Spring 2015

Medical Training Simulator for Central Venous Catheterization

Rebecca Thomas
Clemson University

Alex Barrett
Clemson University

Samuel Foister
Clemson University

Julianne Jett
Clemson University

Arica Gregory
Clemson University

See next page for additional authors

Follow this and additional works at: https://tigerprints.clemson.edu/foci

Recommended Citation
Thomas, Rebecca; Barrett, Alex; Foister, Samuel; Jett, Julianne; Gregory, Arica; Hicks, Christopher; and Jacoby, Jennifer, "Medical Training Simulator for Central Venous Catheterization" (2015). Focus on Creative Inquiry. 121.
https://tigerprints.clemson.edu/foci/121

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Focus on Creative Inquiry by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
Authors
Rebecca Thomas, Alex Barrett, Samuel Foister, Julianne Jett, Arica Gregory, Christopher Hicks, and Jennifer Jacoby

This poster is available at TigerPrints: https://tigerprints.clemson.edu/foci/121
Central Venous Catheterization Procedure
- Used to deliver drugs to the heart in trauma cases
- Catheter inserted into the subclavian or jugular vein (Figure 1)
- Risky due to the proximity to major veins and arteries
- Students often practice on patients since current training simulators are inaccurate and expensive

Features of our simulator to overcome current simulator inadequacies
- Accurate anatomical landmarks
- Patent pending ultrasonic bone-mimetic cross-linked hydrogel
- Portable manikin and platform

The 2010 Affordable Care Act set many financial incentives for increasing quality of care as well as major disincentives for medical errors. Medicare has also eliminated hospital reimbursement for hospital-acquired conditions. Our goal is to create a safe, affordable, effective Central Venous Catheterization training simulator in order to improve care and reduce medical errors.

VASCULATURE
- Allows for ultrasound guided catheter insertion (Figure 2)
- Resistance to leaking
- Elastic arteries that simulate pulsatile flow created via hand pump and veins that expand with pressure created (Figure 3)

BONES
- Inclusion of all bony landmarks
 - Inclusion of two clavicles, the first and second rib, and the sternum (Figure 4)
 - Realistic use of palpable landmarks to locate for insertion
- Cost effective bone production method
 - 3D printed bones
 - Durable material allows for reuse
 - Single piece including all necessary bones does not require assembly

TISSUE ANALOG
- Mechanical Properties
 - Mechanical properties at a wide range of temperatures
 - Extended shelf life
 - Opacity hides internal anatomy for realistic training (Figure 5)
 - Can be punctured multiple times with minimal damage and does not clog needle (Figure 6)
 - Skin analog prevents dehydration and extends shelf life

- Ultrasoundability
 - Realistic echo texture (Figure 7)
 - Shows pulsatile flow in arteries with Doppler ultrasound
 - Visualization of expansion of veins during Valsalva (Figure 8)

- Platform
 - Inclination of 15 degrees to mock the Trendelenburg position (Figures 9 & 10)
 - Eliminates need for hospital beds and allows for easy clean-up

- Manikin
 - Represents upper torso
 - Mimics natural rotation of human head

- Tissue analog
 - Accurate anatomical landmarks
 - Ultrasoundability
 - Mechanical properties at a wide range of temperatures
 - Extended shelf life

- Ultrasoundability
 - Realistic echo texture
 - Shows pulsatile flow in arteries

- Ultrasoundability
 - Vision of expansion of veins during Valsalva

- Mechanical Properties
 - Mechanical properties at a wide range of temperatures
 - Extended shelf life
 - Opacity hides internal anatomy for realistic training

- Ultrasoundability
 - Realistic echo texture
 - Shows pulsatile flow in arteries

- Ultrasoundability
 - Visualization of expansion of veins during Valsalva

REFERENCES