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ABSTRACT

This thesis describes the design and run time analysis of the system level

middle-ware cache for Hecios. Hecios is a high performance cluster I/O sim-

ulator. With Hecios, we provide a simulation environment that accurately

captures the performance characteristics of all the components in a cluster-

wide parallel file system. Hecios was specifically modeled after PVFS2. It was

designed to be extensible and to easily allow for various component modules to

be easily replaced by those that model other system types. Built around the

OMNeT++ simulation package, Hecios’ inner-cluster communication module,

is easily adaptable to any TCP/IP based protocol and all standard network

interface cards, switches, hubs, and routers. We will examine the system cache

component and describe a methodology for implementing other coherence and

replacement techniques within Hecios. Similar to other cache simulation tools,

we allow the size of the system cache to be varied independently of the replace-

ment policy and caching technique used.
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CHAPTER 1

INTRODUCTION

Cluster Computing

Due to the physical limitations on modern processor design techniques,

and the low cost of COTS (commodity off the shelf) machines, parallel cluster

computing is quickly becoming one of the most interesting areas of research

around the globe. Parallel computing has become a prominent mechanism

for research areas such as thermodynamics, heat transfer, weather predictions

as seen in hurricane trajectory predictions, and even the area of computing

for CPU trace layouts. This increasing popularity of cluster computing has

lead to the development of many algorithms, protocols, and techniques that

not only make it easier to program parallel code, but also speed up execution

through methods such as using the physical network layout of the cluster as

an outline for task distribution.

In cluster computing, there are two common and accepted memory archi-

tectures, message passing and shared memory. While on an architectural level

the move towards multi-core and multi-processor systems might seem to indi-

cate that the market could be leaning towards a shared memory approach, the

leading parallel computation standard is in fact the Message Passing Interface

(MPI). As popular as MPI is, its just a well defined standard by the parallel

computation community[28]. The implementations of MPI, such as MPICH

and LAMMPI, are the actual packages used by academic and industry pro-

gramers. The reason MPI has become extensively used is its feature set. The

extensive list of MPI library functions includes everything from data types to

aid in the communication between processes to MPI I/O, MPI calls that take

into account the specifics of disk access in a clustering environment.

Value added re-sellers and customized system vendors such as Atipa, Sun

micro-systems and Cray, have taken the MPI I/O implementations and tuned



them specifically for optimum performance on their hardware. While main-

taining identical or very similar function structures they allow generic MPI

code to run in a manner that optimizes the resources of their highly customized

systems. Similarly, Myrinet and many other network interface vendors have

provided modules and drivers as well as MPI implementations that reduce

overall latency when used in conjunction with their hardware. However, one

area that has been untapped until recently, one of arguably the slowest bottle-

necks of today’s modern computational systems, is that of disk I/O bandwidth.

Historically, and with the emergence of solid state hard drives, mass storage

media has been magnitudes slower then even the slowest system memory or

cache. Even with today’s high performance disk drive arrays that can sustain

transfer rates close to a couple of hundred megabytes a second, they can not

compare to the multi-gigabit per second throughput of low latency DDR RAM.

Parallel file system (PFS) development has attempted to solve this problem by

grouping together the mostly unused compute node hard drives in an attempt

to achieve greater performance.

Another factor that has lead to the development of parallel file systems

has been the increasing size of parallel task output. Scientific applications

such as DNA mapping, mechanical system modeling, finite element analysis,

and heat transfer simulations might sometimes require upwards of multiple

gigabytes of data. Even a simple elastostatic model with only 10,000 vertices

could require 3.6 GB [16] of storage space. It becomes evident that running

multiple instances of a simulation could yield outputs that would stress most

modern day hard disk storage drives. However, with the small sized hard

drives that are found on today’s compute nodes, a collection of 128 nodes each

with small 80 gig hard drives, using only a portion of that available hard drive

space would yield a high performance multi-terabyte storage solution.
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Parallel File Systems

Purpose

The emergence of COTS machines as workhorses in the clustering commu-

nity has lead to the development of some very interesting methods of reduc-

ing the overall impact of slow hard disks, and even slower external networks.

Recognized as early as 1989 [9], it became obvious that parallel I/O techniques

needed to be developed. While a number of parallel file systems have emerged

with various performance characteristics, they have utilized the same underly-

ing fundamental idea of file partitioning to achieve increased I/O throughput.

The basic idea of parallel file systems is shown in Figure 1.1. In this illustra-

tion, a single file is physically partitioned across 5 I/O nodes, but still seen as

one logical file located on one physical drive through the PFS software present

on the I/O and client nodes. This partitioning is usually performed using

’striping’. In striping, the file is divided into a sequence of fixed-size blocks

that are distributed to the disks round-robin. Striping is the same technique

used in Redundant Array of Independent Disks (RAID). There are many net-

work links to the I/O nodes however, unlike RAID which has a single network

link connecting the typical network. As depicted in Figure 1.2, the increased

bandwidth provides the system with a scalability property that allows many

more client nodes to simultaneously read and write data at a much faster

throughput then a standard RAID system. However, systems that yield the

greatest performance often combine these two techniques and use RAID arrays

at each I/O node.

PVFS2

A Clemson University research project, the Parallel Virtual File System

(PVFS), is a parallel file system for cluster computers. PVFS1 was designed to

foster research and experimentation, while PVFS2 was designed to be used pri-

marily in production and easily integrate into a cluster environment. PVFS2’s

3



I/O Nodes

Client Nodes
Client Nodes

Figure 1.1 Common parallel file system structure

RAID System

Client Nodes

Figure 1.2 Common RAID system
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layered software stack approach allows explicit separation of system compo-

nents, enabling the same upper levels of the software stack to run on different

lower level architecture specific kernel modules. It provides coherent, but not

sequentially consistent, semantics in order to avoid locks or other system syn-

chronizations [29]. Because of the nature and the design of PVFS2’s stateless

system, adding client-side caching would require significant internal modifica-

tions to ensure cache coherence [29].

PVFS2 achieves the performance goals most parallel file systems set to

achieve with bandwidths of 700 Mbytes/sec with Myrinet and 225 Mbytes/sec

with fast ethernet [5]. This has lead to the installation of PVFS2 at numerous

national laboratories. It is also robust and scalable enough to handle cluster

sizes up to hundreds of nodes. PVFS2 operates well with contiguous and non-

contiguous accesses, providing fast operation completion for re-size operations

that more common in clustering environments while also providing scalable

meta-data access by allowing all servers to provide meta-data storage [29].

Motivation

In research environments, there exists three major research vehicles that fa-

cilitate theory exploration. Ranging from least to greatest in terms of complex-

ity are analytical models, system simulations, and system prototypes. While

analytical models are easy to work with, it becomes harder to accurately cap-

ture all system specific details as the project grows. Prototypes provide a real

world implementation, but often the development can last at least weeks if not

months or years depending on the complexity of the system. A compromise

between these two research methodologies is a system simulation. Sometimes

seen as an intermediate level between hypothesis formation and implementa-

tion, a flexible simulation can provide as little or as much detail about each

system component as needed to test new PFS techniques.

Modern parallel file systems, as with any large scale project, have multiple

contributors/users. As most of these file systems are developed in a dynamic

5



research environment, it has become a challenge to fully implement a new

feature without first exhaustively considering the particular nuances of the

system. Similar in difficulty, is starting a new parallel file system from scratch

that examines and implements new research ideas and methodologies. In order

to begin the development process of a new parallel system, numerous design

decisions must be made, some of which will have most likely been explored

by other projects. The development of Hecios, our High end computing I/O

simulator, was not only fueled by this need, but also by other factors that

must be considered when developing a parallel file system such as:

• Complexity - As parallel file systems have become increasingly complex,

the implementation of a trivial traditional file system feature requires

significantly more time for testing and implementation in a parallel file

system.

• Security - Additionally, file systems must take into consideration system

security to preserve the multi-user environment’s data integrity.

• Scalability - File systems must also scale to large enough sizes to accom-

modate prevailing computational needs.

• Semantics - Data in system caches must be kept consistent through cache

coherence.

Hecios and Modules

The modular design of Hecios allows for the different system simulation

components to be designed as independent modules that attached together.

Hecios’ modules are conglomerated into a multilayer hierarchy shown in Figure

1.3. The server side resembles the standard PVFS2 server and most modern

parallel file systems, taking into account the following components:

• Disk/Disk Cache - The main server side storage of a parallel file system,

includes physical storage elements such as a hard drive or RAID array.

6



Application Layer

File System Interface

I/O Middlware

Network Interconnect (Simulated by Omnet++)

Request Processor

Disk / Disk cache

Request Scheduler
Client 
Cache

PVFS2 Client PVFS2 Server

Figure 1.3 Hecios’ architectural layers

• Request Scheduler - This component orders incoming requests when con-

sistency semantics dictate serialization.

• Request Processor - Includes functionalities of the flow component which

facilitates pipelining of data between network and disk, and the progress

engine that manages the state to state transition of the components

internal state machines.

• Network Interconnect - The network component includes the network

protocol, connection medium and switching device.

On the client side, a similar layering scheme to PVFS2’s also exists, how-

ever, the client cache component at the I/O middle-ware level is currently not

implemented in PVFS2:

• Application Layer - Includes the cluster configuration files and applica-

tion parser for scheduling I/O events.

• I/O Middle-ware - Includes a message parser to cache appropriate mes-

sages and possible coherence mechanisms and replacement techniques.
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The Current PVFS2 middle-ware does not implement a client cache,

hence the need for our simulation.

• File System Interface - Provides functionality seen in the client-side Flow,

and state machine progress engine similar to operations of the request

processor and request scheduler on the server side.

• Network Interconnect - This component operates the same as the net-

work interconnect on the server side, linking the clients and servers.

Client Cache Module

In today’s commodity computers, caches are found in almost every layer of

the system memory hierarchy, ranging from L1 cache to system level memory

paging. They have become critical in sustaining overall system throughput.

When caches are referred to during a discussion of parallel file systems, they are

often recognized for their complexity due to the coherence techniques required

for their implementation in a system where concurrent reads and or writes

might be occurring . Although PVFS2 does not provide any cache coherence

mechanisms, one of the main goals of this simulation project is to examine

the effects of adding an I/O middle-ware level cache to a PVFS2 I/O node.

As we’ve previously mentioned, in most scientific applications the relaxed se-

mantics provide accurate program execution. However, the performance gains

associated with caching warrants that we take a closer look at its effects within

the constraints of our PFS in a controlled simulation environment.

A client cache component could easily be acknowledged by many as one of

the essential building blocks in a modern highly efficient parallel file system.

By keeping a local copy of the most commonly used files or file portions, a

large number of network transactions are eliminated, which, depending on the

file access to computation ratio of the application and the coherence mech-

anism chosen, can lead to significant amounts of speedup. The client data

cache component structure discussed in this thesis follows an easily replicable

8



form to allow for new cache technique implementations. The included cache

structure could also be used as a building block for a more in depth replace-

ment policies, other then the provided LRU and FIFO implementations. A

middle-ware component data cache is often used in projects where the effects

of multiple techniques are studied in order to select a highly effective cluster

utilization technique. This may be in the environment of a parallel file system

implementation change, a general parallel file system simulation, or a cluster

specific analysis. Due to overwhelming complexities in modern production

file systems, thorough system simulation is needed in, most cases, in order

to determine the best implementation caching techniques. While the goal of

keeping or adding to the system’s scalability takes high precedence, consider-

ation is given to cache coherence as it greatly increases the implementation

complexity.

We determined that a highly scalable and configurable file system simulator

would satisfy the community’s needs. By accurately simulating all node and

interconnect components; hard drives, client level cache, network link: we have

created a tool that can be adapted to any of the ever growing assortment of

parallel file systems. Careful detail was given in the design and implementation

phases of each component to allow for a great level of extensibility and ease

of use. In this thesis we pursue the design and implementation of a cache

simulation module that will serve as the cornerstone for studies of client cache

organization in parallel file systems. These studies are to include details of

consistency, scalability, and security as the cache is implemented at different

levels from the operating system to the middle-ware.

Simulation Package

Many parallel system simulation tools are built from the ground up with

an in-house simulation kernel. We have chosen to instead build our tool using

the popular OMNeT++ simulation package. Known in the network simulation

circles as a viable alternative to commercial simulation packages, OMNeT++

9



provides the necessary simulation kernel as well as basic networking compo-

nents and protocol implementations. This flexibility allowed Hecios develop-

ment to progress very quickly, without sacrificing our desire to have a parallel

file system simulation model that is easily extensible to other file systems and

network structures.

Alternative simulation packages such as OPNET and NS2 were suggested

and considered. As OPNET is one of the more popular network simulation

tools, it was considered an obvious choice for a simulator of this ambition.

However, the non-open source license and very low level network component

layout lead us to consider other alternatives. While NS2 seemed to fit the open

source community bill, additions were ultimately not as easy to implement as

those we designed for OMNeT++. In addition, the OMNeT++ community

had already provided an open source detailed disk simulation module that

could easily be integrated into OMNeT++ simulations. Using OMNeT++

proved to be a challenge, and an intricate compilation system was developed to

deal with our desired module structure. However, this compilation system has

greatly simplified module implementations and made the complicated linking

process almost transparent.

Another feature that allows OMNeT++ to be so flexible is the ned file

structure. OMNeT++ .ned files specify input and output interconnections

between modules through the gates mechanism. Each Hecios module is asso-

ciated with a .ned file that specifies how it connects to other system compo-

nents and the type of connection. Connections can be physical connections

such as between the network transport and disk layers, or logical connections

that make it easier for component separation, such as with the connection

between the application and I/O middle-ware components. Communications

passed along the connections are in the form of custom OMNeT++ messages

that can be similar in form to MPI I/O calls or of the lower level PVFS, OS, or

BMI calls. Since we will be discussing the client cache module which handles

only MPI messages received from the application, only MPI I/O calls will be

10



examined.

A large portion of the configuration layer is implemented through the pa-

rameter settings found in the omnetpp.ini file. This file is included with all

OMNeT++ projects and contains network topology and configuration infor-

mation. Additional fields were added to the omnetpp.ini file to constrain most

configuration parameters to a single location. The eviction policy used for the

data cache is also selected through this file.

Thesis Overview

In Chapter 2, we start by building a solid background of MPI I/O and

PVFS and continue with an evaluation of middle-ware and cache implemen-

tations in parallel file systems. We then extensively describe the message

structure for our client cache and how it handles MPI I/O messages. We will

then note overall performance. While we don’t directly compare performance

of our system, we do evaluate the run time overhead associated with the par-

ticular cache mechanism implemented in our module. We conclude by offering

suggestions to improving the cache module either by whole or partial replace-

ment of the insertion and replacement policies along with possible coherence

implementations.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we go more in depth about MPI and its use in parallel

computing, as well as present some background knowledge about common

caching techniques. We then explore the similar works that we feel provides

the background for the creation of our PFS simulator. First, we present an

overview of the related project, provide it’s negative and positive aspects, we

then provide a comparative analysis of the project to ours.

MPI-IO

MPI is the message passing system installed on most clusters. This add-on

to C and C++ allows for data communication and access in a highly struc-

tured manner. Through the use of MPI library calls, programmers can easily

transfer data between tasks without having to resort to low level TCP/IP

calls. MPI also provides the tasks with a structured naming system that af-

fords easy task recognition. To facilitate optimal process distribution, MPI

includes a mechanism for describing the network layout through the use of

communicators and topologies. MPI communicators define a group or sub-

group of allocated nodes. MPI COMM WORLD is a communicator provided

by the MPI implementation that includes all the nodes allocated to the run-

ning program; for creation of new topologies and associated communicators a

call to the MPI Cart Create function is made.

While the preceding MPI features make MPI a very powerful library, we

are more interested in the later part of the MPI specification, MPI2. MPI2

or MPI-IO provides function calls that abstract the underlying file system

structure. For example, the MPI File Open operation provides a file handler

given a specific file name. Through a series of internal system calls, MPI is able

to convert the system specific name to a universal handler [14]. Similarly, other



MPI File operations allow for a mostly architecture free file access mechanism

allowing for easily portable user level code [13]. Since HECIOS is a trace

driven simulation, the MPI File function calls traverse the simulation stack

in a similar fashion to traversing a parallel file system such as PVFS2. Each

MPI File function call is associated with an Omnet++ message type that is

specific to the layer it is currently on, the next layer’s message is constructed

once execution has completed on the current layer.

PVFS2

Parallel file systems have been developed and will continue to be developed

at research laboratories and universities in order to gain greater understand-

ing of parallel I/O and to develop parallel systems that suite computational

needs. Here at Clemson, the PVFS project was started as a research endeavor

to understand the intricacies of parallel file system development. The next

iteration of the file system, PVFS2, emerged soon after as a production file

system meant specifically for parallel computational science I/O [29]. The

main goals of PVFS2 were to be efficient and scalable to a large number of

clients and I/O nodes, yet provide this functionality in a modular design. The

software stack of Hecios seen in the previous chapter mimics the standard par-

allel file system stack seen in PVFS2 (Figure 2.1). It also has built in hooks

to allow file system access through MPI I/O.

As PVFS2 was developed as a high performance file system, it provides

coherency on a byte level, due to the fact that sequential consistency is expen-

sive to implement because of the required atomic locks. The file system uses

a mechanism for caching meta-data to reduce traffic to the meta-data servers

and increase response time. As PVFS2 serializes all writes occurring to the

same area of the file at the I/O node level, write-through cache implementation

at the client node level would be the easiest technique for adding a coherent

cache.
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Cache Techniques

Caches have always been, and will continue to be, an important part of

parallel file systems and computing systems. This is particularly true in envi-

ronments where accesses to the working data set results in completion delays.

Intermediate level caches feed data to the requesting source at a much faster

rate then their larger, but slower, hierarchial counterparts. Often times moving

from one level of memory to the next results in at least a magnitude of access

time and throughput lose. We implement a highly extensible and scalable

client level cache module in an attempt to accurately capture the performance

characteristics of caching at this level of the PFS stack.

Often, just the mere fact that a cache is present is not conclusive that it

provides a performance advantage. Careful consideration must be taken when

choosing a parallel caching algorithm. The cache insertion, replacement poli-

cies, and size of the cache must all be taken into consideration when evaluating

its effectiveness. Pre-fetching and caching have previously been examined in a

research environment and found to reduce the overall system wide I/O requests

[19]. Also, as we are dealing with a parallel environment, cache coherence must

be considered for instances of multiple write accesses. PVFS2 handles this by

only allowing one outstanding write transaction to the same area of the file,

we replicate this feature in our simulator. However, since PVFS2 only caches

meta-data, our implementation could lead to a future PFVS2 feature where

all access types are cached.

While parallel simulators exist in the community, we are attempting to

provide a definitive simulator that can be as characteristically correct as the

user chooses. Many projects have chosen to neglect this level of simulation

depth and system extensibility. We examine these simulators and note on the

contributions of each work and how we have chosen to expand upon it in our

implementation. However, we first look at file system implementations where

caching has been put into practice, examining the positives and negatives of

each approach.
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Caching in NFS

The idea of using caches to speedup file system performance has for a some

time been implemented in a system most of us use everyday, NFS. Most no-

tably, the effects of caching in NFS are often seen when modifying a file located

on an NFS partition at one location and viewing those same modification at

another. These changes usually take a couple of seconds at least to show up at

the other location, and this is most likely a best case scenario for NFS. How-

ever, the file at the moments of editing experiences no lag, and it almost seems

as though the file is being edited locally. This exact same scenario can appear

to happen in a similar manner, although without direct user interaction, to

a parallel file system. We now look at NFS’s caching mechanism in order to

understand possible performance gains and how a cache can successfully be

implemented in a heavy usage environment.

The caching technique described above in NFS complicates the problem

of cache consistency. In earlier versions of NFS, close-to-open cache consis-

tency was implemented in order to reduce the amount of network transactions

needed during file access [12]. However, this method was dropped in favor

of weak cache consistency in version 3. Weak cache consistency also became

too bothersome and it was decided that in most cases, data locks would be

the answer. There is still as small amount of caching going on in the most

current version of NFS. For example, when doing an LS, the directory and file

meta-data could be cached to avoid the network delay involved with doing an

operation that should be instantaneous to the user. In version 4 a callback

mechanism was introduced to allow clients to modify their own cache and write

back to the server only when the server needs to know the caches status.

Applying the NFS strategy to parallel file systems would prove too complex

and might not reduce network transactions due to the per file nature of the

algorithm. Applying the same policies to subsets of files found in PFS would

require a callback transaction to all file portions in order to accurately account

for data continuity. In our client level cache simulation model, we write back
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to the I/O node as soon as a write occurs, while caching the written data

locally. Our cache also allows us to store only those file portions that were

accessed and to combine cache entries when a request is made for overlapping

memory addresses. This simple hybrid temporal locality algorithm should

provide sufficient for most uses. However, our system is also able to simulate

more complex systems.

OceanStore System

The OceanStore system provides caching based on the idea that systems

will fail, and a system-wide backup of the system is required at all times. In

an attempt to do so, it caches files many times at many different locations de-

coupling the information from the physical hard drive where it was originally

stored [20]. Through it’s internal caching techniques, OceanStore provides

users with a built in automatic backup mechanism. This caching procedure

provides up to date copies of data at locations where it is accessed most fre-

quently, significantly reducing transfers across what could possibly be a slow

network connection. One of the downfalls of this technique is the update mech-

anism. It becomes much harder to do data invalidation and updating when a

large number of cached copies are present. To resolve this, a master replica is

assigned and that copy is considered the most up to date and is distributed to

all cached clients. The OceanStore system maps a tree like structure unto the

system nodes, similar to a collective communication operation segmentation,

updating the root of each sub-tree and then forcing those roots to broadcast

the update to their nodes.

We provide a similar mechanism for cache updates in Hecios since it seems

as though the caching technique of Hecios closely resembles that of the OceanStore

system. The same caching rule is implemented where the cache is filled with

the those files that have recently been accessed, either in a FIFO or an LRU

fashion. We consider our master replica to always be the original I/O node,

since writes are propagated to the I/O node as soon as the request is received
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at the client node level. Contention is handled by the request scheduler that

allows only one outstanding write to any one file. Although this request sched-

uler is not yet implemented, for now, a simple global broadcast when that write

request is received invalidates all cached copies of the newly written file. We

believe that although this adds network traffic to the system, invalidations

have been known to be less taxing on a system then having a system without

a cache. However, this factor is truly dependent on the application and the size

of the cache and will vary when those factors are changes. The Frangipani file

system implements a similar locking mechanism and delivers a highly scalable

and performance oriented pfs.

Frangipani File System

Frangipani leverages the Petal file system’s performance and capacity [21]

while providing users with a simple upgrade mechanism for adding storage

capacity [30]. Petal provides fault tolerance consistent backup through its

virtual disk snapshot mechanism. This mechanism requires pausing the appli-

cation running on the system while the snapshot is being taken. Frangipani

virtually combines Petal systems into one contiguous file system to create a

highly available large storage system with a process of addressing up to 264TB.

It caches the most recently used files to the kernel’s buffer pool. This cache is

kept coherent through the use of write locks that are divided in a manner that

divides the disk structures into segments with each segment containing its own

lock. A segment is locked only if one of the clients is in the process of a write.

After the write is completed, data is written to underlying Petal system and

the lock is either released or downgraded depending upon outstanding system

requests.

We could argue that if our caching module was to be implemented in a live

system, the most obvious solution would be to follow Frangipani’s implemen-

tation and use the kernel’s buffer pool. This keeps the data highly accessible

to other processes running on the system, given the assumption that the sys-
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tem is trusted. However, our locking mechanism differs in that we do not

have explicit locks, but rather a queueing mechanism. This implementation

reduces the complexity of the system, but still delivers similar performance.

Even though this system was implemented successfully, sometimes it is much

harder to achieve a full implementation because of system complexity, in such

cases, a parallel simulator is used.

Parallel Simulators

Although parallel file systems have made it easier to deploy enormous multi

peta-byte storage wonders, most systems today, along with various file system

additions, would not be installed without the approximate performance pre-

dictions given by parallel simulations. The usefulness of having a simulator

that can accurately predict system performance is seen in the cluster develop-

ment process as more system designers become reliant upon these tools. They

depend on these simulators to provide them with feedback in determining op-

timal network hardware, interconnect and by predicting the systems expected

performance. We examine the design of parallel simulators to differentiate

popular caching mechanisms used and simulation techniques.

PIOSIM

PIOSIM was created at UCLA to provide parallel simulation of MPI-IO

programs as well as various bench marking utilities. The simulator explores

the effects of various caching techniques including cooperative caching [11]. As

with other simulation tools and file systems, PIOSIM simulates performance

of MPI-IO written code using a trace file input mechanism. However, one of

the more interesting features of this simulator is the number of cache manage-

ment policies available. At the PFS-SIM level, the component used to simulate

the specific parallel file system used are LRU cooperative caching techniques

including base, greedy, and central caching algorithms [3]. PIOSIM’s cache

mimics our future goal and some current features that we already have imple-

mented. The write policies and cache properties also exhibit the same level of
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flexibility found in our simulator. However, our network and disk I/O mod-

ules have a level of completeness that is not present in PIOSIM. By using

OMNeT++ as Hecios’ simulation kernel, we are able to leverage the entire

OMNeT++ communities contributions, such as an extensive network model

library, including a newly contributed Infiniband model, and the community

provided disk simulation model.

The COMPASS simulator delivers one of the more flexible and adaptable

configuration tools to its users. Using PIOSIM’s simulation kernel, the COM-

PASS simulator provides a more system wide approach to cluster simulations

through its ability to simulate whole systems and not just specific techniques.

It’s an execution driven tool that simulates all system components, similar to

Hecios, from the interconnection network to the file system. One of the more

interesting features of COMPASS is it has the capability to perform caching

at both the I/O and compute node levels [2]. As a whole cluster simulation

tool, it has proven that it can predict run times and scalability of Sweep3D

and NAS benchmarks. But, it lacks a dedicated and flexible network layer

similar to Hecios’ implementation. We believe that a full network layer allows

for greater flexibility in system architecture use as well as evaluation of differ-

ent network protocols. The caching techniques implemented in both of these

simulators could also be implemented in Hecios with little trouble if the need

arises.

Simulation of NCAR’s MSS

One of the simulators that was specifically built to test caching techniques

was NCAR’s MSS simulator. The developers note that the simulator’s main

purpose was to identify optimal cache sizes for the 2 peta-byte MSS [1]. The

Java discrete even simulator was developed around a packaged called JavaSim.

The system has numerous software components that mimic the actions of the

storage devices (tape drives and disk arrays, the system network as well as

client nodes. Similar to our model, system delays were set in either a deter-
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ministic or probalistic manner by having either static or randomly calculated

delays. This simulation is much different then others seen because the replace-

ment policy runs only every 24 hours, and the cache is extremely large with

an initial size of 8 TB. However, observing a large system simulator like this

allows us to recognize the features that make a large simulation like this possi-

ble, features similar to the expansion and caching capabilities found in Hecios.

Not only is Hecios built on a faster subsystem, internal C++ simulation kernel

of Omnet++, then Java; it can also easily address 8 TB of cache as well as

the MSS simulator. Although we implemented FCFS and LRU replacement

policies, we also provide a priority field in the cache entry for more complex

caching techniques such as those used by the Patsy simulator.

Patsy and Pegasus File System

The Patsy simulation project was created with the same goal we set out

to achieve, creating a highly modularized parallel file system simulator [4].

Similar to our development strategy, the Patsy simulator was modeled after a

production file system, the Pegasus file system. It uses a custom simulation

kernel that allows the systems policies to be replaced through C++’s inheri-

tance feature. However, there is a fixed block size of 4KB per entry whereas

our block sizes can be varied or set to a dynamic size property where the block

size is exactly the size of each entry. Although we do not discuss our inter-

connect system in detail here, we feel that by using the Omnet++ simulation

tool as our simulation kernel, we have essentially established that our network

simulation technique provides an accurate performance model.

Hecios’ Contribution

We feel that the Creation of Hecios was fueled by the existence of numerous

previous parallel file system and parallel file system simulation tools. We have

shown the functionality of I/O middle-ware components of various file sys-

tems and various interpretation of how caching protocols should be simulated.
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Our cache module implementation, along with the various other simulation

modules we have implemented, provide us with the ability of achieving the

same functionality as other file system simulators, while giving us the ability

to accurately predict performance of production file systems.
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CHAPTER 3

SIMULATION TOOLS

Careful consideration was given in choosing a simulation platform. We

examined many of the popular network simulation packages such as Opnet and

NS2, and also considered creating the simulation kernel from scratch before

deciding that OMNeT++ would best suit our needs. Opnet proved to be too

fine detailed for our use, as well as non-open source, limiting the potential

simulator usage to those who obtain a copy of this expensive software. NS2

is an open-source community developed effort that provides a highly detailed

network simulation, but at the cost of being extremely complex and inflexible.

One of OMNeT++’s greatest assets is that it easily allows for integration of

modules. In fact, on the OMNeT++ website is list of downloadable community

contributed modules, of which is a highly detailed disk simulation module.

OMNeT++ is also open source, making it possible to distribute our entire

simulation package including the simulation kernel.

OMNeT++

OMNeT++ was designed as a highly extensible network simulation tool.

It provides a robust simulation kernel coupled with an equally well designed

GUI distributed in open source package [26]. The main feature of OMNeT++

is it’s ability to include user written source code at any required level of sim-

ulation. For example, the third party disk simulator can exist, above, below,

or in between multiple TCP/IP protocol simulation layers. OMNeT projects

are created by writing an omnetpp.ini file. The omnetpp.ini file specifies the

system wide and module specific characteristics of the project, for example,

what type of quueing mechanism to use and disk simulator paramaters such

as roational speed and delays.



Modules

Costume modules can be written and easily integrated into OMNeT++

using either the C or C++ programing languages. Modules are integreted

into OMNeT by specifying module paramaters in the omnetpp.ini file and

configuring their communications capabilities and instantiation in the .ned

files. They can contain as many source files as needed, allowing the module

writer to seperate module components into a logically organized structure.

NED files

Ned files are one of the more esential parts of OMNeT++. The main

method of communication between modules in OMNeT++ apart from a global

decleration/function, is the gate. Module specific input and output gates are

declared and assigned through the .ned files. The gates are links between

simulation components that allow for sending and recieving of messages, both

built in, and user provided by extending the cMessage class. Also associated

with gates are delays and interconnect type (10/100MB/s and 1000MB/s nic

card for example). The protocol implementation used with each link is also

specified in the .ned file.

INET

One of the most utilized componenents of many simulations is a TCP/IP

implementation. The protocol is used in most network environments and is

the protocol of the internet. The INET extentions to OMNeT++ provides a

thorough TCP/IP implementation as well as a UDP protocol implementation

and application models. INET also includes routing capabilities and can model

PPP, Ethernet and 802.11 link layers. Many examples are provided with the

INET package as well as an online tutorial outlining the necessary steps to

implementing a module that includes INET support. The package is also kept

up to date by the community, integrating such features as IPV6 support.
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File System Simulation (FSS)

A community provided module, the file system simulation uses OMNeT++’s

simulation kernel to simulate the latencies associated with a physical hard disk.

Included in the addon is the ability to read disk requests from a file, or useing

one of the built in generators. Since this module is open source like all the

other community provided OMNeT++ components, modification and redis-

tribution are permitted, making it an ideal cadidate for use in our simulator.

Also included are disk cache replacement policies such as LRU, priority, and

fair share. The disk simulator also provides specifications for an HP hard disk

realeased in 1994, and the ability to change hard drive specifications allowing

for simulation of a more modern disk drive.

HECIOS

One of the main reasons for choosing OMNeT++ for our simulator, Hecios

(High End Computing I/O Simulator), was the ability to manipulate it into a

highly configurable and accurate file system simulator. As our aim is to movel

real world systems, Hecios is modeled after PVFS2. The implementation con-

sists of a set of client and server simulation modules that reads input from a

set of trace files, one for each client node, and passes those generated mes-

sage requests through the simulator untill eventually generationg a response.

Through a configuration system using the omnetpp.ini and the .ned files we

are able to specificy such paramaters as:

• Number of Server Nodes

• Number of Client Nodes

• Network link type and speed

• Network transfer protocol
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Messages

Since OMNeT++ modules communicate through a message facility, and

MPI is a message passing standard, standard MPI messages are passed be-

tween each of the modules. Module/layer specific requests and responses are

generated at transmition time through the connecting gates, and the mes-

sages are transported with TCP accross the network using INET’s network

simulation capabilities.

Client

The client side software is responsible for generating requests to the servers

and caching requested data when the cachiing mechanism is enabled. Al-

though PVFS2 does not implement any form of caching, our simulator, and

more specifically our I/O middlware cache, aims at providing a tool that would

yield a realistic performance analysis of a cache system for a possible future

implementation. The client simulation component is composed of the applica-

tion module at the very most top of the stack, followed by the cache module,

and finally the file system module that handles recieved MPI requests and

processes them to produce network messages. The network simulation layer,

implemented through the use of the INET facilities, provides a real world

model of a typical ethernet network, including connections from each node to

the system switch.

Server

When packats are recieved on the client side of the network layer, they

are passed to the request scheduler. The request scheduler then processes

those messages and passes them to the I/O scheduler which in turn generates

a disk read or write message to the hard disk simulated by the community

provided FSS. After the FSS has determined that the request is complete, a

response message is generated and sent back through the stack. The server

also generates invalidation messages that is released from the appliction layer

when a write is recieved to simulate the effects of a cache coherent system.
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CHAPTER 4

CACHE MODULE DESIGN

The Hecios simulator is designed in a manner that provides component

separation for ease of module interchange. Between each layer of the Hecios

modules is a communication component that easily allows message exchanging.

The application and file system component are separated by the I/O middle-

ware component, referred to as Hecios’ caching system. Communication to

and from the I/O middle-ware component and the application and file system

components is done through a series of OMNeT++ standard gates. These

gates allow the sending and receiving of pre-defined messages with or without

transmission delays that can easily be set at the configuration layer in the

.ned file, and can also modified during sending procedures if the simulator

determines that a different delay is to be used. The .ned files also specify gate

type (such as input or output) and what other gates they are hooked to in the

other layers.

The I/O middle-ware component is subdivided to easily allow future inte-

gration of other caching techniques using the current underlying system struc-

ture. These four components are:

• Request Handler (cache module.cc) - This module handles communica-

tion between the layers and implements a cache type.

• File Cache Module (complex cache) - This module handles cache inser-

tion, lookup, and deletion commands from the request handler on a per

file level, implements a replacement policy.

• Block Cache Module (simple cache) - This module handles cache inser-

tion, lookup, and deletion commands from request handler on a per block

level within each file, this component also implements a replacement pol-

icy.



• Replacement Policy Module (replace policy.cc) - This module decides

what the next replacement position should be, handles cache insertions,

and cache updates.

As each one of these components can be used with other modules, we will

review the implementation techniques for each separately, provide an analysis

of the associated data structures, and describe the testing procedures used to

ensure accuracy.

Request Handler

As messages are received by both sides of the cache module, both from the

application and from the file system layer, those messages must be captured

and the proper procedure for handling the message must be initiated. The han-

dleMessage function parses the received message and calls the proper process-

ing function. Below is a list of the messages handled and a short description

of each messages purpose and the appropriate caching operation performed:

• MPI FILE OPEN REQUEST - Request from the application layer to

open a file given a file name. We do not make a cache lookup in this

function, just pass the open request to the file system.

• MPI FILE CLOSE REQUEST - Request from the application layer to

close a file given a file handle. We evict the file from the cache and

forward the message to the file system.

• MPI FILE DELETE REQUEST - Request from the application to delete

a file. We forward this request to the file system, we do not look in our

cache because a delete will occur without first seeing a FILE CLOSE REQUEST.

• MPI FILE PREALLOCATE REQUEST - Request from the application

to allocate a specific amount of space for a file. Since PVFS2 handles

all cached meta-data request, the request is propagated down to the file

system.
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• MPI FILE SET SIZE REQUEST - Request from the application to change

the size of a file. If the file is not cached, we add the file to the cache

and forward the message to the file system. If the file is cached, we

respond back to the application layer and evict any data past the given

resize amount; when the consistency flag is enabled we also forward the

request to the file system.

• MPI FILE GET SIZE REQUEST - Request from the application for the

file’s size. If the file is cached, a response is sent back; if it is not, the

file is added to the cache and the request is propagated through to the

file system level.

• MPI FILE GET INFO REQUEST - Request from the application layer

for a files meta-date information. Since PVFS2 handles all cached meta-

data request, the file the request is propagated through to the file system

level.

• MPI FILE SET INFO REQUEST - Request from the application layer

to change a files meta-data information. Since PVFS2 handles all cached

meta-data request, the request is again propagated to the file system.

• MPI FILE READ AT REQUEST - Request from the application layer

to read data from a file at a specific offset [15]. If the file is present in the

cache, a response is sent back to the file system; otherwise, the request

goes out to the file system and the read data is cached.

• MPI FILE READ REQUEST - We assume all reads will be READ AT

requests and therefore throw an error if one of these messages is seen.

• MPI FILE WRITE AT REQUEST - Request from the application layer

to write at a pre-specified offset. If the file is cached, a response is

returned and the request is propagated to the file system depending on

if the consistency flag is enabled or not. Otherwise, the request is just
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propagated to the file system and the written data is cached for future

use.

• MPI FILE WRITE REQUEST -We assume all writes will be WRITE AT

requests, and throw an error when we see this.

• MPI FILE XXX RESPONSEs - Each request sent to the file system has

a response associated with it. This response is received from the file

system layer when the request action has been completed. In all cases,

the response is simply forwarded back to the application layer.

• CACHE EVICT RESPONSE - The only action that occurs during a re-

sponse is when an evict response is received. Upon receiving the response

the given, handle, offset, & file extent are evicted from the cache.

Cache Coherence

Although a simple coherence mechanism is fully implemented throughout

most of the simulator, we have chosen to include a great number of coherence

hooks where possible in the cache to ease the transition to a more complex

coherency mechanism when the time is appropriate. In order to simplify de-

bugging and ensure that other parts of the system are functioning before we

turn on a component that uses the network as extensively as a coherence pro-

tocol, there is a switch in the request handler to enable and disable coherence.

When coherence is disabled, data is still stored in the cache; however, write

messages are no longer propagated to the file system if they are found in the

cache, and therefore, invalid entries exist at other cached locations until they

are removed by the replacement policy. As we are initially modeling PVFS2

which currently does not cache file data, the coherence switch allows us to

examine the behavior of PVFS2 in a simple non-coherent ideal caching sce-

nario. Although this single feature does not give us an accurate indication

of invalidation bandwidth, coupled with an included mechanism that counts
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cache evictions, we will be able to fully predict the effects of more complex

protocols.

As previously explained, the simple coherence mechanism implemented in

the request handler illustrates the ease of implementing a coherence algorithm

into the Hecios simulator. When the coherence mechanism is enabled, the

cache turns into write-through cache. With a write-through cache, as soon as

data is written to the cache, it traverses the network and is written back to

the host I/O node (Figure 4.1). This method was initially chosen because of

simplicity, write-back coherence algorithms require no state tracking of cached

data [10]. This does comes at the cost of an increase in the number of network

transactions due to updates occurring at every cached write.

As with many distributed clustering protocols, a trade-off must be made

between system complexity and ease of implementation, and network trans-

action overhead. Although more complex, write-back caching schemes reduce

network transactions by only writing back data when necessary, such as in the

MSI or MESI protocols [10]. These schemes require the cache to know the

current state of each entry; therefore, each cache entry has an entryState that

can be left empty, populated by one of the four available states (EXCLUSIVE,

VALID, INVALID, UNKNOWN), or a state that is added to the cacheState
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enumerator in the cache entry.h file.

There is also another coherence mechanism which we have not explored,

directory based cache-coherence. A caching mechanism used for coherence in

the SGI origin, directory-based cache-coherence is based on the idea of setting

aside an area of the cache for storing where the home node of each block exists.

Depending on whether the directory scheme used is flat or hierarchical, the

amount of network transactions needed to invalidate cached data and write

back dirty data could be significantly reduced. However, such a schema would

easily allow for an implantation of a cooperative caching technique [11] to give

a possible performance increase.

Whichever coherence mechanism is chosen for implementation, there must

be an easily accessible interface available for searching the cache, cache inser-

tion, and cache deletion. Hecios provides this through the use of a set of helper

methods that do just that.

Helper Methods

The cache module.cc includes a set of 3 public helper methods that provide

access to the cache. They allow the request handler to perform insert and

remove operations to the file cache.

• cacheAddHandle(int handle, int offset, int extent) - The given han-

dle,offset and extent are added to the cache, handle overlaps are resolved

by storing the largest of either the input or currently stored extents. On

overlap, a combining feature is present for combining overlapping offsets

and extents within the same file handle.

• cacheRemoveHandle(int handle) - Calls the underlying cache remove

function with the given handle, removing the file from the cache.

• cacheEvict(int handle, int offset, int extent) - Calls the underlying cache

removeOffsetExtent function with the given handle, offset and extent.

34



struct LRUSimpleCacheEntry

{
int extent;

int offset ;
int address;
int state;

double timeStamp;
std::list<int>::iterator lruRef;

};

Figure 4.2 Cache Entry Data Structure

This function removes the given offset and extent from a stored file han-

dle and removes the whole file handle if the result is an empty entry.

Cache Entry Structure

The cache insertion, update and replacement policies handle entry eviction

and insertion through a superclass based policy system. The cache entry data

structure contains 6 fields (Figure 4.2). At insertion, the state of inserted

cache items is not set as the current coherence mechanism does not use this

field. The cache entry class provides public access to all the fields to allow for

easier function calls. The first four store the current entry’s properties, the

timeStamp holds the simulation time the entry was added to the cache, and

the lruRef references the corresponding lru entry in the lru list.

Cache Structure and Policy Design

As we have previously stated, for ease of future implementation of cache

protocols into our system we have separated the different components of our

I/O middle-ware. The replacement policy portion of the cache module is out-

lined using a C++ superclass. The superclass for all replacement policies is

defined in the replacement policy.h file. As a subclass replacement policy, re-

placement techniques must implement the three pure virtual policy functions,

GetEvictIndes(), PolicyUpdate(), and PolicyInsert(). Included in our policy
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development are full implementations of LRU and FIFO policies. These re-

placement techniques can be used in either the file level caching structure,

complex cache, or the block level caching structure, simple cache. A complex

cache item is created for each handle/file, each complex cache item stores a

list of corresponding cache blocks in the form of simple cache items.

Initially, as a way of illustrating a fully integrated cache; insertion, removal,

and eviction were built into one module, simple cache.h. However as the need

grew to add more replacement policies into the cache, the replacement pol-

icy portion of the cache was separated from the other portions. Because of

this, the data structures that comprise the cache, a standard STL (Standard

Template Library) list and a standard STL map, are created and initialized

in complex cache.h module which will be further referred to as the data cache

file (Figure 4.3).

Cached data structures

File Cache (complex cache item)

The data cache file incorporates two structures that provide efficient access

and storage for cache items, a C++ standard template library map and a list.

Although one of these data structures is sufficient, in order to cut the overhead

associated cached data accesses, both structures are required. The manner in

which a cache is normally accessed is one of two ways:

• Searching for a specific address/entry - In which case map traversal is

faster due to the tree based implementation found in the GNU STL

library implementation [22].

• Finding which address/entry should be evicted - In which case list tra-

versal is faster because of the nature of the STL list. The STL list allows

insertion of items in an order that corresponds to the implemented re-

placement policy.
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Figure 4.3 Cache Module Layout
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The map stores two structures, a reference and a cache entry. The cache

entry stores a handle, and a reference to an lru simple cache item that stores

each individual entry block (i.e., entry and extent). When a search for a

specific address is requested, the map’s find function traverses the tree and

returns the object with an equal handle, or an iterator to the end of the map

if none exists. A quick mathematical operation is then performed to determine

if the searched for handle is within the range of the found handle up to the

stored extent. This list is a simple list structure and only stores the order of

handles as determined by cache policy order.

Block cache (simple cache item)

The block cache entry data structure works in a similar manner to the

file cache entry. There is a map and list associated with the block cache,

and simple cache item associated with each individual block. Each block is

comprised of an offset and an extent, when a new entry is added a series of

comparisons occur as described below to correctly insert the block in its proper

location

Insertion Policy for Block Cache

The insertion policy implementation located in the insert() function in

lru simple cache.h, handles all block insert requests made from the file cache.

The function takes in two arguments, an entry offset, simply identified as the

key argument, and an entry extent, referred to as the value argument. First,

iterators are initialized for map updating and traversal . A call is then made to

the maps upper bound command with the given key, and an offset is returned

to one of the iterators. If an entry is found in the list and there is more

then one item in the cache, an update procedure occurs to the cached entry,

and the entry is moved to the proper location depending on the insertion

method chosen, FIFO or LRU. This is done by calling the specific policy’s

PolicyUpdate() function.
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The second scenario occurs if there are no items in the cache, a proper

push back or push front call is made, depending on which insertion algorithm

is chosen, and the entry count is incremented. This and the previous scenario

are perfect examples of why the insertion and replacement policies are sepa-

rated. Policy separation allows insertion and replacement to be independent,

allowing a multitude of cache control options once more policies are imple-

mented. Another scenario occurs when there is only one item in the cache,

in this case, the proper policy dependent cacheInsert() function is called, an

update to the list is made and the cache size is updated. In order to provide

limits on cache size and provide usage statistics, the size of the data kept in

the cache is updated whenever an insertion or removal occurs. If an entry will

overfill the predetermined single entry size, blocks are evicted until the empty

space is sufficient. If all blocks are evicted, the entry is simply inserted into the

cache, as the file cache also performs a global size limitation. This soft limit

feature allows for entries greater then individual block sizes yet still allows the

entire cache to maintain it’s size limitation.

The final cache insertion scenario occurs when the item to be inserted does

not match any previously stored entries. First, items are evicted using the

implemented replacement policy’s eviction procedure if the cache size is too

big, taking into account both the physical cache size and the maximum number

of entries parameters (both easily configured). The correct map insertion

position is found through results of the initial map upper bound function call.

Finally, cached data is added to the list at the policy-specific position and the

entry count is updated. One of the more unique features of this cache is also

apparent in this scenario. If overlapping entries exist at this step, the cache

combines the entries, keeping the handle of the lowest entry, and extending

the extent to include both entries. As each scenario of cache insertion varies in

the amount of steps taken, this effects the overhead associated with insertions

depending upon the state of the cache. An analysis is presented later in the

chapter. A typical insertion procedure is seen in Figure 4.4.
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Insertion Policy for File Cache

The insertion policy for the file cache is a simplified version of the block

cache. Instead of upper bound function calls for map search, a map find call

is made, and if the entry does not exist, a new simple cache item is created

corresponding to the newly inserted file handle. If the entry does exist, the

underlying block cache insert function that is associated with the specific file

handle is called, and execution proceeds as stated above. A hard limitation on

entry size exists at this level. If the entry to be inserted overfills the cache, it is

simply not inserted. Other methods of handling this would be to simply insert

a portion of the entry that would not overfill the cache, this might however

produce a portion of the cache that is never used again, while evicting all

entries in the cache that might have been previously accessed many times.

Replacement Policy

As discussed previously, one of the simplest ways of modifying a caching

technique is varying the way in which cache evictions occur. Our cache frame-

work provides a standard replacement policy super class that allows a new

eviction policy to be created by overwriting the virtual GetEvictIndex func-

tion with another implementation. Both the FIFO replacement policy and

the LRU replacement policy are subclasses of the replacement policy class and

each implements a unique version of the GetEvictIndex function. A GetE-

victIndex() call is made from the insert() function to get the address of the

element of the list that is to be removed. As these functions are not very

complex, simply returning a pointer to either the beginning or end of the list,

they provide a solid example for creating a new standard cross policy functions

that could handle insertions or lookups, or possibly a more complex caching

mechanism.
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Testing

As with any development process, a great portion of ensuring system cor-

rectness involves thorough testing of each individual component. For validat-

ing individual Hecios modules, we use the well known unit testing approach.

Unit testing consists of isolating a specific system component and feeding it

an extensive test set of common and boundary condition inputs. In order

to guarantee correct operation, the component outputs are compared to ex-

pected system outputs, if a non-match occurs, an error message in printed to

the screen indicating the point of testing failure.

The cache testing phase occurred in three distinct iterations. The first

iteration occurred when the initial cache module, lru simple cache, was com-

pleted. The module properly inserted and removed data, however, did not

include the capability of combining cache entries. The test suite for the initial

cache was comprised of constructor testing, insertion testing, removal testing,

lookup testing, cache size testing, and LRU policy testing.

The constructor test simply asserted that creation of a cache object cor-

rectly resulted in properly initialized values, for example that the cache size

was zero right after creation. The insert test tested if the correct number of

items were recognized to be held in the cache. For example, three items were

inserted, and the cache size was checked to correctly indicated that three items

were in fact in the cache. The removal test explicitly looked for correct re-

moval of specific items after they were correctly inserted. Similarly, the lookup

test performs a lookup operation on the cache with items that should be in

the cache. For example, an insertion of offset 2018, with extent 2009 provides

a cache hit for lookups of 2018, 3000, but not 8000. Cache size testing in-

volved multiple inserts and deletions with checks in between each to correctly

determine that the size variable of the cache was being correctly updated. Fi-

nally LRU policy testing involved inserting multiple cache entries to fill up the

cache, and ensuring that the last used item was being correctly evicted.

The second cache testing iteration occurred during and after the cache
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ComplexCache Function Runtime

insert() O (4 log n)
remove() O (2 log n)
removeOffset() O (3 log n)
removeOffsetExtent() O (5 log n)
lookup() O (log n)
findOnlyHandle() O (log n)
findOnlyHandleOffset() O (2 log n)
findOnlyHandleOffsetExtent() O (2 log n)
mapPrint() O (n)
size() O (1)
physSize() O (1)

Table 4.1 ComplexCache Runtime

modifications made for entry combining. The entry combining technique used

was combining overlapping entries on insertion. The insert method would

check entries after the passed in file handle, and ensure that those entries

were not overlapped by the new insertion. If there was overlap, entries were

combined. The above tests were re-run; however, the entry offsets and extents

were changed to allow for overlap and proper test bench output was generated

by all tests in this iteration.

The third testing iteration occurred after the file cache, lru complex cache,

was completed. Similar tests were run, also testing the file cache’s ability to

insert files and keep track of the number of files inserted. LRU implementation

correctness was also tested along with total cache size eviction. Combining

was also tested at this level as was the get size function and the map print

functions for both the file cache and the block cache. All tests indicated system

correctness and a sample trace was run without error.

Run Time Analysis

An important part of any system implementation, and especially in a com-

plex a simulation systems such as this one where the goal is to simulate of

hundreds of attached nodes, careful consideration must be given to each func-

tion implementation to ensure optimal system design. We now examine the
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SimpleCache Function Runtime

insert() O (2 log n)
remove() O (2 log n)
removeRange() O (4 log n)
lookup() O (log n)
findOnlyKey() O (log n)
findOnlyKeyValue() O (2 log n)
findOnlyKeyValueOffset() O (2 log n)
mapPrint() O (n)
returnEvict O (1)
size() O (1)
physSize() O (1)

Table 4.2 SimpleCache Runtime

Evict Function Runtime

GetEvictIndex() O (1)
PolicyUpdate() O (1)
PolicyInsert() O (1)

Table 4.3 FIFO and LRU Policy Runtimes

44



cache module functions and determine the run time for each function. We first

consider the cache insert function. All insert operations start with a map find

to look for the cache item to be inserted and another map upper bound call

to search for the specific offset/extent range, this gives a runtime of O (log n).

Although the exact run time differs by a couple of constants depending on the

number of items in the list and whether the item to be inserted overlaps any

other entries, map traversal is only done once, as the STL list provides flexible

object ordering. Replacement algorithm getEvictIndex() calls yield a lookup of

ω(1). Cache removals, are also O (log n). The same above mentioned map find

function is called on removals to search for the entry to be removed. List and

entrymap deletions are done in constant time as the found entry’s LRU and

map addresses are retrieved from the find operation, either directly through

the return of find or indirectly through a lookup of the list reference variable

stored within each cache entry. And for the lookup and the three finds, they

also have a run time of O (log n) because of the use of the map’s built in find.

Again, no other traversals are needed and only constant time operations such

as setting the one or two pointers to be returned are performed. Finally, the

cache size() and physSize() functions return in O (1) time as they only return

the constantly updated numEntries private variable. In tables 4.1 through 4.3,

we see these and all the caching function runtimes. Note the overall efficiency

of the algorithms and that only the printing functions ever approach highly

undesirable linear time, while all replacement policy functions run in constant

time, and all others run in logarithmic time.

Through our analysis of the cache module, we have shown how the flex-

ibility of our middle-ware enables it to be modified and extended to model

other caching protocols and techniques. We have also shown with our run

time analysis that the included caching functions should scale well due to the

efficient nature of their implementations. In large parallel file system struc-

tures similar to the ones we are simulating, a lightweight cache package also

provides us with the ability to reproduce some of the more complex caching
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environments and schemes.
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CHAPTER 5

CONCLUSIONS

As the size of parallel clusters and scientific applications has grown, the

need for a highly scalable and consistent file system has been meet largely by

research developments such as PVFS2. With any software package the need

arises to implement ideas that might help system performance, or increase

scalability. These research ideas can be explored in many ways, as we have

discussed before, three main research vehicles of system design exist. Ordered

from least to greatest complexity are analytical system models, system simu-

lations, and system prototypes. Due to the complexity of parallel file systems,

most analytical models fail to accurately capture all of the systems charac-

teristics, while simply implementing a new research idea in a production file

system could involve a system-wide redesign. In most cases, a thorough simu-

lation, while providing performance indicators, takes considerably less time to

implement than a thorough prototype, making it a cost-effective alternative.

This paper describes the process of creating a highly configurable parallel

file system simulator cache module. Our system’s modular system design al-

lows for system extensibility and reconfiguration based on the simulator user’s

desired configuration. Our usage of the OMNeT++ simulation package as our

simulation kernel, provides accurate modeling of networking hardware and

protocols. In our attempt to simulate PVFS2 and other file systems, we or-

ganize Hecios’ modules in a style similar to the most common parallel file

systems layered structure . This provides us with a model that allows us to

easily translates studied component specific implementations to their respec-

tive production system counterparts. As the main research focus of parallel file

systems is to increase I/O performance, many caching mechanisms have been

studied in order to reduce the amount costly network transactions. Hecios’

included client level data cache provides an easily configurable cache that can



be adapted to emulate those of common parallel file systems, or as a research

tool for studying the effects of adding a new caching technique to an existing

system.

After establishing the importance of parallel file system research and look-

ing at a variety of production caching techniques and parallel simulators, we

introduce Hecios as a candidate for simulating most parallel system while fo-

cusing our attention to our I/O middle-ware client cache component. In Chap-

ter 3, we provide a brief overview of OMNeT++’s facilities and mechanism,

and continue by exploring the structure of the Hecios simulator.

In chapter 4, we describe the cache module’s integration within the Hecios

simulator by going over the 4 main cache components. First we look at the

request handler and saw how our implementation handles passing MPI I/O

operations and decides which specific requests to cache. We then examine a se-

ries of cache coherence techniques illustrating the process involved in achieving

a fully coherent cache subsystem implementation within Hecios, with a focus

on the provided helper methods and each cache entries efficient data structure.

Further into the chapter, was an observation of the implementation of our

cache structure and insert and evict policy designs, noting the overall cache

module layout and its importance in providing system flexibility. We then

analyze our testing procedures to ensure proper cache operation and provide

a run time analysis of the cache modules’ built in functions.

We have shown that our simulator along with the I/O middle-ware cache

component provides the community with a highly scalable simulator. We have

also shown how our simulator’s easily understandable component structure can

help facilitate the development of other caching technique implementations.

Contribution

We believe that our work provides the parallel file system community with

a modular cache simulation tool embedded into the highly configurable Hecios

simulator with the following:
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• AnMPI I/O middle-ware that can easily switch between coherent caching,

non-coherent caching, and non-caching modes.

• Simplistic and efficient cache data structures, with O(2 logn) insertions,

and lookups, and O(2 log n) remove and single eviction-inserts.

• Cache data access methods with low run-time.

• LRU and FIFO cache replacement policies with a highly configurable

framework for adding other policy types.

• A cache testing unit that ensures proper operation, on a per file and file

block basis, including instances of block combining.

Simulation Usage and Usability

One of the main goals of Hecios is to allow the system to easily mimic a

wide range of system components and techniques. The modular nature of the

OMNeT++ discrete event network simulation framework coupled with the use

of the .ned file mechanism, allows components such as network links, switching

devices, and specific Hecios components such as the I/O middle-ware, to be

easily interchangeable with a single edit. For example, an I/O middle-ware

stand-in module exists that simply forwards all requests and responses to the

next layer, allowing for a non-caching middle-ware implementation

The process of running and compiling Hecios is straight forward and out-

lined in Appendix A. The OMNeT++ simulation package can be obtained from

the OMNeT++ web site located at www.omnetpp.org. The Hecios simulator

including the INET package can be obtained from the PARL CVS repository,

under the project name hecios.
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Future Work

While we provide a sufficient framework for simulating caching effects in a

parallel system, we have not provided the community with a wide assortment of

caching protocols or replacement policies. The provided framework allows such

implementations to be easily incorporated into system simulations. Although

a large number of the Hecios modules are in some form complete, the request

scheduler component is yet to be fully implemented; but a sufficient stand in

module exists to provide system pass-through operation.

One of the more interesting possibilities for future exploration would be

to provide different caching techniques for different portions of the file blocks.

Also, as PVFS2 is non-redundant, a possible avenue for future exploration

would be a look at redundancy techniques and their effects on overall per-

formance, possibly incorporating coherently cached data. While our simple

write through cache provides us with an easily and realistically implementable

cache mechanism, other coherence techniques exist that provide better perfor-

mance, but at the cost of increased implementation complexity on the client

and server sides. Even though our chosen write-through cache technique has a

large amount of overhead, it provided us with the ability to quickly integrate

a coherent caching mechanism, allowing us to fully realize the expandability

of Hecios and OMNeT++. In the future, looking at more complex techniques

such as directory or write-back caching would be simpler because of the outline

provided by the implemented protocol.

Our policy based cache replacement technique, implemented at both the

file level and block level, allows for code re-use and simpler system manage-

ability. As the middle-ware cache is also loosely based off of the server level

lru timeout cache, with a few simple modifications, it too will be able to take

advantage of the standard replacement policy structure implemented for the

middle-ware. Since all the caching components are independent, not only will

we be able to determine which replacement policy yields the best results, it

may turn out that a combination of different policies at each cache level pro-
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vides optimal system performance.

We have already established that local caches can offer large performance

gains by keeping local copies of those files which are accessed either most

frequently or recently. With the increase in network bandwidth of today’s

high speed interconnects, it becomes possible to think that going so far as

reading other client caches instead of actually going all the way to the physical

I/O node disk, would provide even greater speedups. Research simulations at

UC Berkley [11] have looked into this unique mechanism and noticed large

performance gains with an effective implementation. Given the current Hecios

infrastructure, a list mechanism could be easily implemented that allows each

client to know what the other clients are caching. While this would add a great

amount of network overhead, OMNeT++’s network oriented nature, would

easily allow for an implementation of a second low speed cache network.
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Appendix A

Installing and running Hecios

Installing Omnet++

The following is a tutorial on installing Omnet++ in Linux (FC 5):

Before omnet++ is installed, there are a few required packages

that must also be installed.

--Install and configure Tcl/Tk packages for your linux distribution.

For Fedora Core, the Tcl and Tk packages and the devel packages

are required:

yum install tk.i386

yum install tk-devel.i386

yum install tcl.i386

yum install tcl-devel.i386

--Also need to install graphviz:

yum install graphviz.i386

--Next install blt:

Although it can be installed through yum, omnet++ does not recognize

it when it is installed that way, it must be installed by hand:

tar -zxf BLT2.4z.tar.gz

cd blt2.4z/

./configure

make

make install

--And finally install giftrans:

Download the source rpm, then follow the following instructions

for Fedora Core to setup giftrans, these may differ for other distros:

rpm -i giftrans-1.12.2-20.src.rpm

cd /usr/src/redhat/SOURCES/

tar -zxf giftrans-1.12.2.tar.gz
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patch -p0 < giftrans-1.12.2-operator.patch

cd giftrans-1.12.2

gcc giftrans.c -o giftrans

cp giftrans /usr/bin/

gzip giftrans.1

cp giftrans.1.gz /usr/share/man/man1/

----------------------------------------------

Now that all the required packages are installed, download the

source files from the omnet website for omnet++:

http://www.omnetpp.org/filemgmt/viewcat.php?cid=2

Extract the source files to the desired install directory, for

illustration, we installed Omnet++ to /sandbox

--Extract using the command below:

tar -zxf omnetpp-3.2p1-src.tgz

--Now add the omnet++ paths to your .cshrc file:

set path = ($path /sandbox/omnetpp-3.2p1/bin)

setenv LD LIBRARY PATH .:/sandbox/omnetpp-3.2p1/lib

--Then go to the newly extracted directory and configure omnet++

with the defualt options:

cd omnetpp-3.2p1

./configure

Notice any messages that configure gives you, if one of the above

required packages is not installed properly, it will give a warning.

For example, when we ran it we got the following at the end of the

configure:

*WARNING: The configuration script could not detect the following

packages:

*

* MPI (optional) Akaroa (optional)
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*

*Scroll up to see the warning messages (use shift+PgUp key), and

see config.log

*for more details. While you can use OMNeT++/OMNEST in the current

*configuration, please be aware that some functionality may be

unavailable

*or incomplete.

*

*Your PATH contains /sandbox/omnetpp-3.2p1/bin. Good!

*Your LD LIBRARY PATH is set. Good!

*

Since we will not be using these two packages now, it is safe to

ignore this warning.

--Now, make the source files:

make

------Omnet should now be configured and working properly,

------go to the samples directory and run a couple of the samples

------to make sure.

Installing Hecios

Hecios’ build system is well maintained and handles cross compiling very well.

All that is needed is a working installation of Omnet++ and the Hecios pack-

age. From the root directory of Hecios the following commands are executed

to configure and make Omnet++:

./configure ---with-omnet=/sandbox/omnetpp-3.2p1/lib (where this

is the lib folder of the Omnet++ installation)

make

To run the executable simply execute:

../bin/hecios
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