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Collective excitations in an asymmetrically spin-polarized quantum well

D. C. Marinescu
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

J. J. Quinn
Department of Physics, University of Tennessee, Knoxville, Tennessee 37996

~Received 9 July 1998!

We present a phenomenological picture for the many-body excitations of a two-dimensional electron gas in
a quantum well spin polarized by a dc magnetic field at an angleu with the axis of the well. In the framework
of the Landau theory of charged Fermi liquids, we determine the frequencies of collective modes by solving a
transport equation for quasiparticles in the local electromagnetic field associated with the charge- and spin-

density fluctuations. In the long-wavelength limit, analytic solutions forv(qW ) are obtained as functions of the
degree of spin polarization and of the angleu. @S0163-1829~98!06144-X#

I. INTRODUCTION

Under the application of a dc magnetic fieldBW the spin
degeneracy of the electronic levels of an electron gas in a

quantum well—n electrons per unit area in thex̂-ẑ plane—is
lifted and an equilibrium state characterized by a spin popu-
lation imbalance results. The difference between the number

of spins parallel or antiparallel to the direction ofBW is de-
scribed by the spin polarizationz5(n↑2n↓)/(n↑1n↓) a
continuous function ofB, that can take on any value between
21 and 1.

A weak electromagnetic perturbation—an electric field
EW (qW ,v) and a magnetic inductionbW (qW ,v) of arbitrary
orientation—can excite collective spin- and charge-density
fluctuations at those values of the frequencyv that are the
poles of the response functions. At resonance, the excitations
propagate undamped in the system, sustained solely by the
Coulomb interaction among electrons. The departure of the
excitation frequencies from the single-particle transition is a
measure of the many-body interaction. The inelastic light-
scattering spectra of quantum wells reveal such effects with
remarkable accuracy.1

The character of the collective modes excited in a quan-
tum well spin polarized along the direction of its symmetry
axis ~consideredẑ for simplicity!, as reflected in spectro-
scopic measurements,2 is the consequence of two main
causes. The initial imbalance in the number of spins breaks
the symmetry of the density-dependent Coulomb interaction
and determines the collapse of the poles of the dielectric
function and of the induced magnetization alongẑ. The reso-
nant density oscillations of electrons with spin parallel toẑ
have a spin-symmetric and a spin-antisymmetric component.
The coupling between the former, a charge-density wave,
and the latter, a spin-density wave~in which the direction of
the spin is parallel toẑ) is a function ofz. The spin direc-
tion, however, fluctuates, under the application ofbx andby ,
and spin-flip processes can occur. They generate an induced

magnetization perpendicular onẑ and corresponding linear
independent spin waves in which the spin direction is in the
x̂-ŷ plane. This phenomenological description3 is supported
by numerous microscopic models, which employ a large
range of approximations for the many-body interaction, from
Hartree-Fock4 to local spin-density functional theory.5

When a dc magnetic field is applied at an angleu to theẑ

axis, the electron gas is spin polarized alongû
5(0, sinu, cosu) and acquires a cyclotron motion driven by
the transverse componentBy5B sinu. ~We assume the quan-
tum well to be infinitely thin, such that the cyclotron motion
is constrained to thex̂-ẑ plane.! The many-body excitations
induced in the well are now generated by fluctuations in the
density of spins parallel toû and spin-flip processes aboutû,
projected on the usual system of axes. This is equivalent to a
rotation of angleu in the spin space through a nondiagonal
matrix. The result is expected to be a linear combination of
charge and spin waves, whose coefficients are bound to be
very sensitive to the spin dependent part of the electron-
electron interaction. Furthermore, cyclotron excitations,
driven byBy5B sinu, will be mixed in.

Following the traditional analogy between the two-
dimensional~2D! electron gas and a Fermi liquid,6 we adopt
the phenomenological Landau-Silin theory of the electron
liquid as our background. In this framework we solve a
transport equation for quasiparticles, entities of charge2e,
effective massm* , and gyromagnetic factorg* , moving in
the self-consistent local electromagnetic field associated with
the charge fluctuations. (m* and g* are the renormalized
values of the band effective mass and gyromagnetic factor by
considering the quasiparticle interaction.7! Such a semiclas-
sical approach, which neglects the Landau quantization of
the electron orbits, is valid when the cyclotron frequency
\vc* 5\eBsinu/m*c is much smaller than the Zeeman split-
ting of the electron levels in the magnetic field 2g* B. We
solve the transport equation and obtain analytic solutions for
the excitation frequencies in the limit of two simplifying
conditions-long wavelength and small angle—in terms of the
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phenomenological parameters of the Landau theory, consid-
ered functions ofz.

II. QUASIPARTICLE DYNAMICS

In the Landau-Silin theory of Fermi liquids, the elemen-
tary excitations of a 2D electron gas are quasiparticles of
momentumkW and spinsW , described by the deviationdnks

0

from thermal equilibrium. The thermal equilibrium distribu-
tion function arises from the noninteracting ground state
~which consists of two Fermi discs of radiikFs5A4pns) by
adiabatically turning on the electron-electron interaction.

In a spin-polarized quantum well, the spin-operator eigen-
vectors correspond to spin projection 1/2 or21/2 along the
direction BW 5B(0, sinu, cosu), with associated quasiparticle
distributions dnk↑

0 and dnk↓
0 , respectively. When summed

over kW , the differencednk↑
0 2dnk↓

0 is equal tonz. In the
usual spin-space basis, formed by the eigenvectors of

$SW 2,Sz%, a quasiparticle of spinsW has an equilibrium distri-
bution dnks given by

dnks5
dnk↑

0 1dnk↓
0

2
1~sW •û!

dnk↑
0 2dnk↓

0

2
. ~1!

The interaction with an electromagnetic field of wave vec-
tor qW and frequencyv creates new quasiparticles and
changesdns to dñks(qW ,v). ~Henceforth, the dependence on
qW andv is implicitly understood.! Employing the usual Pauli
spin matrices, the new distribution function can be written
as8

dñks5
dñk↑1dñk↓

2
1sz

dñk↑2dñk↓
2

1
s1dñk

2

4
1

s2dñk
1

4
.

~2!

The total particle-density fluctuationdñk is identified as
Tr(dñks), whereas the magnetization along theẑ axis
(dñk↑2dñk↓) is just Tr(szdñks). These are density fluctua-
tions of electrons whose spin is parallel to theẑ axis. The
transverse magnetization isdñk

65Tr(s6dñks) and results
from spin-flip processes driven byb65bx6 iby .

Two quasiparticles (kWs) and (kW8s8) interact through a
momentum and spin-symmetric function:

Fks;k8s85fk;k81~sW •sW 8!ck,k8 , ~3!

which in a translationally invariant system depends only on
the magnitude of the relative momentum between particles
ukW2kW8u. The quasiparticle energy is a functional of the dis-
tribution function of the entire system of quasiparticles:

eks5eks
0 1Trs8(

k8
Fks;k8s8dñk8s8 , ~4!

with ek
05\2k2/2m2g* sW (BW 1bW ), the bare quasiparticle en-

ergy in the local magnetic field~the effective band massm is
involved!. The interactiondEks is obtained whendñks , Eq.
~2!, andFks;k8s8 , Eq. ~3!, are substituted into Eq.~4!.

dEks5(
k8

@~fkk81szckk8!dñk8↑1~fkk82szckk8!dñk8↓

1s2ckk8dñk8
1 /21s1ckk8dñk8

2 /2#. ~5!

In a semiclassical approximation, the dynamics of spin
and charge fluctuations is governed by the solution of a
transport equation. Quasiparticles with velocityvW 5¹keks

move in a local potential that consists of the external pertur-
bation and the electromagnetic field associated self-
consistently with the density fluctuations. In a collisionless
regime,dñk satisfies8

i\
]dñks

]t
1S \vcs*

]

]w
1vW ks•¹ r D Fdñks1S 2

dnks

deks
D dEksG

1evW ks•EW S dnks

deks
D12ig* @dñks ,BW #50. ~6!

(@ . . . , . . .# is the quantum-mechanical commutator.!

In a linear response approximation, a solutiondñks to Eq.
~6! depends on the equilibrium distribution functiondnks or
in a more general way, through Eq.~2!, on a superposition of
dnk↑

0 and dnk↓
0 . Since quasiparticles of spins are well de-

fined only in the vicinity of a spins-Fermi surface, where
(2ddnks

0 /eks) behaves like a delta function,7 dñks can be
expressed in terms of two new momentum dependent func-
tions ns↑(kW ) and ns↓(kW ) as a linear superposition of delta
functions:

dñks5ns↑~kW !S 2
ddnk↑

0

dek↑
D 1ns↓~kW !S 2

ddnk↓
0

dek↓
D . ~7!

ns↑ andns↓ are, of course, 232 matrices in the spin space.
The role of the second index↑ or ↓, respectively, is to
specify the Fermi surface in the proximity of which the qua-
siparticles are located. We impose thatns↑(kW ) and ns↓(kW )
have the same formal expression as Eq.~2!, to include all
fluctuations generated by variations in the quasiparticle den-
sity at both spin Fermi surfaces,

ns↑5~n↑↑1n↓↑!/21sz~n↑↑2n↓↑!/21~s1n↑
11s2n↑

2!/4,
~8!

ns↓5~n↑↓1n↓↓!/21sz~n↑↓2n↓↓!/21~s1n↓
11s2n↓

2!/4.
~9!

The delta functions require all momenta be equated to the
correspondingkFs , and consequently, the new variable be-
comes the anglew made bykW with the ẑ axis. The equations
in kW are coupled by the interaction termsdEs . It is preferable
to solve for the Fourier components ofns↑ andns↓ , which
are considered periodic functions ofw. The Fourier compo-
nent, indexed by an integerl is defined in the usual way,
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n lss8 (kFs,kFs8) 5 (1/2p) *0
2pdw e2 i l w nss8 (kFs ,kFs8 ,w) ,

and is a parametric function of the two Fermi momentakFs

andkFs8 of the interacting quasiparticles.
For a sinusoidal variation of the electromagnetic pertur-

bation;ei (vt2qx), the matrixn ls↑ is a solution of

2 ivn ls↑1 i l vs* El↑2
qvF↑

2
@E~ l 21!s↑2E~ l 11!s↑#

5
evF↑

2
@~Ez1 iEx!d l ,11~Ez2 iEx!d l ,21#. ~10!

n ls↓ satisfies the complex conjugate of Eq.~10!, in which the
direction of all spins has been changed. The Fourier trans-
form of the quasiparticle interaction energyEs↑ can be
readily calculated from Eq.~3!, once the coefficients of the
interaction function, normalized by a constant density of
states at the corresponding Fermi surfaceN(0)5ms* /2p\2

are introduced. Because of the spin rotation fromû to ẑ,
which makes each quasiparticle state of spins ~along ẑ) a
linear combination of quasiparticle states with spin↑ or ↓
~along û), four sets of coefficients are necessary:

a ls5
ms*

2p\2E0

2p

dw e2 i l w~f1c!kFs ;k
Fs8 ~w!, ~11!

m ls5
ms*

2p\2E0

2p

dw e2 i l w~f2c!kFs ;k
Fs8 ~w!, ~12!

l ls5
ms*

2p\2E0

2p

dw e2 i l w~f1c!kFs ;k
Fs̄
8 ~w!, ~13!

b ls5
ms*

2p\2E0

2p

dw e2 i l w~f2c!kFs ;k
Fs̄
8 ~w!. ~14!

When estimated at the same Fermi surface, the interaction
Fkk8 , generates a spin-symmetric coefficienta ls , and a
spin-antisymmetric onem ls . When the two interacting qua-
siparticles are at different Fermi surfaces, the coefficients
become, respectively,l ls andb ls . Their dependence on the
Fermi momentakFs5A2pn(12szz) is relevant for their
variation withz. It is straightforward to write nowEls↑ :

Els↑5H @~a l↑1m l↑!1sz~a l↑2m l↑!#
n l↑↑
2

1@~a l↑1m l↑!

2sz~a l↑2m l↑!#
n l↓↑
2

1@~l l↓1b l↓!1sz~l l↓

2b l↓!#
n l↑↓
2

1@~l l↓1b l↓!2sz~l l↓2b l↓!#
n l↓↓
2

1s2~a l↑2m l↑!
n l↑

1

4
1s1~a l↑2m l↑!

n l↑
2

4

1s2~l l↓2b l↓!
n l↓

1

4
1s1~l l↓2b l↓!

n l↓
2

4 J
3~11sW •û!/2. ~15!

For certain values of wave vector and frequency, the local
electromagnetic field, created by the charge and spin fluctua-
tions themselves, sustains the oscillations even after the per-
turbation has been removed. The charged quasiparticle flow
is equivalent to an electric currentjW equal to the sum of all
bare electrons momenta weighed by the deviation from equi-
librium of the quasiparticle distribution function:

jW52e Trs(
k

\kW

ms*
dñks . ~16!

The self-consistent electric field, which drives the drift mo-
tion of the electrons in Eq.~6!, is related to the electric cur-
rent through Maxwell’s equations, which in our geometry,
lead to9

ivS 2
e0

2pq
Ex ,0,

qc2

2pv2
EzD 5 jW. ~17!

The local contribution of the magnetic field associated with
the spin-density fluctuations is negligible by comparison
with the electric field, and we setbW 50.

Equations~10!, ~17!, and ~16! form a self-consistent set,
which can be solved forn lss8 . This infinite homogeneous
system admits a nontrivial solution only for those values of
v(qW ) that resolve the secular equation obtained by cancelling
its determinant. The diagonal components correspond to
charge and longitudinal spin oscillations—propagation along
x̂ and spin direction parallel toẑ. The off diagonal terms
give the frequency for the spin waves that propagate alongx̂,
with the spin direction in thex̂-ŷ plane. Solving for the Fou-
rier transform of the fluctuations decouples the equations of
the system in the momentum space. The interaction term
Elss8 , however, preserves the linear superposition of the
charge and spin-density waves in terms dependent on the
angleu. The coefficients of this coupling are generated by a
rotation in the spin space from the directionû of the applied
dc magnetic field toẑ, the direction along which the re-
sponse of the system is studied.

The fundamental determinant of the system is a 16316
block that contains the same orderl of the density fluctua-
tions nss8 . The strength of the coupling between the longi-
tudinal spin-density wave and the transverse spin waves is
proportional to sinu, whereas the charge density and the lon-
gitudinal spin-density waves are coupled through linear com-
binations of sin2u/2 and cos2u/2.

In two particular cases, foru50 andu590°, a solution
to the secular equation of the collective excitations can be
obtained without difficulty.8,10 We investigate the case of a
small angleu when the secular equation still admits an ana-
lytic solution that bears the distinguishable character of the
coupling between the charge and spin waves.

III. EXCITATION FREQUENCIES

An important simplification occurs in the long wavelength
limit, when at the Fermi surfaceqvks!vcs* . In the lowest-
order approximation inqvFs /vcs* , the plasma waves, which
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are collective modes driven by the local electric field
(u l u,2), and the cyclotron harmonics, which are determined
by the transverse dc magnetic fieldBy5B sinu, alone
(u l u>2), are linear independent.

The plasma excitations that occur in the presence of a dc
magnetic field, usually called magnetoplasmons, are resonant
density fluctuations of quasiparticles whose spin is parallel to

ẑ. The high-frequency excitationvCDW is a superposition of
two magnetoplasmons. Ifvps

2 52pnse2q/m* is the plasma
frequency of a 2D noninteracting electron gas of spins in a
dielectric medium of permitivityes , vCDW is simply

vCDW
2 ~q!5v̄↑

21v̄↓
2 , ~18!

with v̄s the plasma frequency for an electron gas of spins
modified by the quasiparticle interaction:

v̄s
25vps

2 H 11a1s1b1sAns̄ /ns2
u2

4
@~2a1s2b1s2m1s!

1Ans̄ /ns~2b1s2a1s2l1s!#J
1

q2

2
vF↑

2 F ~11a1↑!~11a0↑!1S m↑*

m↓*
DAn↓

n↑
b1↑b0↓G .

~19!

The variation ofv̄s
2 from vps

2 has two sources. The interac-
tion of quasiparticles of spin parallel toẑ is described by
a1s1b1sAns̄ /ns, wherea1s refers to the same-spin inter-
action, a parametric function ofkFs , while bs is for the
opposite-spin interaction, dependent on bothkFs and kFs̄ .
The coupling with the spin-flip processes alongû gives the
term proportional tou2, driven entirely by the spin depen-
dent part of the interactionckk8 , whose Fourier coefficients
are linearly combined in (2a1s2b1s2m1s).

The low-frequency collective excitation is a spin-density
wave:

vSDW
2 ~q!5

u2

4
H vp↑

2 F ~a1↑2m1↑!2An↓

n↑
~l1↑2b1↑!G1vp↓

2 F ~a1↓2m1↓!2An↑

n↓
~l1↓2b1↓!G J

1q2vF↑vF↓@~11a1↑!~11a1↓!2b1↑b1↓#

3

H FAm↑*

m↓*
~11a0↑!2Am↓*

m↑*
b0↑G1FAm↓*

m↑*
~11a0↓!2Am↑*

m↓*
b0↓G J

H FAn↑

n↓

m↓*

m↑*
~11a1↑!1An↓

n↑
b1↑D 1FAn↓

n↑

m↑*

m↓*
~11a1↓!1An↑

n↓
b1↓G J . ~20!

This mode is a superposition between a spin-symmetric
plasma oscillation, driven by the spin-dependent part of the
interaction, the first term, and a longitudinal spin wave, pro-
portional toq2. The origin of the first term is the spin-flip

processes along the direction of the dc magnetic fieldû,
which generate contributions to the magnetization along the
z axis. The spin excitations in the second term are driven by
the l 50 and l 51 Fourier components of the spin-
antisymmetric part of the quasiparticle interaction, weighted
by the ratio of the spin populations. The excitation frequen-
cies of the two magnetoplasmons have a quadratic depen-
dence onz, since they are associated with fluctuations in the

particle density, invariant under the change in direction ofBW .

The spin waves foru l u,2 propagate alongx̂, with the

electron spin in thex̂-ŷ plane. They correspond to the poles
of the transverse magnetization, induced by up-down and
down-up spin flips. The excitations start at the Zeeman spin-
splitting energy, corrected by the quasiparticle interaction,
plus a term proportional tou2, that describes the coupling
with the high frequency plasmonic modevCDW:

v↓→↑522g* B~11a1↓2m↓!1
u2

4
vp↓

2

3@~a↓2m↓!2An↓ /n↑~l↓2b↓!#/vCDW,

v↑→↓52g* B~11a1↑2m↑!1
u2

4
vp↑

2

3@~a↑2m↑!2An↑ /n↓~l↓2b↓!#/vCDW. ~21!

In first order inu, the fundamental absorptionl 51 occurs at
2g* B(11a1s2m1s)52gB, because of the renormaliza-
tion of the gyromagnetic factor on account of the quasipar-
ticle interaction.3 The term proportional tou2 is mixed in
through the spin dependent part of the interaction, and re-
flects the coupling between the spin-flip processes about the
ẑ axis with the density fluctuations along the direction of the
initial polarization. The dependence withz is linear, as a
consequence of the initial spin imbalance in the system, pre-
served in a spin-density wave that is a spin-antisymmetric
property of the system.
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In addition to the modes described above foru l u.2, in the
system propagate coupled cyclotron harmonics associated
with the electron motion in the static magnetic fieldBy
5B sinu. These excitations begin at

vc6* 5
u

2
@vs* a ls1vs̄

* a l s̄

6A4vs* vs̄
* b lsb l s̄1~vs* a ls2vs̄

* a l s̄!2#, ~22!

with vs* 5eB/ms* c. The linearu dependence is generated
entirely by the component of the magnetic field perpendicu-
lar on the layerBy5Bsinu. Equation~22! regains previous
obtained results for the motion of the 2D spin-polarized elec-
tron gas in a magnetic field.3

The spin waves foru l u>2 are excited at

v l↑→↓5~ lv↑* u12g* B!~11a l↑2m l↑!,
~23!

v l↓→↑5~ lv↓* u22g* B!~11a l↓2m l↓!.

The effect of the spin polarization on these values is deter-
mined by the change in the effective mass, as well as by the
change in the Fermi surface parameters for the up-spin elec-
trons.

IV. SUMMARY

We have demonstrated that the collective excitations of a
spin-polarized quantum well can be treated within the
Landau-Silin theory of charged Fermi liquids. When the dc
magnetic field is oriented at a small angleu to the layer, the
plasmonic excitations and the spin waves are coupled
through terms that depend exclusively on the spin part of the
quasiparticle interaction function. The coupling is obtained
in terms of the Fourier coefficients ofckk8 , parametric func-
tions of the Fermi momentakFs . By comparison with ex-
perimental data, these results can be used to determine the
phenomenological parameters used in the Landau theory.
Such results can serve as guidance for microscopic models of
the spin-spin interaction.
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