The Stockman's Scorecard: Validity and Reliability as an Instrument for Measuring Stockmanship

John K. Yost
West Virginia University

Jarred Yates
West Virginia University

David J. Workman
West Virginia University

Matthew E. Wilson
West Virginia University

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Recommended Citation

This Tools of the Trade is brought to you for free and open access by the Conferences at TigerPrints. It has been accepted for inclusion in The Journal of Extension by an authorized editor of TigerPrints. For more information, please contact kokeefe@clemson.edu.
The Stockman's Scorecard: Validity and Reliability as an Instrument for Measuring Stockmanship

Abstract
The quality of beef cattle stockmanship typically is evaluated through quantitative and qualitative measurements of animal behavior. The Stockman's Scorecard is an observation instrument that has been developed to directly measure the actions of beef cattle stockmen. This article documents a pilot project for determining the content validity, internal consistency, and intrarater reliability of the scorecard as an evaluation instrument. Our results show that the scorecard is a valid and reliable instrument for measuring the actions of stockmen. The instrument can be a valuable tool for Extension educators in evaluating their stockmanship programming impacts.

Keywords: animal welfare, reliability, stockmanship evaluation, validity

John K. Yost
Assistant Director of Farm Operations
Davis College School of Design
West Virginia University
Morgantown, West Virginia
john.yost@mail.wvu.edu

Jarred Yates
Farm Manager
Reymann Memorial Farms
West Virginia University
Wardensville, West Virginia
jerry.yates@mail.wvu.edu

David J. Workman
Assistant Professor
West Virginia University Extension Service
Wardensville, West Virginia
DJWorkman@mail.wvu.edu

Matthew E. Wilson
Associate Dean for Research
Davis College of Agriculture, Natural Resources, & Design
West Virginia University
Morgantown, West Virginia
Matt.Wilson@mail.wvu.edu

Introduction
The behavior, and subsequent welfare, of livestock is directly affected by the behavior and actions of stockmen (Zulkifli, 2013). Adverse handling practices induce significant fear in cattle, which can cause serious losses in productivity, increased handling problems, injuries to both animals and handlers, and diminished animal welfare (Rushen, Taylor, & Passille, 1999). Cattle may react negatively to any initial handling practice but can habituate over time (Maston, 2006), although it has been shown that livestock will not habituate to extremely adverse handling (Grandin, Curtis, Widowski, & Thurmon, 1986). The goal of a livestock handling activity should be to minimize fearful reactions (Gonyou, 1995). Cattle handlers are instructed to be calm, quiet, slow, and deliberate when working animals (Grandin, 2015).

Extension educators and other researchers and outreach practitioners conduct stockmanship training to improve the livestock handling skills of stockmen. Evaluation of program outcomes from these trainings has been determined by qualitative evaluation (Adams, Kristula, & Hain, 2019; Coleman, Hemsworth, Hay, &
Cox, 2000) and formal quantitative assessments (Beef Quality Assurance, n.d.) of animal behavior. These measurements assess improvements in stockmanship within an operation at the herd level (Rushen & Passille, 2015). However, if aberrations are identified in these animal observations, how are we to determine what stockperson actions were the root cause?

In attempt to more precisely evaluate the quality of beef cattle stockmanship, we developed the Stockman's Scorecard as an evaluation tool for measuring the quality of a stockman's cattle handling ability. The purposes of this report are to

1. establish the validity and reliability of the evaluation instrument and

2. confirm the intrarater reliability for multiple observers evaluating the same individual.

The Stockman's Scorecard

The instrument (see Figure 1) lists stockman actions that may be observed during a beef cattle handling activity (Grandin & Dessing, 2008). If an action is likely to produce a positive animal behavior, no points are deducted. Those actions that could produce a negative animal behavior are assigned a minus 5 (−5) or a minus 10 (−10) point deduction according to their perceived impact on animal behavior. When evaluating a stockman, the observer positions himself or herself in a location where it is possible to monitor the stockman herding cattle but not interfere with the activity. The evaluator observes the stockman throughout the activity and places a checkmark next to any actions listed on the card that were observed during the session. At the conclusion, the negative point totals are added up and subtracted from 100 points to determine the final score.

Figure 1.
The Stockman's Scorecard
Determining Validity and Reliability

To produce a usable evaluation instrument, one must establish that it is a valid and reliable tool for measuring the underlying construct (Huck, 2012). Validity refers to the accuracy of the instrument, answering the question “Does the instrument measure the construct it is intended to measure?” The related concept of reliability provides assurance that the instrument consistently collects the desired data. If we compare validity and reliability to shooting a gun, validity is related to whether we are hitting the target and reliability is related to whether we are hitting the same point on the target with each shot. If the instrument is both valid and reliable, we will be hitting the bull’s-eye with each shot.

<table>
<thead>
<tr>
<th>Herding Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrates understanding of Point of Bal.</td>
</tr>
<tr>
<td>No understanding of point of balance (-10)</td>
</tr>
<tr>
<td>Stands in front of animal and taps rear (-5)</td>
</tr>
<tr>
<td>Effectively uses Flight Zone Pressure</td>
</tr>
<tr>
<td>Excessive flight zone pressure (-10)</td>
</tr>
<tr>
<td>Slow to add/remove flight zone pressure (-5)</td>
</tr>
<tr>
<td>Unable to move group as unit (-5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise/Physical Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses appropriate amount of noise</td>
</tr>
<tr>
<td>Intentionally generates metallic noise (-10)</td>
</tr>
<tr>
<td>Constant/unnecessary screaming/yelling (-10)</td>
</tr>
<tr>
<td>Unnecessary noise (-5)</td>
</tr>
<tr>
<td>Uses driving aid appropriately</td>
</tr>
<tr>
<td>Electric Prod as primary driving aid (-10)</td>
</tr>
<tr>
<td>Electric prod applied at wrong time (-5)</td>
</tr>
<tr>
<td>Uses appropriate physical contact</td>
</tr>
<tr>
<td>Excessive/Unnecessary Physical Contact (-10)</td>
</tr>
<tr>
<td>Tail twisting after animal movement (-5)</td>
</tr>
</tbody>
</table>
Content, or face, validity of the scorecard was established by a panel of experts, following the guidance of Huck (2012). The completed scorecard was provided to four recognized experts in cattle handling and behavior. They agreed that the content of the card included all items one would wish to consider when evaluating a cattle stockman, thereby resulting in no changes occurring from their review. The instrument's internal consistency, or reliability, was determined via pilot testing at three Midwest cattle feeding facilities. Observer volunteers were trained on the use of the scorecard, and they evaluated 19 stockmen. Results were recorded in Excel as a "1" (action observed) or a "0" (action not observed). A split-half analysis was conducted via use of SPSS (Version 25) to calculate a Spearman-Brown coefficient of individual final scores (Carmines & Zeller, 1979). The instrument constructs were found to be exemplary, with a coefficient of 0.76, exceeding the threshold of 0.30 for interitem correlations (Robinson, Shaver, & Wrightsman, 1991).

The next step was to determine whether multiple observers could use the scorecard to score an individual stockman in a similar manner. For this purpose, six videos were created of stockmen working cattle at three Iowa feedyards. Three trained observers independently scored the six individuals using the scorecard, and results were recorded in Excel as a "1" or "0." The final scores were used to calculate an intraclass correlation coefficient (ICC) using SPSS (Version 25) (Hallgren, 2012). The observers exhibited a high level of agreement, with an ICC of 0.66, which can be classified as good intrarater reliability (Cicchetti, 1994).

Implications

Grandin (2014) stated that "people manage the things they measure" and went on to say that "measurement is essential because it enables management to determine if procedures are improving or getting worse" ("3.1. Packers"). Program evaluation is an important, yet challenging, component of Extension educator duties. Extension educators and specialists are recruited for their subject matter expertise and are typically not trained in evaluation techniques. Moreover, educators with a program emphasis in agriculture and natural resources have lower program evaluation skills than their programming counterparts (Ghimire & Martin, 2013). Due to the wide variation in their program delivery methods, it is often difficult for them to develop accurate evaluation instruments (Diaz, Kumar Chaudhary, Jayaratne, & Warner, 2019).

It has been established that the Stockman's Scorecard is a valid, reliable instrument that can be used to assign a numerical score to the actions of cattle handlers. The application of this tool is varied. Extension educators, and other stockmanship trainers, can use the instrument in a pretest/posttest format to determine the effectiveness of their stockmanship training. Additionally, Extension educators can provide facility managers with the scorecard to use to evaluate their employees and identify targeted training needs to improve abilities and reduce animal stress. Furthermore, the instrument may serve as a complement to current assessment procedures to evaluate the human factors associated with positive animal welfare efforts.

Acknowledgment

This project was supported through a pilot project grant from the National Beef Quality Assurance Advisory Committee.

References

