation technologies do not always 

save water (Peterson and Ding 2005, Caswell and Zilberman1986). Whether 

improvements in water use efficiency lead to increases or decreases overall water use 

depends in part on the size of expanded irrigated land, ceteris paribus (Peterson and 

Ding 2005). If water efficient irrigation encourages a significant increase in irrigation 

acreage due to the lower cost of effective water, total water use may actually increase. 

Even holding the irrigation acreages constant, Caswell and Zilberman (1986) find that 

when switching from traditional irrigation to sprinkler irrigation or drip irrigation, 

both water use at the field level and the crop yield will increase if the elasticity of 

marginal product of effective amount of water (EMP) is less than 1 and the well is 
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very deep. However, if the crop yield is kept constant, no matter what value EMP 

takes or how deep the well is, water saving happens when switching from traditional 

irrigation to sprinkler irrigation or drip irrigation, all other factors equal. 

Other researchers believe that water lost from low efficiency technologies will 

flow back to shallow aquifers, and suggest that real water saving from implementation 

of more efficient technology only comes from reducing evapotranspiration loss, which 

“may not be much” (Kendy et al 2003a). However, for two sample provinces in this 

study, Inner Mongolia and Henan, the backflow is nearly impossible because most of 

the irrigated land is well above the water table (Wang et al 2005). In addition, if water 

is pumped from a deep aquifer, then the water recharge rate is very slow. Since a long 

time is required for the water to flow back to the deep aquifer, the reduction in 

evapotranspiration loss is most significant for the dry, hot, and windy areas of China’s 

Yellow River Basin (Wang et al 2005). 

In China, quantitative studies of the irrigation water saving on a whole 

river-basin are limited (Yang et al 2003). Using data from several experimental sites 

in the Northern China, Pereira et al (2000) found that the use of more technically 

efficient irrigation technology will conserve up to 30% of current water use in a 

river-basin level, if irrigated hectares and yield remain constant. 
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CHAPTER THREE: LITERATURE REVIEW 

In this section, the literature on water-saving land improvements most relevant to 

this study is summarized, focusing specifically on adoption of the irrigation 

technologies analyzed in this research. Therefore, most of literature review deals with 

the adoption of irrigation technology. In most prior studies, irrigation technologies are 

usually divided into two categories, traditional irrigation such as flood, border, and 

furrow irrigation, and modern irrigation such as sprinkler and drip irrigation. The 

major factors affecting farmer choice of water-saving land improvements can be 

categorized as environmental, institutional, and socio-economic variables. 

 

3.1 Adoption and Environmental Variables 

Environmental variables affecting water-saving land improvement technology 

choice include such things as physical water scarcity, soil characteristics, and climate. 

Theoretically, there is a positive relationship between physical water scarcity and the 

adoption of more efficient irrigation technology (Caswell and Zilberman 1986). 

Previous studies usually use the irrigation water source (ground water or surface water) 

or the depth of the well to serve as a proxy for the physical scarcity of water resources, 

and find that the more scarce water is, the more likely farmers will adopt modern 

irrigation technologies. For example, Caswell and Zilberman (1985) estimated a 

multinomial logit model to analyze the choice among furrow, sprinkler, and drip 
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irrigation by fruit growers in the Central Valley of California, and found that farmers 

who apply groundwater are more likely to adopt sprinkler and drip irrigation than 

farmers who use surface water. Caswell and Zilberman (1986) developed a theoretical 

model to measure the determinants of the diffusion of drip irrigation and found that 

there is a greater tendency for farmers in areas with deep wells to use drip irrigation. 

Schuck et al (2005) found that a drought condition in Colorado is positively related 

with the adoption of more efficient sprinkler systems relative to gravity systems. 

Shrestha and Gopalakrishnan (1993) developed a probit model to estimate the choice 

of drip irrigation in Hawaii’s sugar industry and found that farmers who use more 

groundwater than surface water are more likely to adopt drip irrigation than farmers 

using more surface water.  

Zhou et al (2008) used a logit model to explain the conditions that motivate 

Chinese farmers to adopt Ground Cover Rice Production System (GCPRS), which can 

save water in rice production. They found that farmers in villages where irrigation 

water is abundant and reliable are less likely to adopt GCPRS, but farmers in 

downstream villages with less abundant water are more likely to adopt GCPRS. 

Previous researchers have found a negative relationship between land quality and 

the adoption of modern irrigation technology. Caswell and Zilberman (1986) report 

that locations with low land quality are more likely to adopt drip irrigation, whereas 

locations with high land quality are more likely to use traditional surface irrigation 

since sprinkler or drip irrigation are land quality-augmenting technologies. In addition, 



 17

Caswell and Zilberman (1985) note that the light soil with lower water-holding 

capacity in Kern County, CA explains the high adoption rate of modern irrigation 

technology. Dinar and Yaron (1990) examine the adoption rate of modern irrigation 

technology by Israeli citrus growers. Their results show that modern irrigation 

technologies are more likely to be adopted on light soils, which have low 

water-holding capacity, than on heavy soils, which have high water-holding capacity. 

Green et al (1996, 1997) reported that soil permeability is a very important 

determinant in the adoption of irrigation technology by California farmers. In addition, 

Lichtenberg (1989) and Negri and Brooks (1990) found a negative relationship 

between soil quality and the adoption rate of relatively efficient water irrigation 

technology by U.S. farmers.  

Abudulai et al (2005) found that soil characteristics are an important influence on 

Chinese farmers’ adoption of water saving rice production technology. For example, 

farmers with fields of yellow soil (high water holding capacity) have a lower 

probability of adopting this technology. 

Climate is also an important determinant in the water irrigation technology 

adoption decision. Negri and Brooks (1990) used census data from thirty U.S. states 

to estimate farmers adoption of sprinkler irrigation and found that the probability of 

adopting sprinkler irrigation is positively correlated with total rainfall and negatively 

correlated with the length of growing season. Dinar and Yaron (1990) found a positive 

relationship between the adoption of modern irrigation technology and the 
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temperature by Israeli citrus growers. The adoption rate of modern irrigation 

technology such as drip irrigation is higher in high temperature areas than in low 

temperature areas.  

 

3.2 Adoption and Institutional Variables 

Institutional variables include extension service efforts, government subsidies or 

loans to adopt new technology, and demonstration projects. Abdulai et al (2005) use a 

sample of 240 Chinese farm households to measure the determinants of the adoption 

of water saving technology for rice production. They found that involvement with 

extension service personal has a positive and significant impact on adoption. The 

results show that extension service membership raised the probability of adoption 

about 18-24 percent. In addition, farmers who adopted other production technologies 

in the last ten years were more likely to also adopt a water saving technology. In 

another study, Adeoti et al (2007) use a sample of 108 farmers in Ghana to estimate 

the adoption of treadle pump irrigation and find that the number of extension visits 

per year has a positive impact on the probability of adoption.  

Karami (2006) applied cluster analysis to analyze the choice of irrigation 

methods with a sample of 460 farmers in Iran. He found that farmers’ capacity to 

obtain a loan is the major determinant of adopting sprinkler irrigation. In addition, 

farmers who have access to agricultural information sources that provide information 

about irrigation methods are more likely to adopt sprinkler irrigation. Brennan (2007) 
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found that the low adoption rate of sprinkler irrigation in Gnangara Mound, Western 

Australia is due to the insufficient extension regarding water productivity and 

technology. 

Foltz (2003) estimated the adoption of drip irrigation by farmers in Tunisia. He 

found that farmers who had observed the drip irrigation before are more likely to 

become the early adopters of drip irrigation, suggesting that demonstration projects 

can positively influence adoption. 

 

3.3 Adoption and Socio-economic Variables 

Socio-economic variables analyzed in previous studies include farm scale, output 

price, crop choice, water price, cost of other inputs, household income, 

non-agricultural income, and the level of educational attainment. Shrestha and 

Gopalakrishnan (1993) developed a model to estimate the choice of drip irrigation in 

Hawaii’s sugar industry and found that larger field size is positively correlated with 

drip irrigation adoption. Green et al (1996) used a multinomial logit model to estimate 

California farmers choices among traditional irrigation technologies (furrow, flood, 

and border), high pressure sprinkler, and low pressure systems like drip, 

micro-sprinklers, and fan jets. Their results indicated that farmers who have larger 

fields are more likely to adopt drip irrigation and less likely to adopt furrow and 

sprinkler irrigation. Feder and Onchan (1987) studied Thailand farmers adoption of 

bunding, or borders to allow better water control and moisture retention. They found 
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that farmers are more likely to develop bunds, or borders, on a larger plot than a 

smaller one. 

Previous studies show that output price expectation is positively related to the 

adoption of modern irrigation technology, with farmers more likely to switch from 

traditional irrigation to modern irrigation when output price is high. Schaible et al 

(1991) use modified multinomial logit models to analyze the impacts of commodities 

price on water irrigation technology transition in the United State’s Pacific Northwest. 

Results show that the ratio of the price of alfalfa to the price of energy, a measure of 

relative output price, is positively correlated with switching from gravity irrigation to 

sprinkler irrigation, whereas the ratio of the price of corn to the price of energy has a 

negative effect on the switching from gravity irrigation to sprinkler irrigation. The 

authors claim these results are possibly due to alfalfa being a critical feedstock for the 

regional livestock sector and therefore the price of alfalfa is higher than the price of 

corn. 

Water cost is also positively correlated with the adoption of modern irrigation 

technology (eg. Caswell and Zilberman 1985). Green et al (1996) found that water 

prices are positively correlated with the adoption of drip irrigation. That is, farmers in 

California switch from both furrow and sprinkler irrigation to drip irrigation when the 

price of water increases. Negri and Brooks (1990) use census data from thirty U.S. 

states to estimate farmers adoption of sprinkler irrigation and find that the probability 

of adopting sprinkler irrigation increases as the water price goes up. Dinar and Yaron 
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(1990) also suggest that increasing water price has a positive impact on the adoption 

rate of modern irrigation technology by farmers in Israel. However, Green et al (1997) 

use field level data from California’s Central Valley and find that water price has 

different effects on different crops. Growers of high value citrus crops are more likely 

to switch to drip irrigation as water price increases while vineyard growers are less 

sensitive to the water price change. 

Costs of other inputs such as labor and capital are also positively related with the 

adoption of modern irrigation technology. Negri and Brooks (1990) find that farmers 

in the United States shift from flood irrigation or furrow irrigation to sprinkler 

irrigation when labor cost is high, likely because gravity irrigation is more labor 

intensive than sprinkler irrigation (Berson et al 1981). Lichtenberg (1985) finds there 

is a negative relationship between capital cost and adoption of center pivot technology 

in Nebraska.  

Household income is positively correlated with the adoption of irrigation 

technologies. Abdulai et al (2005) and Zhou et al (2008) find that household income is 

positively correlated with the probability of Chinese farmers adoption of water saving 

rice production technology.  

The impact of off-farm income on farmers adoption of land improvements is 

ambiguous (Templeton and Scherr 1999). When the off-farm income increases, the 

opportunity cost of agricultural production is higher and farmers are less likely to 

allocate their labor in agricultural production and conduct land improvements. 
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Therefore, off-farm income may have a negative impact on farmers’ investment in 

land improvements. For example, Connelly (1994) found that Rusigna farmers 

abandoned terraces, a labor intensive land improvement, due to the higher labor cost 

when the opportunity of off-farm income rose. Connelly (1994) stated that terraces 

help slow the runoff of rainfall during the heavy rains and prevent the soil erosion and 

hold soil moisture. Zimmerer (1993) also found that Bolivia farmers stop practicing 

ditches and terraces which help conserve soil because farmers shift their labor from 

conservation practice to off-farm employment. On the other hand, off-farm income 

may help farmers who face credit constraints to finance their investment in land 

improvements. Hence, off-farm income may alternatively also have a positive impact 

on farmers’ investment in land improvements.  For example, Clay et al (1998) found 

that Rwandan farmers are more likely to invest in land improvements such as 

developing ditches and terraces if off-farm income is higher.  

Finally, Schuck et al (2005) found a positive relationship between the level of 

educational attainment and the adoption of sprinkler irrigation technology by 

Colorado farmers. Zhou et al (2008) also found that the education attainment has an 

impact on Chinese farmers adoption of water saving technology. Karami (2006) found 

that there is a positive relationship between the education and the adoption of 

sprinkler irrigation by farmers in Iran. 
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CHAPTER FOUR: THEORETICAL MODEL 

The model originates with the model of Caswell and Zilberman (1986). It is 

developed to analyze representative farmer adoption of alternative strategies to 

augment the capacity of land to utilize water. The model depicts a profit maximizing 

choice of how much, if any, land to improve with a particular water-saving method 

and how much, if any, water to apply on the land. In particular, the model is used to 

analyze these choices as two simultaneous parts. The discrete choice part of the model 

is used to analyze a representative farmer’s choice of which combination of specific 

land improvements to make. The continuous choice part of the model is used to 

analyze the amount land that is improved in accordance under a specific land 

improvement technology. This is an extension to the model of Caswell and Zilberman 

(1986), who assume farmers use one major input, irrigation water, to produce. Besides 

the additional input, land, this analysis also introduces the amount of rainwater and 

the influence of government extension as exogenous variables, two resource 

constraints, and a credit constraint. The inclusion of a credit constraint is motivated by 

Sunding and Zilberman (2001). 

 

4.1 Model Set-up 

A． Production Function 

A representative farmer uses two major inputs, irrigation water and land, to 
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produce output. The amount of rainwater also contributes to the crop production and it 

is a perfect substitute for irrigation water. Rainwater, however, is exogenous because 

the farmer can’t control it. The production function is concave, which implies the 

marginal product of two major inputs is non-increasing, 0,0 ''''  MMee QQ , and also 

0)( 2''''''  eMMMee QQQ . The production function for the representative crop under 

technology j is given by: 
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Index j represents types of land improvements. 1j  represents no land 

improvement, 2j  represents field leveling, 3j  represents use of borders or 

furrows, and 4j  represents sprinkler or drip irrigation. As j increases in value, the 

technology enables farmers and crops to better utilize either irrigation water, rainwater, 

or both. jh denotes the water-utilization effectiveness under land improvement j, and 

ja denotes the actual amount of irrigation water used per hectare for land 

improvement j. Parameter RF denotes the rainwater and je denotes the effective 

amount of water used per hectare for technology j given land quality  . Land quality 

affects the effective amount of water, either irrigation water or rainwater, via soil 

characteristics such as soil permeability and water-holding capacity (Caswell and 

Zilberman 1986, 1990). The second input, land, is represented by variable jM , the 

hectare of land for technology j. Parameter A reflects other exogenous factors, with 

specific focus on agricultural extension service. Increase in A, agricultural extension 
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service, can increase output with a given amount of two major inputs. 

In equation (2a), the water-utilization effectiveness, denoted as jh , is the 

effective amount of water contributing to crop production, je , divided by the actual 

amount of both irrigation water and rainwater being applied to crop, ja  and RF . 

Water-utilization effectiveness of technology j depends only on land quality (Caswell 

and Zilberman, 1986). Higher land quality  leads to higher water-utilization 

effectiveness, but at a decreasing rate as indicated in inequality (2b). A more advanced 

technology has a higher water-utilization effectiveness. Mathematically, 

)()()()( 1234  hhhh  , and also assume  )(1h , the quality of land without 

any land improvements, since the other three types of technologies are water-saving 

land improvements. 
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B． Profit Function 

The representative farmer’s profit is depicted in the equation (3): 

(3)  
j

jejjjjjjj adwMckMrMRFahpAQ )](*)(*)()(}],)([{[   

where p represents the output price, assuming the farmer only grows a single crop. It 

is also assumed that the representative farmer is a price taker in both output and input 

market given the small scale of Chinese farms. Variable r represents the per hectare 

rental rate of the land, which reflects the opportunity cost of the land. Farmers do not 

own the land and cannot sell the land but can rent their land to others. The rental rate 
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is a function of the land quality and increases with the land quality. Variable 

jk represents the fixed cost while jc represents the per hectare cost for each land 

improvement. The fixed cost and the per hectare cost for each technology are assumed 

to increase with the level of land improvement j, therefore 4321 0 kkkk  , and 

4321 0 cccc  . For example, the farmer needs the sizable fixed cost to build a 

water tower to use sprinkler irrigation. The fixed cost for creating borders or furrows 

is also required but less than the fixed cost for sprinkler or drip irrigation and greater 

than the fixed cost for field leveling. Also assume that both the fixed cost and the per 

hectare cost of no land improvement (j=1) are zero. Variable )(d represents the 

amount of electricity required per unit of actual water use. Coefficient ew  denotes 

the unit price of electricity. By multiplying ew  and )(d  and )(ja , the electricity 

cost of irrigation under technology j is obtained. Variable )(d  is assumed to 

increase as the depth to the groundwater table increases, 0' d . Notice that while 

only the effective amount of water )(je contributes to the production, farmers pay the 

expense for the actual amount of water )(ja  applied. Water that crops do not use 

evaporates or flows back to the aquifer. The effective amount of water is the actual 

amount of water weighted by the irrigation efficiency. 

C.  Resource Constraints 

(4)      ,0 
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A representative farmer faces two resources constraints, available irrigation 

water and land. In inequality (4) and (5), a and M denote the total irrigation water 

and land endowment of a representative farmer, respectively. ja and jM represent the 

amount of irrigation water and the hectare of land allocated for land improvements, 

respectively. Note that for farmers in villages without irrigation water, 0a . In these 

villages, farmers are totally dependent on rainwater. 

D. Credit Constraint 

(6)      ,j
jj

jjj TNAGMck    

A representative farmer may also face a credit constraint. The left hand side of 

inequality (6) represents the use of funds for the adoption of land improvements, 

while the right hand side is the sources of funds, namely government subsidies or 

loans for the water-saving technology jT , and farmer’s non-agricultural income NAG . 

A representative farmer has, by assumption, no access to credit. Although this 

assumption seems strong, it is close to the reality in rural China (Cheng, 2006, Tsai, 

2004). Farmers seldom get loans from banks since they cannot provide anything as 

collateral. The biggest asset managed by the farmers, the land, is legally owned by the 

whole village, not by individual farmers, hence farmers cannot use the land as 

collateral in China (Cheng, 2006, Tsai, 2004). Hence, a representative farmer faces a 

credit constraint. For example, when the source of fund is very limited, farmers are 

unlikely to adopt land improvements which require a sizeable upfront investment. 
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E. Constrained Profit Maximization 

Farmers maximize profit subject to constraints on irrigation water, land, and 

credit. The constrained profit maximization problem for a representative farmer is 

this:  

})](*)(*)()(}],)([{[{)7(
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Hence, equation (7) and its constraint set can be rewritten as: 
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The optimal solutions of equation (8) must satisfy the following Kuhn-Tucker 

conditions (Chiang, 1984).  
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4.2 Discrete Choice of Adoption 

The representative farmer might adopt only a single technology or a combination 

of technologies. In light of available data, six mutually exclusive options are relevant 

to this study: 1s  represents no land improvement; 2s  represents field leveling 

only; 3s  represents a combination of field leveling and use of borders or furrows; 

4s  represents use of borders or furrows only; 5s represents a combination of 

sprinkler or drip irrigation with or without field leveling; and 6s represents a 

combination of use of borders or furrows, sprinkler or drip irrigation, with or without 

field leveling. Note that from strategy 2 to 6, farmers may or may not have some land 

unimproved. Farmers choose the strategy that maximizes profit. Within their 

constraint set, strategy s is chosen when the profit under this strategy *
s  is the 

highest among all alternative strategies, that is, if 
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4.3 Continuous Choice of Adoption 

When the representative farmer chooses the optimal strategy, the actual amount 

of water used under technology j and the optimal amount of land under technology j 

are determined simultaneously. Hence, the factors influencing the optimal choice of 

land improvement are also the determinants of the optimal amount of land and water 
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under each technology j.  

From the first order condition of profit maximization: 

(12a)    wejej dwhpAQa
j

  )(*)(0 '*  
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The left hand side of equations (12a) and (12b) is the value of the marginal 

product of actual use of water under technology j and the right hand side of equations 

(12a) and (12b) is the marginal cost of actual water under technology j, which 

includes the actual cost that the farmer pays for water, and the shadow value of water, 

w . According to (12a), if the optimal use of water under technology j for the farmer 

is positive, the value of the marginal product of actual use of water under technology j 

is equal to the marginal cost of actual water under technology j. Equation (12b) 

implies that the optimal use of water under technology j for the representative farmer 

is zero if the value of marginal product of actual water is less than the marginal cost of 

actual water under technology j. Similarly, equation (13a) implies that the optimal 

amount of land used under technology j is positive if the marginal product of land is 

equal to the marginal cost of land. Equation (13b) implies that if the marginal product 

of land is less than the marginal cost of land the optimal amount of land used under 

technology j should be zero. 
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The six strategy options are associated with six different combinations of 

technology adoption. Maximization of equation (8) across these strategies implies an 

optimal combination of technology as well as an optimal amount of actual water and 

land used. When the farmer chooses the profit maximizing strategy, the actual water 

used under technology j and the optimal amount of land under technology j are also 

determined. Hence, the factors influencing the optimal choice of land improvements 

are the determinants of the optimal amount of land and water under each technology j.  

For example, if the representative farmer chooses strategy 1 as optimal, he does 

not apply any land improvement and leave all the land unimproved 

( 0;0;0;0 *
4,1

*
3,1

*
2,1

*
1,1

*
4,1

*
3,1

*
2,1

*
1,1  aaaaMMMM ). If the farmer chooses 

strategy 2 as optimal, he also levels a positive amount of land ( 0*
2,2 M ) and applies 

a positive amount of any available irrigation water to the leveled land ( 0*
2,2 a ). He 

does not improve land with borders, furrows, sprinkles, or drip tubes 

( 0;0 *
4,2

*
3,2

*
4,2

*
3,2  aaMM ). He might cultivate unimproved land ( 0*

1,2 M ), and 

if so, use flooding to irrigate it ( 0*
1,2 a ).  

If the farmer chooses strategy 3 as optimal, he levels some land ( 0*
2,3 M ), 

creates borders or furrows on other land ( 0*
3,3 M ), and applies positive amounts of 

any available irrigation water to these fields ( 0,0 *
3,3

*
2,3  aa ). He does not use 

sprinkles or drip irrigation at all ( 0;0 *
4,3

*
4,3  aM ). He might cultivate unimproved 

land ( 0*
1,3 M ), and if so, use flooding to irrigate it ( 0*

1,3 a ).  
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If the farmer chooses strategy 4 as optimal, he creates borders or furrows on 

some land ( 0*
3,4 M ) and applies a positive amount of any available irrigation water 

to the field ( 0*
3,4 a ). He does not improve land with field leveling, sprinkle, or drip 

tubes ( 0;0 *
4,4

*
2,4

*
4,4

*
2,4  aaMM ). He might cultivate unimproved land ( 0*

1,4 M ), 

and if so, use flooding to irrigate it ( 0*
1,4 a ). 

If the farmer chooses strategy 5 as optimal, he uses sprinkles or drip irrigation on 

some land ( 0*
4,5 M ) and applies a positive amount of any available irrigation water 

to the field ( 0*
4,5 a ). He might or might not level some land ( 0*

2,5 M ), and applies 

non-negative amounts of any available irrigation water to these fields ( 0*
2,5 a ). He 

does not improve land with borders or furrows ( 0;0 *
3,5

*
3,5  aM ). He might cultivate 

unimproved land ( 0*
1,5 M ), and if so, use flooding to irrigate it ( 0*

1,5 a ). 

If the farmer chooses strategy 6 as optimal, he creates borders or furrows on 

some land ( 0*
3,6 M ), uses sprinkles or drip tubes on other land ( 0*

4,6 M ), and 

applies positive amounts of any available irrigation water to these fields 

( 0,0 *
4,6

*
3,6  aa ). He might or might not level some land ( 0*

2,6 M ), and applies 

non-negative amounts of any available irrigation water to these fields ( 0*
2,6 a ). He 

might cultivate unimproved land ( 0*
1,6 M ), and if so, use flooding to irrigate it 

( 0*
1,6 a ). A more straightforward view is presented in Table 4.3.1. 
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Table 4.3.1: Summary of Strategy Choices and Corresponding Technology Choices 

  Discrete Choice Continuous Choice 

Optimal 

Strategy  

Technology 

Choices (j) 
Adoption Criterion 

Optimal use of water 

under strategy s and 

technology j 

Optimal use of land 

under strategy s and 

technology j 

1* s  j=1 

)max( **
1 s   

)6,5,4,3,2,1(s  

0*
1,1 a ,

0*
4,1

*
3,1

*
2,1  aaa  

0*
1,1 M ,

0*
4,1

*
3,1

*
2,1  MMM

 

2* s  
j=2 and 

possibly 1 

)max( **
2 s   

)6,5,4,3,2,1(s  

0*
1,2 a , 0*

2,2 a ,

0*
4,2

*
3,2  aa  

0*
1,2 M , 0*

2,2 M ,

0*
4,2

*
3,2  MM  

3* s  
j=2and 3 and 

possibly 1 

)max( **
3 s   

)6,5,4,3,2,1(s  

0*
1,3 a , 0*

2,3 a ,

0*
3,3 a , 0*

4,3 a  

0*
1,3 M , 0*

2,3 M , 

0*
3,3 M , 0*

4,3 M  

4* s  
j=3 and 

possibly 1 

)max( **
4 s   

)6,5,4,3,2,1(s  

0*
1,4 a , 0*

2,4 a , 

0*
3,4 a , 0*

4,4 a  

0*
1,4 M , 0*

2,4 M ,

0*
3,4 M  0*

4,4 M  

5* s  

j=4 and 

possibly 2 or 

1 or both 

)max( **
5 s   

)6,5,4,3,2,1(s  

0*
1,5 a , 0*

2,5 a , 

0*
3,5 a , *

4,5a >0 

0*
1,5 M , 0*

2,5 M , 

*
3,5M =0, *

4,5M >0 

6* s  

j=3 and 4 and 

possibly 2 or 

1 or both 

)max( **
6 s   

)6,5,4,3,2,1(s  

0*
1,6 a , 0*

2,6 a , 

*
3,6a >0, *

4,6a >0 

0*
1,6 M , *

2,6M 0, 

*
3,6M >0, *

4,6M >0 
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CHAPTER FIVE: DATA 

5.1 Data Sources and Study Area 

Most of the data for this study comes from the North China Water Resource 

Survey (NCWRS), which was conducted in December 2004 and January 2005 by 

Center for Chinese Agricultural Policy, Chinese Academy of Science. Four hundred 

and one village leaders in Hebei, Henan, Shaanxi, Shanxi, Inner Mongolia, and 

Liaoning provinces were interviewed. All sample provinces are located north of the 

Huai River in Northern China. In addition, climate variables, the average total annual 

rainfall and the growing season length, were obtained from each county government 

website.  

Sample counties, townships, and villages were selected by a stratified sample 

selection. All counties in each province were sorted into four water scarcity stratum: 

mountain or desert, very scarce, somewhat scarce, and normal. These stratums are 

defined by the percentage of arable land that is irrigated according to the Ministry of 

Water Resources. ‘Mountain or Desert’, ‘Very Scarce’, ‘Somewhat Scarce’, and 

‘Normal’ describe counties where the percentage of irrigated arable land less than 

20%, between 21% and 40%, between 41% and 60%, greater than 60% respectively. 

One to three counties were randomly chosen from each stratum. Then all the 

townships within each county were sorted according to income level and one 

township from the counties with income above the median and one township from the 

counties with income below the median were randomly chosen. Subsequently two 
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villages were randomly chosen from the townships with higher income level and two 

villages from the townships with lower income level. The total sample size is 6 

provinces, 50 counties, 100 townships and 401 villages. Table 5.1.1 reports the 

detailed sample distribution of this study. Figure 1 shows the map of sample 

Provinces. The light grey area shows the provinces in Northern China that are not 

included in the sample and the dark grey area highlights the sampled provinces in 

Northern China.  

 

Table 5.1.1: Sample Distribution of Data 
Code Province County Township Village 

1 Hebei 7 14 56 

2 Henan 7 14 56 

3 Shaanxi 9 18 72 

4 Shanxi 9 18 73* 

5 Inner-Mongolia 9 18 72 

6 Liaoning 9 18 72 

  Total 50 100 401 

Source: Survey Conducted by Center for Chinese Agricultural Policy  
*One additional village was interviewed in Shanxi Province. 
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Figure 5.1.1: Spatial Distribution of Sample Provinces 

 

5.2 Definition of Variables 

A sixty page survey was designed for interviews with village leaders. The 

information collected includes social and economic characteristics for each village. 

These characteristics are broadly categorized here as environmental, institutional, and 

socio-economic. Three pages of the survey focus on village adoption of water saving 

technology, including adoption technology and the adoption area of each technology. 

This information is summarized in section 5.4. Although most of data was collected 

for both 1995 and 2004 to reflect a time trend, this analysis focuses on the 2004 data 

because 2004 data is more comprehensive. 
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Environmental Variables 

Key environmental characteristics are water availability, land quality, and climate 

variables. Water availability is measured by water source, whether or not the village is 

in an irrigation district, and location of the village relative to a stream.  

The dummy variable, GROUNDONLY, is used to measure the physical scarcity 

of water. This variable takes a value of one if a village has access only to groundwater, 

and zero if the village has access to surface water or no irrigation water. The dummy 

variable NOIRRI is used to measure whether a village has access to irrigation water or 

not. NOIRRI takes a value of one if a village does not have access to irrigation water, 

and zero if the village has irrigation water. If villages did not irrigate in 2004 or in 

1995, they are assumed to not have access to irrigation water. Fifty-four of the 57 

villages that didn’t have irrigation water in 2004 did not irrigate in 1995 either. 

The variable NOTDISTRICT has a value of one if a village is not located in an 

irrigation district, and zero if not. The variable DOWNSTREAM takes a value of one 

if a village is located in the downstream of an irrigation district. All water availability 

variables are used to measure water endowment in villages, hence affect the variable 

“ a ” in the theoretical model.  

Soil variables are used to indicate the major soil type in each village. The 

variable CLAYSOIL takes a value of one if the major soil type is clay soil, and zero if 

not. The variable LOAMSOIL takes a value of one if the major soil type is loamy soil, 

and zero if not. The other major soil type in this sample is sandy soil, which has a 
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lower water holding capacity than either clay soil or loamy soil. Loamy soil falls 

somewhere between sandy soil and clay soil (Natural Resource Conservation Service). 

These soil characteristics affect the land quality variable ""  in the theoretical 

model. 

Climate variables consist of the total annual rainfall and growing season length. 

Total annual rainfall, RAINFALL, is total average rainfall in millimeters per year, 

representing the variable ""RF  in the theoretical model. The length of growing 

season, GROWSEASON, is the length of time between the last frost free day and the 

first frost day per year, and affects the variable "" A  in the theoretical model. Since 

this information is not available at the village level, these two variables are 

constructed using county level data. Data for these two variables was obtained from 

each county government website.  

 

Institutional Variables 

Institutional variables include government extension, government subsidies or 

loans for water-saving technology, and government demonstration efforts to promote 

water-saving technologies in a village.  

The government extension variable, GOVEXTEN, is a dummy variable that 

takes a value of one, if agricultural extension service or upper level government 

officials ever came to a village to promote water-saving technologies in the last three 

years (from 2001 to 2004). Otherwise GOVEXTEN is zero. The government 
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provision of subsidies or loans, LOANSUB, is a dummy variable and takes a value of 

one if a village got either a subsidy or a loan from upper level government to adopt 

any water-saving technologies in the last three years (from 2001 to 2004). If not, 

LOANSUB takes a value of zero. If a village had a demonstration field to show 

farmers how to use a water-saving technology in the last three years (from 2001 to 

2004), then DEMONSTRATION is one; otherwise it is zero. These three institutional 

variables are chosen based on previous research and the theoretical model. Farmers 

who receive help from government extension service or who observe a demonstration 

of water-saving technology may be able to produce more with a given amount of 

input. Thus both the government extension and demonstration variables might shift 

the production function, changing “ A ” in the theoretical model. Government 

subsidies or loans, on the other hand, ease the credit constraint on investing new land 

improvements, thus affect the variable “T” in the credit constraint (inequality (6)) of 

theoretical model.  

 

Socio-Economic Variables 

Socio-economic variables generated from the NCWRS survey include arable 

land per household, non-agricultural income per household, the depth to the ground 

water table, electricity price, and the level of education attainment.  

Average arable land per household, ARLANDHH, is total arable land in a village 
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divided by total number of farm households1 in the village. Forest land, orchard land, 

and pasture land are treated as non-arable land and not included in total amount of 

arable land in a village. This variable is used to measure the farmer land endowment 

variable ""M  in the theoretical model. 

Village per capita income was reported by the village leader and includes 

agricultural net income (total revenue of agricultural production minus total cost of 

agricultural production) and non-agricultural income. Non-agricultural income per 

household, NONAGINC, is used to measure farmers’ financial ability to invest in new 

technologies. Credit market does not function very well in rural China and farmers 

face credit constraints which limit investment in new technology (Cheng, 2006, Tsai, 

2004). Non-agricultural income per household is defined as non-agricultural income 

per capita times total population divided by the total number of farm households in a 

village. Farmers with higher non-agricultural income are more capable of financing 

their adoption of new technology, as reflected in the credit constraint of the theoretical 

model by ""NAG . 

The depth to the groundwater table, GROUNDTABLE, is the average distance 

from the surface to the groundwater table in 2004. The greater the depth to 

groundwater, the higher groundwater pumping cost. The depth to the groundwater 

table is missing value for villages that don’t have irrigation water. Therefore, the 

interactive term, GROUNDTABLE*IRRI, the depth to the groundwater table times 

                                                        
1 Almost all households live in a village are farm households. Few non-farm households live in villages and do not 
have land. 
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irrigation dummy is used to proxy water cost for villages that have access to irrigation 

water. The depth to the groundwater table is used to measure the pumping cost of 

water and is reflected as the variable ""d  in the theoretical model. This cost is not 

relevant for villages that do not irrigate, thus this variable is zero for those villages. 

Electricity price, ELECPRICE, was reported by the village leader and is the cost 

for pumping water from ground or lifting water from a river or a canal. Electricity 

cost impacts agricultural productivity and is specified as the variable "" ew  in the 

theoretical model. The interactive term ELEC*IRRI is used to measure the cost of 

irrigation since only villages that have access to irrigation water will incur electricity 

cost for applying irrigation water. While water price would be expected to 

significantly influence irrigation decisions, within each individual village water price 

is very heterogeneous. Farmers who use surface water usually pay a water fee based 

on field size (Yuan/hectare) or irrigation hours (Yuan/hour), while farmers who apply 

ground water are charged based on irrigation hours (Yuan/hour), volume of electricity, 

or field size (Yuan/hectare). Thus it is nearly impossible to determine a single water 

price at the village level, and the water price is not included in the empirical model. 

Instead electricity price and depth to the groundwater table are used to proxy water 

cost for villages that have access to irrigation water. 

In rural China, few farmers go to college due to financial constraints. Therefore, 

the percentage of farmers with some middle school education (more than 6 years) in a 

village, MIDDLEPERC, is used to measure the education level of a village. Farmers 
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with a higher education level may be more productive, all else constant, and 

educational attainment can be used to control for the parameter "" A  in the theoretical 

model.  

Five Provinces dummy variables are used to capture fixed effects between the six 

Provinces, with Liaoning Province as the base. The definitions of all independent 

variables are provided in Table 5.2.1.  
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Table 5.2.1: Definitions of Independent Variables 
Independent Variables Definitions 

Environmental Variables 

GROUNDONLY 1=Villages have access only to groundwater; 0=otherwise 

NOIRRI 1=Villages don’t have irrigation water; 0=otherwise 

IRRI 1=Villages have irrigation water; 0=otherwise 

DOWNSTREAM 1=In the downstream of an irrigation district; 0=otherwise 

NOTDISTRICT 1=Not in an irrigation district; 0=in an irrigation district 

LOAMSOIL 1=loamy soil ; 0=others 

CLAYSOIL 1=clay soil ; 0=others 

RAINFALL The total average annual rainfall for each county 

GROWSEASON 
The average length between the last frost day and the first frost 

day annually for each county 

Institutional Variables  

GOVEXTEN 

Whether agricultural extension service or the upper level 

government officials ever came to a village to promote 

water-saving technologies in the last three year (from 2001 to 

2004) 

LOANSUB 

Whether a village got either a subsidy or a loan from upper 

level government to adopt water-saving technologies in the last 

three year (from 2001 to 2004) 

DEMONSTRATION 

Whether this village has a demonstration field to promote 

water-saving technologies in the last three year (from 2001 to 

2004) 

Socio-economic Variables  

ARLANDHH 
Total arable land area in a village divide by total number of 

farm household in a village in 2004 

NONAGINC Non-agricultural Income per household in 2004 

GROUNDTABLE The depth to the ground water table in 2004 

GROUNDTABLE*IRRI The depth to the ground water table times irrigation dummy 

ELECPRICE The price of the electricity in 2004 

ELEC*IRRI The electricity price times irrigation dummy 

MIDDLEPERC 
Percentage of farmers in the village went to middle school in 

2004 
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5.3 Descriptive Analysis of Variables 

Means and variances of all independent variables are reported in Table 5.3.1. 

Means and variances for all independent variables for the six technology strategies are 

reported in Table 5.3.2. To test whether there is a difference between the means of 

independent variables across strategies compared with the base category, the results of 

paired t-test2 is also presented in Table 5.3.3. In addition, the expected signs of all 

independent variables are reported in Table 5.3.3. These expected signs are the simple 

correlation between the independent variables and dependent variables, whether or not 

farmers choose a given land improvement strategy. The hypothesis is that there is no 

difference between the mean of the base strategy and the means of all other strategies.  

The descriptive analysis shows that farmers would be less likely to adopt any 

land improvement strategies when they have no access to irrigation water 

(NOIRRI=1), but more likely to adopt any land improvements when have access only 

to groundwater (GROUNONLY=1). Village location variable, DOWNSTREAM, is 

predicted to have a positive sign except for strategies 5 and 6, while variable 

RAINFALL is predicted to have a negative sign except strategy 4.  

Two institutional variables, GOVEXTEN and DEMONSTRATION, are 

predicted to have a positive impact on the switching from the base strategy to all other 
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land improvement strategies. Farmers are expected to switch from the non-adoption of 

land improvements to any land improvement strategies when government 

interventions are involved. Variable LOANSUB is expected to have a positive impact 

on adoption of strategies 2, 5, and 6. 

The means of variable ARALANDHH for strategies 5 and 6 positively and 

significantly differ from the mean of the base strategy while the means of variable 

ARALANDHH for strategies 3 and 4 negatively and significantly differ from the 

mean of the base strategy. Variable ELEC*IRRI is expected to have a positive impact 

on the adoption of all land improvement strategies, with farmers expected to switch 

from no-adoption of land improvements to any other strategies when the electricity 

price is higher. Another variable used to measure water cost, GROUNDTABLE*IRRI, 

or the depth to groundwater table, is only predicted to have a positive impact on the 

adoption of strategies 3 and 4.  
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 Table 5.3.1: Descriptions of Independent Variables  

Independent Variables OBS Mean 
Std. 

Dev. 
Min Max 

Environmental Variables      

GROUNDONLY 401 0.41 0.49 0.00 1.00 

NOIRRI 401 0.15 0.36 0.00 1.00 

IRRI 401 0.85 0.36 0.00 1.00 

DOWNSTREAM 401 0.20 0.40 0.00 1.00 

NOTDISTRICT 401 0.63 0.48 0.00 1.00 

LOAMSOIL 401 0.16 0.36 0.00 1.00 

CLAYSOIL 401 0.44 0.50 0.00 1.00 

RAINFALL (mm) 401 596.00 180.69 170.00 959.00 

GROWSEASON (days) 401 179.00 40.24 100.00 271.00 

Institutional Variables      

GOVEXTEN 401 0.60 0.49 0.00 1.00 

LOANSUB 401 0.20 0.40 0.00 1.00 

DEMONSTRATION 401 0.24 0.43 0.00 1.00 

Socio-economic Variables      

ARALANDHH (Hectare) 401 0.58 0.56 0.05 4.81 

NONAGINC (Yuan=$1/7) 401 3493.28 3561.01 0.00 27130.09

GROUNDTABLE (m) 301 33.72 47.57 0.50 480.00 

GROUNDTABLE*IRRI (m) 400 26.73 44.74 0 480 

ELECPRICE (Yuan=$1/7) 385 0.51 0.17 0.00 1.37 

ELEC*IRRI (Yuan=1/$7) 389 0.42 0.23 0.00 1.37 

MIDDLEPERC (%) 401 52.59 23.59 0.00 100.00 

1. “RAINFALL” and “GROWSEASON” are collected from the website of the county government. 

2. “GROUNDONLY”, “NOIRRI”, “GROUNDTABLE”, and three institutional variables are best 

guesses from village leaders’ professional judgment. 

3. All other variables are generated from the information that village leaders were required to report to 

the upper level government every year. 
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Table 5.3.2: Descriptions of Independent Variables by Adoption Strategies 
  Strategy 6 (N=15) Strategy 5 (N=16) Strategy 4 (N=42)
Independent Variables Mean Std.Dev. Min Max Mean Std.Dev. Min Max Mean Std.Dev. Min Max 
Environmental Variables    
GROUNDONLY 0.40 0.51 0.00 1.00 0.81 0.40 0.00 1.00 0.53 0.50 0.00 1.00 
NOIRRI 0.20  0.41 0.00 1.00 0.06 0.25  0.00 1.00 0.02 0.15 0.00 1.00 
IRRI 0.80  0.41 0.00 1.00 0.94 0.25  0.00 1.00 0.98 0.15 0.00 1.00 
DOWNSTREAM 0.00 0.00 0.00 0.00 0.06 0.25 0.00 1.00 0.21 0.42 0.00 1.00 
NOTDISTRICT 0.87 0.35 0.00 1.00 0.88 0.34 0.00 1.00 0.62 0.49 0.00 1.00 
LOAMSOIL 0.13 0.35 0.00 1.00 0.38 0.50 0.00 1.00 0.14 0.35 0.00 1.00 
CLAYSOIL 0.27 0.46 0.00 1.00 0.13 0.34 0.00 1.00 0.38 0.49 0.00 1.00 
RAINFALL 548.43  205.16 225.00 880.00 554.69 134.08  375.00 760.00 632.08 132.82 325.00 958.90 
GROWSEASON 168.13  57.14 100.00 271.00 141.25 23.27  100.00 167.00 204.00 35.23 135.00 271.00 
Institutional Variables               
GOVEXTEN 0.60 0.51 0.00 1.00 0.94 0.25 0.00 1.00 0.61 0.49 0.00 1.00 
LOANSUB 0.40 0.51 0.00 1.00 0.75 0.45 0.00 1.00 0.16 0.37 0.00 1.00 
DEMONSTRATION 0.40 0.51 0.00 1.00 0.44 0.51 0.00 1.00 0.26 0.44 0.00 1.00 
Socio-economic Variables               
ARLANDHH (Hectare) 1.30 1.28 0.15 4.81 0.93 0.56 0.20 2.06 0.40 0.22 0.05 1.18 
NONAGINC (Yuan=1/$7) 3092.19 3223.21 537.39 11684.09 4186.21 3099.01 760.71 11149.84 4045.14 4651.74 66.32 22167.94 
GROUNDTABLE (m) 19.21 31.00 1.00 115.00 23.28 46.23 3.00 195.00 34.49 34.58 1.00 300.00 
GROUNDTABLE*IRRI 15.43 28.57 0.00 115.00 23.28 46.23 0.00 195.00 39.34 51.23 0.00 300.00 
ELECPRICE (Yuan=1/$7) 0.53 0.14 0.32 0.74 0.55 0.11 0.34 0.71 0.50 0.19 0.00 1.37 
ELEC*IRRI (Yuan=1/$7) 0.42 0.26 0.32 0.74 0.53 0.17 0.34 0.71 0.48 0.20 0.00 1.37 
MIDDLEPERC (%) 44.82 26.21 4.00 97.27 46.68 26.75 10.00 93.00 56.54 22.23 0.00 100.00 
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Table 5.3.3: Descriptions of Independent Variables by Adoption Strategies (Continued) 
  Strategy 3 (N=182) Strategy 2 (N=87) Strategy 1 (N=59)
Independent Variables Mean Std.Dev. Min Max Mean Std.Dev. Min Max Mean Std.Dev. Min Max 
Environmental Variables 
GROUNDONLY 0.53 0.50 0.00 1.00 0.24 0.43 0.00 1.00 0.12 0.33 0.00 1.00 
NOIRRI 0.04 0.19 0.00 1.00 0.22 0.42 0.00 1.00 0.53 0.50 0.00 1.00 
IRRI 0.96 0.19 0.00 1.00 0.78 0.42 0.00 1.00 0.47 0.50 0.00 1.00 
DOWNSTREAM 0.20 0.40 0.00 1.00 0.30 0.46 0.00 1.00 0.12 0.33 0.00 1.00 
NOTDISTRICT 0.64 0.48 0.00 1.00 0.49 0.50 0.00 1.00 0.71 0.46 0.00 1.00 
LOAMSOIL 0.16 0.37 0.00 1.00 0.13 0.33 0.00 1.00 0.10 0.30 0.00 1.00 
CLAYSOIL 0.45 0.50 0.00 1.00 0.49 0.50 0.00 1.00 0.49 0.50 0.00 1.00 
RAINFALL 588.94 162.88 170.00 958.90 562.72 224.87 170.00 958.90 664.54 177.55 225.00 958.90 
GROWSEASON 181.96 34.66 100.00 271.00 168.45 41.64 120.00 257.00 181.02 44.37 120.00 271.00 
Institutional Variables               
GOVEXTEN 0.61 0.49 0.00 1.00 0.68 0.47 0.00 1.00 0.32 0.47 0.00 1.00 
LOANSUB 0.16 0.37 0.00 1.00 0.21 0.41 0.00 1.00 0.12 0.33 0.00 1.00 
DEMONSTRATION 0.26 0.44 0.00 1.00 0.25 0.44 0.00 1.00 0.07 0.25 0.00 1.00 
Socio-economic Variables               
ARLANDHH (Hectare) 0.48 0.39 0.05 3.14 0.68 0.58 0.09 2.98 0.59 0.66 0.08 4.44 
NONAGINC  (Yuan=1/$7) 3542.05 3241.97 0.00 15274.15 3392.07 3936.93 0.00 27130.09 3013.30 3276.03 0.00 16209.38 
GROUNDTABLE (m) 34.49 34.58 1.00 300.00 36.57 76.61 0.50 480.00 35.22 53.25 1.00 230.00 
GROUNDTABLE*IRRI (m) 29.11 31.30 0.00 153.00 26.34 65.55 0.00 480.00 14.98 38.47 0.00 230.00 
ELECPRICE (Yuan=1/$7) 0.49 0.16 0.00 0.95 0.51 0.19 0.00 1.10 0.53 0.16 0.30 0.91 
ELEC*IRRI 0.48 0.19 0.00 0.95 0.39 0.25 0.00 0.86 0.24 0.28 0.30 0.90 
MIDDLEPERC (%) 56.54 22.23 0.00 100.00 46.14 24.28 0.00 100.00 49.68 24.42 3.20 92.00 
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Table 5.3.4: Statistics Test of the Means of the Independent Variables across the 
Strategies 

Independent Variables 
Predicted 

Sign
Hypothesis p-value  

Environmental Variables     

GROUNDONLY + 16    0.0051***  

 + 15    0.0000***  

 + 14    0.0001***  

 + 
13    0.0000***  

 + 12    0.0326**  

NOIRRI - 
16    0.0119**  

 - 
15    0.0000***  

 - 
14    0.0000***  

 - 
13    0.0000***  

 - 
12    0.0000***  

DOWNSTREAM na 16    0.9173  

 na 15    0.7374  

 + 14    0.0991*  

 + 
13    0.0724*  

 + 12    0.0052**  

NOTDISTRICT na 16    0.1130  

 + 15    0.0940*  

 na 
14    0.8341  

 na 
13    0.8514  

 na 
12    0.9957  

LOAMSOIL na 16    0.3654  

 + 15    0.0039***  

 na 
14    0.2667  

 na 
13    0.1383  

 na 
12    0.3251  

*,**,***, represents significant at 10%, 5%, and 1% levels, respectively 

Expected signs of switching from the strategy 1 to more efficient land improvement strategies 

“+”, “-”, “na” represents the predicted signs are positive, negative, and ambiguous, respectively. 
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Table 5.3.5: Statistics Test of the Means of the Independent Variables (Continued) 

Independent Variables 
Predicted 

Sign 
Hypothesis p-value  

CLAYSOIL - 
16  

0.0605*  

 - 
15    0.0039***  

 na 
14    0.8625  

 na 
13    0.2677  

 na 
12    0.6692  

RAINFALL - 
16    0.0158**  

 - 
15    0.0122**  

 na 
14    0.1595  

 - 
13    0.0014***  

 - 
12    0.0021***  

GROWSEASON na 
16    0.8262  

 - 
15    0.0005***  

 + 
14    0.0032***  

 na 
13    0.4329  

 - 
12    0.0418**  

Institutional Variables     

GOVEXTEN + 16    0.0241**  

 + 15    0.0000***  

 + 14    0.0000***  

 + 
13    0.0000***  

 + 12    0.0000***  

LOANSUB + 16    0.0051***  

 + 15    0.0000***  

 na 
14    0.3617  

 na 
13    0.1972  

 + 12    0.0835*  

*,**,***, represents significant at 10%, 5%, and 1% levels, respectively 

Expected signs of switching from the strategy 1 to more efficient land improvement strategies 

“+”, “-”, “na” represents the predicted signs are positive, negative, and ambiguous, respectively. 
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Table 5.3.6: Statistics Test of the Means of the Independent Variables (Continued) 

Independent Variables 
Predicted 

Sign 
Hypothesis p-value  

DEMONSTRATION + 16    0.0003***  

 + 15    0.0001***  

 + 14    0.0307**  

 + 
13    0.0004***  

 + 
12    0.0020***  

Socio-economic Variables     

ARALANDHH (hectare) + 
16    

0.0017***  

 + 
15    

0.0311**  

 - 
14    

0.0449**  

 - 
13    

0.0703*  

    na 
12    

0.8074  

NONAGINC (Yuan=1/$7) na 
16    0.4668  

 + 
15    0.1016*  

 + 
14    0.0968*  

 na 
13    0.1393  

 na 
12    0.2716  

GROUNDTABLE*IRRI na 16    0.4832  

 na 15    0.2331  

 + 14    0.0039***  

 + 13    0.0024***  

 na 12    0.1165  

ELEC*IRRI + 16    0.0177**  

 + 15    0.0001***  

 + 14    0.0000***  

 + 
13    0.0000***  

 + 12    0.0009***  

*,**,***, represents significant at 10%, 5%, and 1% levels, respectively 

Expected signs of switching from the strategy 1 to more efficient land improvement strategies 

“+”, “-”, “na” represents the predicted signs are positive, negative, and ambiguous, respectively. 
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Table 5.3.7: Statistics Test of the Means of the Independent Variables (Continued) 

Independent Variables 
Predicted 

Sign 
Hypothesis p-value  

MIDDLEPERC (%) na 16    0.6291  

 na 15    0.6652  

 + 14    0.0296**  

 + 
13    0.0298**  

 na 12    0.8001  

Provincial Dummies     

HEBEI na 
16    0.2859  

 na 
15    0.2311  

 + 
14    0.0104***  

 + 
13    0.0002***  

 na 
12    0.5075  

HENAN na 
16    0.1459  

 - 
15    0.0249**  

 na 
14    0.4478  

 - 
13    0.0910*  

 - 
12    0.0076***  

SHAANXI + 
16    0.1098*  

 - 
15    0.0249**  

 na 
14    0.8864  

 na 
13    0.2180  

 na 
12    0.4532  

SHANXI - 
16    0.0358**  

 na 
15    0.2854  

 - 
14    0.1039*  

 na 
13    0.6758  

 na 
12    0.5532  

*,**,***, represents significant at 10%, 5%, and 1% levels, respectively 

Expected signs of switching from the strategy 1 to more efficient land improvement strategies 

“+”, “-”, “na” represents the predicted signs are positive, negative, and ambiguous, respectively. 
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Table 5.3.8: Statistics Test of the Means of the Independent Variables (Continued) 

Independent Variables 
Predicted 

Sign 
Hypothesis p-value  

MONGOLIA + 
16    0.0020***  

 + 
15    0.0499**  

 + 
14    0.0263**  

 na 
13    0.6164  

 + 
12    0.0034***  

*,**,***, represents significant at 10%, 5%, and 1% levels, respectively 

Expected signs of switching from the strategy 1 to more efficient land improvement strategies 

“+”, “-”, “na” represents the predicted signs are positive, negative, and ambiguous, respectively. 

Paired t-test: 

s
s

s

NN
S

XX
t

11
*

1
1

1








, 
1

)1()1(

1

22
11

1 



s

ss
s NN

SNSN
S , 6,5,4,3,2s . 

Assume the variance is equal across strategies. 

 

 

5.4 Descriptive Analysis of the Adoption of Water-saving Land Improvements 

The adoption rate of five water-saving land improvements is derived from 

NCWR survey and is reported in Table 5.4.1. The first column reports the percentage 

of villages where at least one farmer had adopted the specified technology in 2004, 

and the third column shows the percentage of sown area for which the technology was 

used. The most popular water-saving land improvements remain the traditional ones. 

Seventy-three percent of the sample villages used field leveling in 2004, and 49.1% of 

the sown area employs field leveling. About 74% of the sample villages used either 

borders or furrows on 45.3% of total sown area.  

The use of modern water-saving land improvements is relatively low. The 
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percentage of sample villages adopting sprinkler irrigation and drip irrigation are 

7.2% and 1.3%, respectively, and the area for which sprinkler irrigation and drip 

irrigation are used is only 2.1% and 0.4%, respectively. For comparison, similar 

village data for 1995 is also summarized in Table 5.4.1. Use of all five water-saving 

land improvements has increased over the last ten years in the study villages. 

Adoption rates of sprinkler irrigation and drip irrigation in 2004 are both about three 

times greater than in 1995. 

 
Table 5.4.1: Distribution of Water-saving Land Improvements in Sample Villages, 
2004 and 1995 

Technologies 

Percent of  villages 

adopting this technology

 

Percent of sown area 

for which this 

technology is used 

 

 (2004) (1995) (2004) (1995) 

Traditional Water-saving Land Improvements     
Field Leveling 73.3 69.6  49.1 46.0 
Use of Borders  53.6 50.1  37.6 33.1 
Use of Furrows 20.7 17.5  7.7 7.8 

Modern Water-saving Land Improvements     
Sprinkler Irrigation 7.2 2.0 2.1 0.6 
Drip Irrigation 1.3 0.5 0.4 0.1 

Source: Survey Conducted by Center for Chinese Agricultural Policy 

 

Summary statistics for the total adoption area of the five water-saving land 

improvements in 2004 and in 1995 are reported in Table 5.4.2. The mean adoption 

area of field leveling is greater than the summation of the mean adoption area of all 

other four technologies in this sample. Use of borders ranks the second and is also 

significantly more common than the other technologies except field leveling. Sprinkle 
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and drip irrigation technologies account for only a small portion of cultivated area, 

although an increasing trend is evident. For five villages that used drip irrigation in 

2004, four of them grew greenhouse vegetable, flowers, or grapes. The remaining one 

grew maize.  

So far, the findings have been largely descriptive. In the next chapter, empirical 

models of the discrete choice of the land improvement strategy will be presented. 

 

 

Table 5.4.2: Statistical Description of Adoption Area of Water-saving Land 
Improvements in 2004 and 1995 (Unit: Hectare) 

 Mean Std. Dev. Min Max 

Technologies  (2004)     

Traditional Water-saving Land Improvements     

Field Leveling 99.52 160.68 0.00 1333.33 
Use of Borders  59.01 97.87 0.00 580.00 
Use of Furrows 15.09 52.05 0.00 466.67 

Modern Water-saving Land Improvements     
Sprinkler Irrigation 6.68 50.31 0.00 864.00 
Drip Irrigation 1.69 19.26 0.00 240.00 

Technologies  (1995)     

Traditional Water-saving Land Improvements     
Field Leveling 90.07 148.76 0.00 1443.33 
Use of Borders  52.98 89.14 0.00 513.33 
Use of Furrows 14.06 50.76 0.00 493.33 

Modern Water-saving Land Improvements     

Sprinkler Irrigation 0.97 11.95 0.00 213.33 
Drip Irrigation 0.25 3.72 0.00 66.67 

Source: Survey Conducted by Center for Chinese Agricultural Policy 
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CHAPTER SIX: WHETHER FARMERS ADOPT OR NOT? 

6.1 Empirical Model: Multinomial Logit Model 

This chapter presents an empirical model which is used to estimate the 

determinants of farmers discrete choice of alternative land improvement strategies. 

Within an individual village, farmers may choose to adopt more than one land 

improvement, which means the five technologies analyzed here (field leveling, use of 

borders, use of furrows, sprinkler irrigation, and drip irrigation) are not mutually 

exclusive at the household level or even at the field level.  

Several different combinations of mutually exclusive choices can be made based 

on the actual combinations of technologies implemented in the surveyed villages. The 

absence of any land improvement technologies is defined as strategy one. Adoption of 

field leveling only is defined as strategy two. Adoption of field leveling and use of 

borders or furrows is strategy three. Adoption of borders or furrows only is strategy 

four. Adoption of a combination of sprinkler or drip irrigation and some field leveling 

is labeled as strategy five, and adoption of a combination of use of borders or furrows, 

sprinkler or drip irrigation, and some field leveling is strategy six. Table 6.1.1 shows 

the distribution of these six strategies. 

Out of 401 sample villages, 573 villages do not have access to irrigation water, 

either surface water or ground water. Thirty of these villages without irrigation 

supplies did not adopt any water-saving land improvements, but twenty-seven other 

                                                        
3 54 of the 57 villages that didn’t have irrigation water in 2004 didn’t have irrigation water in 1995 either.  
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villages without irrigation water did adopt a water-saving land improvement 

technology to conserve water. These 27 villages used either borders or furrows to trap 

rainwater in the plot and increase crop yield.   

 

Table 6.1.1: The Distribution of Six Adoption Strategies (N=401) 

Strategy Field Leveling Border/Furrow Sprinkler/Drip Villages Percentage

1 0 0 0 59 14.7% 

2 1 0 0 87 21.7% 

3 1 1 0 182 45.4% 

4 0 1 0 42 10.5% 

5a 1 0 1 11 2.7% 

5b 0 0 1 5 1.2% 

6a 1 1 1 14 3.5% 

6b 0 1 1 1 0.2% 

   Total 401 100% 

*Strategy 1 is the base category, villages (59) that don’t use any water-saving land improvements. 30 of them 

didn’t have irrigation water and didn’t use any water-saving land improvements. 29 of these had irrigation water 

but didn’t use any water-saving land improvements (or only used flood irrigation). “1” represents villages that 

adopt a given technology; “0” denotes villages that did not use the technology. Sprinkler and drip irrigation are 

combined together for convenience. Use of border and use of furrows are also combined together since farmers 

usually don’t apply these two technologies in the same field.   

 

Fifteen villages (Strategy 6.a and 6.b) (3.7%) adopted both traditional 

water-saving land improvements (use of borders, use of furrows, and field leveling) 

and modern water-saving land improvements (sprinkler or drip irrigation). Sixteen 

villages (3.9%) adopted modern water-saving land improvements (sprinkler or drip 

irrigation) and some field leveling. Forty two villages (10.5%) use borders or furrows 

exclusively. One hundred and eighty-two villages (45.4%) utilize borders or furrows 

in combination with field leveling. Eighty seven villages (21.7%) exclusively use field 
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leveling. The fifty-nine villages (14.7%) that do not use any water-saving land 

improvement represent the base category for this study. The other five strategies 

(specific technology combination) are all more efficient water application strategies. 

This research seeks to explain why a specific technology strategy was adopted in a 

given village.  

 Since the dependent variable is a discrete adoption strategy with six alternatives, 

multinomial logit models are used to estimate factors that influence adoption choice. 

For the ith  farmer faced with six strategies, the profit of strategy s  can be 

expressed as  

(14)               
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where 
isE ,is a vector of environmental variables; 

isF  is a vector of socio-economic 

variables, and 
isI  is a vector of institutional variables for farmer i , and is  is the 

error term. To simplify the model, let isZ be a vector that represents all the 

independent variables
isE ,

isF , and 
isI . The expected profit function is composed of 

two terms: the observed term V  and the error term is . A representative farmer 

knows his expected profit for each chosen strategy but the researcher does not know 

expected profit with certainty because the error term is  is unknown. If the farmer 

chooses strategy s, then the expected profit is from making this choice is the 

greatest one among the six strategies assuming profit maximizing behavior. For 

example, if the farmer adopts strategy one, then the expected profit from strategy one 
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is greater than the expected profit of any remaining strategies. Mathematically this is 

expressed 

**
1 iti    for t=all other strategies. 

For the researcher, the farmer's choice of the best strategy is probabilistic in the mind. 

Therefore, the statistical model is driven by the probability that choice s  is made is 

given by 

(15)              )Pr( ikikisis VV    for  sk ,  

)Pr()Pr( isikikisisikikis VVVV    

It is assumed that error term is follows the extreme value distribution, and is 

identical and independent.  

(16)       }exp{)( isef isis
  , 

Then the cumulative distribution function is  

(17)       )exp()( iseF is
   

Let 
iY be a random variable that indicates the choice made. Then the probability of 

farmer i choosing strategy s is given by 
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The multinomial logit estimation is a maximum likelihood estimation. The 

likelihood and log-likelihood function are defined as 
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isY equals 1 if the farmer i chooses the strategy s  and 0 otherwise. isP represents the 

probability of farmer i choosing strategy s . The estimators of multinomial 

regression are obtained by taking the first derivative with respect to   and  . 

 

Marginal Effects 

The marginal effects of a continuous variable ( isZ ) for the six strategy 

probabilities are given by 
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where isP )6,5,4,3,2,1( s represents the probability of farmer i choosing strategy s . 

The marginal effects of change in the vector of a discrete variable ( isZ ) for six 

strategy probabilities is given by 

(22)     )0()1(  isisisis ZPZP , )6,5,4,3,2,1( s  

The marginal effects reported in this study are the mean of marginal effects rather 

than the marginal effects at the means. 

 

Test of Independent Irrelevant Alternatives (IIA) 

An important assumption for running a multinomial logit model is the concept of 

Independent Irrelevant Alternatives (IIA). This property requires that the ratio of 

probabilities of any two alternatives )(
k

s
p

P is independent of any remaining 
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alternatives (Hausman and Mcfadden, 1984). If this is not true the estimation will be 

inconsistent (Greene 2003). A Hausman test is used to test this assumption. 

Hausman’s specification test for assumption IIA is given by 

(23)                 )(][)( 1'2
fsfsfsx     

where s represents the coefficients from the MNL models of the subset of strategies 

(drop one strategy) while f represents the coefficients from the MNL models of the 

full set of choices. s and f are the asymptotic covariance matrices for the subset 

of strategies and the full set of strategies, respectively.  

 

6.2 Results and Discussions for Multinomial Logit Models 

The cross-sectional data described in Chapter Five is used to explain the 

determinants of farmers’ adoption of alternative land improvement strategies. The 

dependent variable is the discrete choice of one of the six technology strategies. The 

independent variables include the environmental variables, institutional variables, and 

socio-economic variables discussed in Chapter Five. 

The multinomial logit models were estimated using maximum likelihood 

procedures. Multinomial logit estimation results with and without fix effects are 

reported in Table 6.2.2, and Table 6.2.3, respectively. The marginal effects for the 

model with fixed effects and without fixed effects are reported in Table 6.2.4 and 

Table 6.2.5, respectively. The estimation result from Table 6.2.2 (with fixed effects) is 

the preferred model for this analysis. In the model with fixed effects, some province 
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dummies4 are omitted in strategies 5 and 6 because there are no sample villages in 

these provinces that adopt these strategies. The DOWNSTREAM dummy is also not 

included in strategy 6 due to the same reason. The estimation results are robust. In 

addition, most of the results are consistent with prior expectations and previous 

studies. These results help to identify the factors influencing farmers’ discrete choice 

of alternative land improvement strategies.  

The Hausman test is used to test the assumption of Independent Irrelevant 

Alternatives (IIA). The Chi square results are reported in Table 6.2.1, suggesting that 

the null hypothesis5 of IIA can not be rejected, thus a multinomial logit model is 

appropriate for this study and the categorization is reasonable. The log-likelihood 

functions and the pseudo 2R  are used to measure the reliability of the results. The 

log-likelihood function for strategy adoption under model with fixed effects is -376.78. 

The likelihood ratio (LR) test for model with fixed effects is 372.85, rejecting the null 

hypothesis that the independent variables are jointly equal to zero at the significant 

level less than 1%. The pseudo 2R , a measure of goodness-of-fit, is 0.3310. 

The signs and significance of the estimated coefficients are relatively stable 

across both two models. A positive coefficient indicates that the independent variable 

induces a farmer to switch from the base category (no adoption of any water-saving 

land improvement) to one of the other five strategies. A negative coefficient implies 

that a farmer is less likely to implement one of the other technology strategies relative 
                                                        
4 Standard errors are huge if these province dummies are included in strategy 5 and strategy 6. 
5 The null hypothesis is that difference in coefficients between the full model and the partial model is not 
systematic. 
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the base category.  

 

Environmental Variables 

All environmental variables significantly influence strategy selection. Access 

only to the groundwater is used to measure the physical water scarcity in this study. 

Having access only to ground water, GROUNDONLY, has a positive and significant 

impact on strategies 2, 3, and 5. The positive sign implies that, farmers having access 

only to ground water are more likely to adopt field leveling only (strategy 2), field 

leveling and uses of borders or furrows (strategy 3), and a combination of some field 

leveling and sprinkler or drip irrigation (strategy 5). Farmers having access only to 

groundwater face a greater water constraint than Farmers having access to surface 

water. When water becomes less available, ceteris paribus, the marginal benefit of 

water increases, and so does the marginal cost of water. Hence, farmers are more 

likely to adopt more technically efficient technologies that can conserve water. This 

positive relationship is consistent with theory. For example, the 

Hick-Hayami-Ruttan-Binswanger hypothesis holds that an increase in the relative 

price of a factor induces innovation of technologies that conserve factor use. Previous 

research (Caswell and Zilberman, 1985, Green et al 1996, 1997) found that farmers 

who use groundwater are more likely to adopt more efficient irrigation technology. 

The impact of GROUNDONLY on the adoption of strategy 5 relative to the base 

strategy is greater than for strategy 2 or 3 relative to the base strategy. This may be 
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because strategy 5 is more technically efficient than strategies 2 and 3. Therefore, 

farmers are more likely to switch to strategy 5 compared to strategies 2 and 3. 

However, the impact of GROUNDONLY on the adoption of strategy 3 has the biggest 

effect. According to the marginal effects reported in Table 6.2.4, the probability of 

adoption of a combination of use of borders or furrows and field leveling by farmers 

having access only to groundwater is 24.74% higher than for farmers having access to 

surface water. The probability of adoption of a combination of modern irrigation and 

use of borders or furrows and some field leveling by farmers having access only to 

groundwater is 6.64% higher than for farmers having access to surface water. The 

groundwater only dummy is not significant in explaining adoption of either strategy 4 

or strategy 6. 

The dummy variable NOIRRI is used to measure whether or not a village has 

irrigation water (either surface water or ground water) and is negative and significant 

for all strategies except strategy 5 and strategy 2. This negative sign suggests that 

farmers without irrigation water are less likely to adopt most water-saving land 

improvement strategies. Although field leveling and use of borders or furrows can be 

applied to fields utilizing rainfall, lack of irrigation water discourages farmers from 

adopting these technologies. Surprisingly, NOIRRI is positively correlated with the 

adoption of strategy 5 relative to the base strategy, implying that farmers are more 

likely to adopt field leveling and sprinkler or drip irrigation relative to the base 

strategy when there is no irrigation water in the village. This may be because field 
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leveling, which does not require irrigation water to apply, is the dominant technology 

used in this strategy. According to the marginal effects reported in Table 6.2.4, the 

probability of adoption of strategy 2, field leveling only, by farmers without access to 

irrigation water is 10.66% higher than for farmers having access to irrigation water. In 

contrast, the probability of adoption of strategy 5 by farmers without access to 

irrigation water is 2.86% lower than for farmers having access to irrigation water 

Another variable used to measure water availability, DOWNSTREAM, is 

positive and significant for strategies 2 and 3. The positive sign implies that famers in 

villages located downstream of an irrigation district are more likely to switch from 

non-adoption to field leveling or a combination of traditional water-saving land 

improvements, relative to farmers in villages located above an irrigation district. This 

positive relationship coincides with the findings of Zhou et al (2008) in their study of 

Chinese rice production. Farmers in villages located in the downstream portion of a 

river, where irrigation water is not abundant and less reliable, were more likely to 

adopt water-saving irrigation technologies for rice production than farmers in villages 

close to a river, where irrigation water is abundant and reliable (Zhou et al, 2008). 

According to the marginal effects reported in Table 6.2.4, the probability of adoption 

of strategies 2, 3, and 4, by farmers in villages located downstream of an irrigation 

district is 10.8%, 3.65%, and 2.1% higher than for farmers in villages located upper 

stream and middle stream of an irrigation district 

The variable NOTDISTRICT is positively related to the adoption of strategy 6, a 
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combination of traditional and modern water-saving land improvements. This positive 

sign implies that farmers in villages that are not located in an irrigation district are 

more likely to adopt a combination of traditional and modern water-saving land 

improvements, relative to farmers in villages that are located in the upper or middle 

stream of an irrigation district. These two findings are consistent with previous 

studies.  

The soil type variable LOAMSOIL is positive and significant in strategy 5. The 

positive relationship suggests that farmers are more likely to switch from 

non-adoption to sprinkler or drip irrigation and some field leveling when the major 

soil type in a village is loamy soil. Another soil type variable CLAYSOIL is 

negatively correlated with farmers’ adoption of strategy 6. This negative sign suggests 

that farmers are less likely to switch from non-adoption of land improvements to 

strategy 6 when the major soil type in a village is clay soil. As the water holding 

capacity increases, the marginal benefit of water decreases, and the marginal cost of 

water also goes down. Therefore, farmers have less incentive to switch to 

water-saving land improvements. Prior studies have also found that farmers are more 

likely to switch to more technically efficient irrigation technology such as drip 

irrigation if the soil type is sandy soil. This is consistent with the findings in this study. 

Soil dummies are not significant for strategies 2, 3, and 4. This might be because the 

soil definition used to classify soils in this study is the major soil type for the whole 

village rather than for a single plot, hence there may still be significant unmeasured 
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soil variability within villages that strongly influence adoption.  

The climate variable RAINFALL is negative and significant in strategy 4, which 

implies that farmers are less likely to use borders or furrows when rainfall is abundant. 

When the provincial dummies are excluded (Table 6.2.3), the variable RAINFALL is 

negatively related with strategies 2, 3, 4, and positively related with strategy 5. As 

precipitation increases, the amount of water pumped generally decreases because the 

marginal benefit of pumping additional water decreases. Hence, farmers are less likely 

to switch to more technically efficient technologies in high rainfall areas. The length 

of the growing season is positive in strategy 4 and negative in strategy 5. When 

provincial dummies are not included (Table 6.2.3), variable GROWSEASON is 

positively related with strategies 2, 3, 4, and negatively related with strategy 5. Negri 

and Brooks (1990) report that the probability of adopting sprinkler irrigation is 

positively correlated with total rainfall and negatively correlated with the length of 

growing season.  

 

Institutional Variables 

The influence of government extension is positive and significant for all 

strategies except strategy 6. Farmers are more likely to adopt water-saving land 

improvements relative to the base strategy when the government officials visit the 

village to promote the use of water-saving technologies. Both Abdulai et al (2005) and 

Zhou et al (2008) have noted that farmers participating in an extension service activity 
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are more likely to adopt water-saving technology for rice production in China. 

Surprisingly, the government extension variable is not significant in strategy 6, a 

combination of borders or furrows, sprinkler or drip, and some field leveling. 

Government provision of subsidies or loans for water-saving technologies is also 

positively related to farmers’ adoption of sprinkler or drip irrigation and field leveling 

(strategy 5). This positive sign implies that farmers are more likely to adopt a 

combination of modern irrigation and some field leveling when the government 

provides subsidies or loans to farmers for adoption water-saving technologies. 

However, government provision of subsidies or loans is negatively related to farmers’ 

adoption of strategies 3 and 4. This negative relationship may be because the Chinese 

government has focused more on the promotion of modern irrigation technology 

rather traditional water saving technologies in recent years. Among the 401 villages in 

Northern China studied by Blanke et al 2007, the government share of investment in 

traditional water-saving land improvements was 5% or less, but about 64% for 

sprinkler irrigation. In addition, the marginal effects reported in Table 6.2.4 also 

shows the negative relationship between the government provision of subsidies or 

loans and the probability of adoption of strategies 3 and 4. 

The existence of demonstration fields in a village significantly influences all 

strategies except strategy 5. Farmers are more likely to adopt land improvement 

strategies if there is a demonstration field in the village from which farmers can learn 

how to use alternative land improvement technologies. Farmers who received help 



 69

from government extension service or who observed a demonstration of water-saving 

technologies may be able to produce more with a given amount of water and land. 

This suggests that the marginal benefit of adoption of land improvements increases 

with knowledge and experience, hence increases the likelihood of adoption. 

 

Socio-economic Variables 

Arable land per household (ARLANDHH) has a negative impact on the adoption 

of traditional water-saving land improvement technologies (strategies 2, 3, and 4). 

These negative signs imply farmers are less likely to switch from non-adoption to 

traditional water-saving land improvements as arable land per household increases. 

This negative relationship might be because traditional water-saving land 

improvements such as use of borders or furrows and field leveling are more labor 

intensive compared to flood irrigation (Yang et al 2003), thus more expensive 

(requires more labor) to implement as the amount of arable land per household 

increases. On the other hand, arable land per household, ARLANDHH, has a positive 

influence on the adoption of sprinkler or drip irrigation and field leveling. This 

positive relationship suggests that farmers are more likely to switch from 

non-adoption to strategy 5 (modern water-saving land improvements and some field 

leveling) as arable land per household increases. The labor intensity for traditional 

water-saving land improvements may also explain the insignificance in strategy 6 for 

arable land per household because strategy 6 includes a combination of some field 
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leveling, borders or furrows, and sprinkler or drip irrigation, which are less labor 

intensive.  

Non-agricultural income per household, NONAGINC, is positively correlated 

with adoption of a combination of some field leveling, use of borders or furrows, and 

sprinkler or drip irrigation (strategy 6), which is consistent with previous studies. This 

result implies that farmers have a propensity to switch from non-adoption to strategy 6 

as non-agricultural income rises. During a visit to a Chinese village in 2000, Lohmar 

et al (2003) found that installing sprinklers in the field costs about 3,000 Yuan per 

hectare. Although the government was willing to subsidize 1,350 Yuan per hectare to 

promote sprinkler irrigation, very few farmers adopted sprinkler irrigation because of 

the additional 1,650 Yuan per hectare cost. Therefore, low income is likely to 

constrain the use of modern irrigation technologies especially when there are limited 

or non-existent credit markets in rural China (Tsai, 2004, Cheng 2006, Li and Zhu, 

2007). In contrast, non-agricultural income per household is not statistically 

significant in the adoption of borders or furrows only (strategy 4), borders or furrows 

and field leveling (strategy 3), and field leveling only (strategy 2). This might be 

because traditional technologies such as use of borders or furrows and field leveling 

are less capital intensive (Young et al 2003). In addition, as non-agricultural income 

increases, the opportunity cost for labor in agricultural labor rises, which increases the 

labor cost of developing borders and furrows in the fields. 

Two economic variables, the depth to the groundwater table and electricity price, 
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are used to measure the cost of pumping groundwater or lifting water from a canal or 

river. The depth to the groundwater table and the electricity price do not impact 

farmers in villages without irrigation water. Therefore, the interactive term, 

GROUNDTABLE*IRRI and ELEC*IRRI, are used to measure the pumping cost for 

farmers that have access to irrigation water. However, these two water cost variables 

are not significant in any adoption strategy. 

Education level, as measured by the percentage of farmers with some middle 

school education, did not significantly influence the adoption of land improvements 

except adoption of borders or furrows (strategy 4) where it is found to have a positive 

influence. There is no positive relationship between education attainment and the 

adoption of modern water-saving land improvements, as expected. Foltz (2003) also 

didn’t find a positive relationship between education and the drip irrigation adoption 

by farmers in Tunisia. This may be because some middle school education is 

insufficient to make a difference. Previous studies that found a positive influence of 

education attainment on irrigation technology adoption are all conducted in developed 

countries (Schuck et al 2005), where farmers’ education level varies from primary 

school to college, while in China there are not many farmers with even a high school 

diploma. Limited variation in farmers’ education level may explain the lack of a 

significant relationship in this case.  

 

 



 72

Regional Variables 

The base province in this study is Liaoning Province, located in the Northeastern 

part of China. The positive signs of the coefficients representing regional differences 

suggest that farmers in Hebei, Henan, Shannxi, and Shanxi Province are more likely 

to utilize a combination of field leveling, use of borders or furrows than farmers in 

Liaoning Province. This may be because these four provinces are warmer than 

Liaoning Province. The negative signs of the coefficients for a strategy show that 

farmers in Inner-Mongolia Province are less likely to switch from non-adoption to a 

combination of field leveling and sprinkler or drip irrigation than farmers in Liaoning 

Province. Province dummies are used to capture fixed effects that are not included in 

the models, such as temperature, topography, and demographic characteristics. 

     

6.3 Conclusions 

The main objective of this study is to find the determinants of farmers’ discrete 

choice of water-saving land improvements in Northern China. Econometric results 

show that physical water scarcity as measured by villages location in an irrigation 

district or only having access to groundwater positively impacts on farmers’ adoption 

of water-saving land improvement strategies relative to the base of no land 

improvement. In contrast, however, the complete lack of irrigation water discourages 

farmers from adopting water-saving land improvement strategies, even though field 

leveling, borders, and furrows can be applied in the fields utilizing rainfall. On the 
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other hand, government extension activities to promote water-saving technologies and 

demonstration projects, positively influence farmers’ adoption of land improvement 

strategies. Thus government interventions may be needed to promote the adoption of 

water-saving land improvements. Subsidies or loans from the government also have a 

positive impact on adoption of sprinkler or drip irrigation. This suggests that 

government support can hasten the adoption of modern water-saving land 

improvements. 

Farmers in villages that adopt water-saving land improvements may reduce water 

use in the field and increase water availability for other villages in the river basin. The 

benefit of increasing the use of water-saving land improvements is often greater than 

the benefit accruing to the individual farmer or village. When positive externalities 

exist, individual actions tend to produce less than the socially efficient outcome and 

government support can increase implementation of more efficient technology, 

increasing social benefits. As analyzed in this study, this support may be in the form 

of extension activities, demonstration projects, and subsidies or loans. In particular, 

modern water-saving land improvements require a sizable upfront investment which 

may be prohibitive for many farmers due to the absence of a functioning credit market 

in rural China (Tsai, 2004, Cheng 2006). Government can help address this problem 

by serving as a lender for rural areas. However, promotion of traditional water-saving 

land improvements, which are labor intensive, may be less effective for farmers with 

large arable land per household. Furthermore, labor intensive technologies are likely 
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to become less and less applicable for the foreseeable future due to a widening labor 

shortage in rural China. 
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Table 6.2.1: Hausman Test for the Assumption of Independent Irrelevant Alternative 
 all_2=partial_2 all_3=partial_3 all_4=partial_4 all_5=partial_5 all_6=partial_6 

Drop 

Strategy 

2 

NA 
chi2(21)=12.89, 

Prob>chi2=0.9124

chi2(21)=13.48, 

Prob>chi2=0.8909 

chi2(18)=13.41, 

Prob>chi2=0.7667

chi2(19)=10.32, 

Prob>chi2=0.9447

Drop 

Strategy 

3 

chi2(21)=7.15, 

Prob>chi2=0.9978
NA 

chi2(21)=12.5, 

Prob>chi2=0.9252 

chi2(18)=12.62, 

Prob>chi2=0.8139

chi2(19)=11.34, 

Prob>chi2=0.912

Drop 

Strategy 

4 

chi2(21)=7.33, 

Prob>chi2=0.9974

chi2(21)=10.7, 

Prob>chi2=0.9683
NA 

chi2(18)=7.97, 

Prob>chi2=0.9791

chi2(19)=8.73, 

Prob>chi2=0.9776

Drop 

Strategy 

5 

chi2(21)=6.41, 

Prob>chi2=0.999

chi2(21)=6.74, 

Prob>chi2=0.9986

chi2(21)=8.07, 

Prob>chi2=0.9948 
NA 

chi2(19)=3.97, 

Prob>chi2=0.9999

Drop 

Strategy 

6 

chi2(21)=8.04, 

Prob>chi2=0.9950

chi2(21)=9.84, 

Prob>chi2=0.9809

chi2(21)=8.93, 

Prob>chi2=0.9897 

chi2(18)=23.42, 

Prob>chi2=0.1748
NA 

* 1. The null hypothesis is that difference in coefficients between the full model and the partial model is not systematic. Failing to reject the null hypothesis implies 

that the assumption of IIA holds and the categorization is appropriate.  

2. Hausman’s specification test for IIA is )(][)( 1'2
fsfsfsx    . s represents the coefficients from the MNL models of the subset 

strategies( drop one choice) while f represents the coefficients from the MNL models of the full set of strategies. s and f are the asymptotic 

covariance matrices for the subset strategies and the full set of strategies, respectively.
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Table 6.2.2: Multinomial Logit Model Estimation of Model with Fixed Effects 
 Strategy 6 Strategy 5 Strategy 4 Strategy 3 Strategy 2 

Environmental Variables 
GROUNDONLY -1.4049 4.0438*** 0.9110 1.6110** 1.0918*
 (1.2382) (1.7629) (0.7990) (0.6537) (0.6933)
NOIRRI -3.1531** 6.3228* -5.5742*** -4.3463*** -1.2648
 (2.1721) (3.5595) (1.6504) (1.1404) (1.1038)
DOWNSTREAM 1.9454 0.5665 1.3229** 1.5827**
 (2.2724) (0.8525) (0.6526) (0.6719)
NOTDISTRICT 1.8176* 1.7738 0.1209 0.0294 -0.0827
 (1.2136) (2.0279) (0.7686) (0.5769) (0.6010)
LOAMSOIL -0.8892 2.4859* -0.9256 -0.2437 0.1804
 (1.2718) (1.5523) (0.8075) (0.6395) (0.6848)
CLAYSOIL -1.3933* -0.5004 -0.7541 0.0464 0.6405
 (0.9434) (1.3855) (0.5997) (0.4581) (0.4599)
RAINFALL 0.0031 -0.0013 -0.0054** 0.0001 0.0011
 (0.0048) (0.0067) (0.0029) (0.0022) (0.0022)
GROWSEASON -0.0183 -0.0767*** 0.0318** -0.0019 0.0009
 (0.0262) (0.0288) (0.0159) (0.0124) (0.0122)
Institutional Variables
GOVEXTEN 0.0626 4.8228*** 1.0791** 1.2111*** 1.2646***
 (0.8896) (1.7324) (0.5702) (0.4471) (0.4565)
LOANSUB 0.5631 3.4333** -1.5807** -1.6111*** -0.8957
 (1.0002) (1.6774) (0.7973) (0.6339) (0.6340)
DEMONSTRATE 3.0006*** 0.6210 1.4787* 1.6298** 1.3678*
 (1.1091) (1.2209) (0.8466) (0.7287) (0.7326)
Socio-economic Variables 
ARLANDHH 0.0328 0.1295** -0.1544** -0.0815** -0.0810**
 (0.0401) (0.0724) (0.0738) (0.0368) (0.0370)
NONAGINC 0.0002** 0.0001 0.0001 0.0001 0.0000
 (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
GROUNDTABLE*IRRI 0.0143 0.0093 0.0102 0.0006 0.0036
 (0.0120) (0.0127) (0.0064) (0.0057) (0.0049)
ELEC*IRRI -1.1863 5.2310 -2.5075 -1.6868 -0.5206
 (3.1262) (4.3666) (1.9861) (1.6712) (1.7409)
MIDDLEPERC 0.0123 0.0099 0.0181* 0.0073 -0.0139
 (0.0171) (0.0187) (0.0117) (0.0089) (0.0092)
Provincial Dummies 
HEBEI 5.8853*** 1.5799 4.4853*** 2.4534
 (2.3985) (1.6583) (1.4776) (1.5846)
HENAN 6.7732*** -0.0340 2.1618** 0.3119
 (2.2566) (1.5406) (1.1951) (1.2157)
SHAANXI 2.2090 -0.3115 2.1144** 1.4005
 (2.5936) (1.4298) (1.1568) (1.1920)
SHANXI -2.9179 -1.5104 1.8390** 1.5769*
 (2.2806) (1.2603) (0.8702) (0.8730)
MONGOLIA 3.7884* -7.4044* -1.2161 1.3451 2.6389**
 (2.5347) (3.1391) (1.6785) (1.1107) (1.1494)
Intercept -5.5959 -2.2218 -1.3223 0.2232 -1.3321
 (5.8914) (7.3328) (3.0995) (2.2839) (2.3212)

Base Category: No-adoption of any land improvements 
*,**,***, represents significant at 10%, 5%, and 1%, respectively. Standard errors are reported in parentheses 
Log-Likelihood=-376.78; LR chi2(100) = 372.85, Prob > chi2 = 0.0000.  
Pseudo R2 = 0.3310 
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Table 6.2.3: Multinomial Logit Model Estimation of Model without Fixed Effects 
 Strategy 6 Strategy 5 Strategy 4 Strategy 3 Strategy 2 

Environmental Variables 
GROUNDONLY -0.0093 5.0189*** 1.1670* 1.7248*** 0.6722 
 (1.0276) (1.6530) (0.7483) (0.6104) (0.6462) 
NOIRRI -0.7190 2.3896 -5.1010*** -3.8524*** -1.1347 
 (1.7427) (2.6994) (1.5233) (1.0381) (1.0184) 
DOWNSTREAM  1.9857 0.8986 1.1125 1.3973** 
  (1.8035) (0.8187) (0.6373) (0.6543) 
NOTDISTRICT 1.0108 0.5742 -0.0266 -0.0560 -0.0601 
 (1.0783) (1.4881) (0.7430) (0.5500) (0.5643) 
LOAMSOIL -1.0296 2.0166* -0.9342 -0.4944 -0.1255 
 (1.2387) (1.1484) (0.7866) (0.6161) (0.6600) 
CLAYSOIL -0.4131 -0.1723 -0.7583 -0.0465 0.3770 
 (0.7709) (1.1246) (0.5686) (0.4345) (0.4419) 
RAINFALL -0.0031 0.0114** -0.0042*** -0.0034** -0.0026** 
 (0.0030) (0.0049) (0.0021) (0.0015) (0.0016) 
GROWSEASON 0.0144 -0.0354** 0.0391*** 0.0186*** 0.0048 
 (0.0121) (0.0157) (0.0088) (0.0064) (0.0064) 
Institutional Variables 
GOVEXTEN 0.4472 3.4790*** 1.2360** 1.2617*** 1.3881*** 
 (0.8048) (1.3577) (0.5474) (0.4280) (0.4373) 
LOANSUB 0.3341 2.1966** -1.5041** -1.4362** -0.7319 
 (0.9050) (1.1730) (0.7565) (0.5962) (0.6140) 
DEMONSTRATE 1.9080*** 0.9086 1.2602* 1.4164** 1.1845* 
 (0.9566) (1.0546) (0.8271) (0.7114) (0.7209) 
Socio-economic Variables 
ARLANDHH 0.0310 0.0789 -0.1216** -0.0974*** -0.0634** 
 (0.0306) (0.0554) (0.0607) (0.0317) (0.0317) 
NONAGINC 0.0001 0.0001 0.0001 0.0000 0.0000 
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
GROUNDTABLE*IRRI -0.0005 0.0125 0.0088 0.0022 0.0039 
 (0.0109) (0.0095) (0.0060) (0.0054) (0.0049) 
ELEC*IRRI 0.7078 1.4460 -1.9035 -1.4318 -0.2505 
 (2.5720) (3.5302) (1.8849) (1.5987) (1.7015) 
MIDDLEPERC 0.0022 0.0095 0.0181* 0.0071 -0.0143* 
 (0.0150) (0.0176) (0.0115) (0.0086) (0.0089) 
Intercept -4.1323* -13.3952** -4.4718** 0.4646 1.6578 
 (2.5414) (5.7782) (2.0994) (1.5247) (1.5534) 

Base Category: No-adoption of any land improvements 
*,**,***, represents significant at 10%, 5%, and 1%, respectively. Standard errors are reported in parentheses 
This scenario does not include the provincial dummies. 
Log-likelihood= -410.79; LR chi2(79) = 304.84, Prob > chi2= 0.0000. 
Pseudo R2 = 0.2706. 
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Table 6.2.4: Marginal Effects for Model with Fixed Effects 

 
iZ

P


 6  

iZ

P


 5  

iZ

P


 4  

iZ

P


 3  

iZ

P


 2  

iZ

P


 1  

GROUNDONLY (1,0) -0.0093 0.0664 0.0127 0.2474 -0.1334 -0.1837
       
NOIRRI(1,0) 0.0146 -0.0299 -0.1035 -0.4178 0.1193 0.4172 
       
DOWNSTREAM (1,0) -0.0326 -0.0346 0.0210 0.0365 0.1080 -0.0983
       
NOTDISTRICT (1,0) 0.0335 0.0415 -0.0199 -0.0110 -0.0961 0.0521 
       
LOAMSOIL (1,0) -0.0222 0.0731 0.0004 0.0424 -0.0397 -0.0541
       
CLAYSOIL (1,0) -0.0223 -0.0525 -0.0264 0.0119 0.0623 0.0271 
       
RAINFAL (mm) 0.0005 0.0001 -0.0010 0.0003 0.0001 0.0000 
       
GROWSEASON (Days) 0.0002 -0.0118 0.0120 -0.0008 0.0002 0.0002 
       
GOVEXTEN (1,0) 0.0079 0.0592 -0.0065 0.0508 0.0616 -0.1730
       
LOANSUB (1,0) 0.0522 0.1430 -0.0314 -0.0927 0.0020 -0.0731
       
DEMONSTRATION(1,0) 0.0390 0.0466 -0.0198 0.0830 0.0034 -0.1522
       
ARLANDHH (Hectare) 0.0038 0.0288 -0.0329 0.0004 -0.0009 0.0009 
       
NONAGINC (1000 Yuan) 0.0117 -0.0002 -0.0054 -0.0019 -0.0014 -0.0028
       
GROUNDTABLE 0.0005 -0.0002 0.0006 -0.0007 0.0543 -0.0002
       
ELEC*IRRI (1 Yuan) 0.0010 0.0011 -0.0775 -0.2194 0.1928 0.1019 
       
MIDDLEPERC (%) 0.0001 -0.0005 0.0018 -0.0006 -0.0005 -0.0003
       
HEBEI -0.0209 -0.0359 0.0282 0.3704 -0.1767 -0.1652
HENAN 0.0656 -0.0453 0.0523 -0.0441 -0.1104 0.0819 
SHAANXI -0.0269 -0.0480 0.0807 -0.0679 0.0407 0.0215 
SHANXI -0.0424 -0.0170 -0.0595 0.0866 0.0329 -0.0005
INNER-MONGOLIA 0.0675 0.0429 -0.1054 -0.1692 0.1959 -0.0317
Base Category: Non-adoption of any land improvements (P1) 
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Table 6.2.5: Marginal Effects for Model without Fixed Effects 

 
iZ

P


 6  

iZ

P


 5  

iZ

P


 4  

iZ

P


 3  

iZ

P


 2  

iZ

P


 1  

GROUNDONLY (1,0) -0.0279 0.0116 -0.0064 0.2612 -0.1344 -0.1042 
       
NOIRRI(1,0) 0.0397 0.0448 -0.0960 -0.5485 0.2282 0.3319 
       
DOWNSTREAM (1,0) -0.0193 0.0017 -0.0124 0.0170 0.0855 -0.0726 
       
NOTDISTRICT (1,0) 0.0222 0.0008 0.0000 -0.0169 -0.0084 0.0023 
       
LOAMSOIL (1,0) -0.0127 0.0097 -0.0336 -0.0671 0.0658 0.0379 
       
CLAYSOIL (1,0) -0.0097 -0.0002 -0.0533 -0.0297 0.0936 -0.0006 
       
RAINFAL (mm) 0.0000 0.0000 -0.0001 -0.0003 0.0001 0.0003 
       
GROWSEASON (Days) 0.0000 -0.0001 0.0017 0.0021 -0.0025 -0.0013 
       
GOVEXTEN (1,0) -0.0176 0.0033 0.0067 0.0663 0.0590 -0.1176 
       
LOANSUB (1,0) 0.0489 0.0169 -0.0316 -0.2197 0.0652 0.1204 
       
DEMONSTRATION(1,0) 0.0183 -0.0005 -0.0004 0.0877 -0.0194 -0.0858 
       
ARLANDHH (Hectare) 0.0026 0.0002 -0.0031 -0.0106 0.0038 0.0071 
       
NONAGINC (1000 Yuan) 0.0029 0.0002 0.0050 0.0019 -0.0085 -0.0014 
       
GROUNDTABLE -0.0001 0.0000 0.0004 -0.0004 0.0003 -0.0003 
       
ELEC*IRRI (1 Yuan) 0.0405 0.0035 -0.0658 -0.2502 0.1831 0.0890 
       
MIDDLEPERC (%) 0.0000 0.0000 0.0012 0.0030 -0.0040 -0.0002 
       
Base Category: Non-adoption of any land improvements (P1) 
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CHAPTER SEVEN: HOW MUCH DO FARMERS ADOPT? 

   7.1 Research Method: Sample Selection Model 

In this section, the continuous choice of farmers’ adoption of land improvements 

will be analyzed using the sample selection model proposed by Dubin and McFadden 

(1984). Six mutually exclusive technology strategies were delineated and explained in 

Chapter Six. They are a combination of use of borders or furrows, sprinkler or drip 

irrigation, and some field leveling (strategy 6), a combination of sprinkler or drip 

irrigation and some field leveling (strategy 5), use of borders or furrows only (strategy 

4), a combination of field leveling and use of borders or furrows (strategy 3), field 

leveling only (strategy 2), and no land improvement (strategy 1).  

Dubin and McFadden (1984) expanded Heckman’s sample selection model and 

proposed a methodology to estimate a discrete-continuous choice model when the 

selection model is a multinomial logit model. The first stage of Dubin and McFadden 

(DM) model is a multinomial logit model of the discrete choice similar to the model 

estimated in Chapter 6. The second stage of the DM model is an OLS regression with 

sample selection correction terms which are generated from the estimated first stage 

multinomial logit model.  

In this study, farmers in 87 sample villages choose strategy 2 (field leveling only). 

If farmers in villages choosing other strategies are hypothetically included to 

generalize the sample and the optimal amount of land leveled by farmers in all 401 

villages is of concern to the researcher, the OLS regression may generate sample 

selection bias. Farmers land allocation decision for a land improvement technology is 

conditional on the choice of a strategy. The error term in OLS model may be 
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correlated with the error term in the first stage, the choice model. OLS regressions 

ignore this correlation and may generate sample selection bias (Heckman 1979, Dubin 

and McFadden 1984), hence the sample selection model is used to produce unbiased 

estimates of the factors influencing the optimal amount of land on improvements. 

However, if the researcher is only concerned about the optimal amount of land leveled 

by farmers in these 87 villages, the OLS regression is appropriate. 

In this study, the adoption extent of land improvements for the farmer i is 

estimated by OLS regression with selection correction terms suggested by Dubin and 

McFadden (1984). 
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where iY  represents the true value of the adoption hectare per household of land 

improvements in the chosen technology strategy. '
ix  is a vector of environmental, 

socio-economic, and institutional variables for the village i . iu denotes the error term 

and follows the normal distribution )1,0( . iP is the probability of the chosen strategy 

i while jP is the probability of selecting an alternative strategy ( ij  ) as estimated in 

Chapter Six. i
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is the sample selection correction term. j is the 

estimate of the sample selection correction term. If the null hypothesis that j  equals 

zero is not rejected, there is no significant sample selection bias in the continuous 

choice of land improvements. Hence OLS regression without sample selection terms 

would be unbiased (Dubin and McFadden, 1984).  

Cross sectional data is used to estimate the determinants of the amount of land 
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using each land improvement technology. There are too few observations in strategies 

5 and 6 (16 and 15 observations respectively) for OLS regression to be estimated. 

Strategy 1 is the base of no adoption of any water-saving land improvements, the 

continuous choice of farmers choosing strategy 1 also is not presented. Therefore, the 

continuous choices of farmers who adopt only field leveling ( 2s ), use borders or 

furrows and level their field ( 3s ), and only use borders or furrows ( 4s ) are 

estimated here using OLS regression with sample selection terms.  

 

Sample Selection Model for Strategy Two and Strategy Four: 

The dependent variable in the continuous choice of DM model for farmers only 

adopting field leveling (strategy 2) is estimated on a per household basis. For strategy 

4, OLS regression with sample selection terms are used to estimate the adoption 

extent of borders and furrows. The dependent variable for strategy 4 is the area per 

household of land on which farmers use borders or furrows. 

 

Sample Selection Model for Strategy Three 

Seemingly unrelated regression is used to estimate the adoption extent of strategy 

3 since there might be a correlation between the extent of adopting two types of land 

improvements utilized in strategy 3. Sample selection terms are also included in the 

estimated models.  
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These two equations are estimated simultaneously, allowing for cross equation 

error correlation correction. iY1 represents the adoption hectare per household of 

borders and furrows while iY2 denotes the adoption hectare per household of field 

leveling.  

Independent variables are again categorized as environmental variables, 

institutional variables, and socio-economic variables as before. Means of adoption 

hectare per household for each technology in each of the six strategies are 

summarized in Table 7.1.1. The definitions of independent variables are reported in 

Table 5.2.1, and the means and variances of independent variables are reported in 

Table 5.3.1. 

 

Table 7.1.1: Descriptions of Adoption Area per Household by Six Strategies (Unit: Hectare) 
Land 

Improvement 
Strategy 

Sample 
Villages 

Field 
Leveling  

Border/Furrow Sprinkler/Drip 

1 59 0  0  0  

2 87 0.44 0  0  

3 182 0.32 0.35  0  

4 42 0 0.31 0 

5 16 0.35  0  0.39 

6 15 0.59  0.42 0.17  

 

7.2 Results and Discussions for Sample Selection Models and OLS Regressions 

For comparison, both OLS regression with sample selection terms and without 

sample selection terms are estimated and the results of both models are reported. 

Table 7.2.1 lists the results for strategy 2, field leveling. Seemingly unrelated 
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regressions of strategy 3 with selection terms and without selection terms are shown 

in Table 7.2.2, and Table 7.2.3, respectively. Table 7.2.4 reports the estimated results 

of OLS with and without sample selection terms for strategy 4. To check whether the 

estimation results are robust or not, sensitivity analysis is also applied and three 

models are presented in each Table. Most of results reported here are based on model 

one. An overall F-test is applied to test whether the coefficients of all independent 

variables are jointly different from zero and the results are reported in each table. 

None of the coefficients of the sample selection terms in the OLS regression are 

significantly different from zero in strategy 4, which implies there is no selection bias 

(Dubin and McFadden, 1984). In both strategy 2 and strategy 3, the coefficients of the 

sample selection term for farmers adopting strategy 6 are significantly different from 

zero. However, the coefficients of OLS regressions with selection terms and without 

selection terms are similar in significance and in magnitude. 

 

Results and Discussions for Environmental Variables 

Among the eight environmental variables, only two, DOWNSTREAM and 

RAINFALL, are significantly related with adoption extent of strategy 2 in the OLS 

regression without selection terms. On the adoption extent of use of borders or 

furrows and field leveling in strategy 3 without selection terms, only the RAINFALL 

variable is significant. NOIRRI and RAINFALL are significant in strategy 3 without 

selection terms. On the adoption extent of borders or furrows in strategy 4 in OLS 
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without sample selection terms, DOWNSTREAM and LOAMSOIL are significant.  

The DOWNSTREAM dummy is positively related to the adoption extent of field 

leveling in strategy 2 and use of borders or furrows in strategy 4. The positive signs 

imply that farmers in villages located in the downstream portion of an irrigation 

district adopt field leveling on more land than farmers in villages located in the upper 

or middle-stream of an irrigation district. The adoption area for field leveling 

increases 0.2845 hectare (model 1) if farmers in villages located in the downstream of 

an irrigation district. The adoption area for use of borders or furrows increases 0.2557 

hectare (model 1) if villages located in the downstream of an irrigation district. 

DOWNSTREAM is used to measure water availability of villages. The positive sign 

is expected and consistent with prior studies since farmers are more likely to adopt 

more efficient technologies on more land when water is less available (Zhou et al 

2008). Surprisingly, DOWNSTREAM dummy is not significant in the adoption extent 

of strategy 3. 

The dummy variable LOAMSOIL is positive and significant in strategy 4. This 

positive relationship implies that, for famers in 42 villages that only use borders or 

furrows, the adoption extent is higher if the major soil type in a village is loamy soil 

than sandy soil. Water holding capacity for loamy soil is between sandy soil and clay 

soil. Farmers in villages whose major soil type is loamy soil adopt 0.2612 hectare 

more in use of borders or furrows than farmers in villages whose major soil type is 

sandy soil holding other factors constant.  
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RAINFALL is negative and significant for the adoption extent of field leveling in 

strategy 2, and use of borders or furrows and field leveling in strategy 3. This negative 

relationship suggests that higher rainfall is correlated with lower adoption extent of 

traditional water-saving land improvements. The negative sign is also consistent with 

previous studies. Farmers reduce the area of water-saving land improvements as water 

becomes less scarce, and if they do adopt, they will do so to a lesser extent than 

farmers facing less rainfall. The adoption area for field leveling and use of borders or 

furrows decreases 0.05 hectare if the annual rainfall increases 100 mm. 

The dummy variable GROUNDONLY is not significant in the adoption extent of 

any of these three strategies. GROUNDONLY, a measure of physical water scarcity, 

has a positive impact on the probability of adoption but no impact on the adoption 

extent of land improvements. 

 

Results and Discussions for Institutional Variables 

Among the three institutional variables, DEMONSTRATION is significant in 

strategy 2. On the adoption extent of strategies 3 and 4, LOANSUB is positive and 

significant.  

The insignificance of government extension service and subsidies or loans in the 

adoption extent of field leveling is likely due to the recent focus of government 

extension service and subsidies or loans on modern water-saving land improvements, 

rather than the traditional water-saving land improvements. Government extension 
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service has a negative impact on the adoption extent of borders or furrows in strategy 

3, a traditional water-saving land improvement strategy. 

The variable LOANSUB is positive and significant with the adoption extent of 

strategies 3 and 4. These positive signs imply that for farmers adopt strategies 3 and 4, 

the adoption extent of use of borders or furrows and field leveling is greater if they 

got subsidies or loans from government. The adoption area for use of borders or 

furrows and field leveling in strategy 3 increases 0.13 and 0.07 hectare, respectively, 

if farmers got subsidies or loans from the government. The adoption area for use of 

borders or furrows in strategy 4 increases 0.26 hectare if farmers got subsidies or 

loans from the government. 

Presence of a demonstration field is positive and significantly related to the 

adoption extent of field leveling. The adoption extent of field leveling in strategy 2 

will increase by 0.1462 hectare if a demonstration field is present according to the 

results reported in Table 7.2.1. For the government, demonstration fields are attractive 

because they have relatively low cost compared to subsidies spent to enhance the use 

of modern water-saving land improvements. Hence, if the promotion of modern 

water-saving land improvements is currently too costly, the government may still be 

able to promote water-saving technologies through use of demonstration fields.  

 

Results and Discussions for Social Economic Variables 

Among the five socio-economic variables, ARLANDHH and MIDDLEPERC 
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have a significant impact on the adoption extent of strategies 2 and 4. On the adoption 

extent of borders or furrows and field leveling in strategy 3, ARLANDHH, 

GRROUNDTABLE*IRRI, and ELECPRICE are positive and significant.  

The amount of arable land per household is positive and significant at the 1% 

level in strategy 2, and both borders or furrows and field leveling in strategies 3, and 4. 

For farmers that adopt strategy 2, the adoption area increase by 0.5979 hectare when 

the arable land per household increases 1 hectare as reported in Table 7.2.1. For 

farmers that adopt strategy 3, the adoption area for borders or furrows and field 

leveling will increase by 0.3646 hectare and 0.3430 hectare, respectively, when the 

arable land per household increases 1 hectare as reported in Table 7.2.3. For farmers 

that adopt strategy 4, the adoption area for borders or furrows will increase by 0.6987 

hectare when the arable land per household increases 1 hectare as reported in Table 

7.2.4. 

An interesting finding here is the “discrepancy” of the variable arable land per 

household in the discrete choice model (multinomial logit model) versus the 

continuous choice model. In the discrete choice model, farmers with larger arable land 

are less likely to improve their land with any traditional water-saving land 

improvements because these methods require a higher labor input per hectare. 

However, for those farmers that do adopt one of these traditional water-saving land 

improvements, more arable land is associated with a more extensive use of traditional 

technology. A possible explanation is that there exists a threshold value for arable land 
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per household. Above this threshold value, farmers are significantly less inclined to 

adopt any traditional water-saving land improvements due to the labor constraint, 

whereas below this threshold value, the labor requirement for the traditional 

water-saving land improvements can be met and the technologies can be implemented 

over a more significant proportion of that arable land capturing economies of scale 

and saving more water. 

Non-agricultural income per household is insignificant in all three strategies. The 

insignificance of non-agricultural income per household is expected because 

traditional water-saving land improvements have relatively low capital costs. In 

contrast, modern water-saving land improvements have higher capital costs, which 

would be expected to be positively related to non-agricultural income per household.  

Electricity price is positively and significantly related to the adoption extent of 

both borders or furrows and field leveling in strategy 3. As suggested by agronomists, 

use of borders or furrows or field leveling can increase the irrigation uniformity and 

reduce the irrigation hours (Li, 2002, Hao, 2006), which can save electricity cost if 

farmers use electricity to pump groundwater or lift surface water. For farmers that 

adopt strategy 3, the adoption area for borders or furrows and field leveling will 

increase by 0.3128 hectare and 0.3339 hectare, respectively, when electricity price 

increases by 1 Yuan per kw/hour as reported in Table 7.2.3. Another variable used to 

measure pumping cost, the depth to the groundwater table is also positively correlated 

with the adoption extent of borders or furrows in strategy 3, although the magnitude is 
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trivial. 

Education level, as measured by the percentage of farmers with some middle 

school education, significantly influences the adoption extent of field leveling in 

strategy 2, and is positively and significantly related with the adoption extent of 

borders or furrows in strategy 4. Educated farmers learn rapidly from each other and 

are more willing to learn from each other, which boosts the adoption extent of 

traditional water-saving land improvements. The adoption area of borders or furrows 

in strategy 4 increases by 0.034 hectare when the percentage of some middle school 

education increases by 10% according to the marginal effect reported in Table 7.2.4. 

The negative relationship between the adoption extent of field leveling in strategy 2 

and the education level is likely due to the fact that field leveling is a very traditional 

technology.  

 

7.3 Conclusions 

The main purpose of this chapter is to estimate the influence of various factors 

on the continuous choice of water-saving land improvements. Due to the limited 

amount of observations for the modern water-saving land improvements, only farmers 

that adopt strategies 2, 3, and 4 are analyzed. Regression results from both OLS with 

sample selection terms and without sample selection terms indicate that the location 

of a village to an irrigation district, annual rainfall, demonstration fields, the amount 

of arable land per household, and the education level have an influence on the 
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adoption extent of field leveling (strategy 2). Annual rainfall, government extension 

service and the provision of subsidies and loans, the amount of arable land per 

household, the depth to groundwater table, and electricity price have an impact on the 

intensity of adoption by farmers using borders or furrows (strategy 3). The location of 

a village to an irrigation district, major soil type, government provision of subsidies 

and loans, the amount of arable land per household, and education influence the level 

of farmers’ creating borders or furrows in their field (strategy 4). 

The positive relationship between subsidies or loans from the government and 

the adoption extent of use of borders or furrows and field leveling suggests that 

government subsidies or loans provide a strong incentive for farmers who want to 

adopt traditional water-saving land improvements. And with the right incentive, 

farmers are willing to switch to more efficient water-saving land improvements. 

The positive relationship between the amount of arable land per household and 

the adoption intensity in the continuous model reflects an economy of scale to some 

extent. When developing borders or furrows at a one-acre field, using a tractor is not 

feasible, but when developing borders or furrows at a twenty-acre field, it is practical 

and the cost of developing borders or furrows per acre could be lowered. While the 

amount of arable land per household is not likely to increase, this positive 

relationship could be meaningful because it suggests that there is an alternative way 

to reach the economy of scale while holding the amount of arable land per household 

constant. Farmers in China are not allowed to sell their land but since the late 1980s, 
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farmers have been allowed to rent out their land (Brandt et al 2004). Promoting the 

development of the land rental market would encourage land circulation and could 

lead to larger average farm size, which would encourage the adoption of 

water-saving land improvements. 

The positive relationship between education attainment and adoption extent for 

some traditional water-saving land improvements confirms education matters in 

technology adoption. More specifically, higher education level increases the extent of 

adoption for some traditional water-saving land improvements, although the 

magnitude is small. If government continues to support the 9-year compulsory 

education program in China, farmers in China will benefit from this program, and the 

use of more efficient water-saving land improvements will likely increase. 

Demonstration fields promoting water saving technologies in villages also boost the 

adoption extent of the three traditional water-saving land improvements. Thus 

demonstration fields are an effective way to teach farmers to use water-saving 

technologies. 
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Table 7.2.1: OLS Regressions with and without Selection Terms for Farmers Adopting Field 
Leveling in Strategy 2 (Dependent variable: adoption area per household) 

 OLS w Selection Terms OLS w/o Selection Terms 

 (1) (2) (3) (1) (2) (3) 

Environmental
GROUNDONLY -0.1001 -0.0880 -0.0620 -0.0590 
 (0.1310) (0.1300) (0.1134) (0.1054) 
NOIRRI 0.2219 0.2017 -0.0124  0.0193
 (0.2527) (0.2504) (0.1659)  (0.1545)
DOWNSTREAM 0.2493*** 0.2708*** 0.2530*** 0.2845**** 0.2839*** 0.2782***
 (0.1208) (0.1181) (0.1203) (0.1030) (0.1019) (0.1018)
NOTDISTRICT 0.1171 0.1514 0.0765 0.1371 0.1331 0.0991
 (0.1198) (0.1130) (0.1070) (0.1187) (0.1055) (0.0957)
LOAMSOIL 0.1351 0.1127 0.1089 0.0277 0.0273 0.0107
 (0.1247) (0.1219) (0.1195) (0.1135) (0.1124) (0.1085)
CLAYSOIL -0.0127 -0.0191 -0.0242 -0.0589 -0.0593 -0.0650
 (0.0806) (0.0801) (0.0789) (0.0711) (0.0704) (0.0698)
RAINFALL -0.0004* -0.0004* -0.0004* -0.0005** -0.0005** -0.0005**
 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
GROWSEASON -0.0012 -0.0007 -0.0009 0.0002 0.0002 0.0003
 (0.0015) (0.0014) (0.0015) (0.0012) (0.0012) (0.0012)
Institutional    
GOVEXTEN 0.0414 0.0627 0.0707 0.0792 0.0795 0.0874
 (0.1153) (0.1125) (0.1083) (0.0766) (0.0759) (0.0747)
LOANSUB -0.0047 -0.0651 -0.0324 -0.0724 -0.0720 -0.0729
 (0.1257) (0.1050) (0.1199) (0.0882) (0.0873) (0.0877)
DEMONSTRATE 0.0965 0.1107 0.0963 0.1462* 0.1469* 0.1340*
 (0.1050) (0.1035) (0.1046) (0.0951) (0.0939) (0.0919)
Socio-economic    
ARLANDHH 0.6712*** 0.6399*** 0.6621*** 0.5979*** 0.5975*** 0.6038***
 (0.1104) (0.1043) (0.1093) (0.0930) (0.0921) (0.0918)
NONAGINC 0.0045 0.0039 0.0057 0.0080 0.0082 0.0085
 (0.0132) (0.0132) (0.0131) (0.0123) (0.0121) (0.0122)
GROUNDTABLE*IRRI -0.0001 0.0000 -0.0001 0.0003 0.0003 0.0003
 (0.0006) (0.0006) (0.0006) (0.0005) (0.0005 (0.0005)
ELEC*IRRI -0.1328 -0.2953 -0.1380 -0.2442 -0.2297 -0.2337
 (0.2643) (0.1883) (0.2633) (0.2493) (0.1556) (0.2471)
MIDDLEPERC -0.0036* -0.0030* -0.0033* -0.0023* -0.0023* -0.0023*
 (0.0020) (0.0018 (0.0019) (0.0014) (0.0014) (0.0014)
Selection term for P1 0.3962 0.3266 0.3289  
Selection term for P3 0.0893 0.2323 0.1542  
Selection term for P4 -0.1911 -0.1167 -0.1883  
Selection term for P5 -0.7195 -0.8963 -0.7241  
Selection term for P6 0.3518* 0.3926* 0.3648*  
Intercept 0.3976 0.4987 0.3739 0.2545 0.2477 0.2255

*,**,***, represents significant at 10%, 5%, and 1%, respectively. Standard errors are reported in parentheses 

OLS Model 1: R2=0.7398, F(15,63)=11.19, Prob>F=0.0000 
OLS Model 2: R2=0.7397, F(15,64)=12.13, Prob>F=0.0000 
OLS Model 3: R2=0.7385, F(15,64)=12.05, Prob>F=0.0000
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Table 7.2.2: Seemingly Unrelated Regressions for Borders or Furrows and Field Leveling in 
Strategy 3(with Selection Terms) (Dependent variable: adoption area per household) 

 SUR w Selection Terms 

(1)

SUR w Selection Terms 

(2)

SUR w Selection Terms 

(3)

 
Border/Fur

row 

Field 

Leveling

Border/Fur

row

Field 

Leveling

Border/Fur

row 

Field 

Leveling

Environmental        
GROUNDONLY 0.0522 -0.0807 0.0599 -0.0799  
 (0.0711) (0.0615) (0.0710) (0.0612)  
NOIRRI 0.3983 0.2386 0.2595 0.2241 0.4294 0.1905
 (0.2237) (0.1935) (0.1804) (0.1555) (0.2200) (0.1909)
DOWNSTREAM -0.0308 0.0731 -0.0398 0.0721 -0.0348 0.0792
 (0.0839) (0.0725) (0.0837) (0.0722) (0.0838) (0.0727)
NOTDISTRICT -0.0652 -0.0030 -0.0731 -0.0038 -0.0474 -0.0305
 (0.0734) (0.0634) (0.0732) (0.0631) (0.0693) (0.0602)
LOAMSOIL 0.0483 -0.0130 0.0168 -0.0163 0.0489 -0.0139
 (0.0739) (0.0639) (0.0676) (0.0583) (0.0740) (0.0642)
CLAYSOIL 0.0388 -0.0130 0.0144 -0.0155 0.0404 -0.0154
 (0.0565) 0.0489) (0.0516) (0.0445) (0.0566) (0.0491)
RAINFALL 0.0000 -0.0005** -0.0002 -0.0005** -0.0001 -0.0005**
 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
GROWSEASON -0.0015 -0.0002 -0.0016 0.0000
 (0.0014) (0.0012) (0.0014) (0.0012)
Institutional    
GOVEXTEN -0.1257** -0.0224 -0.1174** -0.0216 -0.1290** -0.0174
 (0.0578) (0.0500) (0.0574) (0.0495) (0.0577) (0.0501)
LOANSUB 0.1719** 0.0916 0.1356** 0.0879 0.1790** 0.0808
 (0.0776) (0.0671) (0.0696) (0.0600) (0.0771) (0.0669)
DEMONSTRATE -0.0258 -0.0236 -0.0114 -0.0221 -0.0296 -0.0178
 (0.0611) (0.0528) (0.0597) (0.0515) (0.0610) (0.0529)
Socio-economic   
ARLANDHH 0.3707*** 0.3227*** 0.3488*** 0.3204*** 0.3769*** 0.3131***
 (0.0811) (0.0702) (0.0786) (0.0678) (0.0808) (0.0701)
NONAGINC 0.0002 0.0008 0.0004 0.0007 0.0003 0.0006
 (0.0007) (0.0006) (0.0007) (0.0006) (0.0007) (0.0006)
GROUNDTABLE*IRRI 0.0007 0.0004 0.0009 0.0004 0.0007 0.0004
 (0.0008) (0.0007) (0.0008) (0.0007) (0.0008) (0.0007)
ELEC*IRRI 0.3128** 0.3339** 0.2680* 0.3292** 0.3393** 0.2930**
 (0.1582) (0.1368) (0.1527) (0.1317) (0.1543) (0.1339)
MIDDLEPERC 0.0011 0.0004 0.0016 0.0005 0.0009 0.0007
 (0.0013) (0.0011) (0.0012) (0.0010) (0.0013) (0.0011)
Selection term for P1 0.4593 0.1296 0.3755 0.1209 0.4867 0.0872
Selection term for P2 -0.0749 0.1192 -0.1009 0.1165 -0.0431 0.0700
Selection term for P4 -0.2706 0.0187 -0.0764 0.0390 -0.2687 0.0158
Selection term for P5 0.2567 0.1372 0.1372 0.1247 0.2014 0.2227
Selection term for P6 -0.4303* -0.3906* -0.4100* -0.3885* -0.4203* -0.4061*
Intercept 0.1780 0.3545 0.0146 0.3375 0.2439 0.2526
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Table 7.2.3: Seemingly Unrelated Regressions for Borders or Furrows and Field Leveling in 
Strategy 3 (without Selection Terms) (Dependent variable: adoption area per household) 

 
SUR w/o Selection Terms 

(1) 

SUR w/o Selection Terms 

(2)

SUR w/o Selection Terms 

 (3) 

 
Border/Furr

ow 

Field 

Leveling

Border/Furr

ow

Field 

Leveling

Border/Fur

row 

Field 

Leveling

Environmental        
GROUNDONLY 0.0482 -0.0584 0.0484 -0.0578  
 (0.0598) (0.0515) (0.0598) (0.0516)  
NOIRRI 0.2643* 0.1835* 0.2688* 0.1991* 0.2525* 0.1978*
 (0.1419) (0.1223) (0.1398) (0.1206) (0.1414) (0.1220)
DOWNSTREAM 0.0043 0.0695 0.0058 0.0748 0.0026 0.0716
 (0.0743) (0.0641) (0.0739) (0.0637) (0.0744) (0.0643)
NOTDISTRICT -0.0293 0.0160 -0.0269 0.0243 -0.0060 -0.0121
 (0.0714) (0.0615) (0.0702) (0.0606) (0.0654) (0.0564)
LOAMSOIL -0.0028 -0.0423 -0.0020 -0.0397 -0.0037 -0.0412
 (0.0656) (0.0565) (0.0655) (0.0565) (0.0657) (0.0567)
CLAYSOIL 0.0076 -0.0370 0.0085 -0.0341 0.0057 -0.0347
 (0.0496) (0.0427) (0.0493) (0.0426) (0.0496) (0.0428)
RAINFALL -0.0002 -0.0006** -0.0002 -0.0005** -0.0003 -0.0005**
 (0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002)
GROWSEASON 0.0002 0.0005 0.0002 0.0005
 (0.0008) (0.0007) (0.0008) (0.0007)
Institutional    
GOVEXTEN -0.0910* -0.0293 -0.0913* -0.0305 -0.0903* -0.0302
 (0.0484) (0.0417) (0.0484) (0.0418) (0.0485) (0.0419)
LOANSUB 0.1252** 0.0780* 0.1256** 0.0794* 0.1296** 0.0727*
 (0.0625) (0.0539) (0.0625) (0.0539) (0.0624) (0.0539)
DEMONSTRATE 0.0381 0.0094 0.0379 0.0089 0.0373 0.0103
 (0.0529) (0.0456) (0.0529) (0.0457) (0.0530) (0.0457)
Socio-economic   
ARLANDHH 0.3646*** 0.3430*** 0.3631*** 0.3380*** 0.3604*** 0.3482***
 (0.0634) (0.0546) (0.0629) (0.0543) (0.0633) (0.0546)
NONAGINC 0.0066 0.0083 0.0064 0.0076 0.0073 0.0075
 (0.0072) (0.0062) (0.0071) (0.0061) (0.0071) (0.0061)
GROUTABLE*IRRI 0.0014* 0.0006 0.0014* 0.0007 0.0014* 0.0006
 (0.0007) (0.0006) (0.0007) (0.0006) (0.0007) (0.0006)
ELEC*IRRI 0.3005** 0.3480*** 0.3023** 0.3544*** 0.3254*** 0.3179***
 (0.1500) (0.1292) (0.1497) (0.1291) (0.1470) (0.1269)
MIDDLEPERC 0.0011 0.0007 0.0011 0.0007 0.0011 0.0007
 (0.0010) (0.0009) (0.0010) (0.0009) (0.0010) (0.0009)
Intercept 0.0025 0.1598 0.0176 0.2121 0.0311 0.1253

*,**,*** represents significant at 10%, 5%, and 1%, respectively.  
Standard errors are reported in parentheses 
SUR Model (1) Breusch-Pagan test of independence: chi2(1) =51.066, Pr = 0.0000 
SUR Model (2) Breusch-Pagan test of independence: chi2(1) =51.046, Pr = 0.0000 
SUR Model (3) Breusch-Pagan test of independence: chi2(1) =49.565, Pr = 0.0000 
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Table 7.2.4: OLS Regressions with and without Selection Terms for Farmers Adopting 
Borders or Furrows in Strategy 4 (Dependent variable: adoption area per household) 

 OLS w Selection Terms OLS w/o Selection Terms 

 (1) (2) (3) (1) (2) (3) 

Environmental        
GROUNDONLY -0.1194 -0.1149 -0.0773 -0.0834 
 (0.1641) (0.1611) (0.1158) (0.1109) 
NOIRRI 0.2921 0.2757 0.0660  0.1055
 (0.4928) (0.4862 (0.2735)  (0.2640)
DOWNSTREAM 0.3188** 0.3420** 0.3271** 0.2557** 0.2546** 0.2414**
 (0.1577) (0.1501) (0.1553) (0.1227) (0.1202) (0.1194)
NOTDISTRICT 0.1580 0.1617 0.0813 0.1215 0.1288 0.0632
 (0.1764) (0.1733) (0.1397) (0.1424) (0.1364) (0.1113)
LOAMSOIL 0.2796* 0.2761* 0.3186* 0.2612* 0.2601* 0.2681*
 (0.1784) (0.1752) (0.1680) (0.1452) (0.1423) (0.1432)
CLAYSOIL 0.1617 0.1651 0.1769 0.1160 0.1216 0.1195
 (0.1462) (0.1435) (0.1429) (0.1187) (0.1140) (0.1172)
RAINFALL 0.0000 -0.0002 0.0001 0.0001 0.0001 0.0002
 (0.0007) (0.0006) (0.0006) (0.0005) (0.0005) (0.0004)
GROWSEASON 0.0012 0.0025 0.0009 0.0008 0.0009 0.0006
 (0.0034) (0.0025) (0.0033) (0.0015) (0.0015) (0.0015)
Institutional   
GOVEXTEN -0.0651 -0.0387 -0.0187 -0.0301 -0.0300 -0.0171
 (0.1358) (0.1261) (0.1184) (0.0997) (0.0978) (0.0967)
LOANSUB 0.1797 0.2133 0.1805 0.2615* 0.2628* 0.2441*
 (0.2090) (0.1977) (0.2064) (0.1489) (0.1458) (0.1449)
DEMONSTRATE 0.0959 0.1152 0.0767 0.0386 0.0412 0.0338
 (0.1457) (0.1396) (0.1415) (0.1231) (0.1202) (0.1215)
Socio-economic   
ARLANDHH 0.6808*** 0.6745*** 0.6608*** 0.6987*** 0.6987*** 0.6848***
 (0.2691) (0.2642) (0.2643) (0.2372) (0.2325) (0.2336)
NONAGINC 0.0042 0.0059 0.0022 -0.0036 -0.0035 -0.0037
 (0.0148) (0.0143) (0.0144) (0.0104) (0.0102) (0.0102)
GROUNDTABLE*IRRI 0.0007 0.0005 0.0008 -0.0005 -0.0006 -0.0003
 (0.0016) (0.0016) (0.0016) (0.0010) (0.0010) (0.0010)
ELEC*IRRI 0.2015 0.1352 0.1746 0.1480 0.1246 0.1347
 (0.2466) (0.2159) (0.2407) (0.2197) (0.1931) (0.2162)
MIDDLEPERC 0.0009 0.0014 0.0005 0.0035* 0.0035* 0.0032*
 (0.0036) (0.0034) (0.0035) (0.0022) (0.0021) (0.0021)
Selection term for P1 -0.1392 -0.3795 -0.2897  
Selection term for P3 0.5608 0.5821 0.4550  
Selection term for P4 0.2865 0.2624 0.3556  
Selection term for P5 -1.2557 -0.9584 -0.8488  
Selection term for P6 0.6027 0.5107 0.4322  
Intercept -0.2671 -0.5447 -0.2074 -0.6371 -0.6373 -0.6645

*,**,***, represents significant at 10%, 5%, and 1%, respectively. Standard errors are reported in parentheses 
OLS Model (1): R2=0.5066, F(16,23)=1.48, Prob>F=0.1922 
OLS Model (2): R2=0.5054, F(15,24)=1.63, Prob>F=0.1372 
OLS Model (3): R2=0.4971, F(15,24)=1.58, Prob>F=0.1537 
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CHAPTER EIGHT: CONCLUSIONS AND POLICY 

IMPLICATIONS 

Although water shortages are becoming a severe problem in Northern China, the 

agricultural sector, China’s biggest consumer of water in the nation, uses water 

inefficiently. Adopting water-saving land improvement technologies may help to 

alleviate water shortages in Northern China. Determinants for farmers’ choice of 

water-saving land improvements in Northern China are analyzed with a sample survey 

of 401 villages. The analysis focuses on two aspects of adoption, whether or not to 

adopt and if a technology is adopted, how much land to which to apply the 

technology.  

The main objective of this study is to determine what influences farmers’ 

adoption of water-saving land improvements and what incentives might increase their 

adoption of water-saving land improvements. The econometric results of this study 

indicate that farmers are willing to adopt water-saving land improvements and change 

water use behavior when water is less abundant. Water availability has a positive 

impact on both the probability and the intensity of adoption of water-saving land 

improvements. Government interventions such as extension service, demonstration 

fields, or provision of subsidies or loans boost the adoption of water-saving land 

improvements. In addition, farmers with more arable land are less likely to adopt 

traditional water-saving land improvements and more likely to switch to modern 
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water-saving land improvements. Another interesting finding in this study is that 

while the amount of arable land per household is negative and significant in the 

discrete choice model on the choice of traditional water-saving land improvements, it 

is positive and significant in the continuous choice model, which implies a threshold 

value for arable land per household. 

This study is limited in several aspects. First, the data is at the village level, not 

at the household level. Household level data would provide micro information for 

specific plots of land such as field slope, soil type, crop choice, and also farmers’ 

characteristics and actual water cost paid by each household. These variables will also 

affect the technology adoption and would improve the empirical results. Second, only 

the adoption extent of traditional water-saving land improvements is analyzed. While 

modern water-saving land improvements are more efficient in saving water and are 

paid more attention by the government, the adoption extent of modern water-saving 

land improvements was not conducted due to the limited number of villages adopting 

these. Extending the continuous model to modern water-saving land improvement 

would make this study more applicable. Third, analysis of the diffusion of 

water-saving land improvements could not be conducted because there are no 

time-dependent variables in this dataset. In addition, in this paper only water-saving 

technologies that improve the crops utilization of irrigation water and rainwater and 

land quality are included. Other water saving technologies that improve water 

conveyance such as lining canals, and water-saving agronomic technologies such as 
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mulching, plastic sheeting, conservation tillage, and growing drought resistant crops 

are not included. Addressing these limitations offer directions for the future study. 

Nonetheless, this study provides some policy implications for the Chinese policy 

makers. Although the adoption rate of water-saving land improvements in Northern 

China is relative low, with the right incentive farmers are willing to switch to more 

efficient water-saving land improvements. Government can subsidize or issue loans to 

induce the adoption of modern water-saving land improvements which require a 

sizable upfront investment that Chinese farmers usually cannot afford to. 

Demonstration fields also provide an effective way to encourage farmers’ adoption of 

water-saving land improvements. The land rental market which emerged in rural 

China starting in the 1990s can induce land circulation and the achievement 

economies of scale in farming and in turn increase the adoption of more efficient 

water-saving land improvements. Finally, the nine-year compulsory education 

program in China will benefit farmers and likely increase technology adoption. 

Continued government support of each of these programs will encourage increased 

adoption of water-saving land improvements. 

Although whether or not adopting modern water-saving land improvements such 

as sprinkler or drip irrigation conserves water is still debated as mentioned in Chapter 

Two, Caswell and Zilberman (1986) found that switching to sprinkler or drip 

irrigation from border or furrow irrigation saves water at the field level under certain 

circumstances. Therefore, under some hydrologic conditions, adopting water-saving 
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land improvements, either traditional or modern may, lead to water saving in the field. 
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