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ABSTRACT 
 
 

Distributions of Hawaiian stream fishes are typically interrupted by waterfalls that 

divide streams into lower and upper segments.  Larvae hatched upstream are flushed into 

the ocean, and must climb these waterfalls to reach adult habitats when returning back to 

freshwater as part of an amphidromous life cycle.  Stream surveys and studies of 

climbing performance show that Lentipes concolor can reach fast-flowing upper stream 

segments, but that Awaous guamensis reaches only slower, lower stream segments.  Gut 

content analyses for these two species indicate that diet differs between them only by 

10% or less dry weight for most major components (mostly green algae and 

invertebrates).  This might suggest that feeding kinematics and performance of these two 

species would be similar.  Alternatively, feeding kinematics and performance of these 

species might be expected to differ in relation to the different flow regimes where they 

live (faster feeding for L. concolor, slower feeding for A. guamensis).  To test for such 

differences, we compared suction feeding kinematics and performance between A. 

guamensis and L. concolor through analysis of high-speed video footage and geometrical 

modeling.  L. concolor showed significantly faster jaw opening performance than A. 

guamensis, which may facilitate suction feeding in the fast stream reaches L. concolor 

typically inhabits.  Additionally, performance of jaws during feeding could depend on the 

proportions and configurations of jaw muscles, like all anatomical lever systems.  

Differences in feeding behavior and performance among all five native Hawaiian goby 

fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius 

hawaiiensis, & Eleotris sandwicensis) were explored using a mathematical model of 



 iii

muscle function to provide further ecological and evolutionary insight into their natural 

history. Simulations of jaw closing indicate that several differences in functional 

performance correlate well with morphological differences.  For example, high output 

force in adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. 

sandwicensis matches expectations from morphology because these muscles are larger in 

these species than in the other Hawaiian stream gobies.  Stenogobius hawaiiensis 

exhibited an alternative morphological strategy for achieving high relative output forces 

of both muscles, which the placement and configuration of the muscles conveyed high 

mechanical advantage.  The multiple anatomical pathways to similar functional 

performance in the feeding systems of Hawaiian gobioid fishes reflect a pattern of many-

to-one mapping of morphology to performance.  In addition, a similar functional 

differentiation between A2 and A3 was evident for all species tested in which A2 was 

better suited for forceful movements and A3 for rapid movements.  Thus, diversity of 

feeding performance of Hawaiian stream gobies does not show simple correlations with 

their habitats but, rather, seems to reflect a combination of maintenance of functional 

breadth with retention of some primitive traits, in addition to novel functional capacities 

in several species. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

The design of morphological structures can have a major impact on the ability of 

animals to perform specific functions and, as a result, often correlates strongly with 

aspects of species ecology (Wainwright and Reilly, 1994).  For example, morphological 

characteristics in fishes often correlate with trophic ecology (Barel, 1983; de Visser and 

Barel, 1996; Wainwright, 1988; Wainwright and Richard, 1995; Wainwright, 1996; 

Bouton et al., 1998, 1999, 2002; Osenberg et al., 2004) and spatial distribution (Hugueny 

and Pouilly, 1999; Bellwood and Wainwright, 2001; Fulton et al., 2001; Wainwright et 

al., 2002; Bhat, 2005; Ohlberger et al., 2006).  Biomechanical studies permit 

development of hypotheses regarding how, in animals, morphology and patterns of 

performance are interrelated, and can yield insights into ecological consequences of 

particular morphological structures (Wainwright et al., 1991).  This study attempts to 

relate morphology of feeding structures to patterns of feeding performance in Hawaiian 

stream gobies, with the goal of providing ecological (e.g., trophic and spatial) and also 

evolutionary insight into their natural histories. 

The freshwater stream ichthyofauna of the Hawaiian Islands presents an excellent 

system for evaluating how functional traits of animals relate to their ecology.  Hawaiian 

freshwater streams have an ichthyofauna that consists of five amphidromous goby 

species: Sicyopterus stimpsoni Gill (family Gobiidae), Lentipes concolor Gill (family 

Gobiidae), Awaous guamensis Valenciennes (family Gobiidae), Stenogobius hawaiiensis 

Watson (family Gobiidae), and Eleotris sandwicensis Vaillant and Sauvage (family 
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Eleotridae) (Fitzsimons et al., 1993).  The streams that these fishes inhabit are typically 

interrupted by waterfalls, dividing the streams into lower and upper reaches (Schoenfuss 

and Blob, 2003).  Like other amphidromous goby species in the Indo-Pacific and 

Caribbean (Manacop, 1953; Fukui, 1979; Sakai and Nakamura, 1979; Harrison, 1993; 

Parenti and Maciolek, 1993; Bell, 1994; Berrebi et al., 2005), newly hatched larvae are 

swept by flowing water downstream into the ocean, where they develop for several 

months (Radtke et al., 1988) as part of the oceanic zooplankton before migrating back to 

adult habitats in freshwater (Keith, 2003; McDowall, 2003, 2004).  Adults of three 

species of Hawaiian stream gobies (S. stimpsoni, L. concolor, and A. guamensis) live 

above waterfalls, and their larvae must climb waterfalls, often tens of meters or more in 

height, to reach adult habitats during their amphidromous life cycle.  The ability to climb 

develops after a post-larval metamorphosis (Nishimoto and Fitzsimons, 1999; Schoenfuss 

and Blob, 2003; Blob et al., 2006) and is facilitated by fusion of a pair of pelvic fins into 

a ventral adhesive disc or pelvic sucker (Fukui, 1979; Sakai and Nakamura, 1979; Bell, 

1994; Fitzsimons and Nishimoto, 1995), which allows these fish to resist both 

gravitational and hydrodynamic (i.e., drag) forces during vertical climbing.  In contrast, 

the two remaining species cannot climb and are confined to the lower stream reaches, 

returning to these lower reaches upon re-entering freshwater.  These are E. sandwicensis, 

a piscivorous and ambush type predator, and S. hawaiiensis, a detritivore that lives on 

sandy stream bottoms.  The pelvic sucker is lacking in E. sandwicensis (pelvic fins 

remain separated) and weak in S. hawaiiensis.  In addition to these distinctions between 

non-climbing and climbing species, climbing species also exhibit differences in climbing 
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style (i.e., “inching” of S. stimpsoni vs. “powerburst” of L. concolor and A. guamensis) 

and performance (i.e., climbing bout duration, climbing speed, and % time of being in 

motion) (Blob et al., 2006).  Blob et al. (2006) correlated these differences in climbing 

performance with differences in habitat distribution.  Although both adult and juvenile A. 

guamensis can be found in lower stream reaches, the only L. concolor found in the lower 

reaches are juveniles migrating upstream, and adult L. concolor penetrate much further 

upstream than adult A. guamensis (Tate, 1997; Blob et al., 2006).  Faster climbing by 

juvenile L. concolor may explain their ability to surmount major waterfalls (e.g., more 

than 120 m of Akaka Falls, Hawai’i: Yamamoto and Tagawa, 2000) and penetrate further 

upstream than juvenile A. guamensis (Blob et al., 2006). 

Differences in locomotor kinematics and performance among fishes are often 

correlated with differences in locomotor morphology, and can help to determine 

differences in spatial ecology among species (Bellwood and Wainwright, 2001; Fulton et 

al., 2001; Wainwright et al., 2002).  However, differences in climbing performance may 

not fully explain the difference in distribution of Hawaiian waterfall-climbing gobies 

throughout their freshwater habitats.  For instance, as Blob et al. (2006) pointed out, 

differences in climbing performance of L. concolor and A. guamensis did not predict 

complete dissociation of adult habitats between the two species. 

In addition to locomotor capacity, dietary data (including substantial overlaps) for 

Hawaiian stream gobies, provide an important context for this study.  For instance, E. 

sandwicensis feeds on mostly animal foods (56.2% dry biomass of gut content: Kido, 

1996), consisting of arthropods, insects, and other animal materials that include incoming 
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gobioid larvae (Tate, 1997).  Some plant materials including Chlorophyta (green algae) 

especially Cladophora sp. (e.g., 28.7% dry weight: Kido, 1996) also have been recovered 

from E. sandwicensis gut contents, but the extent to which these are digested, or may 

have been consumed incidental to the capture of animal prey, is not clear (M. Julius, 

personal communication).  In contrast, L. concolor seems to consume a greater 

proportion of plant materials (93.1% dry biomass), mostly Cladophora sp. (green-algae), 

and a smaller proportion of animal material (6.5% dry biomass).  Stenogobius 

hawaiiensis shows patterns similar to those of L. concolor.  Sicyopterus stimpsoni and A. 

guamensis have shown significant differences in the use of food resources (prey type).  

The diet of S. stimpsoni consists of 22.6% blue-green algae and 54.2% of diatoms, 

whereas that of A. guamensis shows 43.0% of green-algae (Kido, 1997).  Dietary 

differences between S. stimpsoni and A. guamensis may help them to coexist in the same 

habitat (Kido, 1997).  Interestingly, dietary patterns of L. concolor and A. guamensis 

substantially overlap, such that their diets differ by only 10% or less dry weight for most 

major components, which include mostly green-algae, Cladophora sp., and small 

invertebrates.  This may be a driving factor in the disassociation of their habitats (Kido, 

1996, 1997). 

The primary purpose of this study is to evaluate the feeding performance of 

Hawaiian stream gobies as a factor that potentially affects their trophic ecology (resource 

use) and spatial ecology (habitat distribution).  Although dietary competition has been 

proposed between L. concolor and A. guamensis, differences in feeding mechanics and 

performance have not been evaluated between these species, or for any other goby.  One 
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biomechanical aspect of function that contributes to feeding performance is the 

kinematics of feeding structures during prey capture (suction feeding).  A particular 

pattern of jaw movements may be more effective than others under certain environmental 

conditions (e.g. water flow velocities) and, therefore, might be predicted for species 

living in these conditions if feeding performance is to be maximized. 

Importantly, the mechanics of jaw movement in fishes are closely correlated to 

the morphology and functional design of the feeding apparatus and other cranial 

structures, which can influence feeding performance and, thus, resource use (Wainwright, 

1996; Westneat, 2003).  In particular, the lever system of the mandible can determine the 

force and speed of mandibular movements, and has been extensively studied in many 

teleostean systems as an indicator of feeding performance (Richard and Wainwright, 

1995; Wainwright and Shaw, 1999; Cutwa and Turingan, 2000; Westneat, 2003; Van 

Wassenbergh et al., 2005).  In anatomical lever systems, including those in biological 

systems such as the limb and jaw skeletons of vertebrates, the ratio of in-lever arm to out-

lever arm (i.e., mechanical advantage) determines how high an output force can be 

generated relative to the input force.  Conversely, the velocity advantage is the ratio of 

out-lever arm to in-lever arm (i.e., inverse of mechanical advantage), and it determines 

how fast an output velocity of lever motion would be generated relative to the input 

velocity in a system.  The inverse relationship between the mechanical advantage and 

velocity advantage of lever systems represents a trade-off between force and speed of 

movement in musculoskeletal systems, such as those of the jaws.  In vertebrate feeding 

systems, the greater the mechanical advantage a jaw has, making it capable of 
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transmitting greater force, the lesser the velocity advantage it can have, causing it to 

move more slowly.  These mechanical relationships can help to indicate relationships 

between the performance and biological role of feeding structures.  For example, species 

that capture prey by biting may have a greater mechanical advantage (i.e., short and stout 

jaws with out-lever shortened and, thus, out-put force enhanced), and species that obtain 

food by suction feeding may, in turn, have a lesser mechanical advantage, or conversely 

greater velocity advantage because of elongated and gracile jaws with out-lever 

lengthened and, thus, out-put velocity enhanced (Barel, 1983; Wainwright and Richard, 

1995).In the context of previous studies that have shown strong correlations between 

morphology and feeding performance in teleosts (Barel, 1983; Westneat, 1990, 1995; 

Wainwright and Shaw, 1999; Westneat, 2003), I attempt to examine the jaw lever system 

of Hawaiian stream gobies as an anatomical model for predictions about specific aspects 

of feeding performance in these species (i.e., jaw closing).  I also directly evaluate other 

aspects of feeding performance through direct measurements of feeding kinematics.  

Although cases have been documented in which changes in feeding ability are attributed 

to changes in muscle activation patterns through evolution, neuromuscular patterns tend 

to be conserved in many feeding modes of teleosts (Lauder, 1983; Wainwright and 

Lauder, 1986; Wainwright, 1989; 1996; Friel and Wainwright, 1998; Alfaro et al., 2001; 

Wainwright, 2002).  Fish taxa examined in this study are also relatively closely related to 

each other (Parenti and Thomas, 1998; Thacker, 2003), making the conservation of 

neuromuscular patterns for prey capture more likely.  Therefore, musculoskeletal 

morphology and kinematics of the jaws as a basis for understanding variations in feeding 
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ability are compared and evaluated.  In addition to providing insight into the relationship 

between morphology and ecology in these species, this work is the first examination of 

feeding mechanics and performance in the order Gobioidei, one of the most speciose 

teleostean groups with more than 2000 species in 268 genera worldwide (Nelson, 1994; 

Thacker, 2003). 

Through functional studies (see Chapter 2 and Chapter 3), which evaluate and 

compare feeding performance of the five native species of Hawaiian stream gobies (S. 

stimpsoni, L. concolor, A. guamensis, S. hawaiiensis, and E. sandwicensis), I believe that 

this study improves understanding of how a current mosaic of ichthyofauna in freshwater 

streams of Hawaiian Islands is being shaped. 
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CHAPTER TWO 
 

FEEDING KINEMATICS AND PERFORMANCE OF HAWAIIAN STREAM 
GOBIES, LENTIPES CONCOLOR AND AWAOUS GUAMENSIS: LINKAGE OF 

FUNCTIONAL MORPHOLOGY AND ECOLOGY 
 
 

Introduction 

The freshwater ichthyofauna of the Hawaiian Islands provides a novel system for 

evaluating how functional traits of animals correlate with their ecology, because streams 

on the Hawaiian Islands present distinctive environmental challenges for fishes that 

inhabit them.  Hawaiian streams are typically characterized by steep gradients and high 

velocity water flow, strong flash floods after heavy rain falls or hurricanes, and 

segmentation into upstream and downstream reaches by waterfalls that can be tens of 

meters tall (Fitzsimons and Nishimoto, 1995).  The native ichthyofauna of these streams 

consists of five gobioid species, four from the family Gobiidae and one from the family 

Eleotridae (Fitzsimons et al., 1993), that share an amphidromous life history that helps 

them to maintain populations in these challenging habitats (Ford and Kinzie, 1982; Tate 

et al., 1992; Fitzsimons and Nishimoto, 1996).  Like other amphidromous goby species 

(Manacop, 1953; Fukui, 1979; Sakai and Nakamura, 1979; Harrison, 1993; Parenti and 

Maciolek, 1993; Bell, 1994; Berrebi et al., 2005), newly hatched larvae of Hawaiian 

stream gobies are swept by stream currents out to the ocean, where they develop for 

several months in the ocean before migrating back to freshwater habitats (Keith, 2003; 

McDowall, 2003, 2004).  Waterfalls present a substantial challenge to the penetration of 

upstream habitats by returning juveniles, but some species have evolved novel structures 

and functional capacities that allow them to climb up these obstacles (Blob et al., 2006).  



 13

In the Hawaiian Islands, juveniles of two species, Lentipes concolor and Awaous 

guamensis, climb using a “powerburst” mechanism, in which fish push off against the 

substrate with their pectoral fins and move upwards using several cycles of axial 

undulation before reattaching to the substrate with a sucker formed by fusion of the 

pelvic fins (Fitzsimons and Nishimoto, 1990; Schoenfuss and Blob, 2003).  The 

distribution of species in the streams correlates with their ability to climb (Blob et al., 

2006).  Awaous guamensis juveniles are slow climbers and adults are unable to climb, 

whereas in L. concolor juveniles are rapid climbers and adults retain climbing ability 

(Blob et al., in press).  Correspondingly, A. guamensis typically are restricted to lower 

stream reaches, whereas L. concolor live in upper stream reaches beyond the penetration 

of A. guamensis (Kinzie, 1988; Brasher, 1996; Tate, 1997; Blob et al., 2006). 

These studies of locomotor function and ecology in climbing gobies provide a 

context for examining the performance of other functional systems to evaluate how they 

contribute to the survival of these species in their respective environments.  One of the 

most important functional systems affecting the survival of animals besides locomotion is 

feeding, which allows prey capture and, thus, energy acquisition for survival and 

reproductive success.  Three primary modes of prey capture have been described for 

teleost fishes (Liem, 1980; Lauder, 1983): (1) ram feeding, in which movement of the 

body of a fish overtakes a mass of water and prey item; (2) suction feeding, in which a 

subambient pressure gradient created by expansion of the volume inside the buccal cavity 

draws a mass of water and prey item into the mouth; and (3) manipulation, in which the 

jaws are used to either bite prey or scrape it off of the substrate (i.e., by means of direct 
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contact to either prey or substrate).  The two powerburst climbing species, L. concolor 

and A. guamensis, both make extensive use of suction feeding and seem to have very 

similar diets.  According to gut content analyses by Kido (1996), dry weights of most 

major diet components differ by less than 10% between these two species, and include 

several varieties of green algae and small invertebrates.  Because of this similarity in their 

diets, the feeding performance of these species might also be expected to be similar (e.g., 

character convergence: Vadas, 1990).  However, habitat differences in water flow 

velocity could potentially lead to differences in feeding performance between these 

species.  In particular, preliminary observations (Schoenfuss and Blob, 2007) suggested 

that the jaw lever system of L. concolor would be better suited for fast movements than 

that of A. guamensis.  Because L. concolor live in upper stream reaches where water flow 

is typically faster (Schoenfuss and Blob, 2007) and are often observed swimming into the 

fast flow of the water column during feeding rather than staying in slower flow at the 

stream bottom (personal observation), it might be advantageous for L. concolor to be able 

to feed more quickly than A. guamensis in order to capture prey that might otherwise drift 

away. 

To test the hypothesis that habitat differences are correlated with feeding 

performance differences in Hawaiian stream gobies, we examine morphology, 

kinematics, and performance of the feeding system in the powerburst climbing species, L. 

concolor and A. guamensis.  We predict that the species that typically lives in faster 

flowing water (L. concolor) will show faster feeding performance relative to A. 

guamensis that will be correspond with the difference in habitat between these species. 
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Materials and Methods 

Specimen acquisition and morphological comparisons 

Specimens of both L. concolor and A. guamensis were captured (Clemson AUP# 

40061 and 50089) while snorkeling using an o’pae net (a fine, spherically shaped mesh 

with a narrow opening at the top of a bowl shaped basket).  Collections were made during 

three field seasons (2004-2006) from their native stream habitats.  Specimens of L. 

concolor (N = 29) were collected in Hakalau, Nanue, Manoloa, and Kamae’e streams 

above waterfalls on the Island of Hawai’i, and in upper reaches of Hanakapi’ai stream on 

the Island of Kaua’i.  Specimens of A. guamensis (N = 46) were collected in Wailoa Pond 

and the lower stream reaches of Hakalau and Nanue streams on the Island of Hawai’i, 

and in the lower stream reaches of Hanakapi’ai and Limahuli streams on the Island of 

Kaua’i.  Specimens were preserved in 70% ethanol, after which jaw muscles and skeleton 

were dissected under a dissecting scope (Nikon SMZ 1000) and photographed using a 

digital camera (Nikon CoolPix 4300) prior to measurement.  For each specimen, in-lever 

arms and out-lever arms for both jaw opening and closing were measured from digital 

photographs using NIH Image software for Apple Macintosh, developed by the U.S. 

National Institutes of Health and available on the web at http://rsb.info.nih.gov/nih-

image/.  Lever arm ratios (in-lever: out-lever) for jaw closing and opening were 

calculated from these measurements.  For jaw opening, the in-lever arm is the distance 

between the quadratomandibular joint and the caudoventral point of the dentary, on 

which the interoperculomandibular ligament inserts; the out-lever arm is the distance 

between the quadratomandibular joint and the anterior tip of the dentary (Figure 2.1).   
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Figure 2.1:  In-lever arm and out-lever arm for jaw opening on drawings of cranial 
skeleton of Lentipes concolor (A) and Awaous guamensis (B).  Note: scale 
bars indicate 5 mm. 

 

For jaw closing, the in-lever arm is the distance between the quadratomandibular joint 

and the superior tip of the coronoid process of the dentary, and the out-lever arm is the 

same as for jaw opening (Westneat, 2003).  In the mechanical relationships of lever 

systems, lower ratios of in-lever arm to out-lever arm provide a greater “velocity 

advantage” (Westneat, 1994; Wainwright and Richard, 1995), facilitating faster jaw 

movement.  The significance of differences in lever ratios between the two species and 

between sexes within each species were evaluated using t-tests. 
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Kinematic analysis 
 

In the 2005 and 2006 field seasons, prior to dissections and morphological 

measurements, kinematics of suction feeding were filmed for a total of three individuals 

each of L. concolor (3 males, 83.9 mm, 91.7 mm, and 95.0 mm total length) and A. 

guamensis (2 females, 68.6 mm and 102.7 mm total length; 1 male, 122.2 mm total 

length).  For both species, males may grow to larger maximum body length than females 

(Maciolek, 1977; Ha and Kinzie, 1996), however, especially for A. guamensis, medium 

sized individuals appear not to differ in body length between sexes (personal 

observation).  Animals used for filming were from Hakalau, Manoloa, and Kamae’e 

streams (L. concolor) and Hakalau stream and Wailoa Pond (A. guamensis), all from the 

Island of Hawai’i.  Gobies captured for filming were separated individually into 37.9 liter 

aquaria filled with aerated stream water at ambient temperature (~19ºC), and housed at a 

research facility of the Hawai’i Department of Land and Natural Resources, Division of 

Aquatic Resources (DAR).  Fish were acclimated for three days prior to the beginning of 

filming.  During both acclimation and filming periods, fish were fed with commercially 

available brine shrimp (Artemia sp.), as it was the only readily available prey item that 

could elicit feeding strikes by both species at a specified tank location, allowing repeated 

filming of behaviors.  Brine shrimp were loaded into transparent air stone tubing (3 mm 

hollow diameter), for which one end was submerged and the other was held outside the 

tank.  The food was released in front of each fish using a rubber bulb attached to the end 

of the feeding tube outside the tank. 
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To evaluate details of feeding kinematics for L. concolor and A. guamensis, 

digitally synchronized lateral and ventral views of feeding strikes were filmed at 500 

frames/sec using two Phantom V4.1 high-speed digital cameras.  Ventral views were 

obtained using a mirror placed under each aquarium angled 45º relative to the transparent 

floor of each tank.  All sequences were filmed in still water in the tanks where fish were 

housed, minimizing stress that could be imposed by transferring fish between tanks. 

High-speed video sequences of feeding were saved as AVI files, and the positions 

of landmarks on the heads of the fishes were digitized for every other frame using a 

modification of the public domain NIH Image software for Apple Macintosh (the 

moditication, QuickImage, was developed by J. Walker and is available at 

http://usm.maine.edu/~walker/software.html).  For both species, 11 landmark points in 

lateral view and 8 points in ventral view were digitized.  The 11 points in lateral view 

included the anterior tip of the premaxilla, anterior tip of the mandible, ventral border of 

the hyoid arch, center of the eye, anterior tip of the neurocranium (joint between maxilla 

and neurocranium), top of the neurocranium (insertion point for the epaxial muscle), 

posterior tip of the operculum, front edge of the food item, dorsal tip of the pectoral fin 

base, and ventral tip of the pectoral fin base (Figure 2.2).  The eight points in ventral view 

included the anterior tip of the premaxilla, anterior tip of the mandible, a point on the 

posterior border of the hyoid arch, lateral tips of the premaxilla (right and left), lateral 

tips of the operculum (right and left), and front edge of the food item (Figure 2.2). 

Custom programs written in Matlab 5.0 (Mathworks, Inc.; Natick, MA, USA) 

were used to calculate kinematic variables for every frame of digitized coordinate data, 
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Figure 2.2: Video still images of feeding behaviors of Lentipes concolor and Awaous 
guamensis with 11 lateral landmarks on the head (C and I) and 8 ventral 
landmarks on the head (D and J) and angles between vectors formed by 
landmark points (E, F, K, and L). 
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including the linear and angular displacements of the upper and lower jaw, neurocranium, 

hyoid, and opercula, as well as maxima of these displacements and timing variables 

associated with movement of feeding apparatus.  After evaluating these parameters, 

QuickSAND software (Walker, 1998; available at 

http://www.usm.maine.edu/~walker/software.html) was used to fit a quintic spline to the 

kinematic calculations for each feeding strike, smoothing the data and normalizing all 

strikes to the same duration in order to obtain mean kinematic profiles for each variable.  

Sixteen focal kinematic variables were calculated: (1) maximum gape angle, the 

maximum angle between upper and lower jaws; (2) time to maximum gape angle, time 

from the beginning of feeding strike (i.e., first jaw movement) to the maximum gape; (3) 

maximum mandibular depression angle, the maximum angle between the position of the 

mandible at the beginning of feeding strike and the position of the mandible at maximum 

gape; (4) time to maximum mandibular depression angle, time from the beginning of the 

feeding strike to the maximum mandibular depression; (5) maximum upper jaw 

protrusion, the maximum displacement of the upper jaw (premaxilla); (6) time to 

maximum upper jaw protrusion, time from the beginning of the feeding strike to the 

maximum upper jaw protrusion; (7) gape cycle, time between the beginning of feeding 

strike and the end of the strike; (8) time to jaw closure from the maximum gape, time 

from the maximum gape to the end of the feeding strike (9) maximum cranial elevation 

angle, the maximum angle between the initial position of a vector, formed by the anterior 

tip of the neurocranium and the top of the neurocranium at the beginning of feeding 

strike, and the position of the same vector at maximum cranial elevation; (10) time to 
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maximum cranial elevation, time from the beginning of the feeding strike to the 

maximum cranial elevation; (11) maximum hyoid depression angle, the maximum angle 

between the position of a vector, formed by a point at the ventral border of the hyoid arch 

and a point at  the ventral tip of the pectoral fin base, at the beginning of feeding strike, 

and the position of the same vector at maximum hyoid depression; (12) time to maximum 

hyoid depression angle, time from the beginning of the feeding strike to the maximum 

hyoid depression; (13) maximum hyoid retraction angle, the maximum angle between the 

long axis of the head and the ceratohyal on right side at the hyoid arch; (14) time to 

maximum hyoid retraction angle, time from the beginning of the feeding strike to the 

maximum hyoid retraction angle; (15) maximum opercular expansion, the maximum 

distance between the lateral tips of the two opercula; (16) time to maximum opercular 

expansion, time from the beginning of the feeding strike to the maximum opercular 

expansion.  Variables were calculated separately from either lateral or ventral views, as 

appropriate, and represent two dimensional projections of three dimensional angles (Van 

Wassenbergh et al., 2005).  The significance of differences in kinematic and performance 

variables between species were evaluated using Mann-Whitney U-tests.  A total of 35 

feeding trials from three individuals of L. concolor (10, 14, and 11 sequences from each 

individual) and 28 trials from three individuals of A. guamensis (8, 8, and 12 sequences 

from each individual) were analyzed in this study. 

In addition to kinematic variables, one of the most important aspects of feeding 

performance to ensure success of prey capture is the speed at which buccal volume is 

increased.  Generating faster movements in elements of the feeding apparatus can 
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increase the speed of water entering the buccal cavity (Osse, 1969; Muller and Osse, 

1984; Wilga and Motta, 2000), thereby maximizing suction pressure (Osse, 1969; 

Sanford and Wainwright, 2002; Svanback et al., 2002).  Although buccal pressure could 

not be directly measured in our study, the suction pressure generated by expansion of the 

buccal cavity during a feeding strike could be estimated by modeling changes in the 

volume of the buccal cavity through the time course of feeding strikes, an approach used 

previously in studies of other actinopterygian fishes (Barel, 1983; Liem, 1990).  The 

pressure differential leading to suction can be calculated using Bernoulli’s theorem of 

constancy of the sum of dynamic and static pressures for water flowing into the mouth as: 

 

(P0/ρg) - (P1/ρg) = (1/2)(υ2)/g 

 

where P0 is the pressure in the surrounding water, P1 is the pressure inside the buccal 

cavity near the mouth, υ is the speed of flowing water, ρ is the density of water (1,000 

kg/m3 for freshwater: Vogel, 2003), and g is gravitational acceleration (Osse, 1969; 

Alexander, 1983).  The speed of water flowing into the mouth can be obtained by 

calculating the change in volume of the buccal cavity during the time to reach maximum 

buccal expansion (i.e., the time to maximum gape) over the surface area of the mouth 

orifice as: 

 

Speed of flow (υ) = (dV/dt)/(AreaORIFICE) = (∆V/TG)/(πRG
2/4) 

 

Eq. 1 

Eq. 2 
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where ∆V is the buccal volume change, TG is the time of gape change, and RG is the gape, 

which serves as a diameter for calculation of the area.  Considering highly kinetic 

elements of the teleostean cranium, buccal volume was estimated geometrically by 

modeling the cavity (Barel, 1983; Liem, 1990) as a pair of conical frusta dividing the 

cavity into two compartments (i.e., an anterior cavity formed by the upper and lower jaw 

and a posterior cavity formed by the opercular region of the cavity) as: 

 

V = (LAnt/3)(A1+A2+(A1A2)1/2) + (LPost/3)(A2+A3+(A2A3)1/2) 

 

where V is the buccal volume, LAnt is the height of the anterior conical frustum, A1 is the 

area of opening of the mouth, A2 is the area of opening at the eye-hyoid arch region, LPost 

is the height of the posterior conical frustum, and A3 is the area of the opening of 

opercular region where the maximum displacement of the operculum occurs.  In addition, 

the Hagen-Poiseuille equation was used in further assessment of suction performance as: 

 

∆P = (8υρL)/(πR4) 

 

where ∆P is the pressure differential, υ is the rate of water flow, ρ is the density of water 

(i.e., freshwater), L is the length of the tube (i.e., distance from mouth to opercula), and R 

is the radius of the tube.  This relationship indicates that an increased rate of water flow, 

an increased length of the tube, and a decreased area of the opening of the mouth can 

Eq. 3 

Eq. 4 
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maximize pressure differential and, thus, performance in suction feeding (Alexander, 

1967, 1983; Osse, 1969; Pietsch, 1978). 

 

Results 

 
Morphology of the feeding apparatus 
 

No significant differences were found between males and females of either 

species in either jaw opening or closing lever ratios (Table 2.1).  This similarity between 

the sexes allowed measurements from both sexes to be pooled in comparisons between 

the species.  Comparing these pooled samples, the mean lever ratio for jaw opening is 

about 10% smaller in L. concolor than in A. guamensis (0.136 vs. 0.149, respectively: 

Table1), indicating a greater velocity advantage for L. concolor during jaw opening.  

Although a t-test on lever ratios did not indicate a significant difference between the 

species at P < 0.05, there appears to be a trend that the difference between the species 

was consistent with the potential for L. concolor to have faster jaw opening in its feeding 

strike than A. guamensis (P = 0.0998: Table 2.1).  For the jaw closing lever, differences 

between L. concolor and A. guamensis are less substantial (P = 0.1393: Table 2.1). 
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Lever Ratio Jaw open P value 
L. concolor, f 0.148 ± 0.024  
L. concolor, m 0.133 ± 0.028 0.2765 
A. guamensis, f 0.154 ± 0.028  
A. guamensis, m 0.146 ± 0.040 0.4982 
L. concolor, pooled 0.136 ± 0.027  
A. guamensis, pooled 0.149 ± 0.036 0.0998 
   
Lever Ratio Jaw close P value 
L. concolor, f 0.416 ± 0.037  
L. concolor, m 0.430 ± 0.055 0.5750 
A. guamensis, f 0.422 ± 0.043  
A. guamensis, m 0.403 ± 0.050 0.2072 
L. concolor, pooled 0.428 ± 0.052  
A. guamensis, pooled 0.410 ± 0.048 0.1393 

 
Table 2.1: Lever ratios for jaw opening and closing for female, male, and pooled samples 

of L. concolor and A. guamensis.  Values are means ± standard deviation. 
 
 
Feeding kinematics and performance 
 

Although both species fed in a benthic setting during trials, none of the head 

movements of either species was interrupted by the floor of the filming arena because the 

pelvic sucker served as a platform that gave space to the moving elements, especially the 

mandible and hyoid.  Both species demonstrated general kinematic patterns similar to 

those exhibited by a wide range of actinopterygian fishes (Osse, 1969; Lauder, 1980; 

Lauder and Liem, 1981; Ferry-Graham and Lauder, 2001; Grubich, 2001).  Concomitant 

with maximum gape, maxima of mandibular depression and cranial elevation occurred 

(Figure 2.3).  Slightly later in the gape cycle, maxima of premaxillary protrusion, hyoid 

depression and retraction, and opercular expansion almost simultaneously followed 

(Figures 2.3, 2.4).  Some kinematic elements were held in position for a prolonged period 

(i.e., premaxillary protrusion, cranial elevation, hyoid depression, and opercular 
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expansion) after reaching each of their maximum values (Figures 2.3, 2.4).  Although 

both species showed slight forward movement of the entire body during each feeding 

strike, there was no evidence of gill opening during expansive and compressive phases of 

all strikes that we filmed indicating food was acquired primarily through suction, rather 

than ram feeding. 

Lentipes concolor showed greater and faster movements of the feeding apparatus 

during feeding strikes than Awaous guamensis (Table 2.2 and Figures 2.3, 2.4).   

 

Variable L. concolor A. guamensis P value 
Maximum gape angle (º) 43.8 ± 13.7 32.5 ± 16.0 0.0003*** 
Time to maximum gape angle (ms) 26.1 ± 12.7 54.4 ± 27.2 <0.0001*** 
Maximum mandibular depression angle (º) 37.1 ± 9.8 24.9 ± 14.6 <0.0001*** 
Time to maximum mandibular depression angle (ms) 31.5 ± 13.4 61.3 ± 27.4 <0.0001*** 
Maximum upper jaw protrusion (mm) 2.1 ± 0.6 1.5 ± 0.5 <0.0001*** 
Maximum upper jaw protrusion (BL) 0.023 ± 0.006 0.016 ± 0.006 <0.0001*** 
Time to maximum upper jaw protrusion (ms) 51.6 ± 21.3 80.9 ± 30.7 <0.0001*** 
Gape cycle (ms) 77.7 ± 26.8 106.8 ± 31.5 0.0005** 
Time to jaw closure from maximum gape (ms) 51.6 ± 20.9 52.4 ± 15.5 0.8572 
Maximum cranial elevation angle (º) 7.1 ± 3.3 3.1 ± 2.3 <0.0001*** 
Time to maximum cranial elevation angle (ms) 47.0 ± 24.0 74.4 ± 34.1 0.0009*** 
Maximum hyoid depression angle (º) 7.5 ± 3.0 6.5 ± 4.6 0.0503 
Time to maximum hyoid depression angle (ms) 53.1 ± 25.5 78.2 ± 30.3 0.0013* 
Maximum hyoid retraction angle (º) 52.1 ± 4.8 39.8 ± 4.7 <0.0001*** 
Time to maximum hyoid retraction angle (ms) 52.2 ± 15.9 84.6 ± 30.7 <0.0001*** 
Maximum opercular expansion (mm) 16.2 ± 0.9 19.6 ± 4.7 0.0042** 
Maximum opercular expansion (BL) 0.179 ± 0.004 0.198 ± 0.018 <0.0001*** 
Time to maximum opercular expansion (ms) 52.8 ± 12.9 87.4 ± 31.4 <0.0001*** 

 
Table 2.2: Displacement and timing variables associated with feeding kinematics for 

Lentipes concolor and Awaous guamensis.  Values are means ± standard 
deviation.  BL is the total body length.  In statistical comparisons, * indicates 
significant difference at P < 0.05, ** at P < 0.01, and *** at P < 0.001 (Mann-
Whitney U-test).  Note: average values differ from maximum values in Figure 
4 because the time of maxima differs among different trials. 
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Maximum gape angle was greater for L. concolor than A. guamensis (43.8 ± 13.7º vs. 

32.5 ± 16.0º, P = 0.0003: Table 2.2 and Figure 2.3).  Lentipes concolor also opened the 

mouth to maximum gape more than twice as quickly as A. guamensis (26.1 ± 12.7 ms vs. 

54.4 ± 27.2 ms, P < 0.0001: Table 2.2).  Among all the timing variables, the maximum 

gape is the first to be reached in the feeding strike (Table 2.2 and Figure 2.4); therefore, 

the maximum surface area of the mouth orifice would constrain both the maximum size 

of prey item (Hill et al., 2004) and the maximum water flow entering the orifice (Norton 

and Brainerd, 1993; Cook, 1996). 

Gape angle is produced through rotations contributed by both the lower and upper 

jaws.  Motions of both elements were greater and produced more quickly in L. concolor.  

The mandible of L. concolor exhibited greater and faster depression during mouth 

opening than that of A. guamensis (37.1 ± 9.8º vs. 24.9 ± 14.6º, P < 0.0001, and 31.5 ± 

13.4 ms vs. 61.3 ± 27.4 ms, P < 0.0001, respectively: Table 2.2 and Figure 2.3).  The 

maximum mandibular depression angle was reached slightly after the maximum gape 

angle apparently because motions of the upper jaw caused overall gape to close while the 

lower jaws were still opening.  In both species, maximum premaxillary protrusion is 

realized near the end of the feeding strike, although this motion appears to plateau 

substantially after the midpoint of the feeding cycle (Figure 2.3).  Like mandibular 

depression, L. concolor showed greater and faster premaxillary protrusion than A. 

guamensis (0.023 ± 0.006 BL vs. 0.016 ± 0.006 BL, P < 0.0001, and 51.6 ± 21.3 ms vs. 

80.9 ± 30.7 ms, P < 0.0001, respectively: Table 2.2).  The premaxilla of both species 

remained protruded until well after the end of the strike (i.e., mouth closed).  Lentipes  
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Figure 2.3: Kinematic profiles (gape (A and B), mandibular depression (C and D), 
premaxillary protrusion (E and F), and cranial elevation (G and F)) of 
feeding strike by Lentipes concolor and Awaous guamensis. 
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Figure 2.4: Kinematic profiles (hyoid depression (A and B), hyoid retraction (C and D), 
and opercular expansion (E and F)) of feeding strike, and buccal volume 
change during feeding strike (G and H) by Lentipes concolor and Awaous 
guamensis. 
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concolor also has more than twice the maximum cranial elevation of A. guamensis (7.1 ± 

3.3º vs. 3.1 ± 2.3º, P < 0.0001: Table 2.2), and the maximum angle for cranial elevation 

was reached much more quickly for L. concolor than A. guamensis (47.0 ± 24.0 ms vs. 

74.4 ± 34.1 ms, P = 0.0009: Table 2.2).  Although there are some differences in 

kinematic profiles between species, cranial elevation motions roughly coincide with those 

of mandibular depression, upper jaw protrusion, and hyoid depression (Figures 2.3, 2.4) 

potentially synergistically powering buccal volume expansion through this synchronized 

action. 

Both species shared similar maxima for the hyoid depression angle (7.5 ± 3.0º for 

L. concolor and 6.5 ± 4.6º for A. guamensis, P = 0.0503: Table 2.2).  However, profiles 

of the hyoid depression movements showed some differences, as the hyoid depressed 

essentially continually in L. concolor, but depression reached a plateau approximately 

three quarters of the way through the cycle in A. guamensis (Figure 2.4).  Kinematic 

differences for the hyoid between species seemed much more significant in the ventral 

view.  The differences in the hyoid retraction angle during a feeding strike were about 

23% of the maximum (about 12º between the maximum and minimum) for L. concolor 

and about 17% of the maximum (about 7º between the maximum and minimum) for A. 

guamensis (Table 2.2 and Figure 2.4).  The time to reach the maximum hyoid retraction 

angle was faster for L. concolor than A. guamensis (52.2 ± 15.9 ms and 84.6 ± 30.7 ms, 

respectively, P < 0.0001: Table 2.2).  Because of the linkage between the hyoid and 

operculum, the retraction of the hyoid actuates the lateral expansion of the operculum 

(Figure 2.4).  The differences in the opercular expansion during a feeding strike were 
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about 23% of the maximum opercular expansive width (approximately 0.04 BL between 

the maximum and minimum in width over the total body length of the fish) for L. 

concolor and about 16% of the maximum (approximately 0.03 BL between the maximum 

and minimum) for A. guamensis (Figure 2.4).  In addition, L. concolor showed faster 

opercular expansion than A. guamensis (52.8 ± 12.9 ms vs. 87.4 ± 31.4 ms, respectively, 

P < 0.0001: Table 2.2).  Although the gape cycle and time to maximum gape angle for L. 

concolor (77.7 ± 26.8 ms and 26.1 ± 12.7 ms, respectively: Table 2.2) were significantly 

faster than those for A. guamensis (106.8 ± 31.5 ms and 54.4 ± 27.2 ms, respectively, 

with P = 0.0005 and P < 0.0001, respectively: Table 2.2), there was no significant 

difference in the time to jaw closure from the time at maximum gape (P = 0.8572: Table 

2.2).  Thus, jaw closing performance does not appear to contribute significantly to 

differences in the capacity of these species to capture prey by suction. 

 
Suction pressure estimates 
 

The speed of water flow (υ) induced near the mouth orifice by the feeding strike 

was calculated and compared between species.  The time to the maximum gape angle was 

used for the time to gape change (TG), and the maximum gape was used for calculation of 

the surface area of the mouth orifice (RG) required for Eq. 2.  Following the kinematic 

profile of buccal volume change, the change in volume between the beginning of the 

feeding strike and maximum gape was calculated allowing further calculation of the 

speed of induced water flow.  Lentipes concolor showed faster flow than A. guamensis 

(8.09 ± 5.46 BL/s vs. 4.79 ± 2.85 BL/s, respectively, P = 0.0133, and 0.77 ± 0.54 m/s vs. 

0.35 ± 0.23 m/s, respectively, P = 0.0013: Table 2.3). 
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Suction flow variable L. concolor(N = 35) A. guamensis(N = 28) P value 

Flow speed (m/s) 0.77 ± 0.54 (N = 33) 0.35 ± 0.23 0.0013** 

Flow speed (BL/s) 8.09 ± 5.46 (N = 33) 4.79 ± 2.85 0.0133* 

Maximum gape (mm) 5.04 ± 1.00 4.17 ± 1.42 0.006** 

Maximum gape (BL) 0.056 ± 0.099 0.042 ± 0.010 <0.0001*** 

Maximum gape area (mm2) 20.7 ± 8.2 15.1 ± 8.7 0.0413* 

Maximum gape area (BL2) 0.0026 ± 0.0009 0.0014 ± 0.0010 <0.0001*** 
 

Table 2.3: Maximum gape and flow speed at the maximum gape for Lentipes concolor 
and Awaous guamensis.  Values are means ± standard deviation.  BL is the 
total body length.  In statistical comparisons, * indicates significant difference 
at P < 0.05, ** at P < 0.01, and *** at P < 0.001 (Mann-Whitney U-test). 

 

Compared to in vivo measurements of suction flow speed previously measured in other 

species (e.g., 0.25 m/s in Lepomis: Lauder and Clark, 1984; 0.08 m/s in Lepomis: Ferry-

Graham et al., 2003), our calculated estimates of flow speeds were faster for both goby 

species.  According to Ferry-Graham et al. (2003), water velocity at maximum gape 

seems to be the maximum water velocity induced by fishes.  Part of difference in flow 

speed induced by the two goby species can be attributed to differences in their speeds of 

mouth opening and sizes of their gapes.  Lentipes concolor had a greater maximum gape 

normalized for total body length (0.056 ± 0.099 BL for L. concolor vs. 0.042 ± 0.010 BL 

for A. guamensis, P < 0.0001: Table 2.3), and, as a result, a greater surface area of the 

orifice normalized for square of total body length (0.0026 ± 0.0009 BL2 vs. 0.0014 ± 

0.0010 BL2, respectively, P < 0.0001: Table 2.3).  Substituting the flow speeds estimated 

into Bernoulli’s principle (Eq. 1) gives pressure differentials of 0.2965 kPa/BL3 for L. 

concolor and 0.06215 kPa/BL3 for A. guamensis.  Comparison of these values predicts 

that L. concolor can generate about 4.8 times greater suction pressure than A. guamensis. 
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Discussion 

 
Relationship of differences in feeding performance to habitat and jaw morphology 
in Hawaiian climbing gobies 
 

Because adult L. concolor typically live in streams with faster flow speeds, 

whereas A. guamensis often live in the slower flow of lower stream reaches, we predicted 

that L. concolor would exhibit faster feeding motions than A. guamensis.  Our results 

agreed with this prediction; however, the difference in performance was concentrated in a 

specific portion of the feeding cycle.  Our results show that L. concolor achieve 

maximum gape angle in less than one half the time required for A. guamensis, and that L. 

concolor reach the maximum of all kinematic angles that contribute to mouth opening 

(e.g., mandibular depression, premaxillary protrusion, cranial elevation) faster than A. 

guamensis.  However, the two species do not differ in the time it takes to close the jaws 

once maximum gape has been reached.  Thus, differences in suction feeding performance 

between these species are more closely related to jaw opening rather than jaw closing or, 

in other words, to prey acquisition rather than retention of prey in the mouth by closing 

the jaws around it.  The differences we observed were measured in still water, and it 

would be useful to verify their performance during feeding in flows similar to those 

encountered by the two species in their natural habitats.  However, the functional 

differentiation we found between L. concolor and A. guamensis suggests that, in species 

living in fast flow, the potential for prey to be lost from the buccal cavity differs little 

from that encountered by species living in slower flow.  In contrast, the increased 
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challenges of prey acquisition in faster flowing water may be met with higher levels of 

feeding performance. 

In addition to differences in the speed of jaw opening between L. concolor and A. 

guamensis, we found that even when striking at identical prey in identical water flow 

conditions (still water), L. concolor achieved a significantly wider gape (almost 35% 

greater) than A. guamensis.  Because suction pressure is inversely related to the size of 

the mouth orifice (Eq. 4), it might be expected that L. concolor would, as a result, 

generate lower suction pressures than A. guamensis.  However, this is not what we found.  

Instead, our geometric modeling of suction pressure indicates that L. concolor might 

generate pressure differentials almost 5 times greater than those of A. guamensis.  Our 

anatomical models indicate that L. concolor are able to overcome limitations to suction 

pressure induced by a large gape as a result of their extremely fast jaw movements.  The 

Hagen-Poiseuille equation indicates that, though suction pressure is inversely related to 

gape size, it is directly related to the velocity of flow that can be generated.  The rapid 

jaw movements of L. concolor enable rapid increases in buccal volume (Eq. 2 & 3), 

facilitating rapid flow speeds and elevating the pressure differential generated.  Thus, L. 

concolor can achieve higher suction pressure differentials than A. guamensis despite their 

larger gape size, improving their ability to acquire large prey items even in fast flowing 

water.  These geometric estimates of suction pressure have yet to be verified by more 

direct experimental methods, such as buccal pressure transducer implants (Lauder, 1980; 

Carroll et al., 2004; Higham et al., 2006) or particle image velocimetry (Ferry-Graham 

and Lauder, 2001; Ferry-Graham et al., 2003; Day et al., 2005; Higham et al., 2005, 
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2006a, 2006b), though the use of these methods is complicated by the small body size 

and typical benthic feeding habits of our study species. 

Morphological differences in the jaw lever systems of L. concolor and A. 

guamensis may contribute to the differences in the speeds of their jaw movements.  These 

species showed no difference in jaw closing speeds and, correspondingly, did not differ 

significantly in velocity advantage for jaw closing as calculated from the lever systems of 

their jaw skeleton.  However, differences in the velocity advantage for jaw opening 

between L. concolor and A. guamensis are proportionally greater than those for jaw 

closing (10% vs. 5%), and are also in the direction predicted to convey faster jaw motion 

to the species living in faster flow (L. concolor).  Although these patterns are suggestive, 

skeletal components of lever systems cannot completely predict function, as the 

arrangements and dimensions of muscles and tendons are also critical to mechanical 

performance (Westneat, 2003; Chapter 3).  More complete evaluation of the 

morphological basis for feeding performance differences between L. concolor and A. 

guamensis will require examination of those components of the feeding apparatus of 

these fishes, but available skeletal data suggest this is a promising avenue of 

investigation. 

 
Future directions for ecological and evolutionary studies of Hawaiian stream goby 
feeding 
 

The feeding performance of L. concolor appears to suit it well to life in fast 

flowing water, but would not necessarily suit it poorly in habitats with slower flow.  In 

this context, it is somewhat puzzling that the distributions of adult L. concolor and A. 
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guamensis do not overlap in streams on the Island of Hawai’i, and that adult L. concolor 

are absent from lower stream reaches where A. guamensis are common (Macioleck, 1977; 

Blob et al., 2006).  Given the similarities of the diets of these species (Kido, 1996), it is 

possible that L. concolor might be excluded from lower stream reaches as a result of 

direct or indirect interactions (e.g., resource partitioning; Takamura, 1984; Vadas, 1990; 

Bouton et al., 1997) with A. guamensis, though the nature of such interactions is 

uncertain.  However, lower stream flows induced by anthropogenic means (e.g., water 

diversion or damming: Bain et al., 1988; Brasher, 1996; Way et al., 1998) could reduce 

the limits to upstream migration by A. guamensis due to its limited climbing ability 

(Brasher, 1996; Blob et al., 2006; in press).  The distribution of L. concolor might be 

expected to shift further upstream in response and, alternatively, might be diminished due 

to loss of suitable habitat. 

Given that we have examined the feeding kinematics of only two goby species, it 

is uncertain which species might show performance and function closer to the ancestral 

condition, and which, if either, might be viewed as possessing adaptations related to its 

specific environment (Garland and Adolph, 1994).  Gobies are one of the most 

remarkably diverse and speciose clades of vertebrates with over 2000 species in 268 

genera worldwide (Lauder and Liem, 1983; Nelson, 1994; Thacker, 2003), and our data 

represent a starting point for a broader phylogenetic examination of functional 

performance in this group (Westneat, 1994, 1995).  With rapidly increasing knowledge of 

the phylogenetic relationships of these species (Parenti and Thomas, 1998; Thacker, 
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2003), evolutionary studies of their functional specializations promise to generate a wide 

range of insights into the evolution of functional performance. 
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CHAPTER THREE 
 

JAW LEVER ANALYSIS OF HAWAIIAN STREAM FISHES: A SIMULATION 
STUDY OF MORPHOLOGICAL DIVERSITY 

 
 

Introduction 
 

Gobioid fishes are a remarkably speciose group of teleosts with more than 2000 

species in 268 genera worldwide that exhibit a wide range of niches, behaviors, and life 

histories (Nelson, 1994; Thacker, 2003).  In perennial streams of the Hawaiian islands, 

the native ichthyofauna consists of five gobioid species (four gobiids and one eleotrid: 

Fitzsimons et al., 1993) that exhibit great variability in their habitat and behaviors 

(Yamamoto and Tagawa, 2000).  For example, of the five native Hawaiian species, three 

(Sicyopterus stimpsoni, Lentipes concolor, and Awaous guamensis) exhibit waterfall-

climbing ability during at least part of their ontogeny.  Despite the rigorous demands of 

this behavior that might be expected to limit functional variation in these fishes, two 

distinct modes of climbing behavior have been recognized in these species (“inching” 

climbing in S. stimpsoni, and “powerburst” climbing in L. concolor and A. guamensis: 

Schoenfuss and Blob, 2003; Blob et al., 2006, in press).  These different behaviors have 

been associated with differences in the ecological distributions of these species in streams 

(Blob et al., 2006), as well as anatomical and physiological specializations (Schoenfuss et 

al., 1997; Cediel et al., 2007; Maie et al., 2007). 

 In addition to variation in the locomotor system, functional variation in fishes is 

often evident in the feeding system, with trophic performance frequently correlated with 

both morphological and ecological specializations (Bouton et al., 1997, 1998, 2002; 
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Wainwright et al., 2004).  Although most Hawaiian stream gobioids have a ventrally 

positioned mouth, differences in their diets have been identified that have been associated 

with morphological differences between these species (Kido, 1996a, 1996b, 1997).  For 

example, S. stimpsoni feed by scraping algae from rock surfaces using a highly 

protrusible premaxilla equipped with rows of tricuspid teeth (Kido, 1996b; Julius et al., 

2005; Fitzsimons et al., 2003).  Both A. guamensis and L. concolor have been suggested 

to consume similar proportions of animal and plant materials (Kido, 1996b), but typically 

live in different habitats, with A. guamensis inhabiting slower, lower stream reaches and 

L. concolor inhabiting faster, upper stream reaches (Schoenfuss and Blob, 2007).  

Correspondingly, L. concolor show a jaw skeleton with a lever system designed for faster 

jaw opening than A. guamensis, and exhibit faster jaw opening during suction feeding 

(Chapter 2).  Stenogobius hawaiiensis have conical teeth on the premaxilla and dentary, 

and feed by ingesting stream bottom sediment and filtering out primarily plant materials.  

Finally, E. sandwicensis consume a greater proportion of animal materials than other 

Hawaiian stream gobiids (56.2% dry biomass of the total gut content) and are highly 

piscivorous (Kido, 1996b; Tate, 1997; Yamamoto and Tagawa, 2000).  They have conical 

teeth and are the only Hawaiian stream gobioid fish in which the mouth is in a sub-dorsal 

position. 

The differences in feeding behavior and performance just described among 

Hawaiian stream gobies were related primarily to differences in the skeletal anatomy of 

these species (Kido, 1996b).  However, like all anatomical lever systems, the 

performance of the jaws during feeding in these fishes could depend substantially on the 
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proportions and configurations of their jaw muscles (Wainwright and Richard, 1995; 

Westneat, 2003).  Given the great variety of feeding habits of Hawaiian gobies, a great 

range of feeding performance might be expected.  In this study, we combine 

measurements of both skeletal and muscular anatomy to predict jaw closing performance 

of these fishes using a previously published anatomical model (Westneat, 2003), in order 

to test whether differences in feeding habits are reflected in the differing anatomical 

performance of these species. 

 

Materials and Methods 

 
Species collection and functional comparisons 
 

Specimens of five native Hawaiian gobioid species (S. stimpsoni, L. concolor, A. 

guamensis, S. hawaiiensis, and E. sandwicensis) were captured (Clemson AUP# 40061 

and 50089) while snorkeling using an o’pae net (a fine, spherically shaped mesh with a 

narrow opening at the top of a bowl shaped basket).  Collections were made from native 

streams of these fishes on the Islands of Hawai’i and Kaua’i during field seasons between 

2003 and 2006 (Table 3.1).  Specimens were preserved in 70% ethanol, after which the 

jaw muscles and skeleton were dissected under a dissecting scope (Nikon SMZ 1000) and 

photographed using a digital camera (Nikon CoolPix 4300) in order to collect 

morphological measurements for input into the Westneat (2003) model of jaw 

performance. 
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Specimens N Locality (in Hawai'i) Locality (in Kaua'i) Season 

S. stimpsoni 34 Nanue stream Hanakapi'ai & Limahuli streams 2004 

L. concolor 23 Hakalau, Kamae'e,  Hanakapi'ai stream 2004-2006 

  Manoloa, & Nanue streams  

A. guamensis 19 Hakalau & Nanue streams Hanakapi'ai & Limahuli streams 2004-2006 

  Waiakea Pond   

S. hawaiiensis 15 Waiakea Pond None 2006 

E. sandwicensis 13 Hakalau & Nanue streams None 2003-2006 

    Wailoa Pond     
 

Table 3.1: List of specimens, native habitats (collection sites) and field seasons.  
Specimens of S. stimpsoni were from both upper and lower reaches (relative 
to waterfalls) of indicated streams from the two islands (Hawai’i and Kaua’i).  
Specimens of L. concolor were from only upper stream reaches higher than 
any other species.  Specimens of the remaining three species were from lower 
stream reaches or water pools (Waiakea Pond and Wailoa Pond of the Island 
of Hawai’i). 

 
 
Simulation of mandibular movement 
 

The adductor mandibulae muscles are the major force-generating muscle complex 

powering jaw closing in teleosts during feeding strikes.  This muscle complex pulls the 

mandible around a point of rotation at the quadratomandibular joint in a third-order lever 

mechanism (Westneat, 2003).  To evaluate jaw closing performance of Hawaiian gobies, 

measurements of the muscles and their attachments for each species were input into a 

simulation of a jaw closing event using MandibLever 3.0, software developed by M. 

Westneat (2003) and available at (http://www.fieldmuseum.org/).  Based on these 

measurements of the feeding apparatus (detailed below) and non-linear contractile 

properties of muscle fibers (e.g., the Hill equation; F = (1-V)/(1+V/k) with k = 0.25: 

Westneat, 2003), the transmission of speed and force, as well as other functional 

parameters associated with the jaws, can be calculated using this simulation (Westneat, 
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2003).  Initial conditions are required for several parameters in these calculations, which 

estimate aspects of functional performance through changes in parameters (e.g., F and V) 

in the Hill equation during a jaw closing event.  Following conventions of Westneat 

(2003), these parameters included maximum isometric force per unit area of muscle 

(Fmax), which was input with an F/Fmax value ranging between 0.05 to 0.8, and estimated 

maximum velocity of muscle contraction (Vmax), which was input with a V/Vmax ranging 

between 0.05 to 0.79 for the simulation.  Also following Westneat’s (2003) conventions, 

a shortening of 10 length/sec (= Vmax) was assumed based on fast twitching white muscle 

fibers in fish jaw muscle, and a maximum isometric stress (i.e., force production per unit 

cross-sectional area of muscle) of 100 kPa was used as a standard value.  In order to 

obtain consistent increments in time, mathematical transformations were performed using 

curvilinear regressions.  Given jaw closing durations found in in vivo feeding kinematics 

of L. concolor and A. guamensis (52 ms and 54 ms, respectively; Chapter 2), a 50 ms 

total duration was assumed, and values of calculated variables were plotted over 

fractional (%) increments of time through this jaw closing duration. 

Four performance variables were computed for each muscle division using 

measurements from one side of the head (unilateral performance variables): (1) 

maximum force output, normalized to body size (i.e., divided by BL3); (2) maximum 

angular velocity; (3) minimum and maximum effective mechanical advantages (EMA), 

each of which is calculated as the product of the skeletal lever ratio for jaw closing and 

the sine of the angle of muscle insertion on the mandible; (4) maximum mandibular 

power output, specific to muscle size and also normalized to body size.  Calculations 
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were performed starting with an initial opening of the mandible at 30º and progressed as 

the jaw angle closed toward 0º.  This angular range seems to be appropriate based on the 

kinematics of mandibular depression previously evaluated for L. concolor and A. 

guamensis (Chapter 2).  Performance values were compared using one-way ANOVA and 

Fisher’s LSD post hoc tests at α = 0.05 level to evaluate the significance of differences in 

performance between species. 

 
Morphological measurements of the adductor mandibulae muscles and jaw 
apparatus 
 

The adductor mandibulae muscles are situated on superficial aspect of the 

cranium of teleosts (Winterbottom, 1974; Gosline, 1986).  Although a few variations in 

the muscle complex (e.g., size and point of insertion) can be observed among the five 

Hawaiian gobies (Tables 3.2, 3.3 and 3.4), basic external configurations among them are 

extremely similar.  The adductor mandibulae muscles are divided into three parts based 

on differing insertions on the feeding apparatus: A1, A2, and A3.  The A1 division is the 

most superficial and inserts on the maxilla.  Because of this distinct insertion, the A1 

likely performs a different function than the other adductor mandibulae subdivisions 

(Gosline, 1986).  Its performance was not modeled by Westneat (2003) and was not 

evaluated in this study.  Deep to the A1 division, A2 originates on the laterocaudal surface 

of the preoperculum, and inserts on the coronoid process of the dentary.  The A2 further 

subdivides into several bundles (i.e., dorsal and ventral bundles) each possessing separate 

tendons with similar lengths, but functions of these two smaller subdivisions are typically 

similar (Westneat, 2003).  The A3 is the deepest muscle of the adductor mandibulae 
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muscles, and further subdivides into three smaller bundles originating on the broad fossa 

of the metapterygoid, the laterocaudal aspect of the symplectic, and the lateroanterior 

surface of the preoperculum.  These smaller bundles of the A3 division fuse together to 

form a single tendon inserting on the medial aspect of the articular of the mandible.  

Pinnation of these muscles appears negligible in Hawaiian gobies. 

 

Species BL (cm) A2 (g) A3 (g) A2/BL3 (g/cm3) A3/BL3 (g/cm3) 

S. stimpsoni (N=34) 8.56 ± 2.04 0.0032 ± 0.0021 0.0015 ± 0.0009 4.38 ± 1.15, d 2.09 ± 0.54, c 
L. concolor (N=23) 6.94 ± 1.14 0.0021 ± 0.0014  0.0013 ± 0.0009 5.44 ± 1.42, d 3.16 ± 0.97, c 

A. guamensis (N=19) 8.89 ± 2.74 0.0192 ± 0.0319 0.0096 ± 0.0156 16.30 ± 5.12, b 8.30 ± 2.69, b 
S. hawaiiensis (N=15) 6.42 ± 0.94 0.0034 ± 0.0017 0.0020 ± 0.0009 11.96 ± 1.88, c 7.12 ± 1.12, b 

E. sandwicensis (N=13) 9.84 ± 2.59 0.0442 ± 0.0429 0.0210 ± 0.0195 35.83 ± 1.05, a 17.76 ± 4.88, a 
 

Table 3.2: Body length (cm), muscle mass (g), and muscle mass normalized to body size 
expressed as BL3 (g/cm3, note: these values are multiplied by 10-6) for the 
adductor mandibulae muscle divisions of five native Hawaiian gobies.  
Values are means ± standard deviations.  Species are grouped into a, b, c, and 
d ranks (a to d, in a decreasing manner) based on ANOVA (F = 137.602, P < 
0.0001 for A2 (g/cm3), and F = 139.765, P < 0.0001 for A3 (g/cm3)) and 
Fisher’s LSD (α = 0.05) post hoc tests. 

 

Species A2 Length (cm) A3 Length (cm) A2 Length/BL A3 Length/BL 
S. stimpsoni (N=34) 0.603 ± 0.157 0.667 ± 0.163 0.070 ± 0.006, c 0.078 ± 0.006, c 
L. concolor (N=23) 0.407 ± 0.090 0.508 ± 0.117 0.058 ± 0.006, d 0.073 ± 0.006, d 
A. guamensis (N=19) 0.859 ± 0.363 0.927 ± 0.347 0.095 ± 0.012, b 0.103 ± 0.008, b 
S. hawaiiensis (N=15) 0.429 ± 0.072 0.510 ± 0.080 0.067 ± 0.006, c 0.080 ± 0.006, c 
E. sandwicensis (N=13) 1.007 ± 0.265 1.152 ± 0.317 0.104 ± 0.014, a 0.118 ± 0.016, a 

 
Table 3.3: Muscle length (cm) and muscle length normalized to body length of the 

adductor mandibulae muscle division A2 and A3 of five native Hawaiian 
gobies.  Values are means ± standard deviations.  Species are grouped into a, 
b, c, and d ranks (a to d, in a decreasing manner) based on ANOVA (F = 
86.062, P < 0.0001 for A2 length/BL, and F = 93.928, P < 0.0001 for A3 
length/BL) and Fisher’s LSD (α = 0.05) post hoc tests. 
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Species Close Lever Ratio A2 Close Lever Ratio A3 
S. stimpsoni (N=34) 0.373 ± 0.059, c 0.458 ± 0.054, b 
L. concolor (N=23) 0.427 ± 0.058, b 0.380 ± 0.060, a 
A. guamensis (N=19) 0.424 ± 0.034, b 0.421 ± 0.042, a 
S. hawaiiensis (N=15) 0.489 ± 0.046, a 0.279 ± 0.050, c 
E. sandwicensis (N=13) 0.348 ± 0.046, c 0.389 ± 0.036, a 

 
Table 3.4: Jaw closing lever ratio (mechanical advantage) for A2 and A3 based only on 

the skeletal components of the feeding apparatus.  Values are means ± 
standard deviations.  Species are grouped into a, b, and c ranks (a to c, in a 
decreasing manner) based on ANOVA (F = 18.571, P < 0.0001 for A2, and F 
= 33.828, P < 0.0001 for A3) and Fisher’s LSD (α = 0.05) post hoc tests. 

 

The superficial aspect of the A2 division, where the muscle has the greatest long 

axis, was used for measurement of A2 length.  After measuring its length including its 

tendon, it was removed and its mass was measured to the nearest 0.0001g with a digital 

balance (Denver Instrument).  After the removal of A2, the length and mass of A3 were 

measured in a similar manner.  Points of origin for both A2 and A3 were determined by 

locating areas of origin on the cranium, where their muscle fibers run parallel to their 

respective tendons.  Using NIH Image software for Apple Macintosh (developed by the 

U.S. National Institutes of Health and available at http://rsb.info.nih.gov/nih-image/), 

twelve linear distances in the cranium of each species (Figure 3.1) were measured from 

digital photographs: (1) in-lever arm for A2, distance between the quadratomandibular 

joint and the superior tip of the coronoid process of the dentary, where A2 inserts; (2) in-

lever arm for A3, distance between the quadratomandibular joint and the medial surface 

of the articular, where A3 inserts; (3) in-lever arm for jaw opening, distance between the 

quadratomandibular joint and the posteroventral aspect of the articular, where the 

interoperculomandibular ligament inserts; (4) out-lever arm of the mandible, distance 
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between the quadratomandibular joint and the anterior tip of the dentary; (5) A2 muscle 

length; (6) A3 muscle length; (7) tendon length for A3; (8) distance between A2 origin 

and the quadratomandibular joint; (9) distance between A3 origin and the 

quadratomandibular joint; (10) distance between A2 and A3 insertions; (11) dorsal length 

of the mandible, distance between the superior tip of the coronoid process of the dentary 

and the anterior tip of the dentary; (12) ventral length of the mandible, distance between 

the posteroventral aspect of the articular to the anterior tip of the dentary.  Body length 

 

 

 

 

 

 

 

 
Figure 3.1: Linear measurements in the feeding apparatus (cranium) of Sicyopterus 

stimpsoni used in the mandibular lever model.  (Note: (1) in-lever arm for 
A2; (2) in-lever arm for A3; (3) in-lever arm for jaw opening; (4) out-lever 
arm of the mandible; (5) A2 muscle length; (6) A3 muscle length; (7) tendon 
length for A3; (8) distance between A2 origin and the quadratomandibular 
joint; (9) distance between A3 origin and the quadratomandibular joint; (10) 
distance between A2 and A3 insertions; (11) dorsal length of the mandible; 
(12) ventral length of the mandible). 

 

(from the tip of snout to the tip of caudal fin) of each specimen was also measured.  In 

addition to being input into the Westneat (2003) model, masses of A2 and A3, as well as 

linear measurements, could then be normalized for body size differences among 
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individuals (linear measurements divided by body length, L, and masses divided by L3).  

These values were then compared using one-way ANOVA and Fisher’s LSD post hoc 

test at α = 0.05 level to evaluate the significance of morphological differences between 

species. 

 

Results 

 
Analysis of mandibular movement 
 

As the mandible closes, output force of both A2 and A3 increase linearly, starting 

with the lowest forces and ending with the highest forces (Figure 3.2).  However, 

ANOVA indicates significant differences in the maximum output forces among species 

(F = 23.156, P < 0.0001 for output force of A2, and F = 18.282, P < 0.0001 for A3), with 

post hoc analysis showing that S. stimpsoni (3.02 x10-5 ± 1.41 x10-5 N/cm3 for A2, and 

2.20 x10-5 ± 1.09 x10-5 N/cm3 for A3) and L. concolor (3.68 x10-5 ± 1.13 x10-5 N/cm3 for 

A2, and 2.53 x10-5 ± 7.46 x10-5 N/cm3 for A3) have the lowest output force potential 

among the five species (Table 3.5).  In contrast, A. guamensis (9.71 x10-5 ± 6.35 x10-5 

N/cm3 for A2, and 5.84 x10-5 ± 3.94 x10-5 N/cm3 for A3), S. hawaiiensis (7.96 x10-5 ± 

1.69 x10-5 N/cm3 for A2, and 5.18 x10-5 ± 1.28 x10-5 N/cm3 for A3), and E. sandwicensis 

(10.33 x10-5 ± 4.07 x10-5 N/cm3 for A2, and 6.59 x10-5 ± 2.81 x10-5 N/cm3 for A3) 

showed similarly high output force for both A2 and A3 divisions (Table 3.5).  In addition, 

for all species, A2 generated approximately 1.5 times greater output force than A3 (Table 

3.5). 
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Species Maximum Output Force A2 (N/BL3) Maximum Output Force A3 (N/BL3) 

S. stimpsoni (N=34) 3.02 ± 1.41, b 2.20 ± 1.09, b 

L. concolor (N=23) 3.68 ± 1.13, b 2.53 ± 7.46, b 

A. guamensis (N=19) 9.71 ± 6.35, a 5.84 ± 3.94, a 

S. hawaiiensis (N=15) 7.96 ± 1.69, a 5.18 ± 1.28, a 

E. sandwicensis (N=13) 10.33 ± 4.07, a 6.59 ± 2.81, a 
 

Table 3.5: Maximum jaw output force of A2 and A3, normalized to body size (note: these 
values are to be multiplied by 10-5).  Values are means ± standard deviations.  
Species are grouped into a and b ranks (a to b, in a decreasing manner) based 
on ANOVA (F = 23.156, P < 0.0001 for A2, and F = 18.282, P < 0.0001 for 
A3) and Fisher’s LSD (α = 0.05) post hoc tests. 

 

Inversely to the muscle force production, as the mandible closes its angular 

velocity exponentially decreases (Figure 3.2).  Sicyopterus stimpsoni (2.51 ± 0.72 º/ms), 

A. guamensis (2.46 ± 1.05 º/ms), and E. sandwicensis (2.26 ± 0.44 º/ms) exhibited similar 

angular velocities of A2 at the beginning of mandibular closure that were faster than those 

of L. concolor and S. hawaiiensis (1.75 ± 0.53 º/ms and 1.33 ± 0.12 º/ms, respectively; F 

= 10.903, P < 0.0001: Table 3.6).  However, all of the species exhibited similar angular 

velocity for A3 (Table 3.6).  In addition, A3 produced up to twice as fast a velocity in jaw 

closing than A2 for all species (Table 3.6). 

As the mandible closes, EMA of both A2 and A3 increased and reached a plateau near the 

first one-third of the cycle (Figure 3.2).  For both minimum EMA of A2 at the beginning 

and maximum EMA of A2 at the end of the cycle, S. hawaiiensis had the highest values of 

all species (0.411 ± 0.050 for the minimum, and 0.477 ± 0.048 for the maximum: Table 

3.7).  Further, for the EMA of A2, A. guamensis (0.196 ± 0.093 for the minimum, and 

0.267 ± 0.119 for the maximum) and E. sandwicensis (0.216 ± 0.043 for the minimum, 
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and 0.295 ± 0.047 for the maximum) both exhibited similar EMAs for A2 that were 

significantly lower than those of other species, indicating higher velocity advantages 

(Table 3.7).  For the EMA of A3, A. guamensis again showed the lowest value  

 
 
Species Maximum Angular Velocity A2 (º/ms) Maximum Angular Velocity A3 (º/ms) 

S. stimpsoni (N=34) 2.51 ± 0.72, a 3.22 ± 0.81 

L. concolor (N=23) 1.75 ± 0.53, b 2.80 ± 0.57 

A. guamensis (N=19) 2.46 ± 1.05, a 2.79 ± 1.11 

S. hawaiiensis (N=15) 1.33 ± 0.12, b 2.85 ± 0.64 

E. sandwicensis (N=13) 2.26 ± 0.44, a 2.90 ± 0.66 
 

Table 3.6: Maximum values in angular velocity of A2 and A3 (º/ms).  Values are means ± 
standard deviations.  Species are grouped into a and b ranks (a to b, in a 
decreasing manner) based on ANOVA (F = 10.903, P < 0.0001 for A2; there 
was no significance, F = 1.472, P = 0.2166 for A3 among species) and 
Fisher’s LSD (α = 0.05) post hoc tests. 

 

Species Minimum EMA2 Maximum EMA2 Minimum EMA3 Maximum EMA3 

S. stimpsoni (N=34) 0.264 ± 0.071, b 0.336 ± 0.071, c 0.115 ± 0.028, a 0.213 ± 0.053, a 

L. concolor (N=23) 0.298 ± 0.080, b 0.380 ± 0.076, b 0.127 ± 0.039, a 0.226 ± 0.057, a 

A. guamensis (N=19) 0.196 ± 0.093, c 0.267 ± 0.119, d 0.092 ± 0.014, b 0.151 ± 0.043, b 

S. hawaiiensis (N=15) 0.411 ± 0.050, a 0.477 ± 0.048, a 0.129 ± 0.037, a 0.204 ± 0.048, a 

E. sandwicensis (N=13) 0.216 ± 0.043, c 0.295 ± 0.047, d 0.118 ± 0.034, a 0.212 ± 0.050, a 
 

Table 3.7: Minimum and maximum values in effective mechanical advantage (EMA) of 
A2 and A3.  Values are means ± standard deviations.  Species are groups into 
a, b, c, and d ranks (a to d, in a decreasing manner) based on ANOVA (F = 
21.636, P < 0.0001 for minimum EMA of A2, F = 17.843, P < 0.0001 for 
maximum EMA of A2, F = 4.270, P = 0.0031 for minimum EMA of A3, and F 
= 6.545, P = 0.0001 for maximum EMA of A3) and Fisher’s LSD (α = 0.05) 
post hoc tests between species. 
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Figure 3.2: Performance variables (output force at the jaw tip, angular velocity, effective 

mechanical advantage, and jaw power output) of all five species of Hawaiian 
gobies during jaw closing cycle. 
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in the course of mandibular closing (0.092 ± 0.014 for the minimum, and 0.151 ± 0.043 

for the maximum) and was the only species that deviated (by approximately 25%) from 

all other species (Table 3.7).  As evident in output force and angular velocity, in all 

species A2 had higher mechanical advantage (and conversely lower velocity advantage) 

than A3, suggesting differentiation of their functional roles in jaw closing performance. 

Because the jaw power is a product of output force and velocity (i.e., Power = 

F*V), its maximum value is reached during the course of the mandibular closing cycle 

rather than at its beginning or end (Figure 3.2).  The timing of maximum power output 

for A2 differed between species occurring at about 20% of jaw closing cycle in S. 

stimpsoni, A. guamensis, and E. sandwicensis, and later at about 40-50% in L. concolor 

and S. hawaiiensis.  Maximum power output for A3 was also early for A. guamensis at 

about 10% of the cycle, but was similar at about 20% of the cycle in all other species 

(Figure 3.2) perhaps suggesting a similar pattern of functional differentiation between A2 

and A3 as EMA calculations.  However, greater maxima of jaw power output seemed to 

appear relatively slower than lower maxima during the cycle.  Stenogobius hawaiiensis 

exhibited the highest power output for both A2 and A3 (0.468 ± 0.207 W/kg/cm3 and 

0.327 ± 0.166 W/kg/cm3, respectively: Table 3.8).  Lentipes concolor appeared to 

produce the second highest maximum power in A2 and a similar level of power output in 

A3 as that seen in S. hawaiiensis (Table 3.8).  Sicyopterus stimpsoni, A. guamensis, and 

E. sandwicensis all shared similar performance, with lower power output maxima in both 

A2 and A3 than in the other species (Table 3.8). 
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Species Maximum Jaw Power A2/BL3 (W/kg/cm3) Maximum Jaw Power A3/BL3 (W/kg/cm3) 

S. stimpsoni (N=34) 0.198 ± 0.132, c 0.185 ± 0.132, b 

L. concolor (N=23) 0.360 ± 0.199, b 0.338 ± 0.201, a 

A. guamensis (N=19) 0.151 ± 0.122, c 0.160 ± 0.118, b 

S. hawaiiensis (N=15) 0.468 ± 0.207, a 0.327 ± 0.165, a 

E. sandwicensis (N=13) 0.141 ± 0.087, c 0.130 ± 0.088, b 
 

Table 3.8: Maximum jaw power output of A2 and A3, normalized to body size.  Values 
are means ± standard deviations.  Species are grouped into a, b, and c ranks (a 
to c, in a decreasing manner) based on ANOVA (F = 14.570, P < 0.0001 for 
maximum jaw power output of A2, and F = 7.916, P < 0.0001 for maximum 
jaw power output of A3) and Fisher’s LSD (α = 0.05) post hoc test. 

 

Morphological factors affecting simulation performance 
 

Lever ratios for jaw closing based on skeletal measurements alone (i.e., skeletal 

mechanical advantage) strongly influenced output force, but the size of the adductor 

mandibulae muscles also played a major role (Tables 3.2 and 3.5).  Relatively larger 

muscles can have relatively larger cross-sectional areas, enabling greater force 

production.  For example, E. sandwicensis had the largest A2 and A3 at any given body 

size (Table 3.2), and accordingly this species exhibited the strongest bite force (Table 

3.5).  Similarly, A2 and A3 were both relatively large in one other species that also 

showed high bite forces  (i.e., A. guamensis: Tables 3.2 and 3.5).  However, muscle size 

is not the only factor that influences output force potential.  For example, S. hawaiiensis 

showed a normalized output force of A2 nearly as high as that of E. sandwicensis and A. 

guamensis, but with its relatively smaller muscle mass this appeared to be largely due to 

its A2 having the highest mechanical advantage among the species considered (Table 

3.4). 
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Comparing L. concolor and A. guamensis, differences in angular velocity between 

the two species (1.75 ± 0.53 º/ms and 2.46 ± 1.05 º/ms, respectively, P = 0.0011: Table 

3.6) predicted by the simulation were not consistent with predictions based strictly on 

skeletal lever ratios, or measurement of in vivo feeding kinematics, that indicated similar 

jaw closing performance for these species (Chapter 2).  In contrast, the high EMA of A2 

in S. hawaiiensis is consistent with its high value of jaw closing lever ratio.  However, 

EMA is a function not only of the skeletal jaw closing lever ratio, but also the angle of 

muscles onto each insertion point of the mandible (i.e., EMA = MA*sin(α); Westneat, 

2003) as well as the ratio of output force to muscular force (i.e., EMA = Fout/Fact: 

Westneat, 2003).  Therefore, the low EMA of both A2 and A3 in A. guamensis (Table 3.7) 

might be at least due to a low muscular insertion angle.  In addition, differences in 

performance for all four functional variables between A2 and A3 seemed to have strong 

morphological association, further suggesting differentiation of the functional roles of the 

two muscle divisions.  Greater muscle size in A2 can generate stronger bite forces, and 

longer muscle length in A3 (approximately 10% longer than A2: Table 3.3) can generate 

faster mandibular closure. 

 

Discussion 

 
Relationships between morphology and functional performance in the feeding 
systems of Hawaiian stream gobies 
 

Our simulations of jaw closing in Hawaiian stream gobies indicate that several 

differences in functional performance among these species correlate well with 
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morphological differences between them.  For example, the high output force of A2 and 

A3 in both E. sandwicensis and A. guamensis matches expectations from morphology 

because these muscles are significantly larger in these species than in the others measured 

in this study.  However, other species exhibit alternative morphological strategies to 

achieve high relative output forces of both muscles.  Stenogobius hawaiiensis, for 

instance, show normalized muscle forces almost as high as those of E. sandwicensis and 

A. guamensis, despite having smaller A2 and A3 masses.  A major factor contributing to 

these high forces is the placement and configuration of the jaw muscles, reflected in the 

high mechanical advantage for A2 seen in S. hawaiiensis (Table 3.4).  Thus, there are 

multiple anatomical pathways to reach similar functional performance in the feeding 

systems of Hawaiian gobioid fishes, reflecting the pattern of many-to-one mapping of 

morphology to performance cited by Alfaro et al. (2005) and Wainwright et al. (2005) for 

jaw function in labrid fishes, and by Blob et al. (2006) for climbing performance in 

several of these species of Hawaiian gobies. 

 
Functional differentiation between A2 and A3 in Hawaiian stream gobioids 
 

A2 function seems to emphasize force and A3 speed for all species.  Possibly, 

fishes might activate these muscles differently to feed on different food items, helping to 

broaden their dietary repertoire and perhaps niches as well.  In line with this possibility, it 

might be expected that a species with wider dietary breadth would show greater 

functional differentiation between A2 and A3.  Conversely, we might have predicted less 

differentiation between A2 and A3 in S. stimpsoni because it has the most specialized diet 

and behavior. However, similar patterns of performance between A2 and A3 are seen in S. 
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stimpsoni as in the other species.  Possibly S. stimpsoni has retained this pattern as a 

primitive state from their common ancestor with other gobies tested. 

 
Some insights into ecology and evolution of Hawaiian gobioid species 
 

Although our simulations show significant differences between species in several 

aspects of jaw closing performance, the distinctive feeding modes of several Hawaiian 

gobioid groups cannot be clearly associated with specific differences in performance 

variables.  For instance, although S. hawaiiensis has significantly higher A2 EMA than 

other species, it is not clear why this would be advantageous for filter feeding of detritus.  

Moreover, several species with very different habitats share similar performance 

capacities.  For instance, although only E. sandwicensis is a primary piscivore, its 

performance is very similar for almost all variables to that of A. guamensis.  In addition, 

the high jaw power of the detritivore, S. hawaiiensis, is nearly matched by the power 

output of L. concolor (Table 8), which lives in fast flowing stream reaches and picks food 

out of the water column (personal observation).  Thus, the diversity of feeding 

performance of Hawaiian stream gobioids does not show simple correlations with their 

habitats, but instead seems to reflect a combination of a maintenance of functional 

breadth with the retention of some primitive traits, in addition to novel functional 

capacities in several species. 
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