5-2007

Analysis of Ride Quality of Tractor Semi-Trailers

Christopher Spivey
Clemson University, spivey3@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the [Engineering Mechanics Commons](https://tigerprints.clemson.edu/all_theses)

Recommended Citation

https://tigerprints.clemson.edu/all_theses/123

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
ANALYSIS OF RIDE QUALITY OF TRACTOR SEMI-TRAILERS

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Mechanical Engineering

by
Christopher Ryan Spivey
May 2007

Accepted by:
E. Harry Law, Committee Chair
Imtiaz Haque
John Wagner
This thesis develops parameter variation techniques for calculating the set of vehicle parameters that result in the best ride comfort for the driver. The model is a fifteen degree-of-freedom (15 DOF) tractor semi-trailer vertical dynamic ride model. The modeling and simulation techniques used in this thesis are extensions of the research performed by Trangsrud [1] and Vaduri [3]. Features of the model include suspension characteristics for (a) each of the five axles (tractor steer axle, two tractor drive axles, and two trailer axles), (b) tires, (c) a flexible engine mount, (d) the tractor cab, (e) the driver’s seat, and (f) a fifth wheel suspension system. Also taken into consideration are the beaming effects of the tractor and trailer frame. The simulation of the model is conducted using MATLAB. The input to the system is a user-defined power spectral density (PSD) function of the vertical road irregularities. Other user inputs include the beaming frequencies of the tractor and trailer frame, tire types, cab suspension configurations, seat suspension configurations, and fifth wheel suspension configurations. Outputs from the simulation include root mean square (RMS) accelerations experienced at the driver’s seat and at the center of gravity (CG) of the trailer, static axle loads and deflections, various transfer functions of response variables, and surface plots of the RMS combined weighted acceleration at the driver’s seat and the RMS vertical weighted acceleration at the trailer CG as different parameters of the vehicle are varied. In addition, the RMS acceleration spectra of the driver are plotted together with the ISO 2631 [5,7] comfort curves. Results from the case
studies explored in this thesis suggested lowering the stiffness values for the axle suspensions and tires and raising the corresponding damping values. Also, beaming frequencies of the tractor and trailer frames should be kept above 20 Hz to avoid large accelerations caused by coupling with other modes. Finally, the implementation of an idealized vertically-oriented fifth wheel suspension system did not lower accelerations experienced at the driver’s seat in the nominal vehicle, but was shown to have beneficial effects when coupled with a full cab suspension system.
ACKNOWLEDGEMENTS

A sincere thank you is given to Dr. E. Harry Law for his guidance, encouragement, and patience over the past two years. Without his constant support and willingness to help, I would not have been able to accomplish all that I have while here at Clemson University. His painstaking efforts in the checking and editing of this manuscript have been priceless, as well as his advice and cooperation during its development.

I would also like to thank Dr. Imtiaz Haque and Dr. John Wagner for participating as members of my committee. Their input was very valuable, and I am very grateful for the time they took out of their busy schedules to review this manuscript and listen to my presentation.

Very special thanks are due to my parents, Don and Pam Spivey, as well as my two brothers, Jonathan and Scott. They have been extremely encouraging to me during my time here in Clemson, and their love and support is one of the constants in my life that I am sure will never falter.

Finally, I would like to thank all of my friends in Clemson for their help, support, and making my time here so enjoyable. The memories made here will be with me forever, and none of you will ever be forgotten.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2</td>
<td>MODEL DERIVATION</td>
</tr>
<tr>
<td>3</td>
<td>SIMULATION</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS</td>
</tr>
</tbody>
</table>

ABSTRACT...III

ACKNOWLEDGEMENTS...V

LIST OF TABLES.. XI

LIST OF FIGURES..XV

CHAPTER

1. **INTRODUCTION** ...1
 - Introduction... 1
 - Research Motivation and Problem Statement.. 2
 - Literature Review of Tractor Semi-Trailer Ride
 - Comfort.. 2

2. **MODEL DERIVATION** ...9
 - Introduction... 9
 - Model Description ... 12
 - Modeling of Suspended Masses... 13
 - Modeling of Suspension Elements .. 14
 - Tire Modeling... 15
 - Tractor and Trailer Frame Bending... 15
 - Equations of Motion.. 21
 - Road Profiles.. 21

3. **SIMULATION** ..23
 - Introduction... 23
 - MATLAB Simulation ... 23
 - Model Parameters .. 25
 - Calculation of the Frequency Response.. 26
 - Calculation of Power Spectral Densities and
 - Root Mean Squares .. 29

4. **RESULTS** ...35
 - Introduction... 35
 - Baseline Simulation... 36
 - Tractor Axle Suspension Parameter Variation... 40
 - Axle Suspension Stiffness ... 40
 - Axle Suspension Damping ... 50
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle Suspension with Adjusted Stiffness and Damping Values</td>
<td>57</td>
</tr>
<tr>
<td>Tire Parameter Variation</td>
<td>61</td>
</tr>
<tr>
<td>Tire Stiffness</td>
<td>61</td>
</tr>
<tr>
<td>Tire Damping</td>
<td>68</td>
</tr>
<tr>
<td>Ride Performance with Adjusted Tire Stiffness and Damping Values</td>
<td>69</td>
</tr>
<tr>
<td>Ride Performance with Adjusted Suspension and Tire Parameters</td>
<td>73</td>
</tr>
<tr>
<td>Trailer Suspension and Beaming Parameter Variation</td>
<td>77</td>
</tr>
<tr>
<td>Trailer Parameters with Adjusted Stiffness and Beaming Frequency Values</td>
<td>85</td>
</tr>
<tr>
<td>Tractor and Trailer Beaming Variations</td>
<td>87</td>
</tr>
<tr>
<td>Fifth Wheel Suspension Parameter Variation</td>
<td>90</td>
</tr>
<tr>
<td>Vehicle with Full Set of Adjusted Parameters</td>
<td>96</td>
</tr>
<tr>
<td>Rollover Analysis</td>
<td>105</td>
</tr>
<tr>
<td>5. SUMMARY AND CONCLUSIONS</td>
<td>111</td>
</tr>
<tr>
<td>Summary</td>
<td>111</td>
</tr>
<tr>
<td>Recommendations</td>
<td>120</td>
</tr>
</tbody>
</table>

APPENDICES

A. Equations of Motion...123
B. Tractor and trailer beaming equations...157
 “Free-Pinned” Mode Shape Equation..157
 “Pinned-Free” Mode Shape Equation...160
 “Free-Free” Mode Shape Equation...163
C. Vehicle Model Parameters ..167
D. Normalized Eigenvectors ..173
E. Program User’s Guide ..179
 Overview ..179
 Getting Started...179
 Menus ...180
 Vehicle Selection Menu ..180
 Seat Suspension Menu ...181
 Cab Suspension Menu ..181
 Trailer Configuration Menu ..181
 Fifth Wheel Suspension Menu ..181
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaming Frequency Menu</td>
<td>182</td>
</tr>
<tr>
<td>Tire Selection Menus</td>
<td>182</td>
</tr>
<tr>
<td>Vehicle Velocity Menu</td>
<td>183</td>
</tr>
<tr>
<td>Road Surface PSD Selection Menu</td>
<td>183</td>
</tr>
<tr>
<td>J Penalty Factor Menu</td>
<td>183</td>
</tr>
<tr>
<td>Output Options</td>
<td>184</td>
</tr>
<tr>
<td>F. dof15_freq2.m</td>
<td>185</td>
</tr>
<tr>
<td>dof15_freq2.m</td>
<td>186</td>
</tr>
<tr>
<td>Parameters.m</td>
<td>214</td>
</tr>
<tr>
<td>TireData3.m</td>
<td>218</td>
</tr>
<tr>
<td>Function Files</td>
<td>221</td>
</tr>
<tr>
<td>Sample Output</td>
<td>223</td>
</tr>
<tr>
<td>G. opt_axleK_freq.m</td>
<td>229</td>
</tr>
<tr>
<td>H. opt_axleC_freq.m</td>
<td>251</td>
</tr>
<tr>
<td>I. opt_tireK_freq.m</td>
<td>273</td>
</tr>
<tr>
<td>J. opt_tireC_freq.m</td>
<td>295</td>
</tr>
<tr>
<td>K. opt_tlr_axlebeam.m</td>
<td>315</td>
</tr>
<tr>
<td>L. opt_beam_freq.m</td>
<td>337</td>
</tr>
<tr>
<td>M. opt_5wKC_freq.m</td>
<td>357</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>377</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Values of C_{sp} and N for PSDs of Various Surfaces</td>
<td>22</td>
</tr>
<tr>
<td>3.1: ISO 2631 Weighting Factors for Driver RMS Accelerations</td>
<td>32</td>
</tr>
<tr>
<td>3.2: Weighted RMS Acceleration Comfort Levels</td>
<td>33</td>
</tr>
<tr>
<td>4.1: User Inputs for Nominal Vehicle</td>
<td>37</td>
</tr>
<tr>
<td>4.2: Eigenvalues for the Nominal Vehicle</td>
<td>38</td>
</tr>
<tr>
<td>4.3: Summary of Modal Characteristics for the Nominal Vehicle</td>
<td>38</td>
</tr>
<tr>
<td>4.4: Ride Height Reduction with Adjusted Suspension Parameters</td>
<td>43</td>
</tr>
<tr>
<td>4.5: Static Axle Loads with Adjusted Suspension Parameters</td>
<td>44</td>
</tr>
<tr>
<td>4.6: J Penalty Formulation Results with Adjusted Axle Suspension Stiffness</td>
<td>49</td>
</tr>
<tr>
<td>4.7: J Penalty Formulation Results with Adjusted Axle Suspension Damping</td>
<td>53</td>
</tr>
<tr>
<td>4.8: Nominal and Adjusted Suspension Stiffness and Damping Constants</td>
<td>56</td>
</tr>
<tr>
<td>4.9: Combined Weighted Acceleration with Adjusted Suspension Stiffness and Damping</td>
<td>57</td>
</tr>
<tr>
<td>4.10: Weighted RMS Accelerations at Body Mode Frequencies</td>
<td>60</td>
</tr>
<tr>
<td>4.11: Ride Height Reduction with Adjusted Tire Parameters</td>
<td>63</td>
</tr>
<tr>
<td>4.12: Static Axle Loads with Adjusted Tire Stiffness Values</td>
<td>64</td>
</tr>
</tbody>
</table>
List of Tables (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>J Penalty Formulation Results with Adjusted Tire Stiffness Values</td>
<td>67</td>
</tr>
<tr>
<td>4.14</td>
<td>Nominal and Adjusted Tire Stiffness and Damping Constants</td>
<td>68</td>
</tr>
<tr>
<td>4.15</td>
<td>Combined Weighted RMS Driver Acceleration for Tire Parameter Variation</td>
<td>69</td>
</tr>
<tr>
<td>4.16</td>
<td>Weighted RMS Accelerations at Specific Frequencies</td>
<td>72</td>
</tr>
<tr>
<td>4.17</td>
<td>Acceleration with Adjusted Suspension and Tire Parameters</td>
<td>73</td>
</tr>
<tr>
<td>4.18</td>
<td>Weighted RMS Accelerations at Specific Frequencies</td>
<td>76</td>
</tr>
<tr>
<td>4.19</td>
<td>Ride Height Reduction with Adjusted Trailer Suspension Parameters</td>
<td>80</td>
</tr>
<tr>
<td>4.20</td>
<td>Static Axle Loads with Adjusted Trailer Suspension Stiffness</td>
<td>81</td>
</tr>
<tr>
<td>4.21</td>
<td>Nominal and Adjusted Trailer Suspension Stiffness and Beaming Frequency</td>
<td>84</td>
</tr>
<tr>
<td>4.22</td>
<td>Weighted Accelerations with Adjusted Trailer Suspension and Beaming Parameters</td>
<td>85</td>
</tr>
<tr>
<td>4.23</td>
<td>Nominal and Adjusted Parameters for Vehicle</td>
<td>97</td>
</tr>
<tr>
<td>4.24</td>
<td>Acceleration with the Full Set of Adjusted Parameters</td>
<td>98</td>
</tr>
<tr>
<td>4.25</td>
<td>Acceleration with an Unloaded Trailer</td>
<td>104</td>
</tr>
<tr>
<td>4.26</td>
<td>Nominal and Adjusted Tire Parameters for the Rollover Simulation</td>
<td>108</td>
</tr>
<tr>
<td>4.27</td>
<td>Nominal and Adjusted Suspension Parameters for the Rollover Simulation</td>
<td>108</td>
</tr>
<tr>
<td>5.1</td>
<td>Weighted RMS Accelerations</td>
<td>114</td>
</tr>
</tbody>
</table>
List of Tables (Continued)

<table>
<thead>
<tr>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2: Vehicle Ride Height Reductions</td>
<td>115</td>
</tr>
<tr>
<td>5.3: Static Axle Loads and Legal Load Limits</td>
<td>116</td>
</tr>
<tr>
<td>C.1: Geometric Dimensions of the Tractor Semi-Trailer Model</td>
<td>170</td>
</tr>
<tr>
<td>C.2: Inertial Properties of the Tractor Semi-Trailer Model</td>
<td>171</td>
</tr>
<tr>
<td>C.3: Suspension Parameters of the Tractor Semi-Trailer Model</td>
<td>171</td>
</tr>
<tr>
<td>C.4: Cab Suspension Parameters of the Tractor Semi-Trailer Model</td>
<td>171</td>
</tr>
<tr>
<td>C.5: Per-Tire Stiffness Values of the Tractor Semi-Trailer Model</td>
<td>172</td>
</tr>
<tr>
<td>C.6: Per-Tire Damping Values of the Tractor Semi-Trailer Model</td>
<td>172</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: ISO Whole Body Acceleration Comfort Limits</td>
<td>7</td>
</tr>
<tr>
<td>2.1: Fifteen Degree-of-Freedom System Model</td>
<td>10</td>
</tr>
<tr>
<td>2.2: Dimensions of the Tractor Semi-Trailer Model</td>
<td>11</td>
</tr>
<tr>
<td>2.3: Free-Pinned and Pinned-Free Beaming Modes</td>
<td>17</td>
</tr>
<tr>
<td>2.4: Free-Free Beaming Modes</td>
<td>18</td>
</tr>
<tr>
<td>4.1: Axle Suspension Stiffness Parameter Variation</td>
<td>42</td>
</tr>
<tr>
<td>4.2: J Penalty Formulation for Axle Suspension Stiffness</td>
<td>46</td>
</tr>
<tr>
<td>4.3: J Penalty Formulation for Axle Suspension Stiffness</td>
<td>47</td>
</tr>
<tr>
<td>4.4: Axle Suspension Damping Parameter Variation</td>
<td>51</td>
</tr>
<tr>
<td>4.5: J Penalty Formulation for Axle Suspension Damping</td>
<td>54</td>
</tr>
<tr>
<td>4.6: J Penalty Formulation for Axle Suspension Damping</td>
<td>55</td>
</tr>
<tr>
<td>4.7: Effect of Adjusted Suspension Stiffness and Damping on Driver Ride Comfort</td>
<td>59</td>
</tr>
<tr>
<td>4.8: Tire Stiffness Parameter Variation</td>
<td>62</td>
</tr>
<tr>
<td>4.9: J Penalty Formulation for Tire Stiffness</td>
<td>66</td>
</tr>
<tr>
<td>4.10: Effect of Adjusted Tire Parameters on Driver Ride Comfort</td>
<td>71</td>
</tr>
<tr>
<td>4.11: Effect of Adjusted Suspension and Tire Parameters on Driver Ride Comfort</td>
<td>75</td>
</tr>
<tr>
<td>4.12: Trailer Suspension and Beaming Parameter Variation</td>
<td>78</td>
</tr>
<tr>
<td>4.13: J Penalty Formulation for Trailer Parameters</td>
<td>82</td>
</tr>
</tbody>
</table>
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>J Penalty Formulation for Trailer Parameters</td>
<td>83</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of Tractor and Trailer Beaming Frequency on Driver Ride Comfort</td>
<td>88</td>
</tr>
<tr>
<td>4.16</td>
<td>Parameter Variation for the Fifth Wheel Suspension System</td>
<td>91</td>
</tr>
<tr>
<td>4.17</td>
<td>RMS Stroke Across the Fifth Wheel Vertical Suspension System</td>
<td>92</td>
</tr>
<tr>
<td>4.18</td>
<td>Parameter Variation for the Fifth Wheel Suspension with Full Cab Suspension</td>
<td>94</td>
</tr>
<tr>
<td>4.19</td>
<td>Effects of Adjusted Parameters with No 5th Wheel Vertical Suspension System on Driver Ride Comfort</td>
<td>100</td>
</tr>
<tr>
<td>4.20</td>
<td>Effects of Adjusted Parameters with 5th Wheel Vertical Suspension System on Driver Ride Comfort</td>
<td>102</td>
</tr>
<tr>
<td>4.21</td>
<td>Rollover Results for the Nominal Vehicle</td>
<td>106</td>
</tr>
<tr>
<td>4.22</td>
<td>Rollover Results for the Vehicle with Adjusted Parameters</td>
<td>109</td>
</tr>
<tr>
<td>A.1</td>
<td>Fifteen Degree-of-Freedom System Model</td>
<td>126</td>
</tr>
<tr>
<td>A.2</td>
<td>Dimensions of Tractor Semi-Trailer Model</td>
<td>127</td>
</tr>
<tr>
<td>C.1</td>
<td>Fifteen Degree-of-Freedom System Model</td>
<td>168</td>
</tr>
<tr>
<td>C.2</td>
<td>Dimensions of the Tractor Semi-Trailer Model</td>
<td>169</td>
</tr>
<tr>
<td>C.3</td>
<td>Common Fifth Wheel Connection</td>
<td>172</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Introduction

The focus of this thesis is the development and simulation of a ride comfort model for a cab-over style tractor semi-trailer, and parameter variation programs that can provide the user with the best set of parameters based on the combined ISO weighted acceleration of the driver and the vertical ISO weighted acceleration of the trailer CG. Also factored in are constraints caused by factors such as axle load limits, vehicle ride height, and stroke across the fifth wheel. Previous simulations have studied the dynamic response of the tractor semi-trailer and the effect that certain parameters have on the response, but this simulation is unique in that it shows how the dynamic response changes in response to the variation of multiple parameters over a wide range of values. The model has 15 degrees-of-freedom (DOFs) and focuses on the vertical dynamic response. Among the outputs given by the program are the RMS accelerations that are present at the driver’s seat and the trailer CG, transfer functions for various response variables, and static loads for all axles.

Chapter 1 provides information about previous related research on this topic and why this particular model was developed. The details of the model and the derivation of the governing equations can be found in Chapter 2. Chapter 3 discusses the details of the simulation program and parameter variation programs.
The results from the simulation program and case studies from the parameter variation programs are presented and discussed in Chapter 4. Finally, Chapter 5 gives a summarization of the completed research and provides topics for possible future research on this topic. Additional information, data, and the MATLAB codes are available in the Appendices.

Research Motivation and Problem Statement

A revolutionary new tire design has been conceived and manufactured by the Michelin Tire Corporation of North America. This new design is aimed at replacing the dual tires which are in wide use in the trucking industry with a single, wide-base tire. However, the different types of trucks which can be outfitted with this tire are virtually limitless in their configurations of the tractor as well as the load. The research and data presented with this thesis can provide Michelin with a way to discover the set of parameters that provide the best ride quality for the driver, the lowest accelerations experienced at the trailer CG, and how the parameters of the complete system can be chosen to achieve this. The computer simulation of the tractor semi-trailer allows the parameters to be varied and the response to be studied with multiple types of loading conditions, suspension configurations, road conditions, tire types, and speeds.

Literature Review of Tractor Semi-Trailer Ride Comfort

Driver ride comfort in medium and heavy duty trucks has been an area of great interest for truck manufacturers and their operators for many years.
Excessive driver discomfort and fatigue can have a direct impact on productivity and safety. Improved ride comfort would not only allow the driver to remain more alert at the wheel, but would also allow the driver to safely operate the tractor semi-trailer for longer periods of time.

Studies have been conducted to address various problems using a wide range of vehicle models which focus on individual issues. The model developed in this thesis serves as a continuation of the work performed by Trangsrud [1] and the 14 degree-of-freedom (DOF) tractor semi-trailer model he developed. Trangrud’s model and simulation investigated the effects on the ride comfort of the driver of the new wide-base tires developed by Michelin. Also, his model included the possibility to motions of the engine with respect to the tractor chassis and beaming of the semi-trailer. Trangsrud studied the effects of tire non-uniformities and friction in the suspension system and their effect on the dynamic response of the tractor semi-trailer. Finally, he studied the effects on dynamic response caused by random variations in tire pressures, tire non-uniformities, and axle spring stiffnesses.

Much of Trangsrud’s work, like the work presented in this thesis, was based on work done by or parallel to that of many others. Vaduri [3] investigated the effects of cab and seat suspension on the isolation of the driver from the road inputs. His model included the effects of tractor frame beaming and the presence of tire radial stiffness non-uniformities. LeFerve [8] performed a broad study concerning the effects of different parameters on the tractor and trailer ride dynamics. Among the parameters he investigated were the cab and seat
suspensions, fifth wheel location, frame bending vibrations, tire and wheel non-uniformities, and trailer pitching motions.

A literature survey was presented by Jiang et al [9] in which seven different tractor semi-trailer models were discussed as well as five different driver-seat models. The different tractor semi-trailer models include a simple six DOF pitch and vertical heave model developed by Dhir et al [11] to study the effects of dry or coulomb friction in the axle suspension. Also included is a 21 DOF pitch, heave, and roll model developed by Cole and Cebon [12] that included detailed suspension models to study the connection between heavy vehicle design and the dynamic pavement loading.

The effects of cab and seat suspension have been an area of particular interest because of the considerable ride comfort improvements they provide. Studies were conducted by Foster [13] and Flower [14] to analyze the effects of various cab suspensions. Both concluded that they were a very effective method for improving the driver ride comfort. The greatest improvements in acceleration were found to be in the frequency range in which the human body is the most sensitive, 1.0 to 20 Hz [5,7]. Foster’s study examined a front and rear cab suspension with the addition of a suspension system for the driver’s seat with low natural frequencies. This element provided the necessary isolation of the driver from the accelerations in the tractor frame and cab in the key frequency range. Flower conducted research which examined the effects of front-only and rear-only cab suspension. Both configurations provided significant improvement to the
driver ride quality, but the front suspension proved to be difficult to implement and service.

The 14 DOF model developed by Trangsrud [1] provided a comparison of the wide-base tires and conventional dual tire assemblies in the frequency domain. This allowed a good assessment of the vehicle ride quality. Frequency response methods allow the results to be easily compared to ride quality standards set forth by the International Standard Organization, ISO 2631 [5,7]. Of course, different body types of drivers, seating positions, etc. make it nearly impossible to determine an exact comfort limit for every driver. However, the ISO 2631 standard is still regarded as a leading standard for quantifying ride quality. The ride quality standards exist as upper boundaries of the RMS vertical and longitudinal accelerations measured at the driver’s seat (Figure 1.1) over the frequency range from 0.1 to 50 Hz. The boundaries represent the amount of time the driver can sustain that particular acceleration before becoming uncomfortable. As one would expect, lower acceleration magnitudes can be tolerated as the driver operates the vehicle for longer periods of time.

It should be noted that in recent years, the comfort dependence on time in the ISO 2631 standards has been dropped [7]. This was due to research results that indicated that the dependence of comfort on duration was questionable, particularly during short time intervals. However, the time dependence was retained in the health evaluation. Since this research concerns vehicles which generally operate for long periods of time, and the comfort boundaries provide a good reference point for which to compare ride comfort criteria. Also, the
frequency information provided by comparing results against the ISO 2631 ride comfort standards is quite useful in making design decisions. Due to these factors, the time dependent comfort criteria will be retained.

This thesis extends the work of Trangsrud and Vaduri [1,3] to describe ways of predicting the dynamic ride response and the comparisons of different parameters and configurations of the vehicle. Methods are presented in this thesis that will aid in the determination of the set of parameters that result in improved ride comfort performance of the vehicle. Also, this thesis explores the possibility of adding a vertically oriented fifth wheel vertical suspension system, and determining the set of parameters for that system that will result in the most desirable ride response. A picture depicting a common fifth wheel connection may be found in Appendix C labeled Figure C.3. Finally, the trade-off between ride comfort and rollover characteristics is briefly examined.
Figure 1.1: ISO Whole Body Acceleration Comfort Limits [5]
CHAPTER 2
MODEL DERIVATION

Introduction

The tractor semi-trailer under study in this thesis is a cab-over type tractor with a basic box semi-trailer and was modeled as having a 15 degree-of-freedom system (DOF), with ten DOFs for the tractor and five DOFs for the semi-trailer (Figure 2.1). The model is based on work by Trangsrud [1] with the addition of a fifth wheel suspension system, which allows for heave of the trailer frame relative to the tractor. The degrees of freedom describing the tractor are the driver seat heave, cab pitch and heave, engine heave, tractor frame pitch and heave, tractor frame beaming, and heave of each of three axles (one steer axle and two drive axles). Describing the trailer are the pitch and heave of the trailer frame, the beaming of the trailer frame, and the heave of each of the two trailer axles. The governing equations were derived using the Lagrangian approach [15] which uses the kinetic and potential energies of each of the tractor semi-trailer elements.
Figure 2.1: Fifteen Degree-of-Freedom System Model
Figure 2.2: Dimensions of the Tractor Semi-Trailer Model
Model Description

To study the dynamic response of the tractor semi-trailer, a mathematical model was developed containing fifteen degrees of freedom. The DOFs for the tractor are listed below.

1. vertical displacements of
 a. Driver’s Seat \(z_S \),
 b. Cab CG, \(z_C \),
 c. Engine, \(z_E \),
 d. Tractor CG, \(z_T \),
 e. Tractor Frame Beaming, \(\eta_T \),
 f. Steer Axle (Axle #1), \(z_1 \),
 g. 1st Drive Axle (Axle #2), \(z_2 \),
 h. 2nd Drive Axle (Axle #3), \(z_3 \),

2. pitch angles of
 a. Tractor Frame, \(\theta_T \),
 b. Cab Body, \(\theta_C \),

The DOFs for the trailer are

1. vertical displacements of
 a. Trailer Frame CG, \(z_{TLR} \),
 b. Trailer Frame Beaming, \(\eta_{TLR} \),
 c. 1st Trailer Axle (Axle #4), \(z_4 \),
 d. 2nd Trailer Axle (Axle #5), \(z_5 \),

2. pitch angles of
 a. Trailer Frame, \(\theta_{TLR} \),

All of the displacements are absolute quantities with the exception of the tractor and trailer frame beaming displacements, \(\eta_T \) and \(\eta_{TLR} \), which are relative to the
rigid frames. A description of the tractor semi-trailer model suspension parameters, geometric parameters, and inertial properties can be found in Appendix C along with a visual representation in Figure 2.2. These values were obtained from Law et al [17] and from physical measurements on a Michelin test vehicle, a Freightliner Century Class tractor.

Modeling of Suspended Masses

The tractor semi-trailer model consists of suspended masses which are coupled by parallel linear springs and viscous dampers, as seen in Figure 2.1. The inputs are transmitted from the road to the vehicle via the tires, which are represented as equivalent linear spring and viscous damping “suspensions” which approximate tire stiffness and damping characteristics. The tires are connected to the frame by another equivalent linear spring and damper which approximate the vehicle axle suspension elements.

The tractor frame rides atop three axles, the steer axle at the front of the vehicle and two drive axles at the rear of the vehicle. Likewise, the semi-trailer frame rides atop two axles, both located at the rear of the frame. The semi-trailer is connected to the tractor frame via a fifth wheel connection, modeled by a equivalent linear spring and damper. The fifth wheel can be treated as a pin connection by setting the stiffness value very high, which allows for shear and vertical forces, but no bending moment, to be transferred across the connection.

The engine is modeled as a lumped mass connected to the tractor frame via another linear spring and viscous damper which approximate engine mounts.
The cab sits atop two sets of linear springs and viscous dampers, which allows it to be modeled in any of four configurations: (a) front and rear cab suspension, (b) suspension in only the rear of the cab, (c) suspension in only the front of the cab, (d) no suspension. Finally, the drivers seat has the option of being modeled as an equivalent linear spring and viscous damper, or may be simulated as a rigid connection by setting the stiffness value very high.

Modeling of Suspension Elements

All of the suspension elements found in the model are represented as combinations of linear springs and viscous damping elements. These are meant to provide an appropriate approximation to suspension elements on an actual tractor semi-trailer. The purpose of each of the suspension elements is to decrease the magnitude of the transmission of the road inputs to the vehicle and ultimately to the driver.

There are many different types of suspension elements that can be found on modern tractor semi-trailers. A few of these include coil spring suspensions, parabolic leaf spring suspensions, and air bag suspensions. In this model, all of these suspension types are modeled by parallel spring and damping systems by using the best estimate possible for the stiffness and damping values.

The road inputs are assumed to be identical on the left and right sides of the vehicle. Also, the suspension elements may be lumped into a single per-axle suspension element representative of the left and right sides of the axle.
Tire Modeling

The tires for this tractor semi-trailer are modeled as point masses connected to the road by equivalent linear spring and viscous damping elements. The tire spring constant represents the equivalent tire stiffness and the damping constant simulates the energy dissipation that results from tire deformation [19]. Though the tire damping constant does not vary in this model, it may vary in actual driving conditions depending on temperature and other environmental conditions. The value was held constant since accurate information regarding these effects was not available and it is intended to represent a “nominal” condition. The tire and wheel mass is lumped together with the axle mass and treated as a single mass at the center of the axle.

Tractor and Trailer Frame Bending

The tractor and semi-trailer frames are constructed using simple ladder designs with two longitudinal frame rails on the outside and parallel frame rails between them. This design allows the frames to become excited and flex in bending in response to the road inputs. The fundamental frequencies of the tractor and semi-trailer frame are typically in the range of 20 to 25 Hz, which is within the range of typical excitations caused by the road surface. The bending of the frames affect both the longitudinal and vertical accelerations of the driver’s seat as well as other elements of the tractor semi-trailer.
The flexible tractor and semi-trailer frames can be represented in the model in either one of two ways depending on the fifth wheel. When the fifth wheel connection is modeled as a pin connection, the tractor and trailer frame are modeled as free-pinned and pinned-free beams, respectively. However, when a fifth wheel suspension is present, each frame is modeled as a free-free beam. Figures 2.4 and 2.5 depict each of the two mode shapes used to model the frames. The beaming characteristics of each frame are approximated by the first mode shape for that particular configuration. However, provisions for adding higher modes to the model could be done relatively easily.

The equation for bending vibration of a uniform Euler-Bernoulli beam is

\[EI \frac{\partial^4 \eta}{\partial x^4} (x,t) + \rho A \frac{\partial^2 \eta}{\partial t^2} (x,t) = f(x,t) \quad (2.1) \]

where \(E \) is the modulus of elasticity, \(I \) is the moment of inertia, \(\eta(x,t) \) is the vertical displacement of the beam at some point \(x \) along the beam and at some time \(t \), \(\rho \) is the density of the beam material, and \(A \) is the cross sectional area of the beam. For a beam that is un-damped and in free vibration, \(f(x,t) = 0 \). Using the separation of variables method,

\[\eta(x,t) = X(x)T(t). \quad (2.2) \]

Applying the separation of variables to Equation 2.1 and rearranging yields,

\[c^2 \frac{X''(x)}{X(x)} = -\frac{\ddot{T}(t)}{T(t)} = \omega^2, \quad (2.3) \]
Figure 2.3: Free-Pinned and Pinned-Free Beaming Modes
Figure 2.4: Free-Free Beaming Modes
where
\[c^2 = \frac{EI}{\sqrt{\rho A}}. \]

(2.4)

The system natural frequency is denoted by the symbol \(\omega \). The constant \(\omega^2 \) is chosen as the separation constant based on the right hand side of Equation 2.3 which forms the temporal equation,
\[\ddot{T}(t) + \omega^2 T(t) = 0, \]

(2.5)

which has the solution,
\[T(t) = A \sin \omega t + B \cos \omega t. \]

(2.6)

Solving for the left hand side of Equation 2.3 gives the spatial equation,
\[X''(x) - \frac{\omega^2}{c^2} X(x) = 0. \]

(2.7)

By defining
\[\beta^4 = \frac{\omega^2}{c^2} = \frac{\rho A \omega^2}{EI}, \]

(2.8)

a general form for the solution to the spatial equation can be calculated to be
\[X(x) = C_1 \cos \beta x + C_2 \sin \beta x + C_3 \cosh \beta x + C_4 \sinh \beta x. \]

(2.9)

The constants \(C_1, C_2, C_3, \) and \(C_4 \) are solved for using information provided about the boundary conditions of the beams. For a beam with a “pinned” end, the boundary conditions state that the deflection or displacement and the bending moment at that end are both zero,
\[\text{Deflection} = \eta = 0, \]

(2.10)
\[\text{Bending Moment} = EI \frac{\partial^2 \eta}{\partial x^2} = 0. \]

(2.11)
For a beam with a free end, the boundary conditions state that the bending moment and the shear force at that end are both zero,

\[BendingMoment = EI \frac{\partial^2 \eta}{\partial x^2} = 0, \quad (2.12) \]

\[ShearForce = \frac{\partial}{\partial x}\left(EI \frac{\partial^2 \eta}{\partial x^2} \right) = 0. \quad (2.13) \]

The derivation of the tractor and trailer beaming equations can be found in Appendix X.

To model the beaming of the tractor and trailer frames using the Lagrangian approach, the assumed modes method is used. The assumed modes method works by separating the distributed parameter system [15]. The displacement due to beaming, \(\eta(x,t) \), can then be approximated by the finite series,

\[\eta(x,t) = \sum_{i=1}^{n} f_i(x) q_i(t), \quad (2.14) \]

where \(f_i(x) \) is the \(i^{th} \) mode shape beaming function and \(q_i(t) \) is the \(i^{th} \) generalized coordinate.

The frame models allow the user to input the desired frequency, of the beaming mode, on which is taken into account by the calculation of the flexural rigidity, EI, which is calculated as,

\[EI = (2\pi f)^2 \left(\frac{l}{\beta l} \right)^4 \rho A. \quad (2.15) \]

where \(f \) is the natural frequency of the bare frame in Hertz (Hz), \(l \) is the length of the frame, \(\beta \) is a constant associated with the beam type and mode shape, and \(\rho A \)
is the mass per unit length of the frame [15]. In the simulation, the user defines the desired values for f, pA, l, and β. The EI calculated in Equation 2.15 is then calculated based on these inputs.

Equations of Motion

The equations of motion for the 15 DOF tractor semi-trailer vehicle model were derived using the Lagrangian approach [15]. The full derivation can be found in Appendix A.

Road Profiles

The road which provides the vehicle model inputs is a random road profile. For the purpose of this analysis, the road profiles are given in terms of their power spectral density functions,

$$S_{z_z} (\Omega) = C_{sp} \Omega^{-N}, \quad (2.16)$$

where Ω is the spatial frequency measured in cycles per unit length, C_{sp} and N are constants found in Table 2.1, and S_{z_z} is the power spectral density (PSD) function of the elevation of the elevation of the road surface profile [19]. The PSD of the road profile can be converted to a function of temporal frequency, f measured in Hz, by using the velocity of the vehicle in units of length per second,

$$S_{z_z} (f) = \frac{S_{z_z} (\Omega)}{\nu}, \quad (2.17)$$

through the relationship,
$$f \left(\frac{\text{cyc}}{\text{sec}} \right) = \Omega \left(\frac{\text{cyc}}{\text{m}} \right) \cdot V \left(\frac{\text{m}}{\text{sec}} \right).$$

(2.18)

This road profile PSD can then be used to find the PSDs and RMS values for various elements of the model. A full description of this process can be found in Chapter 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>N</th>
<th>C_{sp} (SI)</th>
<th>C_{sp} (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smooth Runway</td>
<td>3.8</td>
<td>4.3×10^{-11}</td>
<td>1.6×10^{-11}</td>
</tr>
<tr>
<td>2</td>
<td>Rough Runway</td>
<td>2.1</td>
<td>8.1×10^{-6}</td>
<td>2.3×10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>Smooth Highway</td>
<td>2.1</td>
<td>4.8×10^{-7}</td>
<td>1.2×10^{-6}</td>
</tr>
<tr>
<td>4</td>
<td>Highway with Gravel</td>
<td>2.1</td>
<td>4.4×10^{-6}</td>
<td>1.1×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>Pasture</td>
<td>1.6</td>
<td>3.0×10^{-4}</td>
<td>1.6×10^{-3}</td>
</tr>
<tr>
<td>6</td>
<td>Plowed Field</td>
<td>1.6</td>
<td>6.5×10^{-4}</td>
<td>3.4×10^{-3}</td>
</tr>
</tbody>
</table>

Note: C_{sp} (SI) is used for computing $S_{z_{p}} (\Omega)$ in m2/cycle/m and C_{sp} (English) is used for computing $S_{z_{s}} (\Omega)$ in ft2/cycle/ft.
CHAPTER 3
SIMULATION

Introduction

The tractor semi-trailer ride simulation uses the vehicle model described in the preceding chapter and Appendices. A MATLAB simulation, titled dof15_freq2.m, was created to investigate the effects various parameters have on the driver ride comfort, vehicle ride heights, and pavement loading. The program allows the user to select desired configurations for the trailer, fifth wheel, cab and seat suspension, and tires. Also developed were simulations that vary certain parameters and create surface plots displaying the corresponding trends in driver ride comfort and trailer CG acceleration.

MATLAB Simulation

The vehicle ride simulation was programmed using MATLAB (Mathworks). The vehicle is described by the fifteen second-order differential equations presented in Appendix A. The equations of motion are arranged in matrix form,

\[M\ddot{X} + C\dot{X} + KX = AU + BU \] \hspace{1cm} (3.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, A is the road input damping matrix, and B is the road input stiffness matrix [15]. The matrix X is the vector of the system unknowns,
where, as can be seen in Figure 2.1, \(z_s \) is the vertical displacement of the driver’s seat, \(z_c \) and \(\theta_c \) are the vertical displacement and pitch angle of the tractor cab, respectively, \(z_e \) is the vertical displacement of the engine, \(z_t \), \(\theta_t \), and \(q_t \) are the tractor vertical displacement, tractor pitch angle, and generalized time dependent coordinate for the beaming of the tractor frame respectively. The trailer vertical displacement, trailer pitch angle, and generalized time dependent coordinate for the beaming of the trailer frame are \(z_{tlr} \), \(\theta_{tlr} \), and \(q_{tlr} \), respectively, and \(z_1 \), \(z_2 \), \(z_3 \), \(z_4 \), and \(z_5 \) are the vertical displacements of the five axles. The matrix \(U \) is the vector of the road profile vertical displacement,

\[
\begin{bmatrix}
U_1 \\
U_2 \\
U_3
\end{bmatrix} = (3.3)
\]

For each element of the model, the vertical displacements have the positive direction defined as downward movement, and positive pitch rotations are defined as the front of the particular body moving up and the rear moving down. The displacements due to frame beaming are relative to the frame with the positive direction being in the upward direction.

To calculate the frequency responses, PSDs, RMS values, and eigenvalues and eigenvectors, the Laplace transform of the system must be taken,

\[
\{ M_s^2 + C_s + K \} X(s) = \{ A_s + B \} U(s). \quad (3.4)
\]

where the M matrix is composed of the mass terms, C is composed of the damping terms, and K is composed of the stiffness terms of each component of
the model. The values for the road input in the U vector depend on the user-defined road profile. As discussed in Chapter 2, the road profile is an approximation to the vertical irregularities found on different types of roadways. Each axle is assumed to see the same road profile, but with time delay between the axles. All time delays are calculated relative to the first (steer) axle of the tractor. The magnitude of the time delay, T_i, depends on the velocity at which the vehicle is traveling, v, and the distance, d_i, that particular axle is from the first axle,

$$T_i = \frac{d_i}{v}.$$ \hfill (3.5)

Applying the time delays to the road input vector, U, the new road input vector in Laplace form becomes,

$$U(s) = \left[1 \ e^{-sT_1} \ e^{-sT_2} \ e^{-sT_3} \ e^{-sT_4} \right] z_i(s) = b(s) z_i(s).$$ \hfill (3.6)

Inserting Equation 3.6 into Equation 3.4 results in a much simplified system with only one input due to road irregularities,

$$\left\{Ms^2 + Cs + K\right\} X(s) = \left\{As + B\right\} b(s) z_i(s)$$ \hfill (3.7)

Model Parameters

The parameters for the vehicle used in this simulation were obtained by combining information found in several different sources. Most of the tractor parameters came from physical measurements conducted by personnel at Michelin on a test tractor, a Freightliner Century Class tractor. A detailed description of the parameters used in this simulation can be found in Appendix C.
Calculation of the Frequency Response

The road inputs into the system affect the dynamic response of each of the individual degrees of freedom. In order to fully analyze how the system reacts to various inputs, it is analyzed over an entire spectrum of frequencies ranging from 0.1 Hz to 50 Hz. Solving for the vector of the system’s unknowns, $X(s)$, from Equation 3.7 yields,

$$X(s) = \left(Ms^2 + Cs + K \right)^{-1} \left[\{As + B\} b(s) z_i(s) \right]. \quad (3.8)$$

The vector of the transfer functions in response to the input on the first tractor axle, z_i, is,

$$X(s) = Ms^2 + Cs + K \left[\{As + B\} b(s) . \quad (3.9)$$

To obtain the transfer function of a particular coordinate in response to the road, $X(s)$ is pre-multiplied by the appropriate row vector. For example, the transfer function for the vertical displacement of the driver’s seat is given by,

$$\frac{z_i(s)}{z_1(s)} = P \left(Ms^2 + Cs + K \right)^{-1} \left[\{As + B\} b(s) \right]. \quad (3.10)$$

where,

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \quad (3.11)$$

To calculate the velocity or acceleration of any of the degrees in the Laplace domain, the individual motion must be multiplied by s or s^2 respectively.
Similar to the above example, to calculate the transfer function for the vertical acceleration of the driver’s seat, Equation 3.10 must be multiplied by,

\[P = \begin{bmatrix} s^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & s & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & s & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & s & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & s \end{bmatrix}. \] (3.12)

In addition to the individual degrees of freedom of the system, other information can be calculated using a combination of the motions. For example, the stroke across the fifth wheel can be calculated by finding the difference of vertical displacements of the points on the tractor frame and trailer frame where the fifth wheel is connected. Equation 3.13 shows the calculations performed to find the stroke across the fifth wheel.

\[z_{\text{stroke}} = \left[z_t + i \dot{\theta} - q_t (a + i) \right] - \left[z_{\text{fifth wheel}} - e \dot{\theta} - q_{\text{fifth wheel}} (0) \right] \] (3.13)

where \(i \) is the distance from the CG of the tractor to the fifth wheel connection, \(a \) is the distance from the front of the tractor to the CG of the tractor, and \(e \) is the distance from the CG of the trailer to the fifth wheel connection. The stroke across the fifth wheel is then calculated through the location vector \(P \),

\[P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & i & -f_t (a + i) & -1 & e & f_{\text{fifth wheel}} (0) & 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \] (3.14)

Transfer functions can also be used to calculate other responses of the system such as the wheel forces. The wheel forces, or pavement loadings, are calculated using the transfer function for each axle. For a given axle, the equation of the per-axle wheel force is,

\[F = c_i \left(\dot{z} - \dot{z}_R \right) + k_i \left(z - z_R \right) \] (3.15)
where \(c_i \) is the tire damping coefficient, \(k_i \) is the radial tire stiffness coefficient, \(z \) is the vertical displacement of the axle, and \(z_R \) is the vertical elevation of the road being traversed. Performing a Laplace transform on Equation 3.15 results in,

\[
F(s) = (c_i s + k_i) \cdot \left[z(s) - z_R(s) \right].
\]
(3.16)

Dividing through Equation 3.16 by the displacement of the road results in the force transfer function for a given axle,

\[
\frac{F(s)}{z_R(s)} = (c_i s + k_i) \cdot \left[\frac{z(s)}{z_R(s)} - 1 \right].
\]
(3.17)

For the vehicle simulation system, Equation 3.17 provides the force transfer function for each axle relative to the road displacement under that particular axle. In order to present the force transfer function for a particular axle in terms of the roadway, the time delay for that axle must be calculated and applied to Equation 3.17. For example,

\[
z_2(s) = z_1(s) e^{-sT_2},
\]
(3.18)

where \(z_2(s) \) is the displacement of the second axle and \(T_2 \) is the time delay between the first and second tractor axles. Likewise, the wheel force transfer function for the second drive axle becomes,

\[
\frac{F_2(s)}{z_2(s)} = (c_{i2} s + k_{i2}) \cdot \left[\frac{z_{i2}(s)}{z_2(s)} - 1 \right] = (c_{i2} s + k_{i2}) \cdot \left[\frac{z_{i2}(s)}{z_1(s)} e^{sT_2} - 1 \right].
\]
(3.19)
Calculation of Power Spectral Densities and Root Mean Squares

As discussed in Chapter 2, the vertical profile PSD of the road, given in units of \((m^2/cycles/m) \), is

\[
S_z(\Omega) = C_{sp} \Omega^{-N}
\]
(3.20)

where \(C_{sp} \) and \(N \) are constants specific to the individual roadway profiles (Table 2.1), and \(\Omega \) is the spatial frequency, in units of (cycles/sec). To convert the road PSD into a form that can be used to calculate the PSDs for the responses of the other degrees of freedom of the system, it must be manipulated to be in terms of the temporal frequency, \(\omega \), in units of (rad/sec),

\[
S_z(\omega) = \frac{1}{2\pi V} S_z(\Omega) = \frac{(2\pi V)^{N-1}}{\omega^N} C_{sp}
\]
(3.21)

where \(V \) is the velocity of the vehicle. Using the input PSD from the roadway, the PSDs for the other individual degrees of freedom of the system can be calculated using the Equation 3.22,

\[
S(\omega) = \left| H_{z_i}(j\omega) \right|^2 S_z(\omega),
\]
(3.22)

where \(\left| H_{z_i}(j\omega) \right| \) is the magnitude of the individual transfer function of interest (relative to the road displacement under the first (steer) tractor axle).

As specified in ISO 2631 [5,7], the RMS vertical and longitudinal accelerations are calculated over a series of one-third octave bands with specified center frequencies. The lower and upper frequencies of each band, \(f_1 \) and \(f_2 \), are related to the center frequency, \(f_c \), by the equations
\[f_1 = 0.89 f_c \] \hspace{1cm} (3.23)

and

\[f_2 = 1.26 f_2 = 1.12 f_c. \] \hspace{1cm} (3.24)

The mean square value of a particular acceleration is equal to the area under the PSD curve for that particular acceleration. In each one-third octave band, this area is approximated by

\[
\Delta E(z^2) = \frac{S(\omega_2) + S(\omega_c)}{2} (\omega_2 - \omega_c) + \frac{S(\omega_c) + S(\omega_1)}{2} (\omega_c - \omega_1). \quad (3.25)
\]

To calculate the total mean square over the entire frequency range of interest, which includes all the center frequencies, all of the mean squares in the one-third octave band are summed. The RMS over the entire frequency range is then the square root of this value,

\[RMS = \sqrt{\sum \Delta E(z^2)}. \quad (3.26) \]

The standard set forth in ISO 2631 specifies that the RMS values of acceleration in each band must be plotted and compared with the ISO-specified comfort curves (Figure 1.1).

The standards set forth in ISO 2631 also define the calculation and use of a single weighted RMS acceleration number for the measurement of ride comfort. The overall weighted RMS acceleration, \(a_0 \), is the root mean square,

\[a_0 = \left[\sum (w_i a_i) \right]^{\frac{1}{2}}, \quad (3.27) \]
where \(w_i \) is the ISO-specified weighting factor at the center frequency for the \(i^{th} \) one-third octave band, and \(a_i \) is the RMS acceleration in the same one-third octave band. Table 3.1 lists the ISO 2631 weighting factors for driver RMS vertical and longitudinal accelerations.
Table 3.1: ISO 2631 Weighting Factors for Driver RMS Accelerations [7]
1997 ISO 2631 Standards, Section 6.2, Table 3, pg. 7

<table>
<thead>
<tr>
<th>Hz</th>
<th>Vertical</th>
<th>Longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>0.0312</td>
<td>0.0624</td>
</tr>
<tr>
<td>0.125</td>
<td>0.0486</td>
<td>0.0973</td>
</tr>
<tr>
<td>0.16</td>
<td>0.0790</td>
<td>0.1580</td>
</tr>
<tr>
<td>0.20</td>
<td>0.1210</td>
<td>0.2430</td>
</tr>
<tr>
<td>0.25</td>
<td>0.1820</td>
<td>0.3650</td>
</tr>
<tr>
<td>0.315</td>
<td>0.2630</td>
<td>0.5300</td>
</tr>
<tr>
<td>0.40</td>
<td>0.3520</td>
<td>0.7130</td>
</tr>
<tr>
<td>0.50</td>
<td>0.4180</td>
<td>0.8530</td>
</tr>
<tr>
<td>0.63</td>
<td>0.4590</td>
<td>0.9440</td>
</tr>
<tr>
<td>0.80</td>
<td>0.4770</td>
<td>0.9920</td>
</tr>
<tr>
<td>1.00</td>
<td>0.4820</td>
<td>1.0110</td>
</tr>
<tr>
<td>1.25</td>
<td>0.4840</td>
<td>1.0080</td>
</tr>
<tr>
<td>1.6</td>
<td>0.4940</td>
<td>0.9680</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5310</td>
<td>0.8900</td>
</tr>
<tr>
<td>2.5</td>
<td>0.6310</td>
<td>0.7760</td>
</tr>
<tr>
<td>3.15</td>
<td>0.8040</td>
<td>0.6420</td>
</tr>
<tr>
<td>4.0</td>
<td>0.9670</td>
<td>0.5120</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0390</td>
<td>0.4090</td>
</tr>
<tr>
<td>6.3</td>
<td>1.0540</td>
<td>0.3230</td>
</tr>
<tr>
<td>8.0</td>
<td>1.0360</td>
<td>0.2530</td>
</tr>
<tr>
<td>10.0</td>
<td>0.9880</td>
<td>0.2120</td>
</tr>
<tr>
<td>12.5</td>
<td>0.9020</td>
<td>0.1610</td>
</tr>
<tr>
<td>16.0</td>
<td>0.7680</td>
<td>0.1250</td>
</tr>
<tr>
<td>20.0</td>
<td>0.6360</td>
<td>0.1000</td>
</tr>
<tr>
<td>25.0</td>
<td>0.5130</td>
<td>0.0800</td>
</tr>
<tr>
<td>31.5</td>
<td>0.4050</td>
<td>0.0632</td>
</tr>
<tr>
<td>40.0</td>
<td>0.3140</td>
<td>0.0494</td>
</tr>
<tr>
<td>50.0</td>
<td>0.2460</td>
<td>0.0388</td>
</tr>
</tbody>
</table>
The purpose of the ISO weighting factors is to assign greater importance to the frequencies which cause the driver to experience larger amounts of discomfort. These values in turn have a greater effect on the overall weighted RMS acceleration value, a_0. This value is calculated by the equation [1997 ISO Standards, Section 6.4.2 Paragraph 3, pg. 12]

$$a_0 = \sqrt{(k_x a_{0_L})^2 + (k_z a_{0_V})^2}$$

(3.28)

where a_{0_L} is the longitudinal weighted RMS acceleration, a_{0_V} is the vertical weighted RMS acceleration, k_x is the longitudinal acceleration frequency weighting, and k_z is the vertical acceleration frequency weighting. When evaluating vehicle ride comfort, k_x and k_z are both equal to one. The overall weighted RMS acceleration value, a_0, can then be compared to the comfort ranges in Table 3.2.

<table>
<thead>
<tr>
<th>Overall Weighted Acc. (a_0)</th>
<th>ISO 2631 Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 0.315 m/s²</td>
<td>Not Uncomfortable</td>
</tr>
<tr>
<td>0.315 to 0.63 m/s²</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>0.5 to 1.0 m/s²</td>
<td>Fairly Uncomfortable</td>
</tr>
<tr>
<td>0.8 to 1.6 m/s²</td>
<td>Uncomfortable</td>
</tr>
<tr>
<td>1.25 to 2.5 m/s²</td>
<td>Very Uncomfortable</td>
</tr>
<tr>
<td>Greater than 2.0 m/s²</td>
<td>Extremely Uncomfortable</td>
</tr>
</tbody>
</table>
CHAPTER 4
RESULTS

Introduction

The tractor semi-trailer simulations allow for any number of parameter configurations and model characteristics to be changed in whatever order desired. In the time and frequency domain programs, properties can be altered and the effects these properties have on the system response can be closely studied. Also, the parameter variation programs allow for different configurations in order to study the effect of certain parameters on the variation of specific components. The responses which are most important and therefore most intensely studied are the ride comfort levels experienced at the driver’s seat and the vertical acceleration at the center of gravity of the trailer. Also important are the dynamic stroke at the fifth wheel connection, the vehicle ride height, and the static pavement loading at the tire/road interface. These axle loads must not exceed the load limits regulated by the federal government. The simulation outputs also offer the option of examining wheel force transfer functions, and while these are not discussed in this thesis, this could be an area of interest for future research. The vehicle model outlined in Chapter 2 is utilized in the MATLAB simulation which is outlined in Chapter 3.
The specific cases studies examined and discussed in the following pages are listed below.

- Tractor Axle Suspension Parameter Variation
- Tractor Tire Parameter Variation
- Trailer Suspension and Beaming Parameter Variation
- Tractor and Trailer Beaming Parameter Variation
- Fifth Wheel Suspension Parameter Variation
- Vehicle with Full Set of Adjusted Parameters
- Rollover Analysis

Baseline Simulation

A “standard” or “nominal” vehicle was developed with the nominal parameters defined in Appendix C. Some of the values representing the nominal vehicle were originally provided to Vaduri and Law [17] by Michelin. Other values were obtained either through physical measurements or literature by Ribartis et al [20] and represent a common cab-over style tractor semi-trailer.

The other set of parameters specific to the “standard” or nominal vehicle include the road conditions, velocity, beaming frequencies, and suspension configurations. The nominal vehicle is assumed to be traveling at 60 mph over a smooth highway. The “Smooth Highway” road profile used is defined by Wong [19] and also appears in Table 2.1. There is no fifth wheel suspension system on the nominal vehicle, and therefore the tractor and trailer frames are modeled as free-pinned and pinned-free respectively. Table 4.1 provides a complete list of the options selected for the nominal vehicle in the order they appear in the MATLAB simulation.
Table 4.1: User Inputs for Nominal Vehicle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Selection</td>
<td>Ideal Tractor Semi-Trailer</td>
</tr>
<tr>
<td>Seat Suspension</td>
<td>Yes</td>
</tr>
<tr>
<td>Cab Suspension</td>
<td>Rear Cab Suspension</td>
</tr>
<tr>
<td>Trailer Configuration</td>
<td>Loaded Trailer</td>
</tr>
<tr>
<td>Fifth Wheel Configuration</td>
<td>Without Fifth Wheel Suspension</td>
</tr>
<tr>
<td>Tractor Beaming Frequency</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Trailer Beaming Frequency</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Steer Axle Tire</td>
<td>XZA2 275/80R22.5</td>
</tr>
<tr>
<td>Steer Axle Tire Pressure</td>
<td>80 psi</td>
</tr>
<tr>
<td>Drive Axle Tire</td>
<td>XONE XDA 445/50R22.5</td>
</tr>
<tr>
<td>Drive Axle Tire Pressure</td>
<td>104 psi</td>
</tr>
<tr>
<td>Trailer Axle Tire</td>
<td>XONE XTA 445/50R22.5</td>
</tr>
<tr>
<td>Trailer Axle Tire Pressure</td>
<td>104 psi</td>
</tr>
<tr>
<td>Vehicle Velocity</td>
<td>60 mph</td>
</tr>
<tr>
<td>Road Profile</td>
<td>Smooth Highway</td>
</tr>
</tbody>
</table>

The eigenvalues representing the nominal vehicle simulation are shown in Table 4.2. A brief description of the corresponding mode shapes or eigenvectors for the nominal vehicle is given in Table 4.3. In the simulation, positive displacements are defined as down and positive rotations are defined as nose up. Details for each can be found in Appendix D which lists the normalized eigenvectors.
Table 4.2: Eigenvalues for the Nominal Vehicle

<table>
<thead>
<tr>
<th>No.</th>
<th>Eigenvalue Pairs</th>
<th>Frequency (Hz)</th>
<th>Damping Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-20.647 ± 33462i</td>
<td>532.6</td>
<td>0.0006</td>
</tr>
<tr>
<td>2</td>
<td>-17.876 ± 5008.6i</td>
<td>797.2</td>
<td>0.0036</td>
</tr>
<tr>
<td>3</td>
<td>-5.0655 ± 2814.3i</td>
<td>447.9</td>
<td>0.0018</td>
</tr>
<tr>
<td>4</td>
<td>-8.6229 ± 135.34i</td>
<td>21.58</td>
<td>0.0635</td>
</tr>
<tr>
<td>5</td>
<td>-0.8085 ± 80.984i</td>
<td>12.89</td>
<td>0.0100</td>
</tr>
<tr>
<td>6</td>
<td>-66.914 ± 21.211i</td>
<td>11.17</td>
<td>0.9533</td>
</tr>
<tr>
<td>7</td>
<td>-54.921 ± 47.320i</td>
<td>11.54</td>
<td>0.7576</td>
</tr>
<tr>
<td>8</td>
<td>-16.477 ± 69.086i</td>
<td>11.30</td>
<td>0.2320</td>
</tr>
<tr>
<td>9</td>
<td>-21.954 ± 64.320i</td>
<td>10.82</td>
<td>0.3230</td>
</tr>
<tr>
<td>10</td>
<td>-23.393 ± 62.945i</td>
<td>10.69</td>
<td>0.3484</td>
</tr>
<tr>
<td>11</td>
<td>-4.7004 ± 14.485i</td>
<td>2.424</td>
<td>0.3087</td>
</tr>
<tr>
<td>12</td>
<td>-5.6963 ± 1.6980i</td>
<td>0.946</td>
<td>0.9583</td>
</tr>
<tr>
<td>13</td>
<td>-5.6689 ± 7.5895i</td>
<td>1.508</td>
<td>0.5984</td>
</tr>
<tr>
<td>14</td>
<td>-0.89408 ± 9.8286i</td>
<td>1.571</td>
<td>0.0906</td>
</tr>
<tr>
<td>15</td>
<td>-1.7590 ± 9.0625i</td>
<td>1.469</td>
<td>0.1905</td>
</tr>
</tbody>
</table>

Table 4.3: Summary of Modal Characteristics for the Nominal Vehicle

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq. (Hz)</th>
<th>Dominant Modes</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mag</td>
<td>Phase (°)</td>
</tr>
<tr>
<td>1</td>
<td>532.6</td>
<td>z_C</td>
<td>1.000</td>
</tr>
<tr>
<td>0.000 6</td>
<td>η_T</td>
<td>0.569</td>
<td>-179.99</td>
</tr>
<tr>
<td>2</td>
<td>797.2</td>
<td>z_E</td>
<td>1.000</td>
</tr>
<tr>
<td>0.004</td>
<td>η_T</td>
<td>0.439</td>
<td>-179.95</td>
</tr>
<tr>
<td>3</td>
<td>447.9</td>
<td>z_E</td>
<td>1.000</td>
</tr>
<tr>
<td>0.002</td>
<td>η_T</td>
<td>0.396</td>
<td>-179.89</td>
</tr>
<tr>
<td>4</td>
<td>21.58</td>
<td>η_TL</td>
<td>1.000</td>
</tr>
<tr>
<td>0.06</td>
<td>z_s</td>
<td>0.905</td>
<td>132.06</td>
</tr>
<tr>
<td></td>
<td>z_T</td>
<td>0.523</td>
<td>177.92</td>
</tr>
<tr>
<td></td>
<td>z_4</td>
<td>0.444</td>
<td>134.09</td>
</tr>
</tbody>
</table>
Table 4.3: Summary of Modal Characteristics for the Nominal Vehicle
(Continued)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12.89</td>
<td>η_T</td>
<td>1.000</td>
<td>0.00</td>
<td>The user-defined tractor frame beaming frequency is 20 Hz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>z_T</td>
<td>0.898</td>
<td>179.67</td>
<td>Due to coupling with other suspension elements, the resonant frequency is shifted lower.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_E</td>
<td>0.560</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_3</td>
<td>0.412</td>
<td>137.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11.17</td>
<td>z_5</td>
<td>1.000</td>
<td>0.00</td>
<td>Wheel hop frequency; trailer axles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>z_4</td>
<td>0.729</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11.54</td>
<td>z_4</td>
<td>1.000</td>
<td>0.00</td>
<td>Wheel hop frequency; trailer axles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>z_5</td>
<td>0.737</td>
<td>-172.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11.30</td>
<td>z_1</td>
<td>1.000</td>
<td>0.00</td>
<td>Wheel hop frequency; steer axle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10.82</td>
<td>z_2</td>
<td>1.000</td>
<td>0.00</td>
<td>Wheel hop frequency; drive axles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32</td>
<td>z_3</td>
<td>0.813</td>
<td>-164.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.69</td>
<td>z_3</td>
<td>1.000</td>
<td>0.00</td>
<td>Wheel hop frequency; drive axles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>z_2</td>
<td>0.803</td>
<td>14.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.424</td>
<td>z_5</td>
<td>1.000</td>
<td>0.00</td>
<td>The two trailer axles and tractor heave are the largest components in this mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>z_T</td>
<td>0.962</td>
<td>144.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_E</td>
<td>0.794</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_{TLR}</td>
<td>0.698</td>
<td>-37.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.946</td>
<td>z_S</td>
<td>1.000</td>
<td>0.00</td>
<td>The driver’s seat is dominant in this mode which has a frequency approximately equal to that of the driver and seat mass on the seat spring.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.508</td>
<td>z_S</td>
<td>1.000</td>
<td>0.00</td>
<td>The driver’s seat and cab heave and pitch are the largest components of this mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>z_C</td>
<td>0.552</td>
<td>76.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.571</td>
<td>z_E</td>
<td>1.000</td>
<td>0.00</td>
<td>Engine and tractor heave are large and approximately in phase. Cab and seat heave are also large.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>z_C</td>
<td>0.993</td>
<td>-21.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_S</td>
<td>0.900</td>
<td>-78.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_T</td>
<td>0.670</td>
<td>-1.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.469</td>
<td>z_S</td>
<td>1.000</td>
<td>0.00</td>
<td>Heave of the driver’s seat, cab, trailer, and tractor are all large in this mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>z_C</td>
<td>0.867</td>
<td>56.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_{TLR}</td>
<td>0.827</td>
<td>78.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z_T</td>
<td>0.781</td>
<td>88.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tractor Axle Suspension Parameter Variation

Axle Suspension Stiffness

Axle suspension stiffness and damping characteristics were varied using opt_axleK_freq.m and opt_axleC_freq.m which are described in the Appendices G and H. The stiffness and damping values were varied individually, and the individual results analyzed to obtain the set of parameters that resulted in the best performance. First, the stiffness of the tractor drive and steer axle suspensions were varied.

Figure 4.1 shows the weighted RMS combined accelerations (Equation 3.28) of the driver and trailer CG varied against the steer axle properties and single drive axle properties. The stiffness values for each of the drive axles are assumed to be the same, so they are varied together in the program. The weighted RMS acceleration of the driver shows the greatest sensitivity to the steer axle stiffness. Over the entire range of steer axle stiffness input into the program, there is a 28% change in the total weighted RMS acceleration. Reducing drive axle stiffnesses caused approximately a 3% total reduction. The trends show that as the stiffnesses of the tractor steer and drive axles decrease, the total weighted RMS acceleration can be lowered from 0.45 m/s² to 0.34 m/s², which is a 24.4% reduction in total weighted acceleration of the driver from its nominal value.
It is important to analyze the effect of the tractor suspension parameter variation on the vertical accelerations experienced at the trailer CG in order to ensure that functionality is not compromised. Figure 4.1 shows that for the best combination of tractor axle stiffnesses, the weighted acceleration of the trailer CG is raised by only 0.006 m/s\(^2\), which is approximately a 3% increase.
Figure 4.1: Axle Suspension Stiffness Parameter Variation
When reducing stiffness values for the tractor axles, it is important that the vehicle ride height not be affected to an extent that it may become detrimental to its performance. Table 4.4 shows the ride height reduction experienced by the tractor semi-trailer in a loaded condition.

Table 4.4: Ride Height Reduction with Adjusted Suspension Parameters

<table>
<thead>
<tr>
<th>Axle</th>
<th>Stiffness Value (N/m)</th>
<th>Ride Height Reduction (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td>406910</td>
<td>1.29</td>
</tr>
<tr>
<td>#1 Drive Axle</td>
<td>410830</td>
<td>1.86</td>
</tr>
<tr>
<td>#2 Drive Axle</td>
<td>410830</td>
<td>1.99</td>
</tr>
<tr>
<td>#1 Trailer Axle</td>
<td>1000000</td>
<td>0.17</td>
</tr>
<tr>
<td>#2 Trailer Axle</td>
<td>1000000</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

The maximum reduction in ride height was found to be approximately two inches on the second drive axle for the loaded vehicle.

Adjusting the suspension stiffness affects the static axle loads, so it is important to analyze these values to ensure that the vehicle stays within the acceptable limits. A summarization of the federal government regulated axle load limits was obtained through and e-mail correspondence between Mrs. Sue Nelson, Manager of Truck Tire Innovation at Michelin Americas R&D Corporation, and Dr. E. Harry Law [21]. The correspondence is shown below.

“Current standard limits for Class 8 6x4 tractors (1 steer axle, tandem drive axle) with a tandem axle trailer are:

Steer axle: 12000 lb
Drive tandem: 17000 lb/axle (34000 total all drive)
Trailer tandem: 17000 lb/axle (34000 total all trailer)

Loads are the same for dual or single tire configurations.”
The nominal vehicle used by Vaduri [3] Trangsrud [1] and in this thesis exceeds the limits set by the federal government. However, South Carolina regulations [22] state that a five axle vehicle may not exceed a gross weight of 90,000 lbs, and two-axle tandems may not carry a load greater than 40,000 lbs with the issue of a permit, so these regulations with be treated as the legal limits. Table 4.5 displays the loads seen by each of the axles in the nominal vehicle as well as the vehicle using the reduced tractor suspension stiffnesses. Both vehicles represented have the same gross vehicle weight (GVW) of 76788 lbs.

Table 4.5: Static Axle Loads with Adjusted Suspension Parameters

<table>
<thead>
<tr>
<th>Vehicle Configuration</th>
<th>Steer Axle Load (lbs)</th>
<th>#1 Drive Axle Load (lbs)</th>
<th>#2 Drive Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
<th>#2 Trailer Axle Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Vehicle</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Tractor Axle Suspension Parameters</td>
<td>9963</td>
<td>14667</td>
<td>15722</td>
<td>19312</td>
<td>17125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Legal Load Limits with Permit</td>
<td>20000</td>
<td>40000</td>
<td></td>
<td>40000</td>
<td></td>
</tr>
<tr>
<td>Federal Legal Load Limits</td>
<td>12000</td>
<td>34000</td>
<td></td>
<td>34000</td>
<td></td>
</tr>
</tbody>
</table>

Adjusting the suspension values had very little effect on the loads experienced by the steer and drive axles, but did have some significant effect on the trailer axle loads. However, these loads are still within the acceptable range
allowed by South Carolina regulations, so the changes in axle loads were determined not to be a factor in the suspension parameter variation process.

The parameter variation program allows the user to formulate a cost function penalty. This penalty weighs the combined RMS acceleration of the driver and the vertical RMS acceleration of the trailer CG using weights assigned by the user. Equation 4.1 shows the function used to calculate the penalty function.

\[
J_{\text{Penalty}} = K_1 \cdot (aV / aV_0) + K_2 \cdot (a_{0_V_tlr} / a_{0_V_tlr0})
\]

(4.29)

Where:
- \(K_1\) = Driver Comfort Weight \((0 \leq K_1 \leq 1)\)
- \(K_2\) = Trailer Acceleration Weight \((0 \leq K_2 \leq 1)\)
- \(aV\) = Driver Combined ISO RMS Acceleration \((m/s^2)\)
- \(aV_0\) = Driver Combined ISO RMS Acceleration Nominal Value \((m/s^2)\)
- \(a_{0_V_tlr}\) = Weighted Trailer Vertical RMS Acceleration \((m/s^2)\)
- \(a_{0_V_tlr0}\) = Weighted Trailer Vertical RMS Acceleration Nominal Value \((m/s^2)\)
Figure 4.2: J Penalty Formulation for Axle Suspension Stiffness
Figure 4.3: J Penalty Formulation for Axle Suspension Stiffness
The importance of the ride comfort of the driver is denoted by the value K1 and the trailer CG by K2. Both values should combine to a value of one. For example, if the driver ride comfort is much more important than the vertical acceleration of the trailer, then the user may assign a value of 0.8 to K1 and 0.2 to K2. The values could be reversed if the opposite were true. Figures 4.2 and 4.3 show the J penalty function results with varying values for K1 and K2.

The plots in Figure 4.2 suggest that when driver ride comfort and trailer CG vertical acceleration are of equal importance, then the trend of decreasing the axle stiffnesses to improve ride comfort performance remains steady throughout all four cases. However, when great importance is placed on the vertical acceleration of the trailer CG (i.e., K1=0.25, K2=0.75), then there is a minimum point along the stiffness range for the drive axles at which the best performance can be achieved. In this case, the trend of J with decreasing stiffness of the steer axle remains the same as trends seen when great importance is placed on driver ride comfort.

It is also interesting to note that when great importance is placed on driver ride comfort, as in Figure 4.3 (K1=0.9, K2=0.1), it is possible to obtain a J penalty function as low as 0.77. Table 4.6 shows the results of the J penalty formulation with varying K1 and K2 values. Also in the table are the corresponding axle stiffness values and the percent improvement in the ISO weighted acceleration values as compared to the nominal values.
<table>
<thead>
<tr>
<th>Weighting Factor Values</th>
<th>K1=0.5 K2=0.5</th>
<th>K1=0.25 K2=0.75</th>
<th>K1=0.75 K2=0.25</th>
<th>K1=0.9 K2=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum J Penalty Value</td>
<td>0.900</td>
<td>0.957</td>
<td>0.833</td>
<td>0.793</td>
</tr>
<tr>
<td>Steer Axle Stiffness (N/m)</td>
<td>406910</td>
<td>406910</td>
<td>406910</td>
<td>406910</td>
</tr>
<tr>
<td>Drive Axle Stiffness (N/m)</td>
<td>410830</td>
<td>622114</td>
<td>410830</td>
<td>410830</td>
</tr>
<tr>
<td>ISO Combined Driver Weighted Acc. (m/s²)</td>
<td>0.34</td>
<td>0.37</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>+ 24.4</td>
<td>+ 17.8</td>
<td>+ 24.4</td>
<td>+ 24.4</td>
</tr>
<tr>
<td>ISO Vertical Trailer Weighted Acc. (m/s²)</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>- 3.1</td>
<td>0.0</td>
<td>- 3.1</td>
<td>- 3.1</td>
</tr>
</tbody>
</table>

The data in Table 4.6 shows that as long as the ride comfort of the driver is weighted as least as heavily as the vertical acceleration of the trailer CG (i.e. $K1 \geq 0.5$), then the lowest value of the RMS driver acceleration will be the same for all K1 and K2 scenarios. The corresponding axle stiffnesses will be the minimum allowable for the axles. However, when the majority of the emphasis is placed on the vertical acceleration of the trailer CG rather than the ride comfort of the driver, the results indicate a significantly higher value for the drive axle stiffness is required. However, by looking at the improvements in the weighted acceleration values, it is evident that only a very minor decrease in the trailer weighted vertical acceleration is possible, even when it is weighed most heavily. The driver ride comfort, which can improve by as much as 24.4%, is definitely the area of greater focus with this parameter variation program.
Axle Suspension Damping

As stated earlier, the suspension damping was varied independently of the suspension stiffness. Figure 4.4 shows the results obtained by the suspension damping parameter variation program. Since the damping values have no effect on the vehicle ride height or axle loads, only the effect of the damping values on the weighted accelerations were studied.

Figure 4.4 suggests that larger damping values for the steer and drive axles result in a lower combined weighted acceleration for the driver. As with the stiffness parameter variation, the plot shows that the acceleration has a much greater sensitivity to the damping constant of the steer axle than the drive axles. There is a 12.5% reduction in the RMS weighted acceleration of the driver at the highest damping values. Sensitivity to the damping constants of the drive axles is much lower, and the plot shows only a 3% reduction in combined weighted acceleration over the range of values.
Figure 4.4: Axle Suspension Damping Parameter Variation
Like the stiffness parameter variation, adjusting the damping constants does not have a significant effect on the weighted vertical acceleration of the trailer. Figure 4.4 shows only a 3% change in the weighted RMS vertical acceleration over the entire range of damping constants, and is therefore determined to be insignificant and not a factor in the damping constant variation.

Figures 4.5 and 4.6 display the J penalty formulation plots for varying K1 and K2 values. When the driver ride comfort and trailer vertical acceleration are weighed equally (K1=K2=0.5), there is a minimum J value in the middle of the range of drive axle damping values. However, overall, the results are not very sensitive to drive axle damping. Second, when greater importance is placed on the trailer CG vertical acceleration (K1=0.25, K2=0.75), the lowest J value shifts to maximum steer axle damping and minimum drive axle damping. Finally, when the weighting factors shift the other way toward driver ride comfort (K1=0.75, K2=0.15 & K1=0.9, K2=0.1), the lowest J value shifts to maximum steer axle damping and maximum drive axle damping. Table 4.7 shows the results with minimum J penalty values, damping values, weighted accelerations and their percent improvements relative to nominal values.
Table 4.7: J Penalty Formulation Results with Adjusted Axle Suspension
Damping

<table>
<thead>
<tr>
<th>Weighting Factor Values</th>
<th>K1=0.5 K2=0.5</th>
<th>K1=0.25 K2=0.75</th>
<th>K1=0.75 K2=0.25</th>
<th>K1=0.9 K2=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum J Penalty Value</td>
<td>0.971</td>
<td>0.979</td>
<td>0.952</td>
<td>0.937</td>
</tr>
<tr>
<td>Steer Axle Damping (N/(m/s))</td>
<td>14651</td>
<td>14651</td>
<td>14651</td>
<td>14651</td>
</tr>
<tr>
<td>Drive Axle Damping (N/(m/s))</td>
<td>26675</td>
<td>20075</td>
<td>35750</td>
<td>35750</td>
</tr>
<tr>
<td>ISO Combined Driver Weighted Acc. (m/s²)</td>
<td>0.42</td>
<td>0.43</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>+ 6.7</td>
<td>+ 4.4</td>
<td>+ 6.7</td>
<td>+ 6.7</td>
</tr>
<tr>
<td>ISO Vertical Trailer Weighted Acc. (m/s²)</td>
<td>0.32</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>0.0</td>
<td>0.0</td>
<td>-3.1</td>
<td>-3.1</td>
</tr>
</tbody>
</table>
Figure 4.5: J Penalty Formulation for Axle Suspension Damping
Figure 4.6: J Penalty Formulation for Axle Suspension Damping
The results in Table 4.7 show that when even greater importance is placed on the trailer vertical CG acceleration \((K_1=0.25, K_2=0.75)\), improvement is seen in the driver ride comfort relative to the nominal value. When there is equal importance placed on both \((K_1=0.5, K_2=0.5)\), a 4.4% improvement is seen in the driver ride comfort relative to the nominal value and there is no visible change in trailer vertical CG acceleration. However, when greater importance is placed on the driver ride comfort \((K_1=0.75, K_2=0.2\) and \(K_1=0.9, K_2=0.1)\), a maximum improvement of 6.7% can be obtained in the driver ride comfort but the trailer vertical CG acceleration is increased by 3.1% relative to their nominal values.

Table 4.8 shows the stiffness and damping values chosen for best ride performance. These values were chosen factoring in their effect on the combined RMS weighted acceleration of the driver and the trailer CG. Also considered are the effects of the adjusted stiffness values on the static ride heights (Table 4.4) of the tractor semi-trailer and the static axle loads (Table 4.5) on each of the axles.

Table 4.8: Nominal and Adjusted Suspension Stiffness and Damping Constants

<table>
<thead>
<tr>
<th>Axle</th>
<th>Nominal Stiffness Constant (N/m)</th>
<th>Adjusted Stiffness Constant (N/m)</th>
<th>Nominal Damping Constant (N/(m/s))</th>
<th>Adjusted Damping Constant (N/(m/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td>581300</td>
<td>406910</td>
<td>11270</td>
<td>14651</td>
</tr>
<tr>
<td>#1 Drive Axle</td>
<td>586900</td>
<td>410830</td>
<td>27500</td>
<td>35750</td>
</tr>
<tr>
<td>#2 Drive Axle</td>
<td>586900</td>
<td>410830</td>
<td>27500</td>
<td>35750</td>
</tr>
<tr>
<td>#1 Trailer Axle</td>
<td>1000000</td>
<td>1000000</td>
<td>70000</td>
<td>70000</td>
</tr>
<tr>
<td>#2 Trailer Axle</td>
<td>1000000</td>
<td>1000000</td>
<td>70000</td>
<td>70000</td>
</tr>
</tbody>
</table>
Axle Suspension with Adjusted Stiffness and Damping Values

Table 4.9 shows the vertical, longitudinal, and combined weighted RMS accelerations of the driver with the nominal and adjusted values and the percent improvement relative to the nominal values.

Table 4.9: Combined Weighted Acceleration with Adjusted Suspension Stiffness and Damping
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Suspension Configuration</th>
<th>Vertical Weighted Acceleration (m/s²)</th>
<th>Longitudinal Weighted Acceleration (m/s²)</th>
<th>Combined Weighted Acceleration (m/s²)</th>
<th>ISO Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>Adjusted Parameters</td>
<td>0.22</td>
<td>0.24</td>
<td>0.32</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>+ 21.4</td>
<td>+ 31.4</td>
<td>+ 28.9</td>
<td></td>
</tr>
</tbody>
</table>

The results indicate that the greatest area of improvement lies in the longitudinal acceleration of the driver. The longitudinal weighted acceleration of the driver showed a 31.4% improvement compared to a 21.4% improvement in the vertical weighted acceleration. The combined value showed a 28.9% improvement.
It is important to analyze not only the total improvement in weighted acceleration, but also where these improvements occur in the frequency range. Figure 4.7 shows the vertical and longitudinal weighted RMS accelerations along with the International Standards Organization’s (ISO) specified 2.5 and 8 hour comfort boundaries [5:1974]. These boundaries represent the maximum level of acceleration that the vehicle operator can tolerate for the specified amount of time. On the plots are the curves using nominal parameters and the results when using the adjusted parameters.
Figure 4.7: Effect of Adjusted Suspension Stiffness and Damping on Driver Ride Comfort
Both plots in Figure 4.7 show that the greatest improvements occur low in the frequency range. The maximum improvements for both the vertical and longitudinal weighted RMS accelerations occur between 1.5 and 4 Hertz, which correspond to the range for vehicle body modes.

Table 4.10 shows the weighted RMS accelerations at the frequencies corresponding to body modes of the nominal tractor semi-trailer (Table 4.3) and their corresponding percent improvements. On the table are the values when nominal parameters and adjusted parameters are input into the program. As expected, the greatest improvements occur at 1.6 and 2 Hz.

Table 4.10: Weighted RMS Accelerations at Body Mode Frequencies for Axle Suspension Parameter Variation
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Vertical Weighted RMS Acceleration (m/s^2) Improvement</th>
<th>Longitudinal Weighted RMS Acceleration (m/s^2) Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal Parameters</td>
<td>Adjusted Parameters</td>
</tr>
<tr>
<td>1.60</td>
<td>0.2070</td>
<td>0.1308</td>
</tr>
<tr>
<td>2.00</td>
<td>0.1089</td>
<td>0.0661</td>
</tr>
<tr>
<td>2.50</td>
<td>0.0289</td>
<td>0.0213</td>
</tr>
<tr>
<td>3.15</td>
<td>0.0279</td>
<td>0.0202</td>
</tr>
</tbody>
</table>
Tire Parameter Variation

Tire Stiffness

Tire stiffness and damping characteristics were varied using opt_tireK_freq.m and opt_tireC_freq.m which are described in Appendices I and J. The tractor is equipped with wide-base singles, which is reflected in the axle mass. The stiffness and damping values were varied individually, and the individual results analyzed to obtain the best set of parameters. First, the tire stiffness was varied. Figure 4.8 shows the weighted accelerations of the driver and trailer CG varied against the steer tire properties and single drive tire properties. The stiffness values for each of the drive tires are assumed to be the same, so they are varied together in the program.
Figure 4.8: Tire Stiffness Parameter Variation
The weighted acceleration of the driver shows the greatest sensitivity to the steer tire stiffness. Over the range of steer tire stiffnesses input into the program, there is a 3% reduction in the total weighted acceleration.

Figure 4.8 suggests that decreasing the stiffness of the drive tires resulted in a lower total weighted acceleration. The reduced drive tire stiffnesses caused approximately a 0.3% reduction in the combined weighted RMS acceleration of the driver. Also, the vertical weighted RMS acceleration of the trailer is relatively insensitive to variations in the steer tire stiffness. However, the adjustment of the drive axle tire stiffness lowered the vertical weighted RMS acceleration at the trailer CG by 2.1%.

As with the suspension parameter variation, it is crucial that the vehicle ride height not be affected to an extent that changes are detrimental to the vehicle performance when altering the stiffness values of the tractor tires. Improved ride performance corresponds to reduced stiffness values for the steer as well as for the drive tires, so the changes in ride height were calculated at these values. Table 4.11 shows the ride height changes experienced by the tractor semi-trailer in a loaded condition.

<table>
<thead>
<tr>
<th>Axle</th>
<th>Tire Stiffness Value Per-Tire (kN/m)</th>
<th>Ride Height Reduction (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td>472.68</td>
<td>0.50</td>
</tr>
<tr>
<td>#1 Drive Axle</td>
<td>835.87</td>
<td>0.46</td>
</tr>
<tr>
<td>#2 Drive Axle</td>
<td>835.87</td>
<td>0.50</td>
</tr>
<tr>
<td>#1 Trailer Axle</td>
<td>1,194.1</td>
<td>0.00</td>
</tr>
<tr>
<td>#2 Trailer Axle</td>
<td>1,194.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>
The maximum reduction in ride height was found to be approximately half of an inch on the steer axle and drive axles when the vehicle is loaded. This value represents a small percentage of the total ride height.

Table 4.12 displays the static axle loads in the nominal vehicle as well as the vehicle using the adjusted tractor tire stiffnesses. Both vehicles represented have a fully laden trailer.

<table>
<thead>
<tr>
<th>Vehicle Configuration</th>
<th>Steer Axle Load (lbs)</th>
<th>#1 Drive Axle Load (lbs)</th>
<th>#2 Drive Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Vehicle</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30472</td>
<td></td>
<td></td>
<td></td>
<td>36352</td>
</tr>
<tr>
<td>Adjusted Tractor Tire Parameters</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30472</td>
<td></td>
<td></td>
<td></td>
<td>36352</td>
</tr>
<tr>
<td>SC Legal Load Limits with Permit</td>
<td>20000</td>
<td>40000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Legal Load Limits</td>
<td>12000</td>
<td>34000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusting the tire stiffness values proved to have no discernable effect on the static axle loads. Since the load limits were not exceeded by the nominal vehicle, it was determined that the variation of the tire stiffnesses does not generate any risk for exceeding these limits.
J penalty plots were formed to study the parameter variation trends of the tire parameters when different weights were placed on drive ride comfort and trailer vertical CG acceleration. Figure 4.9 shows the J penalty results with varying K1 and K2 values.
Figure 4.9: J Penalty Formulation for Tire Stiffness
The plots in Figure 4.9 suggest that when $K_1=0.25$ and $K_2=0.75$, there is a greater sensitivity to the drive tire stiffness than for the steer axle. However, as the driver ride comfort becomes more important (i.e., as K_1 increases), the J penalty becomes less sensitive to the drive axle tire stiffness and remains highly sensitive to the steer tire stiffness. Table 4.13 shows the results of the J penalty formulation with minimum J penalty values, stiffness values, weighted accelerations and the percent improvements relative to nominal values.

<table>
<thead>
<tr>
<th>Weighting Factor Values</th>
<th>$K_1=0.5$</th>
<th>$K_1=0.25$</th>
<th>$K_1=0.75$</th>
<th>$K_1=0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_2=0.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum J Penalty Value</td>
<td>0.981</td>
<td>0.987</td>
<td>0.975</td>
<td>0.971</td>
</tr>
<tr>
<td>Steer Tire Stiffness (N/m)</td>
<td>945350</td>
<td>945350</td>
<td>945350</td>
<td>945350</td>
</tr>
<tr>
<td>Drive Tire Stiffness (N/m)</td>
<td>1671741</td>
<td>1743387</td>
<td>1671741</td>
<td>1671741</td>
</tr>
<tr>
<td>ISO Combined Driver Weighted RMS Acc. (m/s2)</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Value</td>
<td>+ 4.4</td>
<td>+ 4.4</td>
<td>+ 4.4</td>
<td>+ 4.4</td>
</tr>
<tr>
<td>ISO Vertical Trailer Weighted RMS Acc. (m/s2)</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Vehicle</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 4.13 suggests that whether driver ride comfort or trailer vertical CG acceleration is weighed heavier, the best steer tire stiffness remains at 945.35 kN/m and results in a 4.4% improvement in driver ride comfort.
Tire Damping

Results indicate that tire damping variations show almost no measurable effect on the total weighted acceleration of the driver, or the weighted vertical acceleration at the trailer CG. The combined ISO weighted acceleration of the driver showed only a 0.0006 m/s² difference and the vertical weighted acceleration of the trailer CG showed no difference over the entire range (± 30% about the nominal value) of tire damping values.

Table 4.14 shows the stiffness and damping values for each of the tractor and trailer tires that result in the best ride performance. These values were chosen by factoring in their effect on the combined driver weighted RMS acceleration and the vertical weighted RMS acceleration of the trailer CG. The corresponding static ride heights and the static axle loads are given in Tables 4.11 and 4.12.

<table>
<thead>
<tr>
<th>Axle</th>
<th>Nominal Stiffness Constant (N/m)</th>
<th>Adjusted Stiffness Constant (N/m)</th>
<th>Nominal Damping Constant (N/(m/s))</th>
<th>Adjusted Damping Constant (N/(m/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td>1295000</td>
<td>945350</td>
<td>517</td>
<td>517</td>
</tr>
<tr>
<td>#1 Drive Axle</td>
<td>2388200</td>
<td>1671741</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#2 Drive Axle</td>
<td>2388200</td>
<td>1671741</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#1 Trailer Axle</td>
<td>2388200</td>
<td>2388200</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#2 Trailer Axle</td>
<td>2388200</td>
<td>2388200</td>
<td>648.3</td>
<td>648.3</td>
</tr>
</tbody>
</table>
Ride Performance with Adjusted Tire Stiffness and Damping Values

Combining the optimized tire stiffness and damping constants results in a notable improvement of the combined weighted acceleration of the driver. Table 4.15 shows the vertical, longitudinal, and combined weighted accelerations of the driver with the nominal and adjusted values and the percent improvement relative to the nominal values.

<table>
<thead>
<tr>
<th>Vehicle Tire Configuration</th>
<th>Vertical Weighted Acceleration (m/s²)</th>
<th>Longitudinal Weighted Acceleration (m/s²)</th>
<th>Combined Weighted Acceleration (m/s²)</th>
<th>ISO Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>Optimized Parameters</td>
<td>0.29</td>
<td>0.33</td>
<td>0.43</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement</td>
<td>-3.6</td>
<td>+5.7</td>
<td>+4.4</td>
<td></td>
</tr>
</tbody>
</table>

The values in Table 4.15 suggest that there is an increase in the vertical weighted RMS acceleration, but improvements in the longitudinal weighted RMS acceleration result in a 4.4% decrease in the combined weighted RMS acceleration.
It is important to analyze not only the total improvement in weighted RMS acceleration, but also where these improvements occur in the frequency range. Figure 4.10 shows the vertical and longitudinal weighted accelerations along with the International Standards Organization’s (ISO) specified 2.5 and 8 hour comfort boundaries [5:1974]. On the plots are the curves using nominal parameters (dotted line) and those with adjusted parameters (solid line).
Figure 4.10: Effect of Adjusted Tire Parameters on Driver Ride Comfort
The vertical weighted ISO curve shows that the weighted RMS acceleration is slightly higher at 1.25 Hz. Also, Figure 4.11 shows lower vertical and longitudinal RMS accelerations between 10 and 16 Hz and lower accelerations at frequencies higher than 30 Hz. Wheel hop frequencies occur in the area around 12.5 Hz, so the improvements in this range can be attributed to the lower tire stiffness values.

Table 4.16 shows the weighted RMS accelerations at the frequencies that showed the largest differences and their corresponding percent improvements. On the table are the values when nominal parameters and adjusted parameters are input into the program.

Table 4.16: Weighted RMS Accelerations at Specific Frequencies for Tire Parameter Variation
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Nominal Parameters</th>
<th>Adjusted Parameters</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>0.1038</td>
<td>0.1376</td>
<td>- 32.6</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0084</td>
<td>0.0072</td>
<td>+ 14.3</td>
</tr>
<tr>
<td>12.5</td>
<td>0.0247</td>
<td>0.0159</td>
<td>+ 35.6</td>
</tr>
</tbody>
</table>

Longitudinal Weighted RMS Acceleration (m/s²) Improvement

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Nominal Parameters</th>
<th>Adjusted Parameters</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>0.0304</td>
<td>0.0197</td>
<td>+35.2</td>
</tr>
</tbody>
</table>
Ride Performance with Adjusted Suspension and Tire Parameters

Table 4.17 shows the vertical, longitudinal, and combined weighted RMS accelerations of the driver with the nominal and adjusted tire and suspension values and the percent improvement relative to the nominal values.

Table 4.17: Acceleration with Adjusted Suspension and Tire Parameters
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Suspension Configuration</th>
<th>Vertical Weighted RMS Acceleration (m/s²)</th>
<th>Longitudinal Weighted RMS Acceleration (m/s²)</th>
<th>Combined Weighted RMS Acceleration (m/s²)</th>
<th>ISO Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>Adjusted Parameters</td>
<td>0.23</td>
<td>0.23</td>
<td>0.32</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement</td>
<td>+ 17.9</td>
<td>+ 34.3</td>
<td>+ 28.9</td>
<td></td>
</tr>
</tbody>
</table>

The results in Table 4.17 suggest that an overall 28.9% decrease in combined weighted RMS acceleration is possible when the vehicle is equipped with the adjusted suspension and tire parameters. The vertical weighted RMS acceleration is improved by 17.9%, which is down from 21.4% when using only the adjusted suspension parameters. This is due to the adjusted tire parameters, which were shown to cause a 3.6% increase in the vertical weighted RMS acceleration of the driver. However, the adjusted tire parameters provided for a
5.7% decrease in longitudinal weighted RMS acceleration, and when combined with the adjusted suspension parameters, resulted in an overall 34.3% reduction in the longitudinal weighted RMS acceleration.

Figure 4.11 shows the vertical and longitudinal weighted accelerations along with the International Standards Organization’s (ISO) specified 2.5 and 8 hour comfort boundaries [5:1974]. The plots suggest that the greatest improvements in the vertical weighted ISO acceleration comes between 1.6 and 4 Hz. Also, there are much lower accelerations between 8 and 16 Hz. The area between 1.6 and 4 Hz represent improvements in the body mode frequencies caused by the adjusted suspension elements. The improvements between 8 and 10 Hz are representative of wheel hop frequencies, and can be attributed to both the adjusted suspension and tire elements. The only area in which there is no improvement occurs at 1.25 Hz. By observing Figure 4.10, it becomes evident that this can be attributed to the adjustment of the tire parameters.

Also seen in Figure 4.11 is the large improvement in the longitudinal weighted RMS acceleration. The greatest improvement occurs in the area between 1.25 and 4 Hz. Improvements in this area suggest that the adjusted suspension and tire parameters are reducing the amount of pitching experienced by the tractor. Also there are much lower acceleration values between 8 and 16 Hz, which can be attributed to the adjusted tire stiffness values.
Figure 4.11: Effect of Adjusted Suspension and Tire Parameters on Driver Ride Comfort
Table 4.18 shows the weighted RMS accelerations at the frequencies that showed the largest differences and their corresponding percent improvements. On the table are the values when nominal parameters and adjusted parameters are input into the program.

Table 4.18: Weighted RMS Accelerations at Specific Frequencies for Axle Suspension and Tire Parameter Variation

60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Vertical Weighted RMS Acceleration (m/s²) Improvement</th>
<th>Longitudinal Weighted RMS Acceleration (m/s²) Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal Parameters</td>
<td>Adjusted Parameters</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0585</td>
<td>0.0743</td>
</tr>
<tr>
<td>1.25</td>
<td>0.1038</td>
<td>0.1420</td>
</tr>
<tr>
<td>1.60</td>
<td>0.2070</td>
<td>0.1248</td>
</tr>
<tr>
<td>2.00</td>
<td>0.1089</td>
<td>0.0642</td>
</tr>
<tr>
<td>2.50</td>
<td>0.0289</td>
<td>0.0240</td>
</tr>
<tr>
<td>3.15</td>
<td>0.0279</td>
<td>0.0204</td>
</tr>
<tr>
<td>8.00</td>
<td>0.0084</td>
<td>0.0065</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0247</td>
<td>0.0175</td>
</tr>
<tr>
<td>12.5</td>
<td>0.0102</td>
<td>0.0094</td>
</tr>
</tbody>
</table>
Trailer Suspension and Beaming Parameter Variation

The same techniques used in the previous sections were used to study the effects of the trailer parameters on the ride characteristics of the tractor semi-trailer. The parameter variation was performed by the program opt_tlr_axlebeam.m which is described in Appendix K. Trailer axle stiffness was varied ±30% about the nominal value and the beaming frequency of the trailer frame was varied from 10 Hz to 30 Hz. Figure 4.12 shows the surface plots generated by the parameter variation program.
Figure 4.12: Trailer Suspension and Beaming Parameter Variation
Variations in the trailer frame beaming frequencies suggested that values at and above 18 Hz had very little effect on the acceleration of the trailer CG or the driver ride comfort. The same is true for the 12 and 13 Hz frequencies. The most notable features of Figure 4.12 were the relatively large acceleration values at frequencies of 11, 14, 15, 16, and 17 Hz. The spike at 11 Hz can be attributed to wheel hop modes. The largest spike, which occurred at 14 Hz, can most likely be attributed to the coupling with the tractor frame beaming frequency, which was held constant at 14 Hz (Table 4.3).

The lowest RMS combined acceleration of the driver occurs very close to a trailer beaming frequency of 10 Hz. However, this is very close to the acceleration spikes which occur from 11 to 17 Hz. The most practical course is to set the trailer beaming frequency at or above 20 Hz to avoid any acceleration spikes.

Figure 4.12 suggests that the suspension stiffness of the trailer axles has very little effect on the combined weighted RMS acceleration of the driver and only a small effect on the vertical weighted RMS acceleration of the trailer CG. When the beaming frequency of the trailer frame is held constant, there is only a 0.7% change in the combined weighted RMS acceleration of the driver and an 8.7% change in the vertical weighted RMS acceleration of the trailer CG over the range of trailer axle suspension stiffnesses.

The trends in Figure 4.12 show that the combined weighted RMS acceleration of the driver decreases slightly as the trailer axle suspension stiffness is increased. However, as the suspension stiffness decreases, there is a
considerable reduction in the vertical weighted RMS acceleration at the trailer CG. Also, there is no change in the sensitivity of the combined weighted RMS acceleration of the driver or the vertical weighted RMS acceleration of the trailer CG at different beaming frequencies.

Table 4.19 shows the ride height reduction experienced by the tractor semi-trailer in a loaded condition when using the reduced trailer axle stiffnesses.

<table>
<thead>
<tr>
<th>Axle</th>
<th>Axle Stiffness Value (N/m)</th>
<th>Ride Height Reduction (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td>581300</td>
<td>0.00</td>
</tr>
<tr>
<td>#1 Drive Axle</td>
<td>586900</td>
<td>0.01</td>
</tr>
<tr>
<td>#2 Drive Axle</td>
<td>586900</td>
<td>0.01</td>
</tr>
<tr>
<td>#1 Trailer Axle</td>
<td>700000</td>
<td>1.24</td>
</tr>
<tr>
<td>#2 Trailer Axle</td>
<td>700000</td>
<td>1.47</td>
</tr>
</tbody>
</table>

The maximum reduction in ride height was found to be just below one and a half inches on the second trailer axle when the vehicle is loaded.

Table 4.20 displays the loads seen by each of the axles in the nominal vehicle as well as the vehicle using the minimum tractor suspension stiffnesses. Both vehicles represented have a fully laden trailer.
Adjusting the trailer suspension values had very little effect on the loads experienced by the steer and drive axles, but did have a greater effect on the trailer axle loads. However, these loads are still within the acceptable range allowed by South Carolina regulations.

The J penalty function was calculated to study the trends in the driver ride comfort and the vertical weighted acceleration of the trailer CG when varying levels of importance were placed on each of them. Figures 4.13 and 4.14 show the surface plots for the J penalty functions with varying values for K1 and K2.

<table>
<thead>
<tr>
<th>Vehicle Configuration</th>
<th>Steer Axle Load (lbs)</th>
<th>#1 Drive Axle Load (lbs)</th>
<th>#2 Drive Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Vehicle</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30472</td>
<td>36352</td>
</tr>
<tr>
<td>Adjusted Trailer Axle Parameters</td>
<td>9965</td>
<td>14730</td>
<td>15801</td>
<td>18132</td>
<td>18160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30531</td>
<td>36292</td>
</tr>
<tr>
<td>SC Legal Load Limits with Permit</td>
<td>20000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td></td>
</tr>
<tr>
<td>Federal Legal Load Limits</td>
<td>12000</td>
<td>34000</td>
<td>34000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.13: J Penalty Formulation for Trailer Parameters
Figure 4.14: J Penalty Formulation for Trailer Parameters
Figures 4.13 and 4.14 suggest that reducing trailer axle suspension stiffness results in increased performance. Also, the J penalty surface plots confirm that the beaming frequency should remain at or above 20 Hz to avoid any acceleration spikes.

Table 4.21 shows the stiffness values for the trailer axles and the beaming frequency of the trailer frame chosen to achieve maximum ride comfort for both the driver and the trailer CG. These values were chosen factoring in their effect on the combined driver weighted RMS acceleration and the vertical weighted RMS acceleration of the trailer CG. Also considered are the effects of the adjusted stiffness values on the static ride heights of the tractor semi-trailer and the static loads on each of the axles.

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal Value</th>
<th>Adjusted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Trailer Axle (N/m)</td>
<td>1000000</td>
<td>700000</td>
</tr>
<tr>
<td>#2 Trailer Axle (N/m)</td>
<td>1000000</td>
<td>700000</td>
</tr>
<tr>
<td>Trailer Frame Beaming Frequency (Hz)</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Trailer Parameters with Adjusted Stiffness and Beaming Frequency Values

Using the adjusted suspension stiffness and keeping the nominal trailer frame beaming frequency has a positive effect on the vertical and a negative effect on the longitudinal weighted RMS accelerations of the driver. However, these balance out to zero effect on the combined weighted RMS acceleration. There is also an improvement in the vertical weighted acceleration of the trailer CG. Table 4.22 shows the vertical, longitudinal, and combined weighted RMS accelerations of the driver as well as the vertical weighted RMS acceleration of the trailer CG with the nominal and adjusted values and the percent improvement relative to the nominal values.

Table 4.22: Weighted Accelerations with Adjusted Trailer Suspension and Beaming Parameters
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Parameter Configuration</th>
<th>Driver Vertical Weighted Acceleration (m/s²)</th>
<th>Driver Longitudinal Weighted Acceleration (m/s²)</th>
<th>Driver Combined Weighted Acceleration (m/s²)</th>
<th>Trailer Vertical Weighted Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>0.32</td>
</tr>
<tr>
<td>Adjusted Parameters</td>
<td>0.27</td>
<td>0.36</td>
<td>0.45</td>
<td>0.31</td>
</tr>
<tr>
<td>% Improvement</td>
<td>3.6</td>
<td>-2.9</td>
<td>0.0</td>
<td>+ 3.1</td>
</tr>
</tbody>
</table>
The vehicle ride height (Table 4.19) is affected only a small amount, the axle load limits (Table 4.20) are not violated, and there is improvement in the trailer vertical weighted RMS acceleration. Consequently, the values listed in Table 4.21 are confirmed as the preferred values.
Tractor and Trailer Beaming Variations

The same parameter variation techniques used in the previous sections were used to study the individual effects of the tractor and trailer beaming frequencies on the vertical and longitudinal ISO weighted accelerations of the driver individually. The parameter variations were performed by the program opt_beam_freq.m which is described in Appendix L. The beaming frequencies of the tractor and trailer were ranged from 10 Hz to 30 Hz. Figure 4.15 shows the surface plots generated by the parameter variation program.
Figure 4.15: Effect of Tractor and Trailer Beaming Frequency on Driver Ride Comfort
Both plots in Figure 4.15 show spikes in the weighted RMS accelerations when the tractor beaming frequency equals 12 Hz and 17 Hz. The magnitude of the spikes increase as the trailer beaming frequency increases. However, there is a very large spike in the weighted RMS acceleration when the tractor beaming frequency equals 17 Hz and the trailer beaming frequency is at its lowest value, which is 10 Hz.

At its lowest value, the longitudinal weighted RMS acceleration is approximately 0.35 m/s\(^2\), and the vertical weighted RMS acceleration is approximately 0.27 m/s\(^2\). The longitudinal weighted RMS acceleration ranges from 0.35 m/s\(^2\) to approximately 0.45 m/s\(^2\), while the vertical weighted RMS acceleration ranges only from 0.27 m/s\(^2\) to approximately 0.35 m/s\(^2\).

Both plots in Figure 4.15 suggest that in order to avoid detrimental acceleration spikes, the tractor beaming frequency should be set at or above 20 Hz. When the tractor beaming is set at or above this value, the trailer beaming frequency has only a very limited effect on the vertical and longitudinal weighted RMS accelerations.
Fifth Wheel Suspension Parameter Variation

The vertical stiffness and damping constants across the fifth wheel were varied using the MATLAB program opt_5wKC_freq.m which is described in Appendix M. The stiffness constant was varied from 50,000 N/m to 1,000,000 N/m and the damping constant was varied from 2,000 N/(m/s) to a maximum of 40,000 N/(m/s). The minimum value of stiffness constant represents a fairly soft suspension system, and the maximum value represents a rigid connection. Figure 4.16 shows the surface plots generated by the parameter variation programs.

With the implementation of a fifth wheel vertical suspension system, the stroke across this connection becomes an important factor. Figure 4.17 shows the RMS stroke across the fifth wheel vertical suspension system as the parameters vary.
Figure 4.16: Parameter Variation for the Fifth Wheel Suspension System
Figure 4.17: RMS Stroke Across the Fifth Wheel Vertical Suspension System
Figure 4.16 suggests that the best performance is achieved when no fifth wheel suspension is present. When a “rigid” connection is present, the combined weighted RMS acceleration is lower than the nominal value, which is 0.45 m/s². This is caused by the fact that the beaming modes are being modeled as “free-free” Euler-Bernoulli beams when a fifth wheel suspension system is utilized.

Figure 4.17 shows that the RMS stroke across the fifth wheel vertical suspension system is not an area of concern for any stiffness or damping value.

It should be noted that further research has shown that changing other parameters in the tractor semi-trailer can have strong effects on the trends seen in the surface plots created by the fifth wheel suspension parameter variation program. Figure 4.18 shows the surface plots generated when a full cab suspension system is chosen. The parameters for the full cab suspension are given in Table C.4.
Figure 4.18: Parameter Variation for the Fifth Wheel Suspension with Full Cab Suspension
When a full cab suspension system is in place, the recommended fifth wheel suspension stiffness value becomes 800,000 N/m, as opposed to a “rigid” fifth wheel connection when using a rear-only cab suspension system. The new recommended value for the fifth wheel damping constant is 14,000 N/(m/s).

Trends in the trailer vertical weighted RMS acceleration plot remain largely the same. The surface plots show that the best performance for trailer ride is obtained by a “rigid” fifth wheel connection. However, there are only minor detrimental effects on the trailer acceleration when a suspension system is implemented. Significant improvements in the driver ride comfort with minor trade-offs in the trailer CG vertical RMa acceleration suggest that a fifth wheel suspension and full cab suspension may be beneficial.
Vehicle with Full Set of Adjusted Parameters

After the variation of the suspension parameters, tire parameters, trailer parameters, beaming frequencies, and fifth wheel parameters individually, it is possible to analyze the effects that all of these factors have together on the weighted RMS accelerations of the driver and trailer CG. Table 4.23 shows the nominal values for each of the suspension elements, tires, and the fifth wheel suspension system along with their adjusted values. The input beaming frequencies for the tractor and trailer frames remained at the nominal values of 20 Hz. The fifth wheel vertical suspension system parameter variation resulted in improvements in the driver ride comfort and the trailer CG vertical RMS acceleration when coupled with a full cab suspension system, so these values are also listed in Table 4.23.
Table 4.23: Nominal and Adjusted Parameters for Vehicle
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Stiffness Constant (N/m)</th>
<th>Adjusted Stiffness Constant (N/m)</th>
<th>Nominal Damping Constant (N/(m/s))</th>
<th>Adjusted Damping Constant (N/(m/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle Suspension</td>
<td>581300</td>
<td>406910</td>
<td>11270</td>
<td>14651</td>
</tr>
<tr>
<td>#1 Drive Axle Suspension</td>
<td>586900</td>
<td>410830</td>
<td>27500</td>
<td>35750</td>
</tr>
<tr>
<td>#2 Drive Axle Suspension</td>
<td>586900</td>
<td>410830</td>
<td>27500</td>
<td>35750</td>
</tr>
<tr>
<td>#1 Trailer Axle Suspension</td>
<td>1000000</td>
<td>700000</td>
<td>70000</td>
<td>70000</td>
</tr>
<tr>
<td>#2 Trailer Axle Suspension</td>
<td>1000000</td>
<td>700000</td>
<td>70000</td>
<td>70000</td>
</tr>
<tr>
<td>Steer Axle Tire</td>
<td>1295000</td>
<td>945350</td>
<td>517</td>
<td>517</td>
</tr>
<tr>
<td>#1 Drive Axle Tire</td>
<td>2388200</td>
<td>1671741</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#2 Drive Axle Tire</td>
<td>2388200</td>
<td>1671741</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#1 Trailer Axle Tire</td>
<td>2388200</td>
<td>2388200</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>#2 Trailer Axle Tire</td>
<td>2388200</td>
<td>2388200</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>Fifth Wheel Suspension (with full cab suspension)</td>
<td>10000000</td>
<td>800000</td>
<td>N/A</td>
<td>14000</td>
</tr>
</tbody>
</table>
Table 4.24 shows the vertical, longitudinal, and combined weighted RMS accelerations of the driver and trailer CG with the nominal and adjusted values and the percent improvement relative to the nominal values.

Table 4.24: Acceleration with the Full Set of Adjusted Parameters
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Suspension Configuration</th>
<th>Vertical Weighted Acceleration (m/s²)</th>
<th>Longitudinal Weighted Acceleration (m/s²)</th>
<th>Combined Weighted Acceleration (m/s²)</th>
<th>Trailer Vertical Weighted Acceleration (m/s²)</th>
<th>ISO Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>0.32</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>Adjusted Parameters (no 5th Wheel Susp. System)</td>
<td>0.23</td>
<td>0.23</td>
<td>0.32</td>
<td>0.32</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Values</td>
<td>+ 17.9</td>
<td>+ 34.3</td>
<td>+ 28.9</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Adjusted Parameters (5th Wheel Susp. System and Full Cab Susp.)</td>
<td>0.26</td>
<td>0.19</td>
<td>0.32</td>
<td>0.31</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Values</td>
<td>+ 7.1</td>
<td>+ 45.7</td>
<td>+ 28.9</td>
<td>+ 3.1</td>
<td></td>
</tr>
</tbody>
</table>

The values in Table 4.24 show considerable improvement in the vertical weighted RMS acceleration at the driver’s seat, but the area of greatest improvement lies in the longitudinal weighted RMS acceleration. When no fifth wheel vertical suspension system and a rear-only cab suspension system are present, the vertical weighted RMS acceleration of the driver showed a 17.9% improvement, but the longitudinal weighted RMS acceleration of the driver
displayed a significantly larger 34.3% improvement. This resulted in a 28.9% increase in the combined weighted RMS acceleration of the driver. The trailer CG vertical weighted acceleration remained constant. However, when a fifth wheel vertical suspension system is implemented and the cab is fully suspended, there is a 7.1% improvement in the vertical weighted RMS acceleration of the driver and a 45.7% improvement in the longitudinal weighted RMS acceleration of the driver. This resulted in a 28.9% increase in the combined weighted RMS acceleration of the driver. Also, there was a 3.1% improvement in the trailer CG vertical weighted RMS acceleration.

It is important to analyze not only the total improvement in weighted RMS acceleration, but also where these improvements occur in the frequency range. Figure 4.19 shows the vertical and longitudinal weighted RMS accelerations of the driver when no fifth wheel suspension system and a rear-only cab suspension system are present, along with the ISO specified 2.5 and 8 hour comfort boundaries. On the plots are the curves using nominal parameters and the results when inserting adjusted parameters.
Figure 4.19: Effects of Adjusted Parameters with No 5th Wheel Vertical Suspension System on Driver Ride Comfort
The plots in Figure 4.19 suggest that the greatest improvements are in the body mode frequency region. There is also considerable improvement in the wheel hop frequency region, which occurs between 10 and 16 Hz.

In the vertical RMS acceleration plot, the improvements reduce the frequencies that were violating the 8 hour comfort curve to acceptable values. The longitudinal RMS acceleration curve violates both the 8 and 2.5 hour comfort curves when nominal parameters are utilized, but with the adjusted set of parameters only the 8 hour curve is violated.

Figure 4.20 shows the vertical and longitudinal weighted RMS accelerations of the driver when a fifth wheel suspension system and a full cab suspension system are present, along with the ISO specified 2.5 and 8 hour comfort boundaries. On the plots are the curves using nominal parameters and the results when inserting adjusted parameters.
Figure 4.20: Effects of Adjusted Parameters with 5th Wheel Vertical Suspension System on Driver Ride Comfort
The plots in Figure 4.20 suggest that again the greatest improvements are in the body mode frequency region. In the vertical RMS acceleration plot, the presence of the fifth wheel vertical suspension system and full cab suspension has detrimental effects at 1.6, 3.15, 5 and 6.3 Hz. However, at frequencies higher than 6.3 Hz, there are large improvements. In the longitudinal RMS acceleration plot, there are improvements along the entire frequency spectrum except for 3.15 and 4 Hz.

In the vertical RMS acceleration plot, the improvements reduce the frequencies that were violating the 8 hour comfort curve to acceptable values. The longitudinal RMS acceleration curve violates both the 8 and 2.5 hour comfort curves when nominal parameters are utilized, but with the adjusted set of parameters only the 8 hour curve is violated.

The vertical, longitudinal, and combined RMS weighted acceleration at the driver’s seat were also analyzed for the case in which the trailer is unloaded. This was performed to ensure that no detrimental effects were created when inserting the adjusted parameters. Table 4.25 shows the results of this study.
Table 4.25: Acceleration with an Unloaded Trailer
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Suspension Configuration</th>
<th>Vertical Weighted Acceleration (m/s²)</th>
<th>Longitudinal Weighted Acceleration (m/s²)</th>
<th>Combined Weighted Acceleration (m/s²)</th>
<th>ISO Comfort Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Vehicle with Loaded Trailer</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>Nominal Vehicle with Unloaded Trailer</td>
<td>0.28</td>
<td>0.36</td>
<td>0.46</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Vehicle with Loaded Trailer</td>
<td>0</td>
<td>- 2.9</td>
<td>- 2.2</td>
<td></td>
</tr>
<tr>
<td>Adjusted Vehicle with Unloaded Trailer</td>
<td>0.24</td>
<td>0.24</td>
<td>0.33</td>
<td>A Little Uncomfortable</td>
</tr>
<tr>
<td>% Improvement Relative to Nominal Vehicle with Loaded Trailer</td>
<td>+ 14.3</td>
<td>+ 31.4</td>
<td>+ 26.7</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.25 suggests that the unloaded vehicle equipped with nominal parameters will experience accelerations very similar to those experienced by the nominal vehicle. When the unloaded vehicle is equipped with the adjusted parameters, there is a 26.7% improvement in the accelerations experienced at the driver’s seat, which is slightly down from 28.9% when the loaded vehicle is equipped with the adjusted parameter values.
Rollover Analysis

Research was conducted to study the effects that the adjusted suspension and tire parameters had on the rollover characteristics. The rollover simulation was performed using ROLL10WB3.m which was developed by Law [16]. A model and analysis were developed and implemented in Matlab to predict the lateral acceleration for impending rollover (or rollover threshold) under steady cornering of tractor semi-trailer trucks. The model includes the effects of vertical and lateral tire compliance, nonlinear axle roll suspensions, vertical suspensions for all axles, and a nonlinear “rocking” model for the fifth wheel connection. Provisions are made in the program for “switching” the appropriate equations and continuing the calculations after inside wheel lift-off is predicted for a given axle. Similar provisions are made to represent the tipping or rocking of the trailer on the fifth wheel. Outputs from the simulation include the inside wheel load (N), the tractor and trailer roll angles (deg), the axle roll angles (deg), and the trailer roll angle minus the tractor roll angle (deg) plotted against the lateral acceleration of the tractor semi-trailer (Gs). Like the parameter variation programs, the rollover simulation was performed using Michelin’s new wide-base tire. Figure 4.21 shows the output plots from ROLL10WB3.m for the nominal vehicle.
Figure 4.21: Rollover Results for the Nominal Vehicle
Figure 4.21 indicates that the nominal vehicle will experience inside wheel lift-off for the fourth axle at approximately 0.42 Gs of lateral acceleration. At this acceleration, the fifth (trailer) axle has already lifted off. This is indicated by the inside wheel loads on the fourth and fifth axles reaching zero. Also, at 0.42 Gs the axle and vehicle roll angles begin to rapidly increase.

This simulation was also performed for the vehicle using the adjusted values obtained in the previous sections. The adjusted values included the spring constants for each of the five axles, the vertical stiffnesses for each of the tires on the tractor semi-trailer, and the initial and secondary roll stiffnesses for each of the five axles. The secondary roll stiffnesses of the axles are used to more accurately describe the behavior of the suspension springs during large deflections. This could be representative of bump-stops on the axles or simply an increase in vertical stiffness as the displacements becomes greater. The secondary roll stiffness values are estimated by increasing the initial roll stiffness values by a factor of ten.

There was no option to include a fifth wheel suspension system in the rollover program, as a program with this feature has not yet been developed. Tables 4.26 and 4.27 display the nominal and adjusted values used in the rollover simulation, and Figure 4.22 shows the results from the rollover simulation using the adjusted values.
Table 4.26: Nominal and Adjusted Tire Parameters for the Rollover Simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Value Per-Side (kN/m)</th>
<th>Adjusted Value Per-Side (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle Tire Vertical Stiffness</td>
<td>647.5</td>
<td>472.68</td>
</tr>
<tr>
<td>#1 Drive Axle Tire Vertical Stiffness</td>
<td>1194.1</td>
<td>835.87</td>
</tr>
<tr>
<td>#2 Drive Axle Tire Vertical Stiffness</td>
<td>1194.1</td>
<td>835.87</td>
</tr>
<tr>
<td>#1 Trailer Axle Tire Vertical Stiffness</td>
<td>1194.1</td>
<td>1194.1</td>
</tr>
<tr>
<td>#2 Trailer Axle Tire Vertical Stiffness</td>
<td>1194.1</td>
<td>1194.1</td>
</tr>
</tbody>
</table>

Table 4.27: Nominal and Adjusted Suspension Parameters for the Rollover Simulation

<table>
<thead>
<tr>
<th>Parameter (Per Axle)</th>
<th>Nominal Value</th>
<th>Adjusted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle Suspension Stiffness (N/m)</td>
<td>581300</td>
<td>406910</td>
</tr>
<tr>
<td>#1 Drive Axle Suspension Stiffness (N/m)</td>
<td>586900</td>
<td>410830</td>
</tr>
<tr>
<td>#2 Drive Axle Suspension Stiffness (N/m)</td>
<td>586900</td>
<td>410830</td>
</tr>
<tr>
<td>#1 Trailer Axle Suspension Stiffness (N/m)</td>
<td>1000000</td>
<td>700000</td>
</tr>
<tr>
<td>#2 Trailer Axle Suspension Stiffness (N/m)</td>
<td>1000000</td>
<td>700000</td>
</tr>
<tr>
<td>Steer Axle Initial Roll Stiffness (N*m/rad)</td>
<td>119697</td>
<td>83787.9</td>
</tr>
<tr>
<td>#1 Drive Axle Initial Roll Stiffness (N*m/rad)</td>
<td>614662</td>
<td>430263</td>
</tr>
<tr>
<td>#2 Drive Axle Initial Roll Stiffness (N*m/rad)</td>
<td>614662</td>
<td>430263</td>
</tr>
<tr>
<td>#1 Trailer Axle Initial Roll Stiffness (N*m/rad)</td>
<td>744064</td>
<td>520845</td>
</tr>
<tr>
<td>#2 Trailer Axle Initial Roll Stiffness (N*m/rad)</td>
<td>744064</td>
<td>520845</td>
</tr>
<tr>
<td>Steer Axle Secondary Roll Stiffness (N*m/rad)</td>
<td>1196970</td>
<td>837879</td>
</tr>
<tr>
<td>#1 Drive Axle Secondary Roll Stiffness (N*m/rad)</td>
<td>6146620</td>
<td>4302630</td>
</tr>
<tr>
<td>#2 Drive Axle Secondary Roll Stiffness (N*m/rad)</td>
<td>6146620</td>
<td>4302630</td>
</tr>
<tr>
<td>#1 Trailer Axle Secondary Roll Stiffness (N*m/rad)</td>
<td>7440640</td>
<td>5208450</td>
</tr>
<tr>
<td>#2 Trailer Axle Secondary Roll Stiffness (N*m/rad)</td>
<td>7440640</td>
<td>5208450</td>
</tr>
</tbody>
</table>
Figure 4.22: Rollover Results for the Vehicle with Adjusted Parameters
Figure 4.22 suggests that the vehicle equipped with adjusted parameters experiences liftoff of the second trailer axle between 0.40 and 0.41 Gs, as opposed to 0.42 Gs in the nominal vehicle. Values for the roll angles of the tractor and trailer are slightly higher, as well as axle roll angle values. Also, the axle and vehicle roll angles begin to rapidly increase around 0.41 Gs. The use of the adjusted suspension parameters resulted in a 31.2% improvement in the driver ride comfort, but only a slight decrease in the lateral acceleration at which the tractor semi-trailer experiences rollover.
Summary

In this thesis, a 15 DOF model that describes the vertical dynamic response of a tractor semi-trailer was developed. A 14 DOF model was previously developed by Trangsrud [1], and this model was used as a basis of comparison for the new model. With the exception of the addition of the fifth wheel suspension system, the physical model is identical to Trangsrud’s. However, in this model the equations of motion were developed using Lagrange’s equation as well as Newton’s Laws for further validation.

The new model was simulated in MATLAB and used to explore the effects of various parameters on ride comfort, vehicle ride heights, and pavement loading. Many different vehicle configurations and operating scenarios may be simulated. The options for the vehicle configurations include: (a) a choice of six different tire types with the option to select the inflation pressure, (b) the presence or absence of seat suspension, (c) a choice of front, rear, full, or no cab suspension, (d) the presence of a fifth wheel suspension with the option to input the values for the suspension parameters, (e) variable tractor and trailer frame bending stiffnesses and, (f) the option of using a loaded or unloaded trailer. In addition to these options, specific values for the vehicle geometry, suspension characteristics, and inertial properties may be chosen by the user. The options for
The vehicle operating scenarios include: (a) the user’s choice from four different road profile types and, (b) vehicle velocity.

The MATLAB simulation performs all necessary calculations in the frequency domain. In the simulation program, dof15_freq2.m, the user has the option of examining any of the following outputs: (a) eigenvalues and eigenvectors of the system, (b) driver weighted acceleration values, (c) transfer functions of vehicle motions, (d) weighted RMS accelerations of the driver and how they relate to ISO 2631 comfort criteria (Table 3.2), (e) fifth wheel RMS stroke, (f) road profile RMS plots, (g) weighted RMS accelerations of the driver over the frequency range from 0.1 to 50 Hz and how they relate to ISO 2631 comfort boundaries [3:1974], (h) static loads and deflection at each of the axles and, (i) per-axle wheel force transfer functions.

The parameter variation programs allow the user the same input options as dof15_freq2.m, but the output options are somewhat limited by the nature of the programs. Each of the programs produce surface plots of the ISO combined weighted acceleration of the driver and surface plots of the ISO vertical weighted acceleration at the trailer CG. Some of the programs also offer surface plots of the J penalty function and the RMS stroke across the fifth wheel.
The 15 DOF model was compared to a “nominal” vehicle to assess the effect that the parameter variations have on the system response. Different case studies were performed to investigate the effects of each of the different parameters. The results from these case studies are summarized in Tables 5.1 through 5.3 and the numbered items following. The vehicle was assumed to be traveling at 60 mph over a “Smooth Highway”.
Table 5.1: Weighted RMS Accelerations
60 mph, Smooth Highway

<table>
<thead>
<tr>
<th>Vehicle Suspension Configuration</th>
<th>Vertical Weighted Acceleration (m/s²)</th>
<th>Longitudinal Weighted Acceleration (m/s²)</th>
<th>Combined Weighted Acceleration (m/s²)</th>
<th>Trailer Vertical Weighted Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Parameters</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>0.32</td>
</tr>
<tr>
<td>Adjusted Tractor Axle Suspension Parameters / % Improvement Relative to Nominal Value</td>
<td>0.22 / +21.4</td>
<td>0.24 / +31.4</td>
<td>0.32 / +28.9</td>
<td>0.34 / -6.3</td>
</tr>
<tr>
<td>Adjusted Tractor Tire Parameters / % Improvement Relative to Nominal Value</td>
<td>0.29 / -3.6</td>
<td>0.33 / +5.7</td>
<td>0.43 / +4.4</td>
<td>0.32 / 0</td>
</tr>
<tr>
<td>Adjusted Tractor Axle Suspension and Tire Parameters / % Improvement Relative to Nominal Value</td>
<td>0.23 / +17.9</td>
<td>0.23 / +34.3</td>
<td>0.32 / +28.9</td>
<td>0.33 / -3.1</td>
</tr>
<tr>
<td>Adjusted Trailer Beaming and Axle Parameters / % Improvement Relative to Nominal Value</td>
<td>0.27 / +3.6</td>
<td>0.36 / -2.9</td>
<td>0.45 / 0</td>
<td>0.31 / +3.1</td>
</tr>
<tr>
<td>Adjusted Tractor and Trailer Beaming Parameters / % Improvement Relative to Nominal Value</td>
<td>0.28 / 0</td>
<td>0.35 / 0</td>
<td>0.45 / 0</td>
<td>0.32 / 0</td>
</tr>
<tr>
<td>Full Set of Adjusted Parameters (Table 4.23) with No 5th Wheel Susp. System / % Improvement Relative to Nominal Value</td>
<td>0.23 / +17.9</td>
<td>0.23 / +34.3</td>
<td>0.32 / +28.9</td>
<td>0.32 / 0</td>
</tr>
<tr>
<td>Full Set of Adjusted Parameters (Table 4.23) with 5th Wheel Susp. System / % Improvement Relative to Nominal Value</td>
<td>0.26 / +7.1</td>
<td>0.19 / +45.7</td>
<td>0.32 / +28.9</td>
<td>0.31 / +3.1</td>
</tr>
<tr>
<td>Axle</td>
<td>Axle #1</td>
<td>Axle #2</td>
<td>Axle #3</td>
<td>Axle #4</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Ride Height Reduction with Adjusted Tractor Axle Suspension Parameters (in)</td>
<td>1.29</td>
<td>1.86</td>
<td>1.99</td>
<td>0.17</td>
</tr>
<tr>
<td>Ride Height Reduction with Adjusted Tractor Tire Parameters (in)</td>
<td>0.50</td>
<td>0.46</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>Ride Height Reduction with Adjusted Tractor Axle Suspension and Tire Parameters (in)</td>
<td>1.78</td>
<td>2.32</td>
<td>2.49</td>
<td>0.17</td>
</tr>
<tr>
<td>Ride Height Reduction with Adjusted Trailer Axle Parameters (in)</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>1.24</td>
</tr>
<tr>
<td>Ride Height Reduction with Full Set of Adjusted Parameters (Table 4.23) (in)</td>
<td>1.78</td>
<td>2.34</td>
<td>2.51</td>
<td>1.41</td>
</tr>
</tbody>
</table>
Table 5.3: Static Axle Loads and Legal Load Limits [38]

<table>
<thead>
<tr>
<th>Vehicle Configuration</th>
<th>Steer Axle Load (lbs)</th>
<th>#1 Drive Axle Load (lbs)</th>
<th>#2 Drive Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
<th>#1 Trailer Axle Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Vehicle</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Tractor Axle Suspension Parameters</td>
<td>9963</td>
<td>14667</td>
<td>15722</td>
<td>19312</td>
<td>17125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Tractor Tire Parameters</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Tractor Axle Suspension and Tire Parameters</td>
<td>9963</td>
<td>14667</td>
<td>15722</td>
<td>19312</td>
<td>17125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Trailer Axle Parameters</td>
<td>9965</td>
<td>14730</td>
<td>15801</td>
<td>18132</td>
<td>18160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Set of Adjusted Parameters (Table 4.23)</td>
<td>9964</td>
<td>14704</td>
<td>15768</td>
<td>18619</td>
<td>17733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Legal Load Limits with Permit</td>
<td>20000</td>
<td>40000</td>
<td>40000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Legal Load Limits</td>
<td>12000</td>
<td>34000</td>
<td>34000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. The tractor axle suspension stiffness variation suggested lowering the steer axle suspension stiffness from 581,300 N/m per axle to 406,910 N/m per axle which is a 30% decrease. It also suggested lowering the drive axle stiffnesses from 586,900 N/m per axle to 410,830 N/m per axle which is also a 30% decrease. This resulted in 24.4% improvement in the combined weighted RMS acceleration of the driver with only a 3.1% increase in the vertical weighted RMS acceleration of the trailer CG. These changes resulted in an acceptable reduction in vehicle ride height and did not cause the vehicle to violate any axle load limitation regulations.

2. The tractor axle suspension damping variation suggested raising the steer axle damping value from 11,270 N/(m/s) per axle to 14,651 N/(m/s) per axle which is a 30% increase. It also suggested raising the drive axle damping values from 27,500 N/(m/s) per axle to 35,750 N/(m/s) per axle which is also a 30% increase. This resulted in a 6.7% improvement in the combined weighted RMS acceleration of the driver with only a 3.1% increase in the vertical weighted RMS acceleration of the trailer CG.

3. Inserting the adjusted values for tractor axle suspension stiffness and damping resulted in a 21.4% improvement in the vertical weighted RMS acceleration, a 31.4% improvement in the longitudinal weighted RMS acceleration, and a 28.9% improvement in the combined weighted RMS acceleration of the driver. The areas of greatest improvement were found to occur at frequencies that correspond to body mode frequencies. All of the values for the weighted accelerations were listed as “A Little Uncomfortable” by ISO 2631 standards.

4. The tractor tire stiffness variation suggested lowering the steer tire stiffness from 647.5 kN/m per tire to 472.68 kN/m per tire which is a 27% decrease. It also suggested decreasing the drive tire stiffness from 1,194.1 kN/m per tire to 835.87 kN/m per tire which is a 30% decrease. This resulted in a 4.4% improvement in the combined weighted RMS acceleration of the driver and had insignificant effects on the vertical weighted RMS acceleration of the trailer CG. These changes resulted in an acceptable change in vehicle ride height and did not cause the vehicle to violate any axle load limitation regulations.

5. The tractor tire damping variation did not cause any significant changes in the accelerations experienced by the driver or the trailer CG.
6. Inserting the adjusted values for tractor axle suspension stiffness and damping as well as the adjusted values for the tire stiffness resulted in a 17.9% improvement in the vertical weighted acceleration, a 34.3% improvement in the longitudinal weighted acceleration, and a 28.9% improvement in the combined weighted acceleration of the driver. The areas of greatest improvement were found to occur at frequencies that correspond to body mode frequencies as well as frequencies corresponding to wheel hop frequencies. All of the values for the weighted accelerations were listed as “A Little Uncomfortable” by ISO 2631 standards.

7. The trailer suspension stiffness and beaming frequency variation suggested that lowering the trailer axle stiffness to 700,000 N/m and maintaining a trailer frame beaming frequency higher than 20 Hz resulted in no change in the combined weighted RMS acceleration of the driver and a 3.1% decrease in the vertical weighted RMS acceleration of the trailer CG. These changes resulted in an acceptable reduction in vehicle ride height and did not cause the vehicle to violate any axle load limitation regulations. All of the values for the weighted accelerations were listed as “A Little Uncomfortable” by ISO 2631 standards.

8. The tractor and trailer beaming frequency variation study suggested that maintaining beaming frequencies of the tractor and trailer frame above 20 Hz will cause the system to avoid any acceleration spikes caused by coupling of the beaming frequencies of the frames with wheel hop frequencies. There were no improvements in the weighted RMS accelerations for beaming frequencies higher than 20 Hz. However, all of the values for the weighted accelerations were listed as “A Little Uncomfortable” by ISO 2631 standards.

9. The fifth wheel suspension parameter variation study suggested that implementing a fifth wheel vertical suspension system would be detrimental to the ride comfort of the driver. This means that the best performance would be achieved using a conventional fifth wheel connection with the rear cab suspension. However, with a full cab suspension on the tractor a local minimum is present for the fifth wheel suspension and damping values. The recommended stiffness value becomes 800,000 N/m and the recommended damping value becomes 14,000 N/(m/s).
10. The implementation of the full set of adjusted parameters without a fifth wheel suspension system resulted in 17.9% decrease in the vertical weighted RMS acceleration of the driver, a 34.3% decrease in the longitudinal RMS weighted acceleration of the driver, and a 28.9% decrease in the combined weighted RMS acceleration of the driver. Also, no detrimental effects were witnessed in the trailer vertical weighted RMS acceleration. The implementation of the full set of adjusted parameters with a fifth wheel suspension system and full cab suspension resulted in 7.1% decrease in the vertical weighted RMS acceleration of the driver, a 45.7% decrease in the longitudinal weighted RMS acceleration of the driver, and a 28.9% decrease in the combined weighted RMS acceleration of the driver. Also, there was a 3.1% decrease in the vertical weighted RMS acceleration at the trailer CG. Changes in the vehicle ride height were acceptable, and no axle load limit regulations were violated.

11. The rollover study showed that very large improvements in ride characteristics could be obtained with only a very minor reduction of the lateral acceleration for inside wheel lift-off.

Recommendations

This research built on the foundation laid by Vaduri [3] and Trangsrud [1]. There were multiple changes and additions made to this simulation, as well as the creation of new programs to explore parameter variations. These factors make the simulation more valuable as a predictive tool, and open up some new areas of research for future engineers. Some possible additions to the model and simulation are presented below.

1. Developing a three dimensional model with unequal left and right road irregularities would allow vehicle and cab lateral motion and roll to be included.

2. The inclusion of higher order bending modes in the tractor and trailer frames could possibly give a more accurate picture of the dynamic response of the model.

3. Correlating the simulated data with physical test data would lend additional credibility to the model and encourage future use of the model and simulation.

4. More scenarios and/or additional vehicles could be studied with the parameter variation programs. Different combinations of vehicle parameters can have a significant effect on the outcome of the variation programs, and different vehicles could behave differently.

5. A parameter variation program that included a rollover indicator would help to analyze the tradeoffs experienced when finding the best set of parameters for ride quality. Also, a rollover program that included options for a fifth wheel suspension system would give good information on the effect of the fifth wheel suspension system on the rollover characteristics of the vehicle.
Appendix A: Equations of Motion

The equations of motion for the fifteen degree-of-freedom tractor semi-trailer are derived in this appendix using the Lagrangian Method. The fifteen degrees of freedom are (in the order in which they are derived): vertical displacement of the seat, vertical displacement of the cab, pitch of the cab, vertical displacement of the engine, vertical displacement of the tractor frame, pitch of the tractor frame, beaming of the tractor frame, vertical displacement of the trailer frame, pitch of the trailer frame, beaming of the trailer frame, and the vertical displacements of all five axles.

The Lagrangian Method uses the kinetic and potential energy of the system, along with the generalized force, which is determined from the work done by the applied force in some virtual displacement. The Lagrangian function is defined,

\[L = T^* - V \]

(A.1)

where \(T^* \) represents the kinetic coenergy of the system, and \(V \) represents the potential energy of the system. The potential energy is a function of \(\xi_j \) while \(T^* \) is a function of \(\dot{\xi}_j, \ddot{\xi}_j, \) and time \(t \). Therefore, the Lagrangian can be represented by the variables,

\[L = L(\dot{\xi}_1, \dot{\xi}_2, ..., \dot{\xi}_n, \ddot{\xi}_1, \ddot{\xi}_2, ..., \ddot{\xi}_n, t) \]

(A.2)

and its variation can be defined as,

\[\delta L = \sum_{j=1}^{n} \left(\frac{\delta L}{\delta \ddot{\xi}_j} \delta \ddot{\xi}_j + \frac{\delta L}{\delta \dot{\xi}_j} \delta \dot{\xi}_j \right). \]

(A.3)
It may be shown that through Hamilton’s principle, the following variational indicator may be derived,

\[V.I. = \int_{t_1}^{t_2} \left[\delta \left(T^r - V \right) + \sum_{j=1}^{n} \Xi_j \delta \xi_j \right] dt \] \hspace{1cm} (A.4)

where admissible variations are represented by the \(n \) independent \(\delta \xi_j \). These admissible variations vanish at times \(t_1 \) and \(t_2 \), but are otherwise arbitrary functions time in the interval from \(t_1 \) to \(t_2 \). Substituting (A.3) into (A.4), integrating, and using the agreement that the \(\delta \xi_j \) vanish at \(t=t_1 \) and \(t=t_2 \), \(n \) equations are left,

\[\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\xi}_j} \right) - \frac{\delta L}{\delta \xi_j} = \Xi_j. \] \hspace{1cm} (A.5)

\(j = 1, 2, ..., n \)

To derive the equations of motion for the tractor semi-trailer, the following steps are required:

1. Establish a complete set of independent generalized coordinates \(\xi_j \).

2. Identify generalized nonconservative forces \(\Xi_j \) (if any).

3. Construct the Lagrangian (A.1).

4. Substitute in Lagrange’s equations (A.5).
For simplicity, only the stiffness terms are included in the derivation. This is due to the spring and damping elements being in parallel, therefore making the derivation of the damping elements the same as the derivation of the spring elements. Positive deflection is assumed to be down for heave and nose up for pitch. Refer to Figures A.1 and A.2 for a visual representation of the degrees of freedom and the dimensions of the model. Appendix C contains the numeric parameters for the model.
Figure A.1: Fifteen Degree-of-Freedom System Model
Equations of Motion for the Driver’s Seat

The set of independent generalized coordinates for the vertical displacement of the driver’s seat is

$$\xi_j = [z]$$ \hspace{1cm} (A.6)

And the generalized nonconservative forces are defined as

$$\Xi_j = 0.$$ \hspace{1cm} (A.7)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

$$T^* = \frac{1}{2} m_s \dot{z}_s^2$$ \hspace{1cm} (A.8)

$$V = \frac{1}{2} k_s (z_s - z_c + r\theta_c)^2.$$ \hspace{1cm} (A.9)

This gives,

$$L = T^* - V = \frac{1}{2} m_s \dot{z}_s^2 - \frac{1}{2} k_s (z_s - z_c + r\theta_c)^2.$$ \hspace{1cm} (A.10)

Substituting into Lagrange’s equation gives,

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_s} \right) - \frac{\delta L}{\delta z_s} = 0$$ \hspace{1cm} (A.11)

Simplifying and removing terms that do not include the generalized coordinate yields:

$$\frac{d}{dt} (m_s \ddot{z}_s) - \left\{ \frac{\delta}{\delta z_s} \left[-\frac{1}{2} k_s \left(z^2_s - 2z_c z_s + 2r\theta_c z_s \right) \right] \right\} = 0$$ \hspace{1cm} (A.12)

or,

$$[m_s] \dddot{z}_s + [k_s] z_s + [-k_s] z_c + [rk_s] \theta_c = 0$$ \hspace{1cm} (A.13)
Equations of Motion for the Cab

The set of independent generalized coordinates for the motion of the cab is

\[\xi_j = [z_c, \theta_c] \]

(A.14)

And the generalized nonconservative forces are defined as

\[\Xi_j = 0. \]

(A.15)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[T^* = \frac{1}{2} m_c \dot{z}_c^2 + \frac{1}{2} I_c \dot{\theta}_c^2 \]

(A.16)

\[V = \frac{1}{2} k_s (z_c - z_z - r\theta_c)^2 + \frac{1}{2} k_{cf} (z_c - n\theta_c - z_i + l\theta_i - f_i (a - l) q_i)^2 \]
\[+ \frac{1}{2} k_{cr} (z_c + p\theta_c - z_i - j\theta_i - f_i (a + j) q_i)^2. \]

(A.17)

This gives,

\[L = T^* - V = \frac{1}{2} m_c \dot{z}_c^2 + \frac{1}{2} I_c \dot{\theta}_c^2 - \frac{1}{2} k_s (z_c - z_z - r\theta_c)^2 \]
\[- \frac{1}{2} k_{cf} (z_c - n\theta_c - z_i + l\theta_i - f_i (a - l) q_i)^2. \]

(A.18)

Substituting into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for vertical displacement of the cab gives,

\[\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_c} \right) - \frac{\delta L}{\delta z_c} = 0 \]

(A.19)

Simplifying and removing terms that do not include the generalized coordinate yields:
\[
\frac{d}{dt} \left(m_c \dot{z}_c \right) = \delta \left(\frac{\partial L}{\partial \dot{z}_c} \right) = 0
\]

or,

\[
\begin{align*}
&-k_s \dot{z}_s + [m_c] \dot{z}_c + [k_s + k_{cf} + k_{cr}] z_c + [-rk_s - nk_{cf} + pk_{cr}] \theta_c \\
&+ [k_{cf} - k_{cr}] z_t + [lk_{cf} - jk_{cr}] \dot{\theta}_t + [-k_{cf} f_i (a - l) - k_{cr} f_i (a + j)] q_t = 0
\end{align*}
\]

(A.21)

Substituting the Lagrangian into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for pitch of the cab gives,

\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_c} \right) - \frac{\delta L}{\delta \theta_c} = 0
\]

(A.22)

Simplifying and removing terms that do not include the generalized coordinate yields:

\[
\frac{d}{dt} \left(I_c \dot{\theta}_c \right) = \delta \left(\frac{\partial L}{\partial \dot{\theta}_c} \right) = 0
\]

or,

\[
\begin{align*}
&- \frac{1}{2} k_s \left[-2r z_c \theta_c + 2r z_c \theta_c + r^2 \theta_c^2 \right] \\
&- \frac{1}{2} k_{cf} \left[-2n z_c \theta_c + n^2 \theta_c^2 + 2n \theta_c \theta_c - 2n l \theta_c \theta_c + 2n f_i (a - l) q_t \theta_c \right] \\
&- \frac{1}{2} k_{cr} \left[2 p z_c \theta_c + p^2 \theta_c^2 - 2 p z_c \theta_c - 2 p j \theta_c \theta_c - 2 p f_i (a + j) q_t \theta_c \right] = 0
\end{align*}
\]

(A.23)

or,

\[
\begin{align*}
&-rk_s \dot{z}_s + [-rk_s - nk_{cf} + pk_{cr}] z_c + [I_c] \dot{\theta}_c + [r^2 k_s + n^2 k_{cf} + p^2 k_{cr}] \theta_c \\
&+ [nk_{cf} - pk_{cr}] z_t + [-nlk_{cf} - pj k_{cr}] \dot{\theta}_t + [nk_{cf} f_i (a - l) - pk_{cr} f_i (a + j)] q_t = 0
\end{align*}
\]

(A.24)
Equations of Motion for the Engine

The set of independent generalized coordinates for the vertical displacement of the engine is

\[\xi_j = [z_e] \] \hspace{1cm} (A.25)

And the generalized nonconservative forces are defined as

\[\Xi_j = 0. \] \hspace{1cm} (A.26)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[T^* = \frac{1}{2} m_e \dot{z}_e^2 \] \hspace{1cm} (A.27)

\[V = \frac{1}{2} k_e (z_e - z_i + m\theta_i - f_i(a - m)q_i)^2. \] \hspace{1cm} (A.28)

This gives,

\[L = T^* - V = \frac{1}{2} m_e \dot{z}_e^2 - \frac{1}{2} k_e (z_e - z_i + m\theta_i - f_i(a - m)q_i)^2. \] \hspace{1cm} (A.29)

Substituting into Lagrange’s equation gives,

\[\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_e} \right) - \frac{\delta L}{\delta z_e} = 0 \] \hspace{1cm} (A.30)

Simplifying and removing terms that do not include the generalized coordinate yields:

\[\frac{d}{dt} \left(m_e \dot{z}_e \right) - \left\{ \frac{\delta}{\delta z_e} \left(-\frac{1}{2} k_e \left[z_e^2 - 2z_t z_e + 2m\theta_i z_e - 2f_i(a - m)q_i z_e \right] \right) \right\} = 0 \] \hspace{1cm} (A.31)

or,

\[[m_e] \ddot{z}_e + [k_e] z_e + [-k_e] z_i + [mk_e] \theta_i + [-k_e f_i(a - m)] q_i = 0 \] \hspace{1cm} (A.32)
Equations of Motion for the Tractor Frame

The set of independent generalized coordinates for the motion of the tractor frame is

\[\xi_j = [z_i, \theta_i, q_i] \] \hspace{1cm} (A.33)

And the generalized nonconservative forces are defined as

\[\Xi_j = 0. \] \hspace{1cm} (A.34)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[T^* = \int_0^{\pi/2} \frac{1}{2} \rho A \left[\frac{d}{dx} \left(\dot{z}_i - (a - x) \dot{\theta}_i + f_i(x) \dot{q}_i \right) \right]^2 dx \] \hspace{1cm} (A.35)

\[V = \frac{1}{2} EI \left[f_i(x) \right]^2 dx q_i^2 + \frac{1}{2} k_c (z_i - z_c - m \theta_i + f_i(a - m) q_i)^2 \]
\[+ \frac{1}{2} k_c (z_i - z_c + n \theta_i - l \theta_i + f_i(a - l) q_i)^2 + \frac{1}{2} k_c (z_i - z_c - p \theta_i + j \theta_i + f_i(a + j) q_i)^2 \]
\[+ \frac{1}{2} k_c (z_i - z_c + i \theta_i + e \theta_i + f_i(a + i) q_i - f_i(0) q_i)^2 \]
\[+ \frac{1}{2} k_c (z_i - a \theta_i + f_i(0) q_i - z_i)^2 + \frac{1}{2} k_c (z_i + b \theta_i + f_i(a + b) q_i - z_i)^2 \]
\[+ \frac{1}{2} k_c (z_i + d \theta_i + f_i(a + d) q_i - z_i)^2 \] \hspace{1cm} (A.36)
Constructing the Lagrangian results in,

\[
L = T^* - V = \int_0^{a^+d} \frac{1}{2} \rho A \left[\dot{z}_i - (a-x)\dot{\theta}_i + f_i(x)\dot{q}_i \right]^2 dx
\]

\[-\frac{1}{2} EI \int_0^{a^+d} \left[f_i(x) \right]^2 dx q_i^2 - \frac{1}{2} k_c (z_i - z_e - m\theta_i + f_i(a-m)q_i)^2
\]

\[-\frac{1}{2} k_{cf} (z_i - z_c + n\theta_i - l\theta_i + f_i(a-l)q_i)^2 - \frac{1}{2} k_{cr} (z_i - z_e - p\theta_i + j\theta_i + f_i(a+j)q_i)^2
\]

\[-\frac{1}{2} k_{ew} (z_i - z_{ew} + i\theta_i + e\theta_i + f_i(a+i)q_i - f_i(0)q_{ew})^2
\]

\[-\frac{1}{2} k_1 (z_i - a\theta_i + f_i(0)q_i - z_1)^2 - \frac{1}{2} k_2 (z_i + b\theta_i + f_i(a+b)q_i - z_2)^2
\]

\[-\frac{1}{2} k_3 (z_i + d\theta_i + f_i(a+d)q_i - z_3)^2
\]

(A.37)

Substituting into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for vertical displacement of the tractor frame gives,

\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_i} \right) - \frac{\delta L}{\delta z_i} = 0
\]

(A.38)
Simplifying and removing terms that do not include the generalized coordinate yields:

\[
\frac{d}{dt} \left(\frac{\partial}{\partial \dot{z}_i} \left(\int_0^{a+d} \frac{1}{2} \rho A \left[\dot{z}_i^2 + 2 f_i(x) \dot{q}_i \dot{z}_i - 2(a-x) \dot{\theta}_i \dot{z}_i \right] \right) \right) = 0
\]

(A.39)

or,

\[
\begin{align*}
\left[-k_{cf} - k_{cr} \right] z_e + \left[nk_{cf} - pk_{cr} \right] \theta_e + \left[-k_e \right] z_e + \left[m_i \right] \ddot{z}_t \\
+ \left[k_e + k_{cf} + k_{cr} + k_{fw} + k_1 + k_2 + k_3 \right] z_i + \left[- \int_0^{a+d} \rho A(a-x) dx \right] \dot{\theta}_i \\
+ \left[-mk_e - lk_{cf} + jk_{cr} + ik_{fw} - ak_1 + bk_2 + dk_3 \right] \theta_i + \left[\int_0^{a+d} \rho A f_i(x) dx \right] \dot{q}_i \\
+ \left[k_{cf} f_i(a-m) + k_{cr} f_i(a-l) + k_{cr} f_i(a+j) \right] q_i \\
+ \left[k_{fw} f_i(a+i) + k_{fw} f_i(0) + k_{fw} f_i(a+b) + k_{fw} f_i(a+d) \right] q_i \\
+ \left[-k_{fw} \right] z_{dr} + \left[ek_{fw} \right] \theta_{dr} + \left[-k_{fw} f_i(0) \right] q_{dr} + \left[-k_1 \right] z_1 + \left[-k_2 \right] z_2 + \left[-k_3 \right] z_3 = 0
\end{align*}
\]

(A.40)
Substituting the Lagrangian into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for pitch of the tractor frame gives,

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\theta}_i} \right) - \frac{\delta L}{\delta \theta_i} = 0 \quad \text{(A.41)}$$

Simplifying and removing terms that do not include the generalized coordinate yields:

$$\frac{d}{dt} \left\{ \frac{\delta}{\delta \dot{\theta}_i} \left[\int_0^a \rho A \left[-2(a-x)\dot{z}_i \dot{\theta}_i + (a-x)^2 \dot{\theta}_i^2 - 2(a-x)f_i(x)\ddot{q}_i \dot{\theta}_i \right] dx \right] \right\}$$

$$- \frac{\delta}{\delta \theta_i} \left[\frac{1}{2} k_e \left[-2mz_i \theta_i + 2mz_i \dot{\theta}_i + m^2 \dot{\theta}_i^2 - 2mf_i(a-m)q_i \right]
ight]$$

$$- \frac{1}{2} k_{cf} \left[-2lz_i \theta_i + 2lz_i \dot{\theta}_i - 2nl \theta_i \dot{\theta}_i + l^2 \dot{\theta}_i^2 - 2lf_i(a-l)q_i \theta_i \right]$$

$$- \frac{1}{2} k_{cr} \left[2jz_i \theta_i - 2jz_i \dot{\theta}_i + 2pj \theta_i \dot{\theta}_i + j^2 \dot{\theta}_i^2 + 2jf_i(a+j)q_i \theta_i \right]$$

$$- \frac{1}{2} k_{fw} \left[2iz_i \theta_i - 2iz_i \dot{\theta}_i + i^2 \dot{\theta}_i^2 + 2ei \theta_i \dot{\theta}_i + 2if_i(a+i)q_i \theta_i \right]$$

$$- \frac{1}{2} k_i \left[-2az_i \theta_i + a^2 \dot{\theta}_i^2 - 2af_i(0)q_i \theta_i + 2az_i \dot{\theta}_i \right]$$

$$- \frac{1}{2} k_2 \left[2bz_i \theta_i + b^2 \dot{\theta}_i^2 + 2bf_i(a+b)q_i \theta_i + 2bz_i \dot{\theta}_i \right]$$

$$- \frac{1}{2} k_3 \left[2dz_i \theta_i + d^2 \dot{\theta}_i^2 + 2df_i(a+d)q_i \theta_i + 2dz_i \dot{\theta}_i \right]$$

$$= 0 \quad \text{(A.42)}$$

or,
Substituting the Lagrangian into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for beaming of the tractor frame gives,

\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_t} \right) - \frac{\delta L}{\delta q_t} = 0 \quad (A.44)
\]

Simplifying and removing terms that do not include the generalized coordinate yields:
\[
\begin{aligned}
\frac{d}{dt} \left\{ \frac{\delta}{\delta \dot{q}_i} \left(\int_0^{a+d} \frac{1}{2} \rho A \left[2f_i(x)\dot{z}_i\dot{q}_i - 2(a-x)f_i(x)\dot{\theta}_i\dot{q}_i + f_i^2(x)\dot{q}_i^2 \right] \,dx \right) \right\} = 0
\end{aligned}
\]

or,

\[(A.45)\]
\[
\begin{align*}
\left[-k_{cf}f_i(a - l) - k_{cr}f_i(a + j) \right] z_c + \left[nk_{cf}f_i(a - l) - pk_{cr}f_i(a + j) \right] \theta_c \\
+ \left[-k_{cf}f_i(a - m) \right] z_c + \left[\int_0^{a+d} \rho A f_i(x)dx \right] \ddot{z}_c \\
+ \left[k_{cf}f_i(a - m) + k_{cf}f_i(a - l) + k_{cr}f_i(a + j) + k_{fu}f_i(a + i) \right] z_c \\
+ k_{f_i}(0) + k_{f_i}(a + b) + k_{f_i}(a + d) \right] z_c \\
+ \left[-\int_0^{a+d} \rho A(a - x) f_i(x)dx \right] \ddot{\theta}_c \\
+ \left[-mk_{cf}f_i(a - m) - lk_{cf}f_i(a - l) + jk_{cr}f_i(a + j) \right] \theta_c \\
+ ik_{fu}f_i(a + i) - ak_{f_i}(0) + bk_{f_i}(a + b) + dk_{f_i}(a + d) \right] \theta_i \\
+ \left[\int_0^{a+d} \rho A f_i(x)^2 dx \right] \ddot{q}_i \\
+ \left[E f_{i''}(x) \right] dx + k_{cf}f_i^2(a - m) + k_{cr}f_i^2(a - l) + k_{cr}f_i^2(a + j) \right] q_i \\
+ k_{fu}f_i^2(a + i) + k_{f_i}(0) + k_{f_i}(a + b) + k_{f_i}(a + d) \\
+ \left[-k_{fu}f_i(a + i) \right] z_{tr} + \left[ek_{fu}f_i(a + i) \right] \theta_{tr} + \left[-k_{fu}f_i(0) f_i(a + i) \right] d_{tr} \\
+ \left[-k_{f_i}(0) \right] z_i + \left[-k_{f_i}(a + b) \right] z_j + \left[-k_{f_i}(a + d) \right] z_3 = 0 \\
\end{align*}
\]

(A.46)
Equations of Motion for the Trailer

The set of independent generalized coordinates for the motion of the trailer is

$$
\xi_j = [z_{ltr}, \theta_{ltr}, q_{ltr}]
$$

(A.47)

And the generalized nonconservative forces are defined as

$$
\Xi_j = 0
$$

(A.48)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

$$
T^* = \int_0^{e+h} \frac{1}{2} \rho A [\dot{z}_{ltr} - (e - x) \dot{\theta}_{ltr} + f_{ltr}(x) \ddot{q}_{ltr}]^2 \, dx
$$

(A.49)

$$
V = \frac{1}{2} EI \int_0^{e+h} [f''_{ltr}(x)]^2 dx q_{ltr}^2 + \frac{1}{2} k_{f r} (-z_t + z_{ltr} - i \theta_t - e \theta_{ltr} - f_i(a + i) q_t + f_{ltr}(0) q_{ltr})^2
$$

$$
+ \frac{1}{2} k_4 (z_{ltr} + f \theta_{ltr} + f_{ltr}(e + f) q_{ltr} - z_4)^2 + \frac{1}{2} k_5 (z_{ltr} + h \theta_{ltr} + f_{ltr}(e + h) q_{ltr} - z_5)^2
$$

(A.50)

Constructing the Lagrangian results in,

$$
L = T^* - V = \int_0^{e+h} \frac{1}{2} \rho A [\dot{z}_{ltr} - (e - x) \dot{\theta}_{ltr} + f_{ltr}(x) \ddot{q}_{ltr}]^2 \, dx
$$

$$
- \frac{1}{2} EI \int_0^{e+h} [f''_{ltr}(x)]^2 dx q_{ltr}^2 - \frac{1}{2} k_{f r} (-z_t + z_{ltr} - i \theta_t - e \theta_{ltr} - f_i(a + i) q_t + f_{ltr}(0) q_{ltr})^2
$$

$$
- \frac{1}{2} k_4 (z_{ltr} + f \theta_{ltr} + f_{ltr}(e + f) q_{ltr} - z_4)^2 - \frac{1}{2} k_5 (z_{ltr} + h \theta_{ltr} + f_{ltr}(e + h) q_{ltr} - z_5)^2
$$

(A.51)

Substituting into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for vertical displacement of the trailer gives,
\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_{\text{tr}}^{\text{dr}}} \right) - \frac{\delta L}{\delta z_{\text{tr}}} = 0 \quad (A.52)
\]

Simplifying and removing terms that do not include the generalized coordinate yields:

\[
\frac{d}{dt} \left\{ \frac{\delta}{\delta z_{\text{tr}}^{\text{dr}}} \left(\int_{0}^{e+h} \rho A \left[\dot{z}_{\text{tr}}^{2} - 2(e-x)\dot{z}_{\text{tr}}^{2} + 2f_{\text{tr}}(x)q_{\text{tr}}^{2}\dot{z}_{\text{tr}} \right] dx \right) \right\} = 0
\]

(A.53)

or,

\[
\left[-k_{jv}\right] z_{t} + \left[-i k_{jv} \right] \theta_{t} + \left[-k_{jv}^{2} (a + i) \right] q_{t} + \left[m_{tr} \right] \ddot{z}_{tr} + \left[k_{jv} + k_{4} + k_{5} \right] z_{tr}
\]

\[
+ \left[\int_{0}^{e+h} \rho A(e-x)dx \right] \dot{\theta}_{tr} + \left[-ek_{jv} + fk_{4} + hk_{5} \right] \theta_{tr} + \left[\int_{0}^{e+h} \rho A f_{\text{tr}}(x) dx \right] \dot{q}_{tr}
\]

\[
+ \left[k_{jv} f_{\text{tr}}(0) + k_{4} f_{\text{tr}}(e + f) + k_{5} f_{\text{tr}}(e + h) \right] q_{tr} + \left[-k_{4} \right] z_{4} + \left[-k_{5} \right] z_{5} = 0
\]

(A.54)

Substituting the Lagrangian into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for pitch of the trailer gives,

\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\theta}_{\text{tr}}} \right) - \frac{\delta L}{\delta \theta_{\text{tr}}} = 0 \quad (A.55)
\]

Simplifying and removing terms that do not include the generalized coordinate yields:
\[
\frac{d}{dt} \left\{ \frac{\delta}{\delta \dot{\theta}_{tr}} \left[\int_0^{\epsilon_h} \rho A \left[-2(e-x)z_{dr} \dot{\theta}_{dr} + (e-x)^2 \dot{\theta}_{dr}^2 - 2(e-x)f_{tr}(x)\dot{q}_{dr} \dot{\theta}_{dr} \right] dx \right] \right\} = 0
\]
\[
\begin{align*}
\frac{\delta}{\delta \theta_{dr}} \left[\int_0^{\epsilon_h} &\left\{ -\frac{1}{2} k_{fw} \left[2e z_{tr} \theta_{dr} - 2e z_{dr} \theta_{tr} + 2e i \theta_{tr} \theta_{dr} + e^2 \theta_{dr}^2 + 2e f_i(a+i)q_i \theta_{dr} \right] - 2e f_i(0)q_i \theta_{dr} \right\} dx \right] \\
&- \frac{\delta}{\delta \theta_{dr}} \left[\int_0^{\epsilon_h} \left\{ -\frac{1}{2} k_4 \left[2f_{dr} \theta_{dr} + f^2 \theta_{dr}^2 + 2f f_{dr}(e+f)q_{dr} \theta_{dr} - 2f f_A \theta_{dr} \right] - 2f f_A \theta_{dr} \right\} dx \right] \\
&\quad - \frac{\delta}{\delta \theta_{dr}} \left[\int_0^{\epsilon_h} \left\{ -\frac{1}{2} h z_{dr} \theta_{dr} + h^2 \theta_{dr}^2 + 2h f_{dr}(e+h)q_{dr} \theta_{dr} - 2h z_{dr} \theta_{dr} \right\} dx \right] \\
&= 0
\end{align*}
\]
\(\text{(A.56)}\)

or,
\[
\left[ek_{fw} \right] z_{i} + \left[e i k_{fw} \right] \theta_{i} + \left[ek_{fw} f_i(a+i) \right] q_i + \left[-\int_0^{\epsilon_h} \rho A(e-x)dx \right] z_{dr}
\]
\[
+ \left[-ek_{fw} + f k_4 + h k_5 \right] z_{dr} + \left[I_{dr} \right] \dot{\theta}_{dr} + \left[e^2 k_{fw} + f^2 k_4 + h^2 k_5 \right] \theta_{dr}
\]
\[
+ \left[-\int_0^{\epsilon_h} \rho A(e-x)f_{dr}(x)dx \right] \dot{q}_{dr} + \left[-ek_{fw} f_{dr}(0) + f k_4 f_{dr}(e+f) + h k_5 f_{dr}(e+h) \right] q_{dr}
\]
\[
+ \left[-f k_4 \right] z_{4} + \left[-h k_5 \right] z_{5} = 0
\]
\(\text{(A.57)}\)

Substituting the Lagrangian into Lagrange’s equation with the generalized coordinate chosen to obtain the equation for beaming of the trailer gives,
\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_{dr}} \right) - \frac{\delta L}{\delta q_{dr}} = 0
\]
\(\text{(A.58)}\)

Simplifying and removing terms that do not include the generalized coordinate yields:
\[
\frac{d}{dt} \left\{ \frac{\delta}{\delta q_{\text{trl}}} \left[\int_0^{e+h} \rho A \left[2f_{\text{trl}}(x)\dot{z}_{\text{trl}}\dot{q}_{\text{trl}} - 2(e-x)f_{\text{trl}}(x)\dot{\theta}_{\text{trl}}\dot{q}_{\text{trl}} + \left(f_{\text{trl}}(x) \right)^2 \dot{q}_{\text{trl}}^2 \right] dx \right] \right\}
\]

\[
= -\frac{1}{2} EI \int_0^{e+h} \left[f_{\text{trl}}^*(x) \right]^2 dx q_{\text{trl}}^2
- \frac{1}{2} k_f \left[-2f_{\text{trl}}(0)z_{\text{trl}} + 2f_{\text{trl}}(0)z_{\text{trl}}q_{\text{trl}} - 2if_{\text{trl}}(0)\theta_{\text{trl}} + 2f_{\text{trl}}(0)q_{\text{trl}} + f_{\text{trl}}^2(0)q_{\text{trl}}^2 \right]
- \frac{1}{2} \frac{1}{k_4} \left[2f_{\text{trl}}(e+f)z_{\text{trl}}q_{\text{trl}} + 2ff_{\text{trl}}(e+f)\theta_{\text{trl}}q_{\text{trl}} + f_{\text{trl}}^2(e+f)q_{\text{trl}}^2 \right]
- \frac{1}{2} \frac{1}{k_5} \left[2f_{\text{trl}}(e+h)z_{\text{trl}}q_{\text{trl}} + 2hf_{\text{trl}}(e+h)\theta_{\text{trl}}q_{\text{trl}} + f_{\text{trl}}^2(e+h)q_{\text{trl}}^2 \right]
\]

\[= 0 \] (A.59)

or,

\[
\left[-k_{f,\text{trl}}f_{\text{trl}}(0) \right] z_t + \left[-ik_{f,\text{trl}}f_{\text{trl}}(0) \right] \theta_t + \left[-k_{f,\text{trl}}(a+i)f_{\text{trl}}(0) \right] q_t + \left[\int_0^{e+h} \rho Af_{\text{trl}}(x) dx \right] \dot{z}_{\text{trl}}
+ \left[k_{f,\text{trl}}f_{\text{trl}}(0) + k_4 f_{\text{trl}}(e+f) + k_5 f_{\text{trl}}(e+h) \right] z_{\text{trl}} + \left[-\int_0^{e+h} \rho A(e-x)f_{\text{trl}}(x) dx \right] \dot{\theta}_{\text{trl}}
+ \left[-ek_{f,\text{trl}}f_{\text{trl}}(0) + fk_4 f_{\text{trl}}(e+f) + hk_5 f_{\text{trl}}(e+h) \right] \theta_{\text{trl}} + \left[\int_0^{e+h} \rho A(f_{\text{trl}}(x))^2 dx \right] \dot{q}_{\text{trl}}
+ \left[EI \int_0^{e+h} \left[f_{\text{trl}}^*(x) \right]^2 dx + k_{f,\text{trl}}f_{\text{trl}}^2(0) + k_4 f_{\text{trl}}^2(e+f) + k_5 f_{\text{trl}}^2(e+h) \right] q_{\text{trl}}
+ \left[-k_4 f_{\text{trl}}(e+f) \right] z_s + \left[-k_5 f_{\text{trl}}(e+h) \right] z_s = 0
\] (A.60)
Equation of Motion for Axle #1

The set of independent generalized coordinates for the vertical displacement of axle #1 is

$$\xi_j = [z_1]$$ \hspace{1cm} (A.61)

And the generalized nonconservative forces are defined as

$$\Xi_j = [k_{r_1}]z_{r_1}.$$ \hspace{1cm} (A.62)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

$$T^* = \frac{1}{2}m_i\dot{z}_i^2$$ \hspace{1cm} (A.63)

$$V = \frac{1}{2}k_1(z_i - z_i + a\theta_i - f_i(0)q_i)^2 + \frac{1}{2}k_{r_1}(z_i)^2.$$ \hspace{1cm} (A.64)

This gives,

$$L = T^* - V = \frac{1}{2}m_i\dot{z}_i^2 - \frac{1}{2}k_1(z_i - z_i + a\theta_i - f_i(0)q_i)^2 - \frac{1}{2}k_{r_1}(z_i)^2.$$ \hspace{1cm} (A.65)

Substituting into Lagrange’s equation gives,

$$\frac{d}{dt}\left(\frac{\delta L}{\delta \dot{z}_i}\right) - \frac{\delta L}{\delta z_i} = [k_{r_1}]z_{r_1}$$ \hspace{1cm} (A.66)

Simplifying and removing terms that do not include the generalized coordinate yields:

$$\frac{d}{dt}(m_i\dot{z}_i) - \left\{\frac{\delta}{\delta z_i}\left(-\frac{1}{2}k_1\left[z_i^2 - 2z_i z_i + 2a\theta_i z_i - 2f_i(0)q_i z_i\right] - \frac{1}{2}k_{r_1}(z_i^2)\right)\right\} = [k_{r_1}]z_{r_1}$$ \hspace{1cm} (A.67)

or,

$$[-k_1]z_i + [ak_1]\theta_i + [-k_{r_1}f_i(0)]q_i + [m_i]\ddot{z}_i + [k_i + k_{r_1}]z_i = [k_{r_1}]z_{r_1}$$ \hspace{1cm} (A.68)
Equation of Motion for Axle #2

The set of independent generalized coordinates for the vertical displacement of axle #2 is

\[\xi_j = [z_2] \] \hspace{1cm} (A.69)

And the generalized nonconservative forces are defined as

\[\Xi_j = [k_{i2}]z_{i2}. \] \hspace{1cm} (A.70)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[T^* = \frac{1}{2}m_2\dot{z}_2^2 \] \hspace{1cm} (A.71)

\[V = \frac{1}{2}k_2(z_2 - z_i - b\theta_i - f_i(a + b)q_i)^2 + \frac{1}{2}k_{i2}(z_2)^2. \] \hspace{1cm} (A.72)

This gives,

\[L = T^* - V = \frac{1}{2}m_2\dot{z}_2^2 - \frac{1}{2}k_2(z_2 - z_i - b\theta_i - f_i(a + b)q_i)^2 - \frac{1}{2}k_{i2}(z_2)^2. \] \hspace{1cm} (A.73)

Substituting into Lagrange’s equation gives,

\[\frac{d}{dt}\left(\frac{\delta L}{\delta \dot{z}_2} \right) - \frac{\delta L}{\delta z_2} = [k_{i2}]z_{i2} \] \hspace{1cm} (A.74)

Simplifying and removing terms that do not include the generalized coordinate yields:

\[\frac{d}{dt}(m_2\ddot{z}_2) - \left[\frac{\delta}{\delta z_2}\left(\frac{1}{2}k_2\left[\dot{z}_2^2 - 2\dot{z}_2z_2 - 2\dot{z}_2\dot{z}_2 - 2f_i(a + b)q_i\dot{z}_2 \right] \right) \right] = [k_{i2}]z_{i2} \] \hspace{1cm} (A.75)

or,

\[[-k_2]z_i + [-bk_2]\theta_i + [-k_2f_i(a + b)]q_i + [m_2]\ddot{z}_2 + [k_2 + k_{i2}]z_2 = [k_{i2}]z_{i2} \] \hspace{1cm} (A.76)
Equation of Motion for Axle #3

The set of independent generalized coordinates for the vertical displacement of axle #3 is

$$\xi_j = \begin{bmatrix} z_3 \end{bmatrix}$$ \hspace{1cm} (A.77)

And the generalized nonconservative forces are defined as

$$\Xi_j = [k_{i3}]z_{r3}.$$ \hspace{1cm} (A.78)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

$$T^* = \frac{1}{2}m_3\dot{z}_3^2$$ \hspace{1cm} (A.79)

$$V = \frac{1}{2}k_3(z_3 - z_i - d\theta_i - f_i(a + d)q_i)^2 + \frac{1}{2}k_{i3}(z_3)^2.$$ \hspace{1cm} (A.80)

This gives,

$$L = T^* - V = \frac{1}{2}m_3\dot{z}_3^2 - \frac{1}{2}k_3(z_3 - z_i - d\theta_i - f_i(a + d)q_i)^2 - \frac{1}{2}k_{i3}(z_3)^2.$$ \hspace{1cm} (A.81)

Substituting into Lagrange’s equation gives,

$$\frac{d}{dt}\left(\frac{\delta L}{\delta \dot{z}_3}\right) = \frac{\delta L}{\delta z_3} = [k_{i3}]z_{r3}$$ \hspace{1cm} (A.82)

Simplifying and removing terms that do not include the generalized coordinate yields:

$$\frac{d}{dt}\left(m_3\ddot{z}_3\right) = \left\{-\frac{1}{2}k_3\left[z_3^2 - 2z_i z_3 - 2d\theta_i z_3 - 2f_i(a + d)q_i z_3\right] + \frac{1}{2}k_{i3}z_3^2\right\} = [k_{i3}]z_{r3}$$ \hspace{1cm} (A.83)

or,

$$[-k_3]z_i + [-dk_3]\theta_i + [-k_3 f_i(a + d)]q_i + \begin{bmatrix} m_3 \end{bmatrix}\ddot{z}_3 + \begin{bmatrix} k_3 + k_{i3} \end{bmatrix}z_3 = \begin{bmatrix} k_{i3} \end{bmatrix}z_{r3}$$ \hspace{1cm} (A.84)
Equation of Motion for Axle #4

The set of independent generalized coordinates for the vertical displacement of axle #4 is

\[\xi_j = [z_4] \]

(A.85)

And the generalized nonconservative forces are defined as

\[\Xi_j = [k_{t_4}] z_{r_4}. \]

(A.86)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[T^* = \frac{1}{2} m_4 \dot{z}_4^2 \]

(A.87)

\[V = \frac{1}{2} k_4 \left(z_4 - z_{r_4} - f \theta_{t_4} - f_{t_4r} (e + f) q_{t_4r} \right)^2 + \frac{1}{2} k_{r_4} (z_4)^2. \]

(A.88)

This gives,

\[L = T^* - V = \frac{1}{2} m_4 \dot{z}_4^2 - \frac{1}{2} k_4 \left(z_4 - z_{r_4} - f \theta_{t_4} - f_{t_4r} (e + f) q_{t_4r} \right)^2 - \frac{1}{2} k_{r_4} (z_4)^2. \]

(A.89)

Substituting into Lagrange’s equation gives,

\[\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_4} \right) - \frac{\delta L}{\delta z_4} = [k_{t_4}] z_{r_4} \]

(A.90)

Simplifying and removing terms that do not include the generalized coordinate yields:

\[\frac{d}{dt} \left(m_4 \dot{z}_4 \right) - \left[\frac{\delta}{\delta z_4} \left(-\frac{1}{2} k_4 \left[z_4^2 - 2 z_{t_4} z_4 - 2 f \theta_{t_4} z_4 - 2 f_{t_4r} (e + f) q_{t_4r} z_4 \right] \right) \right] = [k_{t_4}] z_{r_4} \]

(A.91)
or,

\[
-k_4 z_{dr} + [-f k_4] \theta_{dr} + [-k_4 f_{dr} (e + f)] q_{dr} + [m_4] \ddot{z}_4 + [k_4 + k_{14}] z_4 = [k_{14}] z_{r4}
\]
(A.92)

Equation of Motion for Axle #5

The set of independent generalized coordinates for the vertical displacement of axle #5 is

\[
\xi_j = [z_j]
\]
(A.93)

And the generalized nonconservative forces are defined as

\[
\Xi_j = [k_{15}] z_{r5}.
\]
(A.94)

To obtain the Lagrangian, the kinetic coenergy and potential energy are defined as below:

\[
T^* = \frac{1}{2} m_z \dot{z}_z^2
\]
(A.95)

\[
V = \frac{1}{2} k_z \left(z_z - z_{dr} - h\theta_{dr} - f_{dr} (e + h)q_{dr} \right)^2 + \frac{1}{2} k_{15} (z_z)^2.
\]
(A.96)

This gives,

\[
L = T^* - V = \frac{1}{2} m_z \dot{z}_z^2 - \frac{1}{2} k_z \left(z_z - z_{dr} - h\theta_{dr} - f_{dr} (e + h)q_{dr} \right)^2 - \frac{1}{2} k_{15} (z_z)^2.
\]
(A.97)

Substituting into Lagrange’s equation gives,

\[
\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}_z} \right) - \frac{\delta L}{\delta z_z} = [k_{15}] z_{r5}
\]
(A.98)

Simplifying and removing terms that do not include the generalized coordinate yields:
\[
\frac{d}{dt}(m_5 \ddot{z}_5) - \left\{ \frac{\delta}{\delta z_5} \left(\frac{-1}{2} k_5 [z_5^2 - 2z_{dr} z_5 - 2h\theta_{dr} z_5 - 2f_{dr} (e + h) q_{dr} z_5] \right) \right\} = [k_{r5}] z_{r5}
\]

(A.99)

or,

\[
[-k_3] z_{dr} + [-hk_3] \theta_{dr} + [-k_5 f_{dr} (e + h)] q_{dr} + [m_5] \ddot{z}_5 + [k_3 + k_{r5}] z_5 = [k_{r5}] z_{r5}
\]

(A.100)
The damping terms may now be inserted into the equations of motion derived in the previous pages. The final form of the equation for each of the DOFs are listed below.

Driver’s Seat Vertical Displacement

\[
[m_s] \ddot{z}_s + [c_s] \dot{z}_s + [k_s] z_s + [-c_s] \ddot{z}_s + [-k_s] z_s + [rc_s] \dot{\theta}_s + [rk_s] \theta_s = 0 \quad (A.101)
\]

Cab Vertical Displacement

\[
[-c_s] \ddot{z}_s + [-k_s] z_s + [m_c] \ddot{z}_c + [c_s + c_{cf} + c_{cr}] \dot{z}_c + [k_s + k_{cf} + k_{cr}] z_c \\
+ [-rc_s - nc_{cf} + pc_{cr}] \dot{\theta}_c + [-rk_s - nk_{cf} + pk_{cr}] \theta_c + [-c_{cf} - c_{cr}] \ddot{z}_s \\
+ [-k_{cf} - k_{cr}] z_c + [lc_{cf} - jc_{cr}] \dot{\theta}_l + [lk_{cf} - jk_{cr}] \theta_l \\
+ [-c_{cf} f_i (a-l) - c_{cr} f_i (a+j)] \dot{q}_l + [-k_{cf} f_i (a-l) - k_{cr} f_i (a+j)] q_l = 0 \\
(A.102)
\]

Cab Pitch

\[
[rc_s] \ddot{z}_s + [rk_s] z_s + [-rc_s - nc_{cf} + pc_{cr}] \ddot{z}_c + [-rk_s - nk_{cf} + pk_{cr}] z_c + [I_c] \ddot{\theta}_c \\
+ [r^2 c_{cf} + n^2 c_{cf} + p^2 c_{cr}] \dot{\theta}_c + [r^2 k_{cf} + n^2 k_{cf} + p^2 k_{cr}] \theta_c + [nc_{cf} - pc_{cr}] \ddot{z}_c \\
+ [nk_{cf} - pk_{cr}] z_c + [-nkc_{cf} - pjc_{cr}] \dot{\theta}_l + [-nlk_{cf} - jpk_{cr}] \theta_l \\
+ [nc_{cf} f_i (a-l) - pc_{cr} f_i (a+j)] \dot{q}_l + [nk_{cf} f_i (a-l) - pk_{cr} f_i (a+j)] q_l = 0 \\
(A.103)
\]

Engine Vertical Displacement

\[
[m_e] \ddot{z}_e + [c_e] \dot{z}_e + [k_e] z_e + [-c_e] \ddot{z}_e + [-k_e] z_e + [mc_e] \dot{\theta}_e + [mk_e] \theta_e \\
+ [-c_e f_i (a-m)] \dot{q}_l + [-k_e f_i (a-m)] q_l = 0 \\
(A.104)
\]
Tractor Frame Vertical Displacement

\[
\begin{align*}
\left[-c_{cf} - c_{cr} \right] \ddot{z}_t + \left[-k_{cf} - k_{cr} \right] z_t + \left[n c_{cf} - p c_{cr} \right] \dot{\theta}_c + \left[n k_{cf} - p k_{cr} \right] \theta_c \\
+ \left[-c_r \right] \ddot{z}_t + \left[-k_r \right] z_t + \left[m_r \right] \dot{z}_t + \left[c_r + c_{cf} + c_{cr} + c_{fw} + c_1 + c_2 + c_3 \right] \ddot{z}_t \\
+ \left[k_r + k_{cf} + k_{cr} + k_{fw} + k_1 + k_2 + k_3 \right] z_t + \left[- \int_0^{a+d} \rho \textbf{A}(a-x)dx \right] \dot{\theta}_t \\
+ \left[-m c_r - l c_{cf} + j c_{cr} + i c_{fw} - a c_t + b c_2 + d c_3 \right] \dot{\theta}_t \\
+ \left[-m k_r - l k_{cf} + j k_{cr} + i k_{fw} - a k_1 + b k_2 + d k_3 \right] \theta_t + \left[\int_0^{a+d} \rho \textbf{A} f_i(x)dx \right] \ddot{q}_i \\
+ \left[c_{cf} f_i(a-m) + c_{cf} f_i(a-l) + c_{cr} f_i(a+j) + c_{fw} f_i(a+i) + c_{fw} f_i(0) + c_2 f_i(a+b) + c_3 f_i(a+d) \right] \dot{q}_i \\
+ \left[k_r f_i(a+m) + k_{cf} f_i(a-l) + k_{cr} f_i(a+j) + k_{fw} f_i(a+i) + k_{fw} f_i(0) + k_2 f_i(a+b) + k_3 f_i(a+d) \right] q_i \\
+ \left[\ddot{z}_{i\theta} + \ddot{k}_{i\theta} z_{i\theta} + \ddot{c}_{i\theta} \dot{\theta}_{i\theta} + \ddot{e}_{i\theta} \dot{\theta}_{i\theta} + \ddot{e}_{i\theta} \theta_{i\theta} + \ddot{c}_{i\theta} f_{i\theta}(0) \right] \dot{q}_{i\theta} \\
+ \left[-k_{fw} f_{i\theta}(0) q_{i\theta} + \left[-c_i \right] \ddot{z}_{i\theta} + \left[-k_i \right] z_{i\theta} + \left[-c_2 \right] \dot{z}_{i\theta} + \left[-k_2 \right] z_{i\theta} \right] q_{i\theta} \\
+ \left[-c_3 \right] \ddot{\dot{z}}_t + \left[-k_3 \right] z_t = 0
\end{align*}
\]
Tractor Frame Pitch

\[
\begin{align*}
&\left[lc_{cf} - jc_{cr} \right] \dot{z}_c + \left[lk_{cf} - jk_{cr} \right] z_c + \left[-nlc_{cf} - pjc_{cr} \right] \dot{\theta}_c + \left[-nlk_{cf} - pkj_{cr} \right] \dot{\theta}_c \\
+ &\left[mc_e \right] \dot{z}_c + \left[mk_e \right] z_c + \left[-\int_{a-x}^{a+d} \rho A(a-x)dx \right] \ddot{z}_t \\
+ &\left[-mc_e - lc_{cf} + jc_{cr} + ic_{fe} - ac_1 + bc_2 + dc_3 \right] \dot{z}_t \\
+ &\left[-mk_e - lk_{cf} + jk_{cr} + ik_{fe} - ak_1 + bk_2 + dk_3 \right] z_t + \left[I_1 \right] \ddot{\theta}_t \\
+ &\left[m^2 c_e + l^2 c_{cr} + j^2 c_{cr} + i^2 c_{fe} + a^2 c_1 + b^2 c_2 + d^2 c_3 \right] \dot{\theta}_t \\
+ &\left[m^2 k_e + l^2 k_{cf} + j^2 k_{cr} + i^2 k_{fe} + a^2 k_1 + b^2 k_2 + d^2 k_3 \right] \dot{\theta}_t \\
+ &\left[-\int_{0}^{a-x} \rho A(a-x)f_i(x)dx \right] \ddot{q}_t \\
+ &\left[-mc_e f_i(a - m) - lc_{cf} f_i(a - l) + jc_{cr} f_i(a + j) \\
+ &ic_{fe} f_i(a + i) - ac_1 f_i(0) + bc_2 f_i(a + b) + dc_3 f_i(a + d) \right] \dot{q}_t \\
+ &\left[-mk_e f_i(a - m) - lk_{cf} f_i(a - l) + jk_{cr} f_i(a + j) \\
+ &ik_{fe} f_i(a + i) - ak_1 f_i(0) + bk_2 f_i(a + b) + dk_3 f_i(a + d) \right] q_t \\
+ &\left[-ic_{fe} \right] \dot{z}_{dr} + \left[-ik_{fe} \right] z_{dr} + \left[eic_{fe} \right] \dot{\theta}_{dr} + \left[eik_{fe} \right] \theta_{dr} + \left[-ic_{fe} f_{dr} \right] q_{dr} \\
+ &\left[-ik_{fe} f_{dr} \right] q_{dr} + \left[ac_1 \right] \dot{z}_1 + \left[ak_1 \right] z_1 + \left[-bc_2 \right] \dot{z}_2 + \left[-bk_2 \right] z_2 \\
+ &\left[-dc_3 \right] \dot{z}_3 + \left[-dk_3 \right] z_3 = 0
\end{align*}
\]

(A.106)
Tractor Frame Beaming

\[
\begin{align*}
&\left[-c_{cf}f_i(a-l)-c_{cr}f_i(a+j)\right]\ddot{z}_c + \left[-k_{cf}f_i(a-l)-k_{cr}f_i(a+j)\right]z_c \\
&+ \left[n_c f_i(a-l) - p_c f_i(a+j)\right]\dot{\theta}_c + \left[n k_c f_i(a-l) - pk_c f_i(a+j)\right]\theta_c \\
&+ \left[-c_v f_i(a-m)\right]\ddot{z}_c + \left[-k_v f_i(a-m)\right]z_c + \left[\int_0^{\alpha_d} \rho Af_i(x)dx\right]^{\alpha_d}_{\alpha_c} \\
&+ \left[c_v f_i(a-m)+c_v f_i(a-l) + c_v f_i(a+j) + c_{fvc} f_i(a+i)\right] \\
&+ c_v f_i(0) + c_v f_i(a+b) + c_v f_i(a+d) \\
&+ \left[k_v f_i(a-m) + k_v f_i(a-l) + k_v f_i(a+j) + k_{fvc} f_i(a+i)\right] \\
&+ k_v f_i(0) + k_v f_i(a+b) + k_v f_i(a+d) \\
&+ \left[\int_0^{\alpha_d} \rho A[f_i(x)]^2dx\right]^{\alpha_d}_{\alpha_c} \\
&+ \left[c_v f_i^2(a-m) + c_v f_i^2(a-l) + c_v f_i^2(a+j)\right] \\
&+ c_v f_i^2(a+i) + c_v f_i^2(0) + c_v f_i^2(a+b) + c_v f_i^2(a+d) \\
&+ \left[EI \int_0^{\alpha_d} f_i^4(x)dx + k_v f_i^2(a-m) + k_v f_i^2(a-l) + k_v f_i^2(a+j)\right] q_i \\
&+ k_v f_i^2(a+i) + k_v f_i^2(0) + k_v f_i^2(a+b) + k_v f_i^2(a+d) \\
&+ \left[-c_{fvc} f_i(a+i)\right] z_{i lr} + \left[-k_{fvc} f_i(a+i)\right] z_{i lr} + \left[ec_{fvc} f_i(a+i)\right] \dot{\theta}_{i lr} \\
&+ \left[e k_{fvc} f_i(a+i)\right] \dot{\theta}_{i lr} + \left[-c_{fvc} f_i(0) f_i(a+i)\right] z_{i lr} + \left[-k_{fvc} f_i(0) f_i(a+i)\right] q_{i lr} \\
&+ \left[-c_i f_i(0)\right] z_1 + \left[-k_i f_i(0)\right] z_1 + \left[-c_i f_i(a+b)\right] z_2 + \left[-k_i f_i(a+b)\right] z_2 \\
&+ \left[-c_j f_i(a+d)\right] z_3 + \left[-k_j f_i(a+d)\right] z_3 = 0
\end{align*}
\]

(A.107)
Trailer Vertical Displacement

\[
\begin{align*}
&\left[-c_{fw} \right] \ddot{z}_t + \left[-k_{fw} \right] z_t + \left[-ic_{fw} \right] \dot{\theta}_t + \left[-ik_{fw} \right] \theta_t + \left[-c_{fw,f}(a+i) \right] \ddot{q}_t \\
&+ \left[-k_{fw,f}(a+i) \right] q_t + \left[m_{str} \right] \ddot{z}_{str} + \left[c_{fw} + c_4 + c_5 \right] \dot{z}_{str} + \left[k_{fw} + k_4 + k_5 \right] z_{str} \\
&+ \left[-\int_0^{\epsilon+h} \rho A(e-x)dx \right] \dot{\theta}_{str} + \left[-ec_{fw} + fc_4 + hc_5 \right] \dot{q}_{str} \\
&+ \left[-ek_{fw} + fk_4 + hk_5 \right] \theta_{str} + \left[\int_0^{\epsilon+h} \rho A_{fstr}(x)dx \right] \dot{q}_{str} \\
&+ \left[c_{fw,fstr}(0) + c_4 f_{str}(e+f) + c_5 f_{str}(e+h) \right] \dot{q}_{str} \\
&+ \left[k_{fw,fstr}(0) + k_4 f_{str}(e+f) + k_5 f_{str}(e+h) \right] q_{str} + \left[-c_4 \right] \dot{z}_4 + \left[-k_4 \right] z_4 \\
&+ \left[-c_5 \right] \dot{z}_5 + \left[-k_5 \right] z_5 = 0
\end{align*}
\]

(A.108)

Trailer Pitch

\[
\begin{align*}
&\left[ec_{fw} \right] \ddot{z}_t + \left[ek_{fw} \right] z_t + \left[eic_{fw} \right] \dot{\theta}_t + \left[eik_{fw} \right] \theta_t + \left[ec_{fw,f}(a+i) \right] \ddot{q}_t \\
&+ \left[ek_{fw,f}(a+i) \right] q_t + \left[-\int_0^{\epsilon+h} \rho A(e-x)dx \right] \dot{z}_{str} + \left[-ec_{fw} + fc_4 + hc_5 \right] \dot{z}_{str} \\
&+ \left[-ek_{fw} + fk_4 + hk_5 \right] \theta_{str} + \left[L_{str} \right] \ddot{\theta}_{str} + \left[e^2 c_{fw} + f^2 c_4 + h^2 c_5 \right] \dot{\theta}_{str} \\
&+ \left[e^2 k_{fw} + f^2 k_4 + h^2 k_5 \right] \theta_{str} + \left[\int_0^{\epsilon+h} \rho A(e-x)\text{f}_{str}(x)dx \right] \dot{q}_{str} \\
&+ \left[-ec_{fw,fstr}(0) + fc_4 f_{str}(e+f) + hc_5 f_{str}(e+h) \right] \dot{q}_{str} \\
&+ \left[-ek_{fw,fstr}(0) + fk_4 f_{str}(e+f) + hk_5 f_{str}(e+h) \right] q_{str} \\
&+ \left[-fc_4 \right] \dot{z}_4 + \left[-fk_4 \right] z_4 + \left[-hc_5 \right] \dot{z}_5 + \left[-hk_5 \right] z_5 = 0
\end{align*}
\]

(A.109)
Trailer Beaming

\[
\left[-c_{\text{fw},f_{\text{str}}(0)} \right] \ddot{z}_t + \left[-k_{\text{fw},f_{\text{str}}(0)} \right] \dot{z}_t + \left[-ic_{\text{fw},f_{\text{str}}(0)} \right] \dot{\theta}_t + \left[-ik_{\text{fw},f_{\text{str}}(0)} \right] \theta_t \\
+ \left[-c_{\text{fw},f_{\text{str}}(a+i)} \right] \ddot{q}_t + \left[-k_{\text{fw},f_{\text{str}}(a+i)} \right] q_t \\
+ \left[\int_0^{\epsilon_h} \rho A f_{\text{str}}(x) dx \right] \dddot{z}_{\text{str}} + \left[c_{\text{fw},f_{\text{str}}(0)} + c_4 f_{\text{str}}(e + f) + c_5 f_{\text{str}}(e + h) \right] \ddot{z}_{\text{str}} \\
+ \left[k_{\text{fw},f_{\text{str}}(0)} + k_4 f_{\text{str}}(e + f) + k_5 f_{\text{str}}(e + h) \right] z_{\text{str}} \\
+ \left[-\int_0^{\epsilon_h} \rho A (e - x) f_{\text{str}}(x) dx \right] \ddot{\theta}_{\text{str}} \\
+ \left[-ec_{\text{fw},f_{\text{str}}(0)} + fc_4 f_{\text{str}}(e + f) + hc_5 f_{\text{str}}(e + h) \right] \ddot{\theta}_{\text{str}} \\
+ \left[-ek_{\text{fw},f_{\text{str}}(0)} + fk_4 f_{\text{str}}(e + f) + hk_5 f_{\text{str}}(e + h) \right] \theta_{\text{str}} \\
+ \left[\int_0^{\epsilon_h} \rho A \left(f_{\text{str}}(x) \right)^2 dx \right] \dddot{q}_{\text{str}} \\
+ \left[c_{\text{fw},f_{\text{str}}(0)}^{2} + c_4 f_{\text{str}}^{2}(e + f) + c_5 f_{\text{str}}^{2}(e + h) \right] \dddot{q}_{\text{str}} \\
+ \left[EI \int f_{\text{str}}^{\prime\prime}(x) dx + k_{\text{fw},f_{\text{str}}(0)}^{2} + k_4 f_{\text{str}}^{2}(e + f) + k_5 f_{\text{str}}^{2}(e + h) \right] q_{\text{str}} \\
+ \left[-c_4 f_{\text{str}}(e + f) \right] z_4 + \left[-k_4 f_{\text{str}}(e + f) \right] z_4 \\
+ \left[-c_5 f_{\text{str}}(e + h) \right] z_5 + \left[-k_5 f_{\text{str}}(e + h) \right] z_5 = 0
\]

(A.110)

Vertical Displacement of Axle #1

\[
\left[-c_1 \right] \dddot{z}_1 + \left[-k_1 \right] \dot{z}_1 + \left[ac_1 \right] \dot{\theta}_1 + \left[ak_1 \right] \theta_1 + \left[-c_1 f_{\text{str}}(0) \right] \ddot{q}_t + \left[-k_1 f_{\text{str}}(0) \right] q_t \\
+ \left[m_1 \right] \dddot{z}_1 + \left[c_1 + c_{r_1} \right] \ddot{z}_1 + \left[k_1 + k_{r_1} \right] z_1 = \left[c_{r_1} \right] \dddot{z}_{r_1} + \left[k_{r_1} \right] z_{r_1}
\]

(A.111)

Vertical Displacement of Axle #2

\[
\left[-c_2 \right] \dddot{z}_2 + \left[-k_2 \right] \dot{z}_2 + \left[-bc_2 \right] \dot{\theta}_2 + \left[-bk_2 \right] \theta_2 + \left[-c_2 f_{\text{str}}(a + b) \right] \ddot{q}_t + \left[-k_2 f_{\text{str}}(a + b) \right] q_t \\
+ \left[m_2 \right] \dddot{z}_2 + \left[c_2 + c_{r_2} \right] \ddot{z}_2 + \left[k_2 + k_{r_2} \right] z_2 = \left[c_{r_2} \right] \dddot{z}_{r_2} + \left[k_{r_2} \right] z_{r_2}
\]

(A.112)
Vertical Displacement of Axle #3

\[
\begin{align*}
[-c_3] \ddot{z}_3 &+ [-k_3] z_3 + [-dc_3] \dot{\theta}_i + [-dk_3] \theta_i + [-c_3 f_i (a + d)] \ddot{q}_i \\
&+ [m_3] \dddot{z}_3 + [c_3 + c_{13}] \ddot{z}_3 + [k_3 + k_{13}] z_3 = [c_{13}] \dddot{z}_{r3} + [k_{13}] z_{r3}
\end{align*}
\]

\[\text{(A.113)}\]

Vertical Displacement of Axle #4

\[
\begin{align*}
[-c_4] \ddot{z}_{dr} &+ [-k_4] z_{dr} + [-fc_4] \dot{\theta}_{dr} + [-fk_4] \theta_{dr} + [-c_4 f_{dr} (e + f)] \ddot{q}_{dr} \\
&+ [m_4] \dddot{z}_4 + [c_4 + c_{44}] \ddot{z}_4 + [k_4 + k_{44}] z_4 = [c_{44}] \dddot{z}_{r4} + [k_{44}] z_{r4}
\end{align*}
\]

\[\text{(A.114)}\]

Vertical Displacement of Axle #5

\[
\begin{align*}
[-c_5] \ddot{z}_{dr} &+ [-k_5] z_{dr} + [-hc_5] \dot{\theta}_{dr} + [-hk_5] \theta_{dr} + [-c_5 f_{dr} (e + h)] \ddot{q}_{dr} \\
&+ [m_5] \dddot{z}_5 + [c_5 + c_{55}] \ddot{z}_5 + [k_5 + k_{55}] z_5 = [c_{55}] \dddot{z}_{r5} + [k_{55}] z_{r5}
\end{align*}
\]

\[\text{(A.115)}\]
Appendix B: Tractor and trailer beaming equations

To include the effects that flexible frames have on the tractor semi-trailer ride dynamics, both the tractor and trailer frames are modeled as Euler-Bernoulli flexible beams. The details for both frame bending modes are discussed in Chapter 2. This appendix serves to display the derivation process used to obtain the mode shape equations used for the tractor and trailer frames. When a conventional fifth wheel connection is used, the tractor and trailer frames are modeled as “free-pinned” and “pinned-free”, respectively. However, when a fifth wheel suspension system is present, both are modeled as “free-free” Euler-Bernoulli beams. The mode shapes for all three beam types are derived in this appendix.

“Free-Pinned” Mode Shape Equation

When a conventional fifth wheel connection is used, the tractor frame is modeled as a “free-pinned” Euler-Bernoulli beam, with the “free” end located at the front of the tractor and the “pinned” end located at the fifth wheel connection (Figure B.1). The general form of the spatial equation for a uniform beam derived in Chapter 2 is,

\[X(x) = C_1 \cos \beta x_i + C_2 \sin \beta x_i + C_3 \cosh \beta x_i + C_4 \sinh \beta x_i. \quad (B.1) \]

Boundary conditions are applied to Equation B.1 to solve for the constants \(C_1 \) through \(C_4 \). The first boundary conditions states that the bending moment at the free end is equal to zero. Taking the second derivative of Equation B.1 results in,
\(X''(x_j) = \beta^2 \left(-C_1 \cos \beta x_j - C_2 \sin \beta x_j + C_3 \cosh \beta x_j + C_4 \sinh \beta x_j \right). \) \(\text{(B.2)} \)

Setting Equation B.2 equal to zero results in,

\[
X''(0) = \beta^2 \left(-C_1 + C_3 \right) = 0
\]

or

\[
C_1 = C_3.
\] \(\text{(B.3)} \)

Substituting this back into Equation B.1 gives,

\[
X(x_j) = C_1 \left(\cos \beta x_j + \cosh \beta x_j \right) + C_2 \sin \beta x_j + C_4 \sinh \beta x_j.
\] \(\text{(B.4)} \)

The second boundary condition states that the shear force at the free end is equal to zero. Taking the third derivative of Equation B.4 results in,

\[
X'''(x_j) = \beta^3 \left[-C_1 (\sin \beta x_j - \sinh \beta x_j) - C_2 \cos \beta x_j + C_4 \cosh \beta x_j \right].
\] \(\text{(B.5)} \)

Setting Equation B.5 equal to zero results in,

\[
X'''(0) = \beta^3 \left[-C_2 + C_4 \right] = 0
\]

or

\[
C_4 = C_2.
\] \(\text{(B.6)} \)

Substituting this back into Equation B.4 gives,

\[
X(x_j) = C_1 \left(\cos \beta x_j + \cosh \beta x_j \right) + C_2 \left(\sin \beta x_j + \sinh \beta x_j \right).
\] \(\text{(B.7)} \)

The third boundary condition states that the displacement at the pinned end is equal to zero. Thus, the original form of the equation can be set equal to zero at the point \(l \) along the beam,

\[
X(l) = C_1 \left(\cos \beta l + \cosh \beta l \right) + C_2 \left(\sin \beta l + \sinh \beta l \right) = 0.
\] \(\text{(B.8)} \)

Finally, the fourth boundary condition states that the bending moment at the “pinned” end is equal to zero. Setting the second derivative of Equation B.7 evaluated at the point \(l \) along the beam equal to zero results in,
\[X^*(l) = -C_1 \left(\cos \beta l - \cosh \beta l \right) - C_2 \left(\sin \beta l - \sinh \beta l \right) = 0. \quad \text{(B.9)} \]

Equations B.8 and B.9 can be used to solve for \(C_2 \) in terms of \(C_1 \). This gives,

\[C_2 = -C_1 \left(\frac{\cos \beta l + \cosh \beta l}{\sin \beta l + \sinh \beta l} \right). \quad \text{(B.10)} \]

Equation B.10 is then substituted back into Equation B.7 to obtain the mode shape equation in its final form,

\[X(x_i) = C_1 \left[\cos \beta x_i + \cosh \beta x_i - \left(\frac{\cos \beta l + \cosh \beta l}{\sin \beta l + \sinh \beta l} \right) \left(\sin \beta x_i - \sinh \beta x_i \right) \right]. \quad \text{(B.11)} \]

By putting the terms from Equations B.8 and B.9 into matrix form, the constant \(\beta \) can be solved for. Taking the determinant and setting it equal to zero results in,

\[\det \begin{pmatrix} \cos \beta l + \cosh \beta l & \sin \beta l + \sinh \beta l \\ \cos \beta l - \cosh \beta l & \sin \beta l - \sinh \beta l \end{pmatrix} = 0. \quad \text{(B.12)} \]

which simplifies to,

\[\sin \beta l \cosh \beta l - \cos \beta l \sinh \beta l = 0. \quad \text{(B.13)} \]

Using trigonometric relationships, Equation B.13 can be further simplified to,

\[\tan \beta l = -\tanh \beta l. \quad \text{(B.14)} \]
Solving Equation B.14 for the constant βl results in an infinite number of solutions, each of which correspond to mode shapes of the beam. The first solution represents the rigid body motion, followed by the first mode shape, the second mode shape, and so on. Table B.1 lists the values for the constant βl.

<table>
<thead>
<tr>
<th>Mode Shape</th>
<th>$\beta_n l$ Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Body</td>
<td>$\beta_0 l = 0$</td>
</tr>
<tr>
<td>First</td>
<td>$\beta_1 l = 2.36502$</td>
</tr>
<tr>
<td>Second</td>
<td>$\beta_2 l = 5.4978$</td>
</tr>
<tr>
<td>Third</td>
<td>$\beta_3 l = 8.63938$</td>
</tr>
</tbody>
</table>

“Pinned-Free” Mode Shape Equation

When a conventional fifth wheel connection is used, the trailer frame is modeled as a “pinned-free” Euler-Bernoulli beam, with the “pinned” end located at the fifth wheel connection and the “free” end located at the front of the trailer (Figure B.2). The general form of the spatial equation for a uniform beam derived in Chapter 2 is,

$$
X(x_{tr}) = C_1 \cos \beta x_{tr} + C_2 \sin \beta x_{tr} + C_3 \cosh \beta x_{tr} + C_4 \sinh \beta x_{tr}. \quad (B.15)
$$

Boundary conditions are applied to Equation B.15 to solve for the constants C_1 through C_4. The first boundary conditions states that the vertical displacement at the pinned end is equal to zero. Taking the original form of Equation B.15 and setting it equal to zero results in,
\[X(0) = (C_1 + C_3) = 0 \]

or

\[C_3 = -C_1. \]

Substituting this back into Equation B.15 gives,

\[X(x_{\text{dir}}) = C_1 (\cos \beta x_{\text{dir}} - \cosh \beta x_{\text{dir}}) + C_2 \sin \beta x_{\text{dir}} + C_4 \sinh \beta x_{\text{dir}}. \]

(B.17)

The second boundary condition states that the bending moment at the pinned end is equal to zero. Taking the second derivative of Equation B.17 results in,

\[X''(x_{\text{dir}}) = \beta^2 \left[-C_1 (\cos \beta x_{\text{dir}} - \cosh \beta x_{\text{dir}}) - C_2 \sin \beta x_{\text{dir}} + C_4 \sinh \beta x_{\text{dir}} \right]. \]

(B.18)

Setting Equation B.18 equal to zero results in,

\[X''(0) = \beta^2 \left[C_1 (-1 - 1) \right] = 0 \]

or

\[C_1 = 0. \]

(B.19)

Substituting this back into Equation B.17 gives,

\[X(x_{\text{dir}}) = C_2 \sin \beta x_{\text{dir}} + C_4 \sinh \beta x_{\text{dir}}. \]

(B.20)

The third boundary condition states that the bending moment at the free end is equal to zero. Thus, the second derivative of the equation can be set equal to zero at the point \(l \) along the beam,

\[X''(l) = -C_2 \sin \beta l + C_4 \sinh \beta l = 0. \]

(B.21)

Finally, the fourth boundary condition states that the shear force at the free end is equal to zero. Setting the third derivative of Equation B.20 evaluated at the point \(l \) along the beam equal to zero results in,

\[X'''(l) = -C_2 \cos \beta l + C_4 \cosh \beta l = 0. \]

(B.22)
Equations B.21 and B.22 can be used to solve for C_4 in terms of C_2. This gives,

$$C_4 = C_2 \left(\frac{\sin \beta l}{\sinh \beta l} \right).$$ (B.23)

Equation B.23 is then substituted back into Equation B.20 to obtain the mode shape equation in its final form,

$$X(x_{lr}) = C_2 \left[\sin \beta x_{lr} + \left(\frac{\sin \beta l}{\sinh \beta l} \right) \sinh \beta x_{lr} \right].$$ (B.24)

By putting the terms from Equations B.21 and B.22 into matrix form, the constant β can be solved for. Taking the determinant and setting it equal to zero results in,

$$\det \begin{pmatrix} -\sin \beta l & \sinh \beta l \\ -\cos \beta l & \cosh \beta l \end{pmatrix} = 0.$$ (B.25)

which simplifies to,

$$-\sin \beta l \cosh \beta l - \cos \beta l \sinh \beta l = 0.$$ (B.26)

Using trigonometric relationships, Equation B.26 can be further simplified to,

$$\tan \beta l = \tanh \beta l.$$ (B.27)

Solving Equation B.27 for the constant βl results in an infinite number of solutions, each of which correspond to mode shapes of the beam. The first solution represents the rigid body motion, followed by the first mode shape, the second mode shape, and so on. Table B.2 lists the values for the constant βl.

162
Table B.2: Mode Shape Constants for a “Pinned-Free” Euler-Bernoulli Beam

<table>
<thead>
<tr>
<th>Mode Shape</th>
<th>$\beta_n l$ Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Body</td>
<td>$\beta_0 l = 0$</td>
</tr>
<tr>
<td>First</td>
<td>$\beta_1 l = 3.9266$</td>
</tr>
<tr>
<td>Second</td>
<td>$\beta_2 l = 7.06858$</td>
</tr>
<tr>
<td>Third</td>
<td>$\beta_3 l = 10.2102$</td>
</tr>
</tbody>
</table>

“Free-Free” Mode Shape Equation

When a fifth wheel suspension system is present, both the tractor and trailer frames are modeled as “free-free” Euler-Bernoulli beams (Figure B.3). The general form of the spatial equation for a uniform beam derived in Chapter 2 is,

$$X(x) = C_1 \cos \beta x_f + C_2 \sin \beta x_f + C_3 \cosh \beta x_f + C_4 \sinh \beta x_f.$$ \hfill (B.28)

Boundary conditions are applied to Equation B.28 to solve for the constants C_1 through C_4. The first boundary condition states that the bending moment at the first free end is equal to zero. Taking the second derivative of Equation B.28 results in,

$$X''(x_f) = \beta^2 \left(-C_1 \cos \beta x_f - C_2 \sin \beta x_f + C_3 \cosh \beta x_f + C_4 \sinh \beta x_f \right).$$ \hfill (B.29)

Setting Equation B.29 equal to zero results in,

$$X''(0) = \beta^2 \left(-C_1 + C_3 \right) = 0$$

or

$$C_3 = C_1.$$ \hfill (B.30)

Substituting this back into Equation B.1 gives,
The second boundary condition states that the shear force at the first free end is also equal to zero. Taking the third derivative of Equation B.31 results in,

\[X'''(x_f) = \beta^3 \left[-C_1 (\sin \beta x_f - \sinh \beta x_f) - C_2 \cos \beta x_f + C_4 \cosh \beta x_f \right]. \]
\[\text{(B.32)} \]

Setting Equation B.32 equal to zero results in,

\[X'''(0) = \beta^3 [-C_2 + C_4] = 0 \]

or

\[C_4 = C_2. \]
\[\text{(B.33)} \]

Substituting this back into Equation B.31 gives,

\[X(x_f) = C_1 (\cos \beta x_f + \cosh \beta x_f) + C_2 (\sin \beta x_f + \sinh \beta x_f). \]
\[\text{(B.34)} \]

The third boundary condition states that the bending moment at the second free end is equal to zero. Thus, the second derivative of Equation B.34 can be set equal to zero at the point \(l \) along the beam,

\[X''(l) = C_1 (-\cos \beta l + \cosh \beta l) + C_2 (-\sin \beta l + \sinh \beta l) = 0. \]
\[\text{(B.35)} \]

Finally, the fourth boundary condition states that the shear force at the second free end is equal to zero. Setting the third derivative of Equation B.34 evaluated at the point \(l \) along the beam equal to zero results in,

\[X'''(l) = C_1 (\sin \beta l + \sinh \beta l) + C_2 (-\cos \beta l + \cosh \beta l) = 0. \]
\[\text{(B.36)} \]

Equations B.35 and B.36 can be used to solve for \(C_1 \) in terms of \(C_2 \). This gives,

\[C_1 = C_2 \left(\frac{\cos \beta l - \cosh \beta l}{\sin \beta l + \sinh \beta l} \right). \]
\[\text{(B.37)} \]

Equation B.37 is then substituted back into Equation B.34 to obtain the mode shape equation in its final form,
\[X(x) = C_2 \left[\sin \beta x + \sinh \beta x + \left(\frac{\cos \beta l - \cosh \beta l}{\sin \beta l + \sinh \beta l} \right) \left(\cos \beta x + \cosh \beta x \right) \right]. \]
(B.38)

By putting the terms from Equations B.35 and B.36 into matrix form, the constant \(\beta \) can be solved for. Taking the determinant and setting it equal to zero results in,

\[
\det \begin{pmatrix} \cos \beta l - \cosh \beta l & \sin \beta l - \sinh \beta l \\ \sin \beta l + \sinh \beta l & \cos \beta l - \cosh \beta l \end{pmatrix} = 0. \tag{B.39}
\]

which simplifies to,

\[\cos \beta l \cosh \beta l = 0. \tag{B.40} \]

Solving Equation B.40 for the constant \(\beta l \) results in an infinite number of solutions, each of which correspond to mode shapes of the beam. The first solution represents the rigid body motion, followed by the first mode shape, the second mode shape, and so on. Table B.1 lists the values for the constant \(\beta l \).

Table B.3: Mode Shape Constants for a “Free-Free” Euler-Bernoulli Beam

<table>
<thead>
<tr>
<th>Mode Shape</th>
<th>(\beta l) Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Body</td>
<td>(\beta_0 l = 0)</td>
</tr>
<tr>
<td>First</td>
<td>(\beta_1 l = 4.73004)</td>
</tr>
<tr>
<td>Second</td>
<td>(\beta_2 l = 7.85320)</td>
</tr>
<tr>
<td>Third</td>
<td>(\beta_3 l = 10.99561)</td>
</tr>
</tbody>
</table>
Figure B.1: Boundary Conditions for a “Free-Pinned” Euler-Bernoulli Beam

\[x_l = 0 \quad x_i = l \]
\[EI \frac{d^3 \eta}{dx^3} = 0 \quad \eta = 0 \]
\[\frac{\partial}{\partial x} \left(EI \frac{d^3 \eta}{dx^3} \right) = 0 \]
\[EI \frac{d^2 \eta}{dx^2} = 0 \]

Figure B.2: Boundary Conditions for a “Pinned-Free” Euler-Bernoulli Beam

\[x_{ilr} = 0 \quad x_{ilr} = l \]
\[\eta = 0 \quad EI \frac{d^2 \eta}{dx^2} = 0 \]
\[EI \frac{d^3 \eta}{dx^3} = 0 \]
\[\frac{\partial}{\partial x} \left(EI \frac{d^3 \eta}{dx^3} \right) = 0 \]

Figure B.3: Boundary Conditions for a “Free-Free” Euler-Bernoulli Beam

\[x_f = 0 \quad x_f = l \]
\[EI \frac{d^3 \eta}{dx^3} = 0 \quad EI \frac{d^2 \eta}{dx^2} = 0 \]
\[\frac{\partial}{\partial x} \left(EI \frac{d^3 \eta}{dx^3} \right) = 0 \]
\[\frac{\partial}{\partial x} \left(EI \frac{d^2 \eta}{dx^2} \right) = 0 \]
Appendix C: Vehicle Model Parameters

This appendix outlines the parameters for the nominal cab-over style tractor semi-trailer. These tractor semi-trailer is identical to the one used by Vaduri [3] and Trangsrud [1]. The values have been collected from a number of different sources in an effort to create a model that accurately represents the intended test vehicle, which is a Freightliner Century Class tractor and typical dual axle trailer with a payload. The geometric dimensions and inertial properties were originally provided to Vaduri and Law [17] by both Michelin and Freightliner. These values were obtained either through physical measurements or literature by Ribartis et al [20].

It is assumed that the vehicle described in the following pages is symmetric about the longitudinal centerline of the tractor and trailer. Similarly, it is assumed that the left and right sides of the axles see an identical road profile. These assumptions allow the left and right sides of the axles to be lumped into single masses and suspension elements, which is reflected in the following figures and tables by per-axle values. The same is true for the tires and cab suspension elements.
Figure C.1: Fifteen Degree-of-Freedom System Model
Figure C.2: Dimensions of the Tractor Semi-Trailer Model
Table C.1: Geometric Dimensions of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>b a1</td>
<td>Front end of the tractor to the axle #1</td>
<td>1.065</td>
<td>m</td>
</tr>
<tr>
<td>b cf</td>
<td>Front end of the tractor to the cab front</td>
<td>1.470</td>
<td>m</td>
</tr>
<tr>
<td>b e</td>
<td>Front end of the tractor to the engine</td>
<td>2.797</td>
<td>m</td>
</tr>
<tr>
<td>b cr</td>
<td>Front end of the tractor to the cab rear</td>
<td>4.020</td>
<td>m</td>
</tr>
<tr>
<td>b a2</td>
<td>Front end of the tractor to the axle #2</td>
<td>6.035</td>
<td>m</td>
</tr>
<tr>
<td>b fw</td>
<td>Front end of the tractor to the fifth wheel</td>
<td>6.688</td>
<td>m</td>
</tr>
<tr>
<td>b a3</td>
<td>Front end of the tractor to the axle #3</td>
<td>7.340</td>
<td>m</td>
</tr>
<tr>
<td>a1</td>
<td>Front end of the tractor to the tractor cg</td>
<td>4.006</td>
<td>m</td>
</tr>
<tr>
<td>b a4</td>
<td>From the fifth wheel to axle #4</td>
<td>8.580</td>
<td>m</td>
</tr>
<tr>
<td>b a5</td>
<td>From the fifth wheel to axle #4</td>
<td>9.780</td>
<td>m</td>
</tr>
<tr>
<td>L t</td>
<td>Length of the tractor</td>
<td>8.200</td>
<td>m</td>
</tr>
<tr>
<td>L tr</td>
<td>Length of the trailer</td>
<td>9.780</td>
<td>m</td>
</tr>
<tr>
<td>e</td>
<td>From the trailer cg to the fifth wheel</td>
<td>5.620</td>
<td>m</td>
</tr>
<tr>
<td>f</td>
<td>From the trailer cg to axle #4</td>
<td>2.960</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>From the trailer cg to axle #5</td>
<td>4.160</td>
<td>m</td>
</tr>
<tr>
<td>a</td>
<td>From the tractor cg to axle #1</td>
<td>2.941</td>
<td>m</td>
</tr>
<tr>
<td>b</td>
<td>From the tractor cg to axle #2</td>
<td>2.029</td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>From the tractor cg to axle #3</td>
<td>3.334</td>
<td>m</td>
</tr>
<tr>
<td>l</td>
<td>From the tractor cg to the front of the cab</td>
<td>2.536</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>From the tractor cg to the engine</td>
<td>1.209</td>
<td>m</td>
</tr>
<tr>
<td>j</td>
<td>From the tractor cg to the rear of the cab</td>
<td>0.014</td>
<td>m</td>
</tr>
<tr>
<td>i</td>
<td>From the tractor cg to the fifth wheel</td>
<td>2.682</td>
<td>m</td>
</tr>
<tr>
<td>n</td>
<td>From the cab cg to the front of the cab</td>
<td>1.435</td>
<td>m</td>
</tr>
<tr>
<td>p</td>
<td>From the cab cg to the rear of the cab</td>
<td>1.115</td>
<td>m</td>
</tr>
<tr>
<td>r</td>
<td>From the cab cg to the seat</td>
<td>0.200</td>
<td>m</td>
</tr>
<tr>
<td>tc</td>
<td>From the tractor cg to the cab cg</td>
<td>1.101</td>
<td>m</td>
</tr>
<tr>
<td>h1</td>
<td>Height of the driver over the cab</td>
<td>1.000</td>
<td>m</td>
</tr>
</tbody>
</table>
Table C.2: Inertial Properties of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_s)</td>
<td>Mass of the seat plus 200 lb. driver</td>
<td>106.7</td>
<td>kg</td>
</tr>
<tr>
<td>(m_c)</td>
<td>Mass of the cab</td>
<td>1208</td>
<td>kg</td>
</tr>
<tr>
<td>(I_c)</td>
<td>Moment of inertia of the cab</td>
<td>2100</td>
<td>kg*m^2</td>
</tr>
<tr>
<td>(m_e)</td>
<td>Mass of the engine</td>
<td>2000</td>
<td>kg</td>
</tr>
<tr>
<td>(m_t)</td>
<td>Mass of the tractor frame</td>
<td>3783</td>
<td>kg</td>
</tr>
<tr>
<td>(I_t)</td>
<td>Moment of inertia of the tractor frame</td>
<td>46590.9</td>
<td>kg*m^2</td>
</tr>
<tr>
<td>(m_{ul})</td>
<td>Mass of the unloaded trailer</td>
<td>10800</td>
<td>kg</td>
</tr>
<tr>
<td>(I_{trl})</td>
<td>Moment of inertia of the trailer</td>
<td>200000</td>
<td>kg*m^2</td>
</tr>
<tr>
<td>(m_L)</td>
<td>Mass of the trailer load</td>
<td>14000</td>
<td>kg</td>
</tr>
<tr>
<td>(m_{tlr})</td>
<td>Mass of the loaded trailer</td>
<td>24800</td>
<td>kg</td>
</tr>
</tbody>
</table>

Table C.3: Suspension Parameters of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>Steer axle spring coefficient</td>
<td>581300</td>
<td>N/m</td>
</tr>
<tr>
<td>(k_2)</td>
<td>#1 drive axle spring coefficient</td>
<td>586900</td>
<td>N/m</td>
</tr>
<tr>
<td>(k_3)</td>
<td>#2 drive axle spring coefficient</td>
<td>586900</td>
<td>N/m</td>
</tr>
<tr>
<td>(k_4)</td>
<td>#1 trailer axle spring coefficient</td>
<td>1000000</td>
<td>N/m</td>
</tr>
<tr>
<td>(k_5)</td>
<td>#2 trailer axle spring coefficient</td>
<td>1000000</td>
<td>N/m</td>
</tr>
<tr>
<td>(c_1)</td>
<td>Steer axle damping coefficient</td>
<td>11270</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>#1 drive axle damping coefficient</td>
<td>27500</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(c_3)</td>
<td>#2 drive axle damping coefficient</td>
<td>27500</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(c_4)</td>
<td>#1 trailer axle damping coefficient</td>
<td>70000</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(c_5)</td>
<td>#2 trailer axle damping coefficient</td>
<td>70000</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(k_s)</td>
<td>Driver’s seat spring coefficient (optional)</td>
<td>3403</td>
<td>N/m</td>
</tr>
<tr>
<td>(c_s)</td>
<td>Driver’s seat damping coefficient (optional)</td>
<td>1140</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>(k_e)</td>
<td>Engine mount spring coefficient</td>
<td>(1 \times 10^9)</td>
<td>N/m</td>
</tr>
<tr>
<td>(c_e)</td>
<td>Engine mount damping coefficient</td>
<td>10000</td>
<td>N/(m/s)</td>
</tr>
</tbody>
</table>

Table C.4: Cab Suspension Parameters of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Front Only</th>
<th>Rear Only</th>
<th>Front and Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{cf})</td>
<td>Front spring coefficient</td>
<td>88740 N/m</td>
<td>N/A</td>
<td>86260.5 N/m</td>
</tr>
<tr>
<td>(k_{cr})</td>
<td>Rear spring coefficient</td>
<td>N/A</td>
<td>65980 N/m</td>
<td>63757.5 N/m</td>
</tr>
<tr>
<td>(c_{cf})</td>
<td>Front damping coefficient</td>
<td>7062 N/(m/s)</td>
<td>N/A</td>
<td>6864.35 N/(m/s)</td>
</tr>
<tr>
<td>(c_{cr})</td>
<td>Rear damping coefficient</td>
<td>N/A</td>
<td>8000 N/(m/s)</td>
<td>5073.5 N/(m/s)</td>
</tr>
</tbody>
</table>
Table C.5: Per-Tire Stiffness Values of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Position (# of Tires)</th>
<th>Nominal Pressure</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>kt1</td>
<td>XZA2 275/80R22.5</td>
<td>Steer Axle (2)</td>
<td>80 psi</td>
<td>647.5</td>
<td>kN/m</td>
</tr>
<tr>
<td>kt2, kt3</td>
<td>Xone XDA 445/50R22.5</td>
<td>Drive Axle (2)</td>
<td>104 psi</td>
<td>1194.1</td>
<td>kN/m</td>
</tr>
<tr>
<td>kt4, kt5</td>
<td>Xone XTA 445/50R22.5</td>
<td>Trailer Axle (2)</td>
<td>104 psi</td>
<td>1194.1</td>
<td>kN/m</td>
</tr>
<tr>
<td>kt2, kt3, kt4, kt5</td>
<td>XTE2 LRL 425/65R22.5</td>
<td>Drive or Trailer Axle (2)</td>
<td>110 psi</td>
<td>1169.9</td>
<td>kN/m</td>
</tr>
<tr>
<td>kt2, kt3</td>
<td>XDA2 275/80R22.5</td>
<td>Drive Axle (4)</td>
<td>100 psi</td>
<td>894.55</td>
<td>kN/m</td>
</tr>
<tr>
<td>kt4, kt5</td>
<td>XT1 275/80R22.5</td>
<td>Trailer Axle (4)</td>
<td>100 psi</td>
<td>894.55</td>
<td>kN/m</td>
</tr>
</tbody>
</table>

Table C.6: Per-Tire Damping Values of the Tractor Semi-Trailer Model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Position (# of Tires)</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ct1</td>
<td>XZA2 275/80R22.5</td>
<td>Steer Axle (2)</td>
<td>258.5</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>ct2, ct3</td>
<td>Xone XDA 445/50R22.5</td>
<td>Drive Axle (2)</td>
<td>324.15</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>ct4, ct5</td>
<td>Xone XTA 445/50R22.5</td>
<td>Trailer Axle (2)</td>
<td>324.15</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>ct2, ct3, ct4, ct5</td>
<td>XTE2 LRL 425/65R22.5</td>
<td>Drive or Trailer Axle (2)</td>
<td>375.75</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>ct2, ct3</td>
<td>XDA2 275/80R22.5</td>
<td>Drive Axle (4)</td>
<td>261</td>
<td>N/(m/s)</td>
</tr>
<tr>
<td>ct4, ct5</td>
<td>XT1 275/80R22.5</td>
<td>Trailer Axle (4)</td>
<td>242.65</td>
<td>N/(m/s)</td>
</tr>
</tbody>
</table>

Figure C.3: Common Fifth Wheel Connection
Appendix D: Normalized Eigenvectors

The eigenvalues and normalized eigenvectors for the nominal vehicle are presented in this appendix. The nominal vehicle is defined as having seat suspension, rear only cab suspension, a loaded trailer, and no fifth wheel suspension. Both the tractor and trailer frame are assumed to have beaming frequencies of 20 Hz. The tires for the nominal vehicle are XZA2 275/80R22.5 tires inflated to 80 psi for the steer axle, Xone XDA 445/50R22.5 tires inflated to 104 psi for each drive axle, and Xone XTA 445/50R22.5 tires inflated to 104 psi for each trailer axle. In all cases, the vehicle is traveling at a velocity of 60 mph over a smooth highway.

For each of the fifteen eigenvalues representing the system, the frequency, damping ratio, and corresponding eigenvector are calculated. In the eigenvector, the magnitude and phase of each of the individual components are calculated. The eigenvector is then normalized about the component with the largest magnitude. This allows for easy determination of which motions are the most dominant at that particular frequency and whether or not that motion is in phase with the dominant component. For easy reference, the degree-of-freedom associated with each particular component is listed beside it in the table.
1. Eigenvalue: -20.647 + 33462i
Frequency: 5325.7 Hz
Damping Ratio: 0.00061702

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>4.326e-07</td>
<td>-89.64</td>
</tr>
<tr>
<td>z_c</td>
<td>1.623e-03</td>
<td>0.94</td>
</tr>
<tr>
<td>θ_c</td>
<td>1.343e-03</td>
<td>-176.26</td>
</tr>
<tr>
<td>z_e</td>
<td>2.002e-04</td>
<td>1.99</td>
</tr>
<tr>
<td>z_t</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.040</td>
<td>0.00</td>
</tr>
<tr>
<td>η_t</td>
<td>0.569</td>
<td>-179.99</td>
</tr>
</tbody>
</table>

2. Eigenvalue: -17.876 + 5008.6i
Frequency: 797.15 Hz
Damping Ratio: 0.0035690

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.781e-03</td>
<td>-90.10</td>
</tr>
<tr>
<td>z_c</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.825</td>
<td>179.90</td>
</tr>
<tr>
<td>z_e</td>
<td>0.186</td>
<td>-0.11</td>
</tr>
<tr>
<td>z_t</td>
<td>0.029</td>
<td>0.25</td>
</tr>
<tr>
<td>θ_t</td>
<td>5.824e-03</td>
<td>0.04</td>
</tr>
<tr>
<td>η_t</td>
<td>0.439</td>
<td>-179.95</td>
</tr>
</tbody>
</table>

3. Eigenvalue: -5.0065 + 2814.3i
Frequency: 447.91 Hz
Damping Ratio: 0.0018003

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.616e-03</td>
<td>90.04</td>
</tr>
<tr>
<td>z_c</td>
<td>0.510</td>
<td>-179.98</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.421</td>
<td>0.21</td>
</tr>
<tr>
<td>z_e</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_t</td>
<td>0.074</td>
<td>0.08</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.030</td>
<td>-179.99</td>
</tr>
<tr>
<td>η_t</td>
<td>0.396</td>
<td>-179.89</td>
</tr>
<tr>
<td>z_{tir}</td>
<td>1.370e-03</td>
<td>179.62</td>
</tr>
<tr>
<td>θ_{tir}</td>
<td>1.157e-03</td>
<td>-0.63</td>
</tr>
<tr>
<td>η_{tir}</td>
<td>4.132e-03</td>
<td>-0.32</td>
</tr>
<tr>
<td>z_1</td>
<td>6.684e-03</td>
<td>89.62</td>
</tr>
<tr>
<td>z_2</td>
<td>2.041e-03</td>
<td>90.44</td>
</tr>
<tr>
<td>z_3</td>
<td>1.807e-03</td>
<td>-89.48</td>
</tr>
<tr>
<td>z_4</td>
<td>3.780e-05</td>
<td>92.50</td>
</tr>
<tr>
<td>z_5</td>
<td>9.232e-05</td>
<td>92.09</td>
</tr>
</tbody>
</table>

4. Eigenvalue: -8.6229 + 135.34i
Frequency: 21.583 Hz
Damping Ratio: 0.0018003

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>3.711e-03</td>
<td>-88.97</td>
</tr>
<tr>
<td>z_c</td>
<td>0.056</td>
<td>0.39</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.047</td>
<td>175.26</td>
</tr>
<tr>
<td>z_e</td>
<td>0.070</td>
<td>-7.00</td>
</tr>
<tr>
<td>z_t</td>
<td>0.522</td>
<td>177.92</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.014</td>
<td>-22.79</td>
</tr>
<tr>
<td>η_t</td>
<td>0.347</td>
<td>-3.22</td>
</tr>
<tr>
<td>z_{tir}</td>
<td>0.063</td>
<td>-152.73</td>
</tr>
<tr>
<td>θ_{tir}</td>
<td>0.077</td>
<td>-4.38</td>
</tr>
<tr>
<td>η_{tir}</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_1</td>
<td>0.040</td>
<td>-101.02</td>
</tr>
<tr>
<td>z_2</td>
<td>0.147</td>
<td>98.83</td>
</tr>
<tr>
<td>z_3</td>
<td>0.242</td>
<td>98.18</td>
</tr>
<tr>
<td>z_4</td>
<td>0.444</td>
<td>134.09</td>
</tr>
<tr>
<td>z_5</td>
<td>0.905</td>
<td>132.06</td>
</tr>
</tbody>
</table>
5. Eigenvalue: $-0.80850 + 80.984i$
 Frequency: 12.890 Hz
 Damping Ratio: 0.0099829

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>0.023</td>
<td>-95.80</td>
</tr>
<tr>
<td>z_c</td>
<td>0.206</td>
<td>-7.25</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.170</td>
<td>-169.37</td>
</tr>
<tr>
<td>z_e</td>
<td>0.560</td>
<td>1.20</td>
</tr>
<tr>
<td>z_l</td>
<td>0.898</td>
<td>179.67</td>
</tr>
<tr>
<td>θ_l</td>
<td>0.244</td>
<td>-1.27</td>
</tr>
<tr>
<td>η_l</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>0.049</td>
<td>179.83</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>0.035</td>
<td>2.76</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>0.107</td>
<td>-178.68</td>
</tr>
<tr>
<td>z_1</td>
<td>0.370</td>
<td>-61.72</td>
</tr>
<tr>
<td>z_2</td>
<td>0.030</td>
<td>145.42</td>
</tr>
<tr>
<td>z_3</td>
<td>0.412</td>
<td>137.06</td>
</tr>
<tr>
<td>z_4</td>
<td>0.134</td>
<td>-15.59</td>
</tr>
<tr>
<td>z_5</td>
<td>0.250</td>
<td>-16.12</td>
</tr>
</tbody>
</table>

6. Eigenvalue: $-54.921 + 47.320i$
 Frequency: 11.538 Hz
 Damping Ratio: 0.75759

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>5.910e-04</td>
<td>52.63</td>
</tr>
<tr>
<td>z_c</td>
<td>3.252e-03</td>
<td>-153.44</td>
</tr>
<tr>
<td>θ_c</td>
<td>2.219e-03</td>
<td>-91.89</td>
</tr>
<tr>
<td>z_e</td>
<td>0.013</td>
<td>46.38</td>
</tr>
<tr>
<td>z_l</td>
<td>0.051</td>
<td>24.75</td>
</tr>
<tr>
<td>θ_l</td>
<td>8.321e-03</td>
<td>40.54</td>
</tr>
<tr>
<td>η_l</td>
<td>0.017</td>
<td>-169.83</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>0.095</td>
<td>-165.74</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>0.030</td>
<td>-159.14</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>0.086</td>
<td>-12.80</td>
</tr>
<tr>
<td>z_1</td>
<td>6.311e-03</td>
<td>-31.46</td>
</tr>
<tr>
<td>z_2</td>
<td>0.022</td>
<td>-155.91</td>
</tr>
<tr>
<td>z_3</td>
<td>0.030</td>
<td>-157.65</td>
</tr>
<tr>
<td>z_4</td>
<td>0.729</td>
<td>2.72</td>
</tr>
<tr>
<td>z_5</td>
<td>1.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

7. Eigenvalue: $-66.914 + 21.211i$
 Frequency: 11.172 Hz
 Damping Ratio: 0.95325

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>5.300e-05</td>
<td>-38.56</td>
</tr>
<tr>
<td>z_c</td>
<td>3.635e-04</td>
<td>75.32</td>
</tr>
<tr>
<td>θ_c</td>
<td>6.575e-04</td>
<td>-170.29</td>
</tr>
<tr>
<td>z_e</td>
<td>2.294e-03</td>
<td>-36.79</td>
</tr>
<tr>
<td>z_l</td>
<td>7.399e-03</td>
<td>-89.77</td>
</tr>
<tr>
<td>θ_l</td>
<td>1.317e-03</td>
<td>-48.80</td>
</tr>
<tr>
<td>η_l</td>
<td>3.202e-03</td>
<td>59.38</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>8.675e-03</td>
<td>-168.85</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>2.442e-03</td>
<td>142.37</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>0.014</td>
<td>167.18</td>
</tr>
<tr>
<td>z_1</td>
<td>3.151e-04</td>
<td>-169.55</td>
</tr>
<tr>
<td>z_2</td>
<td>4.974e-03</td>
<td>97.66</td>
</tr>
<tr>
<td>z_3</td>
<td>6.813e-03</td>
<td>92.92</td>
</tr>
<tr>
<td>z_4</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_5</td>
<td>0.737</td>
<td>-172.69</td>
</tr>
</tbody>
</table>

8. Eigenvalue: $-16.477 + 69.086i$
 Frequency: 11.304 Hz
 Damping Ratio: 0.23200

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>2.186e-03</td>
<td>96.66</td>
</tr>
<tr>
<td>z_c</td>
<td>0.017</td>
<td>-164.10</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.016</td>
<td>24.88</td>
</tr>
<tr>
<td>z_e</td>
<td>0.031</td>
<td>-170.30</td>
</tr>
<tr>
<td>z_l</td>
<td>0.035</td>
<td>-101.91</td>
</tr>
<tr>
<td>θ_l</td>
<td>0.011</td>
<td>72.30</td>
</tr>
<tr>
<td>η_l</td>
<td>0.026</td>
<td>114.86</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>1.152e-03</td>
<td>-65.91</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>8.648e-04</td>
<td>106.40</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>1.553e-03</td>
<td>-26.38</td>
</tr>
<tr>
<td>z_1</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_2</td>
<td>0.018</td>
<td>176.94</td>
</tr>
<tr>
<td>z_3</td>
<td>0.034</td>
<td>-87.28</td>
</tr>
<tr>
<td>z_4</td>
<td>3.196e-03</td>
<td>114.19</td>
</tr>
<tr>
<td>z_5</td>
<td>5.854e-03</td>
<td>117.15</td>
</tr>
</tbody>
</table>
9. Eigenvalue: $-21.954 + 64.320i$
 Frequency: 10.817 Hz
 Damping Ratio: 0.32303

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.488e-03</td>
<td>80.40</td>
</tr>
<tr>
<td>z_c</td>
<td>0.011</td>
<td>-173.35</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.012</td>
<td>21.25</td>
</tr>
<tr>
<td>z_e</td>
<td>0.029</td>
<td>179.77</td>
</tr>
<tr>
<td>z_t</td>
<td>0.028</td>
<td>-51.19</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.011</td>
<td>128.32</td>
</tr>
<tr>
<td>η_t</td>
<td>0.037</td>
<td>149.63</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>2.402e-04</td>
<td>127.19</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>1.836e-04</td>
<td>-64.72</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>2.736e-04</td>
<td>-179.98</td>
</tr>
<tr>
<td>z_1</td>
<td>0.056</td>
<td>-42.20</td>
</tr>
<tr>
<td>z_2</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_3</td>
<td>0.813</td>
<td>-164.23</td>
</tr>
<tr>
<td>z_4</td>
<td>6.806e-04</td>
<td>-50.28</td>
</tr>
<tr>
<td>z_5</td>
<td>1.237e-03</td>
<td>-45.43</td>
</tr>
</tbody>
</table>

10. Eigenvalue: $-23.393 + 62.945i$
 Frequency: 10.687 Hz
 Damping Ratio: 0.34837

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.212e-03</td>
<td>172.57</td>
</tr>
<tr>
<td>z_c</td>
<td>0.010</td>
<td>-73.50</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.016</td>
<td>130.12</td>
</tr>
<tr>
<td>z_e</td>
<td>0.049</td>
<td>-80.66</td>
</tr>
<tr>
<td>z_t</td>
<td>0.059</td>
<td>-178.71</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.023</td>
<td>-93.24</td>
</tr>
<tr>
<td>η_t</td>
<td>0.057</td>
<td>-48.59</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>0.698e-04</td>
<td>-37.43</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>0.452e-04</td>
<td>-38.31</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>0.039e-04</td>
<td>-1.10</td>
</tr>
<tr>
<td>z_1</td>
<td>0.046</td>
<td>-139.22</td>
</tr>
<tr>
<td>z_2</td>
<td>0.536</td>
<td>176.53</td>
</tr>
<tr>
<td>z_3</td>
<td>0.453</td>
<td>175.18</td>
</tr>
<tr>
<td>z_4</td>
<td>0.794</td>
<td>0.33</td>
</tr>
<tr>
<td>z_5</td>
<td>1.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

11. Eigenvalue: $-4.7004 + 14.485i$
 Frequency: 2.4238 Hz
 Damping Ratio: 0.30865

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>0.484</td>
<td>-17.67</td>
</tr>
<tr>
<td>z_c</td>
<td>0.553</td>
<td>63.07</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.469</td>
<td>44.61</td>
</tr>
<tr>
<td>z_e</td>
<td>0.629</td>
<td>150.48</td>
</tr>
<tr>
<td>z_t</td>
<td>0.962</td>
<td>144.06</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.329</td>
<td>138.41</td>
</tr>
<tr>
<td>η_t</td>
<td>0.038</td>
<td>171.77</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>0.698e-04</td>
<td>-37.43</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>0.452e-04</td>
<td>-38.31</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>0.039e-04</td>
<td>-1.10</td>
</tr>
<tr>
<td>z_1</td>
<td>0.046</td>
<td>-139.22</td>
</tr>
<tr>
<td>z_2</td>
<td>0.363</td>
<td>176.53</td>
</tr>
<tr>
<td>z_3</td>
<td>0.453</td>
<td>175.18</td>
</tr>
<tr>
<td>z_4</td>
<td>0.794</td>
<td>0.33</td>
</tr>
<tr>
<td>z_5</td>
<td>1.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

12. Eigenvalue: $-5.6963 + 1.698i$
 Frequency: 0.94601 Hz
 Damping Ratio: 0.95833

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_c</td>
<td>0.035</td>
<td>148.69</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.022</td>
<td>146.82</td>
</tr>
<tr>
<td>z_e</td>
<td>2.849e-03</td>
<td>166.86</td>
</tr>
<tr>
<td>z_t</td>
<td>2.186e-03</td>
<td>168.64</td>
</tr>
<tr>
<td>θ_t</td>
<td>5.107e-04</td>
<td>-19.43</td>
</tr>
<tr>
<td>η_t</td>
<td>2.849e-05</td>
<td>166.16</td>
</tr>
<tr>
<td>z_{tlr}</td>
<td>2.868e-04</td>
<td>-172.75</td>
</tr>
<tr>
<td>θ_{tlr}</td>
<td>1.010e-04</td>
<td>-1.11</td>
</tr>
<tr>
<td>η_{tlr}</td>
<td>2.223e-06</td>
<td>-22.84</td>
</tr>
<tr>
<td>z_1</td>
<td>1.062e-03</td>
<td>167.08</td>
</tr>
<tr>
<td>z_2</td>
<td>1.802e-04</td>
<td>-178.81</td>
</tr>
<tr>
<td>z_3</td>
<td>8.327e-05</td>
<td>-159.80</td>
</tr>
<tr>
<td>z_4</td>
<td>8.825e-06</td>
<td>-63.67</td>
</tr>
<tr>
<td>z_5</td>
<td>2.841e-05</td>
<td>-88.90</td>
</tr>
</tbody>
</table>
13. Eigenvalue: $-5.6689 + 7.5895i$
Frequency: 1.5077 Hz
Damping Ratio: 0.59843

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_c</td>
<td>0.552</td>
<td>76.62</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.402</td>
<td>69.86</td>
</tr>
<tr>
<td>z_e</td>
<td>0.064</td>
<td>-176.93</td>
</tr>
<tr>
<td>z_t</td>
<td>0.056</td>
<td>-176.74</td>
</tr>
<tr>
<td>η_t</td>
<td>1.033e-03</td>
<td>138.78</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>0.019</td>
<td>-147.25</td>
</tr>
<tr>
<td>θ_{ltr}</td>
<td>4.911e-03</td>
<td>-21.31</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>3.512e-04</td>
<td>-69.96</td>
</tr>
<tr>
<td>z_1</td>
<td>0.021</td>
<td>-168.29</td>
</tr>
<tr>
<td>z_2</td>
<td>7.709e-03</td>
<td>-156.71</td>
</tr>
<tr>
<td>z_3</td>
<td>6.410e-03</td>
<td>-158.16</td>
</tr>
<tr>
<td>z_4</td>
<td>4.069e-03</td>
<td>-65.96</td>
</tr>
<tr>
<td>z_5</td>
<td>4.622e-03</td>
<td>-46.99</td>
</tr>
</tbody>
</table>

14. Eigenvalue: $-0.89408 + 9.8286i$
Frequency: 1.5707 Hz
Damping Ratio: 0.090593

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>0.900</td>
<td>-78.02</td>
</tr>
<tr>
<td>z_c</td>
<td>0.993</td>
<td>-21.53</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.419</td>
<td>-139.17</td>
</tr>
<tr>
<td>z_e</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_t</td>
<td>0.670</td>
<td>-1.72</td>
</tr>
<tr>
<td>η_t</td>
<td>0.287</td>
<td>-175.62</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>9.778e-03</td>
<td>-158.11</td>
</tr>
<tr>
<td>z_{ltr}</td>
<td>0.090</td>
<td>-157.90</td>
</tr>
<tr>
<td>θ_{ltr}</td>
<td>8.497e-03</td>
<td>71.63</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>1.848e-03</td>
<td>-148.75</td>
</tr>
<tr>
<td>z_1</td>
<td>0.474</td>
<td>89.82</td>
</tr>
<tr>
<td>z_2</td>
<td>0.023</td>
<td>-17.25</td>
</tr>
<tr>
<td>z_3</td>
<td>0.064</td>
<td>-141.47</td>
</tr>
<tr>
<td>z_4</td>
<td>0.026</td>
<td>-148.50</td>
</tr>
<tr>
<td>z_5</td>
<td>0.024</td>
<td>-156.53</td>
</tr>
</tbody>
</table>

15. Eigenvalue: $-1.7590 + 9.0625i$
Frequency: 1.4693 Hz
Damping Ratio: 0.19054

<table>
<thead>
<tr>
<th>DOF</th>
<th>Magnitude</th>
<th>Phase (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s</td>
<td>0.900</td>
<td>-78.02</td>
</tr>
<tr>
<td>z_c</td>
<td>0.993</td>
<td>-21.53</td>
</tr>
<tr>
<td>θ_c</td>
<td>0.419</td>
<td>-139.17</td>
</tr>
<tr>
<td>z_e</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td>z_t</td>
<td>0.670</td>
<td>-1.72</td>
</tr>
<tr>
<td>η_t</td>
<td>0.287</td>
<td>-175.62</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>9.778e-03</td>
<td>-158.11</td>
</tr>
<tr>
<td>z_{ltr}</td>
<td>0.090</td>
<td>-157.90</td>
</tr>
<tr>
<td>θ_{ltr}</td>
<td>8.497e-03</td>
<td>71.63</td>
</tr>
<tr>
<td>η_{ltr}</td>
<td>1.848e-03</td>
<td>-148.75</td>
</tr>
<tr>
<td>z_1</td>
<td>0.474</td>
<td>89.82</td>
</tr>
<tr>
<td>z_2</td>
<td>0.023</td>
<td>-17.25</td>
</tr>
<tr>
<td>z_3</td>
<td>0.064</td>
<td>-141.47</td>
</tr>
<tr>
<td>z_4</td>
<td>0.026</td>
<td>-148.50</td>
</tr>
<tr>
<td>z_5</td>
<td>0.024</td>
<td>-156.53</td>
</tr>
</tbody>
</table>
Appendix E: Program User’s Guide

Overview

Both the frequency domain simulation and parameter variation programs described in this thesis were written in MATLAB and were meant to only run in this tool. The model being simulated is a fifteen degree-of-freedom (15 DOF) tractor semi-trailer and both types of programs require the user to make selections and input values while they are running. This guide is meant to help first time users run the programs and gain understanding about how they work.

Getting Started

Once MATLAB has been started, the user must check to make sure that the proper directory has been selected in the “Current Directory” menu. The directory will be different depending on whether the user is attempting to run the simulation program or one of the parameter variation programs. In the “Command Window”, type in the name of the desired program. For the simulation, type in “dof15_freq2” and press enter. To run any of the parameter variation programs, type in either “opt_axleK_freq”, “opt_axleC_freq”, “opt_tireK_freq”, “opt_tireC_freq”, “opt_tlr_axlebeam”, “opt_beam_freq”, or “opt_5wKC_freq” and press “Enter”. This will begin running the desired program.
Menus

Both the simulation program and the parameter variation programs contain the same menus that appear in the command window. The only difference in the operation of the two types of programs is the output plots and tables. Also, when running the tire stiffness variation program, “opt_tireK_freq”, there will be no tire selection menu because these particular values will be varied by the program. The same holds true for the tire damping variation program, “opt_tireC_freq”, the trailer parameter variation program, “opt_tlr_axlebeam”, the tractor and trailer beaming frequency program, “opt_beam_freq”, and the fifth wheel suspension parameter variation program, “opt_5wKC_freq”.

The menus provide the user with different options for the model being simulated and the desired outputs. The options in each menu may be presented in the form of a list using letter numbering, a yes or no response, or a numeric input. In the case of a list, simply type in the lower case letter of the selection and press “Enter”. Similarly, for the yes or no response, type in a lower case “y” for yes or “n” for no and press “Enter”. Finally, for a numeric input, input the number with no commas in the specified units and press “Enter”.

Vehicle Selection Menu

This menu provides the user with the option of selecting which type of vehicle is going to be simulated. Different vehicle have different geometric parameters, inertial parameters, and suspension parameters. Choosing the desired vehicle will call upon the appropriate set of parameters.
Seat Suspension Menu

The vehicle model has the option to implement a seat suspension system for the driver. If a seat suspension system is desired, the appropriate value will be used in the program. If no seat suspension is desired, the seat suspension stiffness will be set to a very high value, which is representative of a rigid connection. Numeric values for the seat suspension can be found in Appendix C.

Cab Suspension Menu

The 15 DOF system provides the user with the option of four different cab suspension orientations. This menu allows the user to choose from a front only cab suspension, a rear only cab suspension, front and rear cab suspension, and no cab suspension. In the cases where a rigid connection is desired, the stiffness values are set very high. Numeric values for the cab suspension can be found in Appendix C.

Trailer Configuration Menu

The program allows the user to choose from simulating a fully laden trailer, or an empty trailer. In the case of a fully laden trailer, the payload is placed at the CG of the trailer.

Fifth Wheel Suspension Menu

This menu allows the user to choose from a pin connection at the fifth wheel or to implement a fifth wheel suspension system. If no fifth wheel suspension system is desired, the stiffness across the fifth wheel is set to a very high value. If the user desires to implement a fifth wheel suspension system, two
prompts will appear requesting the user to input values for the stiffness and damping of the fifth wheel suspension system. The values for the stiffness can range from 50,000 N/m to 1,000,000 N/m, and the values for the damping can range from 2,000 N/(m/s) and 40,000 N/(m/s).

Beaming Frequency Menu

The fifteen DOF model incorporates the effects of both tractor and trailer frame beaming in the dynamic response. In both cases, only the bare frames are experiencing any beaming. In this menu, the user is prompted to input a beaming frequency, in Hz, for the tractor and trailer frame. The nominal frequency for both is 20 Hz, but appropriate beaming frequencies can range from 10 Hz to 30 Hz. This frequency is representative of the first bending mode only.

Tire Selection Menus

In this menu, the user is asked to choose from six different tire types for use on the each of the tractor semi-trailer’s axles. The first prompt requests the user to choose a tire for the steer axle, followed by prompts for the drive axles and trailer axles. In the case of the drive axles, the user may only choose one tire that will be used on both of the axles. The same is true for the trailer axles. Once the tire type has been selected, a prompt appears asking the user to input the tire pressure to be used in that tire in units of pounds per square inch (psi). The nominal value for that tire is displayed to serve as a reference value.
Vehicle Velocity Menu

This menu provides the user first with the option to select whether they would like to input the velocity of the tractor semi-trailer in units of meters per second (m/s) or mile per hour (mph). Once the user decides on the units, a prompt appears requesting the user to input a numeric value. The nominal value used the case studies in this thesis was 60 mph.

Road Surface PSD Selection Menu

This menu allows the user to select from four different road surfaces for the vehicle to traverse. All of the surfaces are typical to roads that a tractor semi-trailer might encounter in normal operation. The road surfaces are listed along with constants in SI units that were taken from Table 7.1 in *Theory of Ground Vehicles* by Wong [37]. Both the value for \(C_{sp} \) and \(N \) are used in the calculation of the road surface PSD.

J Penalty Factor Menu

This is the only menu that appears in the parameter variation programs, but not in the simulation program. This menu allows the user to select values for \(K_1 \) and \(K_2 \) which are used in the calculation of the J penalty value. \(K_1 \) represents the importance of the driver ride comfort in the function, and \(K_2 \) represents the importance of vertical accelerations experienced at the trailer CG. Both values should add up to one. For example, if the most importance is placed on driver ride comfort, a value of 0.8 should be assigned to \(K_1 \), and a value of 0.2 should be assigned to \(K_2 \).
Output Options

There are many different output options available in the simulation program and the parameter variation programs. All of the options have a yes or no response, and may appear in the form of tabular results that will appear in the “Command Window” or graphical results that will appear in separate windows created by MATLAB.
Appendix F: dof15_freq2.m

This program, entitled “dof15_freq2”, performs a simulation of the 15 DOF tractor semi-trailer in the frequency domain. Upon initiation, the program prompts the user for various input parameter, calls upon the appropriate data files, and calls upon the appropriate function files to perform the integrations necessary to calculate displacements of the tractor and trailer frame caused by beaming. It also performs the necessary calculations and displays the desired output information. The first data file called upon is “parameters” which contains the geometric parameters, inertial parameters, and suspension characteristics of the desired tractor semi-trailer. After the beaming frequencies have been chosen, the program calls upon the function files which are labeled, “modeD1_t”, “modeD1_tlr”, “modeD2_t”, “modeD2_tlr”, “modeD3_t”, “modeD3_tlr”, “modeD4_t”, and “modeD4_tlr”. These files form the integrals that calculate the beaming constants used in the simulation. Finally, the program calls upon the data file “TireData3” to calculate the stiffness and damping values depending on which types of tires are chosen and the pressures defined for those tires.
% This program models the fifteen DOF tractor semi-trailer
% DOFs include - 1) Vertical Disp. of Driver's Seat
% 2) Vertical Disp. of Cab
% 3) Pitch of Cab
% 4) Vertical Disp. of Engine
% 5) Vertical Disp. of Tractor Frame
% 6) Pitch of Tractor Frame
% 7) Beaming of Tractor Frame
% 8) Vertical Disp. of Trailer
% 9) Pitch of Trailer
% 10) Beaming of Trailer
% 11) Vertical Disp. of Axle #1
% 12) Vertical Disp. of Axle #2
% 13) Vertical Disp. of Axle #3
% 14) Vertical Disp. of Axle #4
% 15) Vertical Disp. of Axle #5
clc
clear all
% close all
format short e
format compact

global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr
global e a1 kb1 kb2 b_fw L_tlr alpha

disp(' ')
disp('Frequency Response of 15 DOF Tractor Semi-Trailer')
disp(' Roadholding Model ')
disp([' ',date])

parameters;

% TRAILER CONFIGURATION

disp(' ')
disp('TRAILER CONFIGURATION')
disp(' ')
disp('Please choose which configuration to use');
disp('a : Loaded Trailer');
disp('b : Unloaded Trailer');
z44 = input('Please give your choice : ', 's');

if z44 == 'a'
 m_tlr = m_tlr;
elseif z44 == 'b'
 m_tlr = m_ul;
disp('Give your choice for the fifth wheel configuration: ')
disp('Note: If a fifth wheel suspension system is chosen, the
beaming of')
disp('the tractor frame and trailer will be modeled as
free-free. If')
disp('no suspension is chosen, the tractor frame and
trailer will be')
disp('modeled as free-pinned and pinned-free
respectively.')
disp('a : With fifth wheel suspension')
disp('b : Without fifth wheel suspension')
z33 = input('Please give your choice : ', 's');

if z33 == 'a',
 % Choice 'a' is with fifth wheel suspension
 disp('')
 kfw = input('Input the fifth wheel spring constant (N/m): '); disp('')
 cfw = input('Input the fifth wheel damping ratio (N/(m/s)): '); disp('')
 % The parameters for the first bending mode of the Tractor frame
 disp('')
 fhz = input('Input the Tractor frequency of beaming (hz) fhz : '); disp('')
 % The parameters for the first bending mode of the Trailer frame
 disp('')
 fhz2 = input('Input the Trailer frequency of beaming (hz) fhz : '); disp('')
 kbl = 4.73004074; %Constant for the first bending mode (free-free)
 alpha = 0.982502;
 z1 = 'cosh(kbl*x1/b_fw) + cos(kbl*x1/b_fw) -
 alpha*(sinh(kbl*x1/b_fw)+sin(kbl*x1/b_fw))';
 % free-free beam mode function
 z1dd = '(kbl/b_fw)^2*(cosh(kbl*x1/b_fw) - cos(kbl*x1/b_fw) -
 alpha*(sinh(kbl*x1/b_fw)-sin(kbl*x1/b_fw)))';
 % second derivative of free-free Beam mode function
end
\[\text{kb2} = 4.73004074; \quad \% \text{Constant for the first bending mode (free-free)} \]
\[z_2 = \left(\cosh(kb2\times x_2/L_{tlr}) + \cos(kb2\times x_2/L_{tlr}) - \alpha*(\sinh(kb2\times x_2/L_{tlr})+\sin(kb2\times x_2/L_{tlr})) \right); \]
\[\% \text{free-free beam mode function} \]
\[z_{2dd} = '(kb2/L_{tlr})^2*(\cosh(kb2\times x_2/L_{tlr}) - \cos(kb2\times x_2/L_{tlr}) - \alpha*(\sinh(kb2\times x_2/L_{tlr})-\sin(kb2\times x_2/L_{tlr}))); \]
\[\% \text{second derivative of free-free beam mode function} \]

\text{elseif } z33 == 'b', \quad \% \text{Choice 'b' is without fifth wheel suspension} \\
\text{kfw} = 1000000000000; \quad \% (N/m) \text{ fifth wheel spring constant} \\
\text{cfw} = 1000; \quad \% (N/(m/s)) \text{ fifth wheel damping ratio} \\

\% The parameters for the first bending mode of the Tractor frame \\
\text{disp(' ')} \\
\text{fhz} = \text{input('Input the Tractor frequency of beaming (hz) fhz : ')}; \\

\% The parameters for the first bending mode of the Trailer frame \\
\text{disp(' ')} \\
\text{fhz2} = \text{input('Input the Trailer frequency of beaming (hz) fhz : ')}; \\

\text{kb1} = 2.36502; \quad \% \text{Constant for the first bending mode (free-pinned)} \\
\% (from Rao pg. 527) \\
\text{z1} = '(\cos(kb1\times x_1/b_{fw}) + (cosh(kb1\times x_1/b_{fw})) - ((\cos(kb1)+cosh(kb1))/(\sin(kb1)-\sinh(kb1)))*(\sin(kb1\times x_1/b_{fw})-\sinh(kb1\times x_1/b_{fw})))'; \\
\% \text{free-pinned beam mode function} \\
\text{z1dd} = '((kb1/b_{fw})^2)*(-\cos(kb1\times x_1/b_{fw}) + (cosh(kb1\times x_1/b_{fw}))- ((\cos(kb1)+cosh(kb1))/(\sin(kb1)-\sinh(kb1)))*(-\sin(kb1\times x_1/b_{fw})-\sinh(kb1\times x_1/b_{fw})))'; \\
\% \text{second derivative of free-pinned beam mode function} \\

\text{kb2} = 3.926602; \quad \% \text{Constant for the first bending mode (pinned-free)} \\
\% (from Rao pg. 527) \\
\text{z2} = '(\sin(kb2\times x_2/L_{tlr}) + ((\sin(kb2))/(\sinh(kb2)))*(\sinh(kb2\times x_2/L_{tlr}))); \\
\% \text{pinned-free beam mode function} \\
\text{z2dd} = '(kb2/L_{tlr})^2*(-\sin(kb2\times x_2/L_{tlr}) + ((\sin(kb2))/(\sinh(kb2)))*(\sinh(kb2\times x_2/L_{tlr}))); \\
\% \text{second derivative of pinned-free beam mode function} \\

\text{else disp('Insufficient information regarding fifth wheel suspension.')) \\
\text{end}
D1_t=['(',z1,')']; % Tractor frame beaming equations to be used in the integrals
D2_t=['((a1-x1).*(',z1,'))']; % (string form)
D3_t=['('(',z1,').*(',z1,'))'];
D4_t=['('(',z1dd,').*(',z1dd,'))'];

D1_tlr=['(',z2,')']; % Trailer beaming equations to be used in the integrals
D2_tlr=['((e-x2).*(',z2,'))']; % (string form)
D3_tlr=['('(',z2,').*(',z2,'))'];
D4_tlr=['('(',z2dd,').*(',z2dd,'))'];

I1_t=quadl('modeD1_t',0,b_fw); % Integrals of functions defined above
I2_t=quadl('modeD2_t',0,b_fw); % (along length of tractor frame)
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

I1_tlr=quadl('modeD1_tlr',0,L_tlr); % Integrals of functions defined above
I2_tlr=quadl('modeD2_tlr',0,L_tlr); % (along length of trailer)
I3_tlr=quadl('modeD3_tlr',0,L_tlr);
I4_tlr=quadl('modeD4_tlr',0,L_tlr);

E_a1=modeD1_t(b_a1); % Disp at axle #1 due to tractor frame beaming
E_cf=modeD1_t(b_cf); % Disp at cab front due to tractor frame beaming
E_e=modeD1_t(b_e); % Disp at engine due to tractor frame beaming
E_cr=modeD1_t(b_cr); % Disp at cab rear due to tractor frame beaming
E_a2=modeD1_t(b_a2); % Disp at axle #2 due to tractor frame beaming
E_fw=modeD1_t(b_fw); % Disp at fifth wheel due to tractor frame beaming
E_a3=modeD1_t(b_a3); % Disp at axle #3 due to tractor frame beaming
E_0=modeD1_tlr(0); % Disp at fifth wheel due to trailer beaming
E_a4=modeD1_tlr(b_a4); % Disp at axle #4 due to trailer beaming
E_a5=modeD1_tlr(b_a5); % Disp at axle #5 due to trailer beaming
EI_t = 4*pi^2*fhz^2*(b_fw/kb1)^4*ML_t; %Tractor frame flexural rigidity
EI_tlr = 4*pi^2*fhz2^2*(L_tlr/kb2)^4*ML_tlr; %Trailer flexural rigidity

%%
%%% Vehicle Tire Selection
%%
%%% STEER AXLE TIRE SELECTION
%%

disp(' ') disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd; % (m) Nominal cross section width
mt1 = mt; % (kg) Mass of axle #1
P1 = P; % (psi) Tire pressure from TireData3.m
press1 = press; % (psi) Tire pressure array
numtireal1 = numtires; % Number of tires on axle
Kstiff1 = Kstiff; % (N/m) Tire stiffness array
kt1 = KK * numtires1; % (N/m) Per-axle Rad Stiffness
ct1 = ct; % (N/(m/s)) Per-axle Damping

%%
%%% DRIVE AXLE TIRE SELECTION
%%

disp(' ') disp('DRIVE AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd23 = wd; % (m) Nominal cross section width
mt2 = mt; % (kg) Mass of axle #2
mt3 = mt; % (kg) Mass of axle #3
P23 = P; % (psi) Tire pressure from TireData3.m
press23 = press; % (psi) Tire Pressure array
numtires23 = numtires; % Number of tires on axle
Kstiff23 = Kstiff; % (N/m) Tire stiffness array
kt2 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
kt3 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
c2 = ct; % (N/(m/s)) Per-axle Damping
c3 = ct; % (N/(m/s)) Per-axle Damping

%%
%%% TRAILER AXLE TIRE SELECTION
%%

disp(' ') disp('TRAILER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd45 = wd; % (m) Nominal cross section width
mt4 = mt; % (kg) Mass of axle #4
mt5 = mt; % (kg) Mass of axle #5
P45 = P; % (psi) Tire pressure from TireData3.m
press45 = press; % (psi) Tire Pressure array
numtirea45 = numtires; % Number of tires on axle
Kstiff45 = Kstiff; % (N/m) Tire stiffness array
kt4 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
kt5 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
ct4 = ct; %(N/(m/s)) Per-axle Damping
ct5 = ct; %(N/(m/s)) Per-axle Damping

% Adjusted Tire Parameters
% kt1 = 945350; %N/m
% kt2 = 1671741; %N/m
% kt3 = 1671741; %N/m
% ct1 = 517; %N/(m/s)
% ct2 = 648.3; %N/(m/s)
% ct3 = 648.3; %N/(m/s)

% J Penalty Parameters
% kt1 = 906500; %N/m
% kt2 = 2244909; %N/m
% kt3 = 2244909; %N/m

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('VEHICLE VELOCITY')
disp(' ')
disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp(' ')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; %Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.277778*vm; %Velocity conversion from kph to m/s
end

T(1) = 0; %Time delay between front axle and remaining axles
T(2) = (a+b)/v; % Axle #2
T(3) = (a+d)/v; % Axle #3
T(4) = (a+i+e+f)/v; % Axle #4
T(5) = (a+i+e+h)/v; % Axle #5

%%%
%%%%%%%%%%%%%%%%%%%% Road PSD Selection %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('ROAD PSD SELECTION')
disp(' ')

191
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp(' ')
disp('a : Csp = 4.3e-11, N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp(' ')
tabchoice11=input('Input the road surface to be used : ','s');

if tabchoice11== 'a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11== 'b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11 == 'c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11 == 'd', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
end

%%%
%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% System Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%

% THE SYSTEM IS WRITTEN AS (M*S*S+C*S+K)X(S)=(A*S+B)U(S)

%%%
%%% Mass Matrix %%%
%%%
M = zeros(15,15);

M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
M(3,3) = I_c; % Eqn #3: Pitch of Cab
M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
M(5,5) = m_t; % Eqn #5: Vertical Disp of Tractor Frame
M(5,6) = ML_t*b_fw*(b_fw/2-a1);
\(M(5,7) = ML_t*I_{1_t}; \)
\(M(6,5) = ML_t*b_{fw}*(b_{fw}/2-a_{1}) ; \quad \% \text{Eqn #6: Pitch of Tractor Frame} \)
\(M(6,6) = I_t ; \)
\(M(6,7) = -ML_t*I_{2_t}; \)
\(M(7,5) = ML_t*I_{1_t}; \quad \% \text{Eqn #7: Beaming of Tractor Frame} \)
\(M(7,6) = -ML_t*I_{2_t}; \)
\(M(7,7) = ML_t*I_{3_t}; \)
\(M(8,8) = m_{tlr}; \quad \% \text{Eqn #8: Vertical Disp of Trailer} \)
\(M(8,9) = -ML_{tlr}L_{tlr}*(e-L_{tlr}/2) ; \)
\(M(8,10) = ML_{tlr}*I_{1_{tlr}}; \)
\(M(9,8) = -ML_{tlr}L_{tlr}*(e-L_{tlr}/2) ; \% \text{Eqn #9: Pitch of Trailer} \)
\(M(9,9) = I_{tlr} ; \)
\(M(9,10) = -ML_{tlr}*I_{2_{tlr}}; \)
\(M(10,8) = ML_{tlr}*I_{1_{tlr}}; \quad \% \text{Eqn #10: Beaming of Trailer} \)
\(M(10,9) = -ML_{tlr}*I_{2_{tlr}}; \)
\(M(10,10) = ML_{tlr}*I_{3_{tlr}}; \)
\(M(11,11) = mt_{1}; \quad \% \text{Eqn #11: Vertical Disp of Axle #1} \)
\(M(12,12) = mt_{2}; \quad \% \text{Eqn #12: Vertical Disp of Axle #2} \)
\(M(13,13) = mt_{3}; \quad \% \text{Eqn #13: Vertical Disp of Axle #3} \)
\(M(14,14) = mt_{4}; \quad \% \text{Eqn #14: Vertical Disp of Axle #4} \)
\(M(15,15) = mt_{5}; \quad \% \text{Eqn #15: Vertical Disp of Axle #5} \)

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\(C = \text{zeros}(15,15); \)
\(C(1,1) = cs; \)
\(C(1,2) = -cs; \)
\(C(1,3) = r*cs; \)
\(C(2,1) = -cs; \)
\(C(2,2) = cs+ccf+ccr; \)
\(C(2,3) = -r*cs-n*ccf+p*ccr; \)
\(C(2,5) = -ccf-ccr; \)
\(C(2,6) = 1*ccf-j*ccr; \)
\[
\begin{align*}
C(2,7) &= -ccf \cdot E_{cf} - ccr \cdot E_{cr}; \\
C(3,1) &= r \cdot cs; \\
C(3,2) &= -r \cdot cs - n \cdot ccf + p \cdot ccr; \\
C(3,3) &= (r^2) \cdot cs + (n^2) \cdot ccf + (p^2) \cdot ccr; \\
C(3,5) &= n \cdot ccf - p \cdot ccr; \\
C(3,6) &= -n^1 \cdot ccf - p^1 \cdot j \cdot ccr; \\
C(3,7) &= n \cdot ccf \cdot E_{cf} - p \cdot ccr \cdot E_{cr}; \\
C(4,4) &= ce; \\
C(4,5) &= -ce; \\
C(4,6) &= m \cdot ce; \\
C(4,7) &= -ce \cdot E_e; \\
C(5,2) &= -ccf - ccr; \\
C(5,3) &= n \cdot ccf - p \cdot ccr; \\
C(5,4) &= -ce; \\
C(5,5) &= ce + ccf + ccr + cfw + c1 + c2; \\
C(5,6) &= -m \cdot ce - l \cdot ccf + j \cdot ccr + i \cdot cfw - a \cdot c1 + b \cdot c2 - d \cdot c3; \\
C(5,7) &= ce \cdot E_e + ccf \cdot E_{cf} + ccr \cdot E_{cr} + cfw \cdot E_{fw} + c1 \cdot E_{a1} + c2 \cdot E_{a2} + c3 \cdot E_{a3}; \\
C(5,8) &= -cfw; \\
C(5,9) &= e \cdot cfw; \\
C(5,10) &= -cfw \cdot E_0; \\
C(5,11) &= -c1; \\
C(5,12) &= -c2; \\
C(5,13) &= -c3; \\
C(6,2) &= l \cdot ccf - j \cdot ccr; \\
C(6,3) &= -n^1 \cdot ccf - p^1 \cdot j \cdot ccr; \\
C(6,4) &= m \cdot ce; \\
C(6,5) &= -m \cdot ce - l \cdot ccf + j \cdot ccr + i \cdot cfw - a \cdot c1 + b \cdot c2 + d \cdot c3; \\
C(6,6) &= (m^2) \cdot ce + (l^2) \cdot ccf + (j^2) \cdot ccr + (i^2) \cdot cfw + (a^2) \cdot c1 + (b^2) \cdot c2 + (d^2) \cdot c3; \\
C(6,7) &= -m \cdot ce \cdot E_e - l \cdot ccf \cdot E_{cf} + j \cdot ccr \cdot E_{cr} + i \cdot cfw \cdot E_{fw} - a \cdot c1 \cdot E_{a1} + b \cdot c2 \cdot E_{a2} + d \cdot c3 \cdot E_{a3}; \\
C(6,8) &= -i \cdot cfw; \\
C(6,9) &= e \cdot i \cdot cfw; \\
C(6,10) &= -i \cdot cfw \cdot E_0; \\
C(6,11) &= a \cdot c1; \\
C(6,12) &= -b \cdot c2; \\
C(6,13) &= -d \cdot c3; \\
C(7,2) &= -ccf \cdot E_{cf} - ccr \cdot E_{cr}; \\
C(7,3) &= n \cdot ccf \cdot E_{cf} - p \cdot ccr \cdot E_{cr}; \\
C(7,4) &= -ce \cdot E_e; \\
C(7,5) &= ce \cdot E_e + ccf \cdot E_{cf} + ccr \cdot E_{cr} + cfw \cdot E_{fw} + c1 \cdot E_{a1} + c2 \cdot E_{a2} + c3 \cdot E_{a3}; \\
C(7,6) &= -m \cdot ce \cdot E_e - l \cdot ccf \cdot E_{cf} + j \cdot ccr \cdot E_{cr} + i \cdot cfw \cdot E_{fw} - a \cdot c1 \cdot E_{a1} + b \cdot c2 \cdot E_{a2} + d \cdot c3 \cdot E_{a3}; \\
C(7,7) &= ce \cdot E_e \cdot E_{cf} + ccf \cdot E_{cf} \cdot E_{cr} + ccr \cdot E_{cr} \cdot E_{fw} + c1 \cdot E_{a1} \cdot E_{a2} + c2 \cdot E_{a2} \cdot E_{a3} + c3 \cdot E_{a3} \cdot E_{a3}; \\
\end{align*}
\]
\begin{align*}
C_{(7,8)} &= -cfw \cdot E_{fw}; \\
C_{(7,9)} &= e \cdot cfw \cdot E_{fw}; \\
C_{(7,10)} &= -cfw \cdot E_0 \cdot E_{fw}; \\
C_{(7,11)} &= -c1 \cdot E_{a1}; \\
C_{(7,12)} &= -c2 \cdot E_{a2}; \\
C_{(7,13)} &= -c3 \cdot E_{a3}; \\
C_{(8,5)} &= -cfw; \\
C_{(8,6)} &= -i \cdot cfw; \\
C_{(8,7)} &= -cfw \cdot E_{fw}; \\
C_{(8,8)} &= cfw + c4 + c5; \\
C_{(8,9)} &= -e \cdot cfw + f \cdot c4 + h \cdot c5; \\
C_{(8,10)} &= cfw \cdot E_0 + c4 \cdot E_{a4} + c5 \cdot E_{a5}; \\
C_{(8,14)} &= -c4; \\
C_{(8,15)} &= -c5; \\
C_{(9,5)} &= e \cdot cfw; \\
C_{(9,6)} &= e \cdot i \cdot cfw; \\
C_{(9,7)} &= e \cdot cfw \cdot E_{fw}; \\
C_{(9,8)} &= -e \cdot cfw + f \cdot c4 + h \cdot c5; \\
C_{(9,9)} &= (e^2) \cdot cfw + (f^2) \cdot c4 + (h^2) \cdot c5; \\
C_{(9,10)} &= -e \cdot cfw \cdot E_0 + f \cdot c4 \cdot E_{a4} + h \cdot c5 \cdot E_{a5}; \\
C_{(9,14)} &= -f \cdot c4; \\
C_{(9,15)} &= -h \cdot c5; \\
C_{(10,5)} &= -cfw \cdot E_0; \\
C_{(10,6)} &= -i \cdot cfw \cdot E_0; \\
C_{(10,7)} &= -cfw \cdot E_{fw} \cdot E_0; \\
C_{(10,8)} &= cfw \cdot E_0 + c4 \cdot E_{a4} + c5 \cdot E_{a5}; \\
C_{(10,9)} &= -e \cdot cfw \cdot E_0 + f \cdot c4 \cdot E_{a4} + h \cdot c5 \cdot E_{a5}; \\
C_{(10,10)} &= cfw \cdot E_0^2 + c4 \cdot E_{a4}^2 + c5 \cdot E_{a5}^2; \\
C_{(10,14)} &= -c4 \cdot E_{a4}; \\
C_{(10,15)} &= -c5 \cdot E_{a5}; \\
C_{(11,5)} &= -c1; \\
C_{(11,6)} &= a \cdot c1; \\
C_{(11,7)} &= -c1 \cdot E_{a1}; \\
C_{(11,11)} &= c1 + cT1; \\
C_{(12,5)} &= -c2; \\
C_{(12,6)} &= -b \cdot c2; \\
C_{(12,7)} &= -c2 \cdot E_{a2}; \\
C_{(12,12)} &= c2 + cT2; \\
C_{(13,5)} &= -c3; \\
C_{(13,6)} &= -d \cdot c3; \\
C_{(13,7)} &= -c3 \cdot E_{a3}; \\
C_{(13,13)} &= c3 + cT3; \\
C_{(14,8)} &= -c4; \\
C_{(14,9)} &= -f \cdot c4; \\
C_{(14,10)} &= -c4 \cdot E_{a4}; \\
C_{(14,14)} &= c4 + cT4; \\
C_{(15,8)} &= -c5;
\end{align*}
\[
C(15,9) = -h*c5; \\
C(15,10) = -c5*E_a5; \\
C(15,15) = c5+ct5;
\]

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

\[
K = zeros(15,15);
\]

\[
K(1,1) = ks; \\
K(1,2) = -ks; \\
K(1,3) = r*ks;
\]

\[
K(2,1) = -ks; \\
K(2,2) = ks+kcf+kcr; \\
K(2,3) = -r*ks-n*kcf+p*kcr; \\
K(2,5) = -kcf-kcr; \\
K(2,6) = i*kcf-j*kcr; \\
K(2,7) = -kcf*E_cf-kcr*E_cr;
\]

\[
K(3,1) = r*ks; \\
K(3,2) = -r*ks-n*kcf+p*kcr; \\
K(3,3) = (r^2)*ks+(n^2)*kcf+(p^2)*kcr; \\
K(3,5) = n*kcf-p*kcr; \\
K(3,6) = -n*l*kcf-p*j*kcr; \\
K(3,7) = n*kcf*E_cf-p*kcr*E_cr;
\]

\[
K(4,4) = ke; \\
K(4,5) = -ke; \\
K(4,6) = m*ke; \\
K(4,7) = -ke*E_e;
\]

\[
K(5,2) = -kcf-kcr; \\
K(5,3) = n*kcf-p*kcr; \\
K(5,4) = -ke; \\
K(5,5) = ke+kcf+kcr+kfw+kl+k2+k3; \\
K(5,6) = -m*ke-l*kcf+j*kcr+i*kfw-a*kl+b*k2+d*k3; \\
K(5,7) = \text{kcf*E_cf+kcr*E_cr+kfw*E_fw+kl*E_a1+k2*E_a2+k3*E_a3;}
\]

\[
K(5,8) = -kfw; \\
K(5,9) = e*kfw; \\
K(5,10) = -kfw*E_0; \\
K(5,11) = -kl; \\
K(5,12) = -k2; \\
K(5,13) = -k3;
\]

\[
K(6,2) = 1*kcf-j*kcr; \\
K(6,3) = -n*l*kcf-p*j*kcr; \\
K(6,4) = m*ke; \\
K(6,5) = -m*ke-l*kcf+j*kcr+i*kfw-a*kl+b*k2+d*k3; \\
K(6,6) = (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*kl+(b^2)*k2+(d^2)*k3; \\
K(6,7) = -m*ke*E_e+l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*kl*E_a1+b*k2*E_a2+...
\]
d*k3*E_a3;
K(6,8) = -i*kfw;
K(6,9) = e*i*kfw;
K(6,10) = -i*kfw*E_0;
K(6,11) = a*k1;
K(6,12) = -b*k2;
K(6,13) = -d*k3;

K(7,2) = -kcf*E_cf-kcr*E_cr;
K(7,3) = n*kcf*E_cf-p*kcr*E_cr;
K(7,4) = -ke*E_e;
K(7,5) =
ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3;
K(7,6) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-
a*k1*E_a1+b*k2*E_a2 ...
+d*k3*E_a3;
K(7,7) =
ke*E_e^2+kcf*E_cf^2+kcr*E_cr^2+kfw*E_fw^2+k1*E_a1^2+k2*E_a2^2 ...
+k3*E_a3^2+EI_t*I4_t;
K(7,8) = -kfw*E_fw;
K(7,9) = e*kfw*E-fw;
K(7,10) = -kfw*E_0*E fw;
K(7,11) = -k1*E_a1;
K(7,12) = -k2*E_a2;
K(7,13) = -k3*E_a3;

K(8,5) = -kfw;
K(8,6) = -i*kfw;
K(8,7) = -kfw*E_fw;
K(8,8) = kfw+k4+k5;
K(8,9) = -e*kfw+f*k4+h*k5;
K(8,10) = kfw*E_0+k4*E_a4+k5*E_a5;
K(8,14) = -k4;
K(8,15) = -k5;

K(9,5) = e*kfw;
K(9,6) = e*i*kfw;
K(9,7) = e*kfw*E-fw;
K(9,8) = -e*kfw+f*k4+h*k5;
K(9,9) = (e^2)*kfw+(f^2)*k4+(h^2)*k5;
K(9,10) = -e*kfw*E_0+f*k4*E_a4+h*k5*E_a5;
K(9,14) = -f*k4;
K(9,15) = -h*k5;

K(10,5) = -kfw*E_0;
K(10,6) = -i*kfw*E_0;
K(10,7) = -kfw*E_fw*E_0;
K(10,8) = kfw*E_0+k4*E_a4+k5*E_a5;
K(10,9) = -e*kfw*E_0+f*k4*E_a4+h*k5*E_a5;
K(10,10) = kfw*E_0^2+k4*E_a4^2+k5*E_a5^2+EI_t1r*I4_t1r;
K(10,14) = -k4*E_a4;
K(10,15) = -k5*E_a5;

K(11,5) = -k1;
K(11,6) = a*k1;
K(11,7) = -k1*E_a1;
K(11,11) = k1+kt1;
K(12,5) = -k2;
K(12,6) = -b*k2;
K(12,7) = -k2*E_a2;
K(12,12) = k2+kt2;
K(13,5) = -k3;
K(13,6) = -d*k3;
K(13,7) = -k3*E_a3;
K(13,13) = k3+kt3;
K(14,8) = -k4;
K(14,9) = -f*k4;
K(14,10) = -k4*E_a4;
K(14,14) = k4+kt4;
K(15,8) = -k5;
K(15,9) = -h*k5;
K(15,10) = -k5*E_a5;
K(15,15) = k5+kt5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(15,1);
A(11) = ct1;
A(12) = ct2;
A(13) = ct3;
A(14) = ct4;
A(15) = ct5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B = zeros(15,1);
B(11) = kt1;
B(12) = kt2;
B(13) = kt3;
B(14) = kt4;
B(15) = kt5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Calculation of Load on Each Axle %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ST(1,4) = -1;
ST(1,5) = -1;
ST(1,6) = -1;
ST(1,7) = -1;
ST(1,8) = -1;
ST(2,4) = -a;
ST(2,5) = b;
\[
\begin{align*}
ST(2,6) &= d; \\
ST(2,7) &= i+e+f; \\
ST(2,8) &= i+e+h; \\
ST(3,7) &= e+f; \\
ST(3,8) &= e+h; \\
ST(4,1) &= -k1; \\
ST(4,2) &= -k1*a; \\
ST(4,4) &= 1; \\
ST(5,1) &= -k2; \\
ST(5,2) &= k2*b; \\
ST(5,5) &= 1; \\
ST(6,1) &= -k3; \\
ST(6,2) &= k3*d; \\
ST(6,6) &= 1; \\
ST(7,1) &= -k4; \\
ST(7,2) &= k4*i; \\
ST(7,3) &= k4*(e+f); \\
ST(7,7) &= 1; \\
ST(8,1) &= -k5; \\
ST(8,2) &= k5*i; \\
ST(8,3) &= k5*(e+h); \\
ST(8,8) &= 1; \\
WT(1,1) &= (m_s+m_c+m_e+m_t+m_tlr)*g; \\
WT(2,1) &= m_c*g*tc+m_s*g*(tc+p)+m_e*g*m-m_tlr*g*(i+e); \\
WT(3,1) &= -m_tlr*g*e; \\
WT(4,1) &= 0; \\
WT(5,1) &= 0; \\
WT(6,1) &= 0; \\
WT(7,1) &= 0; \\
WT(8,1) &= 0; \\
DELTA &= \text{inv}(ST)*(WT); \\
Wtire(1) &= -DELTA(4,1)+m_{t1}*g; \quad \% \text{Total axle load on steer axle tires} \\
Wtire(2) &= -DELTA(5,1)+m_{t2}*g; \quad \% \text{Total axle load on 1st drive axle tires} \\
Wtire(3) &= -DELTA(6,1)+m_{t3}*g; \quad \% \text{Total axle load on 2nd drive axle tires} \\
Wtire(4) &= -DELTA(7,1)+m_{t4}*g; \quad \% \text{Total axle load on 1st trailer axle tires} \\
Wtire(5) &= -DELTA(8,1)+m_{t5}*g; \quad \% \text{Total axle load on 2nd trailer axle tires} \\
\% \text{System "A" Matrix} \\
AA&=[\text{zeros(size(M))} \quad \text{eye(size(M))}] \quad \% \text{System state variable matrix} \\
&\quad -\text{inv}(M)*K \quad \quad \quad \quad \quad -\text{inv}(M)*C];
\end{align*}
\]
[V,EIGAA]=eig(AA);

for ii= 1:30
 for j2=1:15
 if abs(V(j2,ii))==max(abs(V(1:15,ii))) % Largest value of ev
 vec(:,ii)=V(1:15,ii)/(V(j2,ii)); % Forming normalized evs
 end
 end
 EIG(:,ii)=EIGAA(ii,ii);
 mag(ii)=abs(EIG(:,ii)); %
 whz(ii)=mag(ii)/(2*pi); %
 zeta(ii)=-cos(atan2(imag(EIG(:,ii)),real(EIG(:,ii)))); %
end

disp(' ')
transfer = input('Print out the system matrices? (y/n): ','s');
if transfer == 'y'
 disp(' ')
 disp('Mass, Damping, and Stiffness Matrices')
 M
 C
 K
 disp(' ')
 disp('System "A" Matrix')
 AA
end

% DISPLAYS EIGENVALUES
ii=1:30;
disp(' ')
opt1=input('Do you want eigenvalues, frequencies, and damping? (y/n): ','s');
if opt1=='y'
 disp(' ');
 disp('EIG VAL Hz DAMPING');
 disp([EIG',whz',zeta'])
end

% DISPLAY NORMALIZED EIGENVECTORS
disp(' ')
opt2=input('Do you want normalized eigenvectors? (y/n): ','s');
if opt2=='y'
 i2=1;
 for j3= 1:30
 if i2==31,
 else ii= 1:15;
 if EIG(i2)==real(EIG(i2)),
 disp(' ')
 disp('Normalized eigen vectors');
 end
 end
end
disp(' Eigenvalue Frequency
... Damping:');
disp([EIG(i2),whz(i2),zeta(i2)]);
disp(' NO MAG PHASE');
disp([ii',abs(vec(:,i2)),(180/pi*angle(vec(:,i2)))])];
disp('Press "enter" to continue')
i2=i2+1;
pause
else disp(' ')
disp('Normalized eigen vectors');
disp(' Eigenvalue Frequency
... Damping:');
disp([EIG(i2),whz(i2),zeta(i2)]);
disp(' NO MAG PHASE
MAG ... PHASE');
disp([ii',abs(vec(:,i2)),(180/pi*angle(vec(:,i2))),(abs(vec(:,i2+1))),(180/pi*angle(vec(:,i2+1)))]);
disp('Press "enter" to continue')
i2=i2+2;
pause
end
end

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
wc=[.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
whzc=[.1 .125 .16 .2 .25 .315 .4 .5 .63 .8 1 1.25 1.6 2 2.5 3.15 ...
 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];

% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,...
 .9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;
whzcr = 2*pi*whzc; % Calculation of central frequencies in rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];

imag=sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);
 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ... exp(-s*T(4)) exp(-s*T(5))];
 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*time.'));

 % magcfstroke(ii,jj)=abs(stroke);
 % magcfAlong(ii,jj)=abs(s*s*long);
 % magcftlr(ii,jj)=abs(s*s*z_tlr);

 % Displacement Transfer Functions
 magcfstroke(ii,jj)=abs(stroke);
 % Acceleration Transfer Functions
 magcfAl(ii,jj)=abs(s*s*z_s); % Mag of trans function,
 (m/s*s)/m
 magcfAlong(ii,jj)=abs(s*s*long);
 magcftlr(ii,jj)=abs(s*s*z_tlr);
%% PSDs %%

% Road PSD in m^2/(rad/s)
\[\text{rpsd(ii,jj)} = \text{Csp} \times \left(\frac{(2\pi v)^{(N-1)}}{w^N} \right) \]

% Acceleration PSDs in (m/s^2)^2/(rad/s)
\[\text{psdcfA1(ii,jj)} = \text{magcfA1(ii,jj)} \times \text{magcfA1(ii,jj)} \times \text{rpsd(ii,jj)} \]
\[\text{psdcfAlong(ii,jj)} = \text{magcfAlong(ii,jj)} \times \text{magcfAlong(ii,jj)} \times \text{rpsd(ii,jj)} \]
\[\text{psdcftlr(ii,jj)} = \text{magcftlr(ii,jj)} \times \text{magcftlr(ii,jj)} \times \text{rpsd(ii,jj)} \]

% 5th Wheel Stroke PSD in m^2/(rad/s)
\[\text{psdcfstroke(ii,jj)} = \text{magcfstroke(ii,jj)} \times \text{magcfstroke(ii,jj)} \times \text{rpsd(ii,jj)} \]

%%% RMS CALCULATIONS %%%

for kk=1:length(whzc)
% Vert. Driver's Seat RMS
\[\text{msgy1a(kk)} = 0.5 \times (\text{psdcfA1(kk,1)} + \text{psdcfA1(kk,2)}) \times (\text{freq(kk,2)} - \text{freq(kk,1)}) \]
\[\text{msgy1b(kk)} = 0.5 \times (\text{psdcfA1(kk,2)} + \text{psdcfA1(kk,3)}) \times (\text{freq(kk,3)} - \text{freq(kk,2)}) \]
\[\text{msgy1(kk)} = \text{msgy1a(kk)} + \text{msgy1b(kk)} \]
\[\text{rmsA1cf(kk)} = \sqrt{\text{msgy1(kk)}} \]

% Long. Driver RMS
\[\text{msgylonga(kk)} = 0.5 \times (\text{psdcfAlong(kk,1)} + \text{psdcfAlong(kk,2)}) \times (\text{freq(kk,2)} - \text{freq(kk,1)}) \]
\[\text{msgylongb(kk)} = 0.5 \times (\text{psdcfAlong(kk,2)} + \text{psdcfAlong(kk,3)}) \times (\text{freq(kk,3)} - \text{freq(kk,2)}) \]
\[\text{msgylong(kk)} = \text{msgylonga(kk)} + \text{msgylongb(kk)} \]
\[\text{rmsAlongcf(kk)} = \sqrt{\text{msgylong(kk)}} \]

% 5th Wheel Stroke RMS
\[\text{msgystrokea(kk)} = 0.5 \times (\text{psdcfstroke(kk,1)} + \text{psdcfstroke(kk,2)}) \times (\text{freq(kk,2)} - \text{freq(kk,1)}) \]
\[\text{msgystrokeb(kk)} = 0.5 \times (\text{psdcfstroke(kk,2)} + \text{psdcfstroke(kk,3)}) \times (\text{freq(kk,3)} - \text{freq(kk,2)}) \]
\[\text{msgystrokecf(kk)} = \sqrt{\text{msgystrokea(kk)} + \text{msgystrokeb(kk)}} \]
\[\text{rmsstrokecf(kk)} = \sqrt{\text{msgystrokecf(kk)}} \]

% Road Surface RMS
\[\text{msgyroada(kk)} = 0.5 \times (\text{rpsd(kk,1)} + \text{rpsd(kk,2)}) \times (\text{freq(kk,2)} - \text{freq(kk,1)}) \]
\[\text{msgyroodb(kk)} = 0.5 \times (\text{rpsd(kk,2)} + \text{rpsd(kk,3)}) \times (\text{freq(kk,3)} - \text{freq(kk,2)}) \]
\[\text{msgyroa(kk)} = \sqrt{\text{msgyroada(kk)} + \text{msgyroodb(kk)}} \]
\[\text{rmsroadcf(kk)} = \sqrt{\text{msgyroa(kk)}} \]

%% Vert. Trailer CG RMS
\[m_{syt}lra(kk) = 0.5 \times (psdcftlr(kk,1) + psdcftlr(kk,2)) \times (freq(kk,2) - freq(kk,1)) \]
\[m_{syt}lrb(kk) = 0.5 \times (psdcftlr(kk,2) + psdcftlr(kk,3)) \times (freq(kk,3) - freq(kk,2)) \]
\[m_{syt}lr(kk) = m_{syt}lra(kk) + m_{syt}lrb(kk) \]
\[rmstlrcf(kk) = \sqrt{m_{syt}lr(kk)} \]

\[\text{RMScf} = \text{[rmsA1cf',rmsAlongcf',rmstlrcf']}; \quad \% \text{Accel. RMS Matrix} \]

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal

wcc = [0.1, 0.125, 0.16, 0.2, 0.25, 0.315, 0.4, 0.5, 0.63, 0.8, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40, 50];
WgtV = [0.0312, 0.0486, 0.079, 0.121, 0.182, 0.263, 0.352, 0.418, 0.459, 0.477, 0.482, 0.484, 0.486, 0.488, 0.49, 0.494, 0.531, 0.631, 0.804, 0.967, 1.039, 1.054, 1.036, 0.988, 0.902, 0.768, 0.636, 0.513, 0.405, 0.314, 0.246];
WgtL = 0.001 * [62.4, 97.3, 158, 243, 365, 530, 713, 853, 944, 992, 1011, 1008, 968, 890, 776, 642, 512, 409, 323, 253, 212, 161, 125, 100, 80, 63.2, 49.4, 38.8];

\[\text{isovert} = \text{WgtV} \times \text{RMScf}(1:28,1); \quad \% \text{Weighted Vert. Driver RMS Accel.} \]
\[\text{isolong} = \text{WgtL} \times \text{RMScf}(1:28,2); \quad \% \text{Weighted Long. Driver RMS Accel.} \]
\[\text{isotlr} = \text{WgtV} \times \text{RMScf}(1:28,3); \quad \% \text{Weighted Vert. Trailer CG RMS Accel.} \]

disp('Would you like to see the driver transfer = input(''weighted acceleration values? (y/n): '', 's');
if transfer == 'y'
disp('********* DRIVER VERTICAL WEIGHTED ACCELERATION VALUES**********')
disp('Freq RMS acc, CG WgtV Wgt*RMSacc (Wgt*RMSacc)^2')
disp('Hz m/s^2 m/s^2 (m/s^2)^2')
disp([wcc' rmsA1cf(1:28)' WgtV' (WgtV.*rmsA1cf(1:28))' ... ((WgtV.*rmsA1cf(1:28)).^2)'])
disp('********* DRIVER LONGITUDINAL WEIGHTED ACCELERATION VALUES**********')
disp('Freq RMS acc, CG WgtL Wgt*RMSacc (Wgt*RMSacc)^2')
disp(' Hz m/s^2 m/s^2
(m/s^2)^2')
disp(' ')
disp([wcc' rmsAlongcf(1:28)' WgtL' (WgtL.*rmsAlongcf(1:28))'
((WgtL.*rmsAlongcf(1:28)).^2)'])
disp(' ')
disp('**** Weighted RMS Acceleration, a0, m/s^2 ****')
disp(' ')
da0_V_dr=(sum(term2V))^0.5; % a0 for vert. disp of
driver

da0_L_dr=(sum(term2L))^0.5; % a0 for long. disp of
driver

aV=(a0_L_dr^2 + a0_V_dr^2)^0.5; % a0 for comb vert and
long disp

da0_V_tlr=(sum(term2tlr))^0.5;

daStroke=(sum(term2S))^0.5;
disp('************ a0 VALUES FOR DRIVER m/s^2 ***********')
disp(' Vertical Longitudinal Combined RMS Stroke
(mm)')
disp(' m/s^2 m/s^2 m/s^2 (0.1-50
Hz)')
disp([a0_V_dr a0_L_dr aV aStroke*1000])
disp('**')

% Here the transfer functions are formed again with a smoother
frequency
% vector for closer inspection

omega = logspace(log10(0.1),log10(50),100); % freq range in
Hz
omrs = 2*pi*omega; % freq range in
rad/s

for iii=1:length(omrs)
 rsom=omrs(iii);
ss=imag*rsom;

bbb=[0 0 0 0 0 0 0 0 1 \exp(-ss*T(2)) \exp(-ss*T(3)) \exp(-
ss*T(4))...
\exp(-ss*T(5))];

vectxx=inv(M*ss*ss+C*ss+K)*((A*ss+B).*bbb.');

% % Transfer Functions % %
% %%%

z_s2=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectxx; % vert seat
z_c=[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectxx; % vert cab cg
z_t=[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]*vectxx; % vert tractor
g
p_t=[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]*vectxx; % pitch
g
z_tlr=[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]*vectxx; % vert trailer
g
p_tlr=[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]*vectxx; % pitch
g
z_1=[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]*vectxx; % vert axle 1
z_2=[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]*vectxx; % vert axle 2
z_3=[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]*vectxx; % vert axle 3
z_4=[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]*vectxx; % vert axle 4
z_5=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]*vectxx; % vert axle 5
stroke2=[0 0 0 0 1 i E_fw -1 e -E_0 0 0 0 0 0]*vectxx;% 5th
wh stroke
long2=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectxx; % long disp
do driver

ff(1)=(ct1*ss+kt1)*(z_1-1); % wheel force
1/road
ff(2)=(ct2*ss+kt2)*(z_2*exp(ss*T(2))-1); % wheel force
2/road
ff(3)=(ct3*ss+kt3)*(z_3*exp(ss*T(3))-1); % wheel force
3/road
ff(4)=(ct4*ss+kt4)*(z_4*exp(ss*T(4))-1); % wheel force
4/road
ff(5)=(ct5*ss+kt5)*(z_5*exp(ss*T(5))-1); % wheel force
5/road

% % Magnitudes % %
% %%%

mag1(iii)=abs(z_s2); % Mag of transfer function, (m/m)
mag2(iii)=abs(z_c);
mag5(iii)=abs(z_t);
mag8(iii)=abs(z_tlr);
mag11(iii)=abs(z_1);
mag12(iii)=abs(z_2);
mag13(iii)=abs(z_3);
mag14(iii)=abs(z_4);
mag15(iii)=abs(z_5);
magstroke(iii)=abs(stroke2);
malong(iii)=abs(long2);

% Acceleration Transter Fuctions
magA1(iii)=abs(ss*ss*z_s2); % Mag of trans function, (m/s*s)/m
magA2(iii)=abs(ss*ss*z_c);
magA5(iii)=abs(ss*ss*z_t);
magA8(iii)=abs(ss*ss*z_tlr);
magAll(iii)=abs(ss*ss*z_l);
magA2(iii)=abs(ss*ss*z_s);
magA3(iii)=abs(ss*ss*z_3);
magA4(iii)=abs(ss*ss*z_s);
magA5(iii)=abs(ss*ss*z_4);
magA6(iii)=abs(ss*ss*z_5);
magAlong(iii)=abs(ss*ss*long2);

% Wheel Force Transfer Functions
magWF1(iii)=abs(ff(1)); % Mag of TF, N/m
magWF2(iii)=abs(ff(2));
magWF3(iii)=abs(ff(3));
magWF4(iii)=abs(ff(4));
magWF5(iii)=abs(ff(5));

%%%%%%%%%%%%%%%%%%%%%%%%
%%% PSDs %%%
%%%%%%%%%%%%%%%%%%%%%%%%

% Road PSD in m*m/(rad/s)
pbsd2(iii)=Csp*(((2*pi*v)^(N-1))/(rsom^N));

% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdA1(iii)=magA1(iii)*magA1(iii)*pbsd2(iii);
psdA8(iii)=magA8(iii)*magA8(iii)*pbsd2(iii);
psdAlong(iii)=magAlong(iii)*magAlong(iii)*pbsd2(iii);

% 5th Wheel Stroke PSD in m^2/(rad/s)
pdstroke(iii)=magstroke(iii)*magstroke(iii)*pbsd2(iii);

% Wheel Force PSDs in N^2/(rad/s)
pdWF1(iii)=magWF1(iii)*magWF1(iii)*pbsd2(iii);
pdWF2(iii)=magWF2(iii)*magWF2(iii)*pbsd2(iii);
pdWF3(iii)=magWF3(iii)*magWF3(iii)*pbsd2(iii);
pdWF4(iii)=magWF4(iii)*magWF4(iii)*pbsd2(iii);
pdWF5(iii)=magWF5(iii)*magWF5(iii)*pbsd2(iii);

end

MAG =
[mag1,maglong,mag2,mag5,mag8,mag11,mag12,mag13,mag14,mag15];
MAGA =
[magA1,magAlong,magA2,magA5,magA8,magA11,magA12,magA13,magA14,magA15];
PSDWF = [psdWF1,psdWF2,psdWF3,psdWF4,psdWF5]; % WF psd matrix

%%%
%%% RMS CALCULATIONS %%%
%%%

for kkk=1:99
 % Wheel Force RMS - Axle 1
 msqyWF1(kkk)=0.5*(psdWF1(kkk)+psdWF1(kkk+1))*(omrs(kkk+1)-omrs(kkk));
 rmsWF1(kkk)=sqrt(msqyWF1(kkk));
 % Wheel Force RMS - Axle 2
 msqyWF2(kkk)=0.5*(psdWF2(kkk)+psdWF2(kkk+1))*(omrs(kkk+1)-omrs(kkk));
 rmsWF2(kkk)=sqrt(msqyWF2(kkk));
 % Wheel Force RMS - Axle 3
 msqyWF3(kkk)=0.5*(psdWF3(kkk)+psdWF3(kkk+1))*(omrs(kkk+1)-omrs(kkk));
 rmsWF3(kkk)=sqrt(msqyWF3(kkk));
 % Wheel Force RMS - Axle 4
 msqyWF4(kkk)=0.5*(psdWF4(kkk)+psdWF4(kkk+1))*(omrs(kkk+1)-omrs(kkk));
 rmsWF4(kkk)=sqrt(msqyWF4(kkk));
 % Wheel Force RMS - Axle 5
 msqyWF5(kkk)=0.5*(psdWF5(kkk)+psdWF5(kkk+1))*(omrs(kkk+1)-omrs(kkk));
 rmsWF5(kkk)=sqrt(msqyWF5(kkk));
end

WFRMS = [rmsWF1',rmsWF2',rmsWF3',rmsWF4',rmsWF5']; % Wheel Force RMS

%%%
%%% Plotting the Transfer Functions %%%
%%%

disp(' ')
transfer = input('Plot the transfer functions? (y/n): ', 's');
if transfer == 'y'
 disp('Press "enter" to continue')
 clf
 figure(1)
 loglog(omega,mag1)
 title('Vert. Displacement T.F.,Drivers Seat (1/s*s)')
 xlabel('Frequency, Hz');grid
 figure(2)
 loglog(omega,magA1)
 title('Vert. Acceleration T.F.,Drivers Seat (1/s*s)')
 xlabel('Frequency, Hz');grid;pause

disp('Press "enter" to continue')
 figure(1)
 loglog(omega,maglong)
 title('Long. Displacement T.F.,Drivers Seat (1/s*s)')
 xlabel('Frequency, Hz');grid
figure(2)
loglog(omega,magAlong)
title('Long. Acceleration T.F., Drivers Seat (1/s*s)')
xlabel('Frequency, Hz');grid;pause

close all
figure(1)
loglog(omega,mag11)
title('Axle 1 Vert. Displacement TF, (m/m)')
xlabel('Frequency, Hz');grid;pause;
clf
figure(1)
loglog(omega,mag12)
title('Axle 2 Vert. Displacement TF, (m/m)')
xlabel('Frequency, Hz');grid;pause;
clf
figure(1)
loglog(omega,mag13)
title('Axle 3 Vert. Displacement TF, (m/m)')
xlabel('Frequency, Hz');grid;pause;
clf
figure(1)
loglog(omega,mag14)
title('Axle 4 Vert. Displacement TF, (m/m)')
xlabel('Frequency, Hz');grid;pause;
clf
figure(1)
loglog(omega,mag15)
title('Axle 5 Vert. Displacement TF, (m/m)')
xlabel('Frequency, Hz');grid;pause;
end

disp(' ')
disp('Would you like to see the 5th wheel')
transfer = input('stroke transfer function? (y/n): ', 's');
if transfer == 'y'
disp('Press "enter" to continue')
clf
figure(1)
loglog(omega,magstroke)
title('Displacement T.F., 5th Wheel Stroke (m/m)')
xlabel('Frequency, Hz');grid;pause;
end

$~~$
$% Plotting the RMS Accelerations %$
$~~$

disp(' ')
transfer = input('Plot the RMS Accelerations? (y/n): ', 's');
if transfer == 'y'
tile2 = ['RMS Vert Acc of Drivers Seat ,m/s*s ',
 'RMS Long Acc of Drivers Seat ,m/s*s '];
clf
figure(1)
disp('Press "enter" to continue')

loglog(wc,comf1,wc,comf2,whzc,RMScf(1:length(whzc),1)),title(tile2(1,:))
xlabel('Frequency, Hz');grid;pause;
disp('Press "enter" to continue')

loglog(wc,comf3,wc,comf4,whzc,RMScf(1:length(whzc),2)),title(tile2(2,:))
xlabel('Frequency, Hz');grid;pause;
end
disp(' ')
transfer == input('Plot the 5th wheel RMS stroke? (y/n): ', 's');
if transfer == 'y'
disp('Press "enter" to continue')
clf
figure(1)
loglog(whzc,rmsstrokecf*1000)
title('RMS Stroke Across the 5th Wheel (mm)')
xlabel('Frequency, Hz');grid;pause;
end

disp(' ')
transfer == input('Plot the Road RMS? (y/n): ', 's');
if transfer == 'y'
disp('Press "enter" to continue')
clf
figure(1)
loglog(whzc,rmsroadcf*1000)
title('RMS of Road Surface (mm)')
xlabel('Frequency, Hz');grid;pause;
end

disp(' ')
WgtISO = input('Would you like to see the Weighted ISO Values? (y/n): ', 's');
if WgtISO == 'y'

 figure(1) %plot of Weighted ISO curves

 loglog(wc,comf1,'k',wc,comf2,'k',whzc,isovert,'k','LineWidth',1.5)
title('Drivers Seat Vertical Weighted ISO Curve')
%legend('2.5 hour ISO boundary', '8 hour ISO boundary', -1)
xlabel('Frequency , Hz');
ylabel('RMS Acceleration, m/s^2');
grid;

 figure(2)
```
disp('Press "enter" to continue') %plot of Weighted ISO curves

loglog(wc,comf3,'k',wc,comf4,'k',whzc,isolong,'k','LineWidth',1.5)
title('Drivers Seat Longitudinal Weighted ISO Curve')
%legend('2.5 hour ISO boundary', '8 hour ISO boundary', -1)
xlabel('Frequency, Hz');
ylabel('RMS Acceleration, m/s^2');
grid;

pause;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%  Plotting the Wheel Forces  %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate the equivalent stiffness for each of the axles
keq1 = 1/(1/k1+1/kt1); % N/m
keq2 = 1/(1/k2+1/kt2); % N/m
keq3 = 1/(1/k3+1/kt3); % N/m
keq4 = 1/(1/k4+1/kt4); % N/m
keq5 = 1/(1/k5+1/kt5); % N/m

% Calculate the total static deflections of each of the axles
stdef1 = Wtire(1)/keq1; % m
stdef2 = Wtire(2)/keq2; % m
stdef3 = Wtire(3)/keq3; % m
stdef4 = Wtire(4)/keq4; % m
stdef5 = Wtire(5)/keq5; % m

% Calculate the deflections of the axle suspensions
stdefa1 = Wtire(1)/k1; % m
stdefa2 = Wtire(2)/k2; % m
stdefa3 = Wtire(3)/k3; % m
stdefa4 = Wtire(4)/k4; % m
stdefa5 = Wtire(5)/k5; % m

% Calculate the deflections of the tires
stdeft1 = Wtire(1)/kt1; % m
stdeft2 = Wtire(2)/kt2; % m
stdeft3 = Wtire(3)/kt3; % m
stdeft4 = Wtire(4)/kt4; % m
stdeft5 = Wtire(5)/kt5; % m

disp('')
disp('Would you like to see the')
transfer = input('static loads on the wheels? (y/n): ', 's');
if transfer == 'y'
disp(' ')
disp('')
end
end
end
```
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([Wtire(1) Wtire(2) Wtire(3) Wtire(4) Wtire(5)])
disp('
Values displayed in Pounds
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([Wtire(1)*0.2248 Wtire(2)*0.2248 Wtire(3)*0.2248
Wtire(4)*0.2248... Wtire(5)*0.2248])
disp('
Total Static Deflection
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([stdef1 stdef2 stdef3 stdef4 stdef5])
disp('
Values displayed in Meters
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
stdef5*39.37])
disp('
Static Deflection of Suspension
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([stdefa1 stdefa2 stdefa3 stdefa4 stdefa5])
disp('
Values displayed in Inches
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([stdefa1*39.37 stdefa2*39.37 stdefa3*39.37 stdefa4*39.37 ... stdefa5*39.37])
disp('
Static Deflection of Tires
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
disp([stdefa1*39.37 stdefa2*39.37 stdefa3*39.37 stdefa4*39.37 ... stdefa5*39.37])
disp('
Values displayed in Meters
')
disp('
Axle 1 Axle 2 Axle 3 Axle 4
')
```matlab
disp([stdeft1 stdeft2 stdeft3 stdeft4 stdeft5])
disp(' ')
disp(' Values displayed in Inches ')
disp(' ')
disp(' Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 ')
disp([stdeft1*39.37 stdeft2*39.37 stdeft3*39.37 stdeft4*39.37... stdeft5*39.37])
disp(' ')
end

disp(' ')
disp('Would you like to see the')
transfer = input('wheel force transfer functions? (y/n): ', 's');
if transfer == 'y'
disp('Press "enter" to continue')
clf
figure(1)
loglog(omega,(magWF1./1000),omega,(magWF2./1000),...
omega,(magWF3./1000),omega,(magWF4./1000),omega,...
(magWF5./1000)),title('Wheel Forces TF, (N/mm))'
legend('Axle 1','Axle 2','Axle 3','Axle 4','Axle 5')
xlabel('Frequency, Hz');grid;pause;
end

% close all
disp(' ')
disp('End of program.')
```
% Tractor Semi-Trailer Parameters
% Developed by Ryan Spivey, 4/10/07
%
% Choose a test vehicle
disp(')
disp('VEHICLE SELECTION')
disp(')
disp('Please choose a vehicle : ');
disp('a: Ideal Tractor Semi-Trailer');
vehicle = input('Enter your choice : ', 's');

if vehicle == 'a'
 % Inertial Properties
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab
 I_c = 2100; %kg*m^2 M I of cab
 m_e = 2000; %kg mass of engine (ESTIMATE)
 m_t = 3783; %kg mass of tractor (5783 kg -
 I_t = 46590.9; %kg*m^2 M I of tractor
 m_ul = 10800; %kg mass of trailer (ESTIMATE)
 I_tlr = 200000; %kg*m^2 M I of trailer
 m_L = 14000; %kg mass of trailer load (ESTIMATE)
 m_tlr = m_ul+m_L; %kb mass of loaded trailer

 % % Original Parameters
 % k1 = 581300; %N/m spring const of axle #1
 % k2 = 737600; %N/m spring const of axle #2
 % k3 = 436200; %N/m spring const of axle #3

 % Nominal Parameters – adjusted to make drive axle
 stiffnesses the same
 k1 = 581300; %N/m spring const of axle #1
 k2 = 586900; %N/m spring const of axle #2
 k3 = 586900; %N/m spring const of axle #3
 k4 = 1000000; %N/m spring const of axle #4
 k5 = 1000000; %N/m spring const of axle #5
 ke = 1e10; %N/m spring const of the engine mount
 c1 = 11270; %N/(m/s) damping const of axle #1
 c2 = 35750; %N/(m/s) damping const of axle #2
 c3 = 27500; %N/(m/s) damping const of axle #3
 c4 = 35750; %N/(m/s) damping const of axle #4
 c5 = 70000; %N/(m/s) damping const of axle #5
 ce = 10000; %N/(m/s) damping const of engine mount

 % J Penalty Parameters
 % k1 = 406910; %N/m spring const of axle #1
 % k2 = 622114; %N/m spring const of axle #2
 % k3 = 622114; %N/m spring const of axle #3
 % c1 = 14651; %N/(m/s) damping const of axle #1
 % c2 = 35750; %N/(m/s) damping const of axle #2

214
% Optimized Parameters
% k1 = 406910; %N/m spring const of axle #1
% k2 = 410830; %N/m spring const of axle #2
% k3 = 410830; %N/m spring const of axle #3
% k4 = 700000; %N/m spring const of axle #4
% k5 = 700000; %N/m spring const of axle #5
% ke = 1e10; %N/m spring const of the engine mount
% c1 = 14651; %N/(m/s) damping const of axle #1
% c2 = 35750; %N/(m/s) damping const of axle #2
% c3 = 35750; %N/(m/s) damping const of axle #3
% c4 = 70000; %N/(m/s) damping const of axle #4
% c5 = 70000; %N/(m/s) damping const of axle #5
% ce = 10000; %N/(m/s) damping const of engine mount

% Model Dimensions
% b_a1 = 1.065; %m Front end of the tractor to axle #1
% b_cf = 1.470; %m Front end of the tractor to cab front
% b_e = 2.797; %m Front end of the tractor to engine
% b_cr = 4.02; %m Front end of the tractor to cab rear
% b_a2 = 6.035; %m Front end of the tractor to axle #2
% b_fw = 6.688; %m Front end of the tractor to 5th wheel
% b_a3 = 7.34; %m Front end of the tractor to axle #3
% a1 = 4.00607; %m Front end of the tractor to tractor cg
% b_a4 = 8.58; %m From the fifth wheel to axle #4
% b_a5 = 9.78; %m From the fifth wheel to axle #5
% L_t = 8.2; %m Length of Tractor
% L_tlr = 9.78; %m Length of Trailer
% e = 5.62; %m From the trailer cg to fifth wheel
% f = 2.96; %m From the trailer cg to axle #4
% h = 4.16; %m From the trailer cg to axle #5
% a = 2.94107; %m From the tractor cg to axle #1
% b = 2.02893; %m From the tractor cg to axle #2
% d = 3.33393; %m From the tractor cg to axle #3
% l = 2.53607; %m From the tractor cg to cab front
% m = 1.209074; %m From the tractor cg to engine
% j = 0.013926; %m From the tractor cg to cab rear
% i = 2.68193; %m From the tractor cg to the fifth wheel
% n = 1.435; %m From the cab cg to cab front
% p = 1.115; %m From the cab cg to cab rear
\begin{verbatim}
\r = -0.200; \%m From the cab cg to seat
tc = 1.10107; \%m From the tractor cg to the cab
cg
h1 = 1.0; \%m Height of the driver over the cab
g = 9.8; \%m/s^2 acceleration due to gravity
ML_t = m_t/L_t; \%kg/m Mass per unit length (Tractor)
ML_tlr = m_ul/L_tlr; \%kg/m Mass per unit length (Trailer)
end

% Seat Suspension Options
disp(' ')
disp('VEHICLE SUSPENSION OPTIONS')
disp(' ')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency mode')
disp('because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');
if z11 == 'a', \% Choice 'a' is with seat suspension
cs = 1140; \% Damping ratio of 0.5
ks = 3403; \% N/m(spring const of seat suspension)
elseif z11 == 'b', \% Choice 'b' is without seat suspension
 cs = 1329; \% N/(m/s)(damping const of seat suspension)
suspension)
suspension)
 ks = 1e10; \% N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.')
end

% Cab Suspension Options
disp(' ')
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp('gives a very high frequency mode(s) because the corresponding')
disp('stiffness(es)is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');
if z22 == 'a', \% Choice 'a' is front cab suspension
 ccf = 7062; \% N/(m/s)(damping const of front cab

\end{verbatim}
kcf = 88740; % N/m(spring const of front cab suspension)
ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
kcr = 1e10; % N/m(spring const of rear cab suspension)

elseif z22 == 'b', % Choice 'b' is rear cab suspension
 ccr = 8000; % Reduced damping
 kcr = 65980; % N/m(spring const of rear cab suspension)
 ccf = 13120; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)

elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
 ccr = 5073.5; % N/(m/s)(damping const of rear cab suspension)
 kcr = 63757.5; % N/m(spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s)(damping const of front cab suspension)
 kcf = 86260.5; % N/m(spring const of front cab suspension)

elseif z22 == 'd', % Choice 'd' is without cab suspension
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)

else disp('Insufficient information regarding cab suspension.'); end
%===
%TIRE DATA
%===

%**

%* TIRE OPTIONS
%**

% Developed by Ryan Spivey, 4/10/07
% disp('
% disp('Give your choice for the tire type')
% disp(' a : XZA2 275/80R22.5 (Steer Axle Design)')
% disp(' b : Xone XDA 445/50R22.5 (New Drive Axle Design)')
% disp(' c : Xone XTA 445/50R22.5 (New Trailer Axle Design)')
% disp(' d : XTE2 LRL 425/65R22.5 (Conventional Wide Base Drive ...
% and Trailer Axle Design)')
% disp(' e : XDA2 275/80R22.5 (Standard Drive Axle Design)')
% disp(' f : XT1 275/80R22.5 (Standard Trailer Axle Design)')
% tire = input('Please give your choice : ', 's');

if tire == 'a' %XZA2 275/80R22.5 (Steer axle tires)
 wd = 0.275; % Cross section width, m
 mt = 374; % Kg (mass of the axle)
 Kstiff = [77.45 72.28 66 58.38 37.2].*9810; % Per-tire Rad Stiff
 numtires = 2; % # of tires per axle
 ct = 258.5*2;
elseif tire == 'b' %Xone XDA 445/50R22.5 (New Design)
 wd = 0.445; % Cross section width, m
 mt = 646; % Kg (mass of the axle)
 press = [9.2 8.2 7.2 6.2 5.2]*14.5; % Tire press, bar-->psi
 Kstiff = [147.6 135 122.1 108.4 93.8].*9810; % Per-tire Rad Stiff
 numtires = 2; % # of tires per axle
 ct = 324.15*2;
elseif tire == 'c' %Xone XTA 445/50R22.5 (New Design)

wd = 0.445; % Cross section
width, m
mt = 646; % Kg (mass of the axle)
press = [9.2 8.2 7.2 6.2 5.2]*14.5; % Tire press, bar-->psi
Kstiff = [147.6 135 122.1 108.4 93.8]*9810; % Per-tire Rad Stiff
numtires = 2; % # of tires
per axle
c = 324.15*2;

elseif tire == 'd' %XTE2 LRL 425/65R22.5 (Conventional Wide Base)
wd = 0.425; % Cross section
width, m
mt = 646; % Kg (mass of the axle)
press = [9 8 7 6 5]*14.5; % Tire press, bar-->psi
Kstiff = [138 124.8 111.4 95.47 82.31]*9810; % Per-tire Rad Stiff
numtires = 2; % # of tires
per axle
c = 375.75*2;

elseif tire == 'e' %XDA2 275/80R22.5 (Standard Drive Axle Design)
wd = 0.275; % Cross section
width, m
mt = 748; % Kg (mass of the axle)
press = [9.2 8.2 7.2 6.2 5.2]*14.5; % Tire press, bar-->psi
Kstiff = [111.7 103.3 94.1 84.5 73.7]*9810; % Per-tire Rad Stiff
numtires = 4; % # of tires
per axle
c = 261*4;

elseif tire == 'f' %XT1 275/80R22.5 (Standard Trailer Axle Design)
wd = 0.275; % Cross section
width, m
mt = 648; % Kg (mass of the axle)
press = 100; % Tire press, bar-->psi
Kstiff = 95.5*9810; % Per-tire Rad Stiff
numtires = 4; % # of tires
per axle
\[ct = 242.65 \times 4; \]

e else
\hspace{1cm} disp('Insufficient information regarding tire type.'); end

%**
%**********
%* Tire Stiffness Calculations
%**********
%**

if tire ~= 'f' \% choice "f" does not have the option of diff tire press
\hspace{1cm} disp('
\hspace{1cm} fprintf('Mean Tire Pressure (bar) \%.3e \f (\%.3e \f psi)... \n',(press(3)/14.5),press(3))
\hspace{1cm} pressure = 1;
\hspace{1cm} while pressure == 1
\hspace{1cm} \hspace{1cm} disp('
\hspace{1cm} \hspace{1cm} P = input('Input the tire pressure(psi) for this axle:
\hspace{1cm} \hspace{1cm}.branch
\hspace{1cm} \hspace{1cm} \hspace{1cm} if P >= press(5) & P <= press(1) \% N/m(Per-tire stiff)
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} KK = interp1(press,Kstiff,P); pressure = 0; elseif P < press(5)
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} disp('Tire Pressure Below Minimum Pressure'); elseif P > press(1)
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} disp('Tire Pressure Above Maximum Pressure'); else
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} KK = Kstiff(3); pressure = 0; end
\hspace{1cm} \hspace{1cm} end
\hspace{1cm} end
Function Files

```matlab
% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D1_t
function y = modeD1_t(x1)
    global D1_t b_fw kb1 alpha;
    y = eval(D1_t);
end

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D1_tlr
function y = modeD1_tlr(x2)
    global D1_tlr L_tlr kb2 alpha;
    y = eval(D1_tlr);
end

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D2_t
function y = modeD2_t(x1)
    global D2_t b_fw a1 kb1 alpha;
    y = eval(D2_t);
end

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D2_tlr
function y = modeD2_tlr(x2)
    global D2_tlr L_tlr e kb2 alpha;
    y = eval(D2_tlr);
end
```
% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D3_t
function y = modeD3_t(x1)

global D3_t b_fw kb1 alpha;
y = eval(D3_t);

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D3_tlr
function y = modeD3_tlr(x2)

global D3_tlr L_tlr kb2 alpha;
y = eval(D3_tlr);

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D4_t
function y = modeD4_t(x1)

global D4_t b_fw kb1 alpha;
y = eval(D4_t);

% THIS FUNCTION IS FOR FORMING THE INTEGRAND TO CALCULATE D4_tlr
function y = modeD4_tlr(x2)

global D4_tlr L_tlr kb2 alpha;
y = eval(D4_tlr);
Sample Output

Frequency Response of 15 DOF Tractor Semi-Trailer Roadholding Model
26-Apr-2007

VEHICLE SELECTION

Please choose a vehicle:
a: Ideal Tractor Semi-Trailer
Enter your choice: a

VEHICLE SUSPENSION OPTIONS

Give your choice for seat suspension:
Note: Without seat suspension gives a very high frequency mode because the stiffness is set to a high value.
a: With seat suspension (~0.9 Hz)
b: Without seat suspension
Enter your choice: a

Give your choice for cab suspension:
Note: With front or rear or without cab suspension gives a very high frequency mode(s) because the corresponding stiffness(es) is set to a high value.
a: With front cab suspension
b: With rear cab suspension
c: With front & rear cab suspension
d: Without cab suspension
Enter your choice: b

TRAILER CONFIGURATION

Please choose which configuration to use
a: Loaded Trailer
b: Unloaded Trailer
Please give your choice: a

Give your choice for the fifth wheel configuration:
Note: If a fifth wheel suspension system is chosen, the beaming of the tractor frame and trailer will be modeled as free-free. If no suspension is chosen, the tractor frame and trailer will be modeled as free-pinned and pinned-free respectively.
a: With fifth wheel suspension
b : Without fifth wheel suspension
Please give your choice : b

Input the Tractor frequency of beaming (hz) fhz : 20

Input the Trailer frequency of beaming (hz) fhz : 20

STEER AXLE TIRE SELECTION

Give your choice for the tire type
a : XZA2 275/80R22.5 (Steer Axle Design)
b : Xone XDA 445/50R22.5 (New Drive Axle Design)
c : Xone XTA 445/50R22.5 (New Trailer Axle Design)
d : XTE2 LRL 425/65R22.5 (Conventional Wide Base Drive and Trailer Axle Design)
e : XDA2 275/80R22.5 (Standard Drive Axle Design)
f : XT1 275/80R22.5 (Standard Trailer Axle Design)
Please give your choice : a

Mean Tire Pressure (bar) 5.516e+000 7.998e+001 psi

Input the tire pressure(psi) for this axle: 80

DRIVE AXLE TIRE SELECTION

Give your choice for the tire type
a : XZA2 275/80R22.5 (Steer Axle Design)
b : Xone XDA 445/50R22.5 (New Drive Axle Design)
c : Xone XTA 445/50R22.5 (New Trailer Axle Design)
d : XTE2 LRL 425/65R22.5 (Conventional Wide Base Drive and Trailer Axle Design)
e : XDA2 275/80R22.5 (Standard Drive Axle Design)
f : XT1 275/80R22.5 (Standard Trailer Axle Design)
Please give your choice : b

Mean Tire Pressure (bar) 7.200e+000 1.044e+002 psi

Input the tire pressure(psi) for this axle: 104

TRAILER AXLE TIRE SELECTION

Give your choice for the tire type
a : XZA2 275/80R22.5 (Steer Axle Design)
b : Xone XDA 445/50R22.5 (New Drive Axle Design)
c : Xone XTA 445/50R22.5 (New Trailer Axle Design)
d : XTE2 LRL 425/65R22.5 (Conventional Wide Base Drive and Trailer Axle Design)
e : XDA2 275/80R22.5 (Standard Drive Axle Design)
f : XT1 275/80R22.5 (Standard Trailer Axle Design)
Please give your choice : c

Mean Tire Pressure (bar) 7.200e+000 (1.044e+002 psi)

Input the tire pressure(psi) for this axle: 104

VEHICLE VELOCITY

Please choose the unit of velocity
a : Miles per Hour (mph)
b : Kilometers per Hour (kph)
Input the unit of velocity (a/b): a

Input the velocity of the vehicle, vm : 60

ROAD PSD SELECTION

Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles
S(W)=Csp/W^N where W=spatial frequency

a : Csp = 4.3e-11,N=3.8 Smooth Runway
b : Csp = 8.1e-6, N=2.1 Rough Runway
c : Csp = 4.8e-7, N=2.1 Smooth Highway
d : Csp = 4.4e-6, N=2.1 Highway with Gravel

Input the road surface to be used : c

Print out the system matrices? (y/n): n

Do you want eigenvalues, frequencies, and damping? (y/n): y

<table>
<thead>
<tr>
<th>EIG VAL</th>
<th>Hz</th>
<th>DAMPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.0647e+001 -3.3462e+004i</td>
<td>5.3257e+003</td>
<td>6.1702e-004</td>
</tr>
<tr>
<td>-2.0647e+001 +3.3462e+004i</td>
<td>5.3257e+003</td>
<td>6.1702e-004</td>
</tr>
<tr>
<td>-1.7876e+001 -5.0086e+003i</td>
<td>7.9715e+002</td>
<td>3.5690e-003</td>
</tr>
<tr>
<td>-1.7876e+001 +5.0086e+003i</td>
<td>7.9715e+002</td>
<td>3.5690e-003</td>
</tr>
<tr>
<td>-5.0665e+000 -2.8143e+003i</td>
<td>4.4791e+002</td>
<td>1.8003e-003</td>
</tr>
<tr>
<td>-5.0665e+000 +2.8143e+003i</td>
<td>4.4791e+002</td>
<td>1.8003e-003</td>
</tr>
<tr>
<td>-8.6229e+000 -1.3534e+002i</td>
<td>2.1583e+001</td>
<td>6.3585e-002</td>
</tr>
<tr>
<td>-8.6229e+000 +1.3534e+002i</td>
<td>2.1583e+001</td>
<td>6.3585e-002</td>
</tr>
<tr>
<td>-8.0850e-001 -8.0984e+001i</td>
<td>1.2890e+001</td>
<td>9.9829e-003</td>
</tr>
<tr>
<td>-8.0850e-001 +8.0984e+001i</td>
<td>1.2890e+001</td>
<td>9.9829e-003</td>
</tr>
<tr>
<td>Complex Value</td>
<td>Real Part</td>
<td>Imaginary Part</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>-6.6914e+001 -2.1211e+001i</td>
<td>1.1172e+001</td>
<td>9.5325e-001</td>
</tr>
<tr>
<td>-6.6914e+001 +2.1211e+001i</td>
<td>1.1172e+001</td>
<td>9.5325e-001</td>
</tr>
<tr>
<td>-5.4921e+001 -4.7320e+001i</td>
<td>1.1538e+001</td>
<td>7.5759e-001</td>
</tr>
<tr>
<td>-5.4921e+001 +4.7320e+001i</td>
<td>1.1538e+001</td>
<td>7.5759e-001</td>
</tr>
<tr>
<td>-1.6477e+001 -6.9086e+001i</td>
<td>1.1304e+001</td>
<td>2.3200e-001</td>
</tr>
<tr>
<td>-1.6477e+001 +6.9086e+001i</td>
<td>1.1304e+001</td>
<td>2.3200e-001</td>
</tr>
<tr>
<td>-2.1954e+001 -6.4320e+001i</td>
<td>1.0817e+001</td>
<td>3.2303e-001</td>
</tr>
<tr>
<td>-2.1954e+001 +6.4320e+001i</td>
<td>1.0817e+001</td>
<td>3.2303e-001</td>
</tr>
<tr>
<td>-2.3393e+001 -6.2945e+001i</td>
<td>1.0687e+001</td>
<td>3.4837e-001</td>
</tr>
<tr>
<td>-2.3393e+001 +6.2945e+001i</td>
<td>1.0687e+001</td>
<td>3.4837e-001</td>
</tr>
<tr>
<td>-4.7004e+000 -1.4485e+001i</td>
<td>2.4238e+000</td>
<td>3.0865e-001</td>
</tr>
<tr>
<td>-4.7004e+000 +1.4485e+001i</td>
<td>2.4238e+000</td>
<td>3.0865e-001</td>
</tr>
<tr>
<td>-5.6963e+000 -1.6980e+000i</td>
<td>9.4601e-001</td>
<td>9.5833e-001</td>
</tr>
<tr>
<td>-5.6963e+000 +1.6980e+000i</td>
<td>9.4601e-001</td>
<td>9.5833e-001</td>
</tr>
<tr>
<td>-5.6689e+000 -7.5895e+000i</td>
<td>1.5077e+000</td>
<td>5.9843e-001</td>
</tr>
<tr>
<td>-5.6689e+000 +7.5895e+000i</td>
<td>1.5077e+000</td>
<td>5.9843e-001</td>
</tr>
<tr>
<td>-8.9408e-001 -9.8286e+000i</td>
<td>1.5707e+000</td>
<td>9.0593e-002</td>
</tr>
<tr>
<td>-8.9408e-001 +9.8286e+000i</td>
<td>1.5707e+000</td>
<td>9.0593e-002</td>
</tr>
<tr>
<td>-1.7590e+000 -9.0625e+000i</td>
<td>1.4693e+000</td>
<td>1.9054e-001</td>
</tr>
<tr>
<td>-1.7590e+000 +9.0625e+000i</td>
<td>1.4693e+000</td>
<td>1.9054e-001</td>
</tr>
</tbody>
</table>

Do you want normalized eigenvectors? (y/n): n

Would you like to see the driver weighted acceleration values? (y/n): n

Plot the transfer functions? (y/n): n

Would you like to see the 5th wheel stroke transfer function? (y/n): n

Plot the RMS Accelerations? (y/n): n

Plot the 5th wheel RMS stroke? (y/n): n

Plot the Road RMS? (y/n): n

Would you like to see the Weighted ISO Values? (y/n): n

Would you like to see the static loads on the wheels? (y/n): n

Would you like to see the RMS stroke for the axles? (y/n): y

RMS Stroke for the axles
Values displayed in Millimeters

<table>
<thead>
<tr>
<th>Axle 1</th>
<th>Axle 2</th>
<th>Axle 3</th>
<th>Axle 4</th>
<th>Axle 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4818e+001</td>
<td>1.4465e+001</td>
<td>1.4649e+001</td>
<td>1.4421e+001</td>
<td>1.4650e+001</td>
</tr>
</tbody>
</table>

Would you like to see the wheel force transfer functions? (y/n): n

End of program.
Appendix G: opt_axleK_freq.m

This parameter variation program varies the stiffness of the steer axle suspension and the stiffness of the first and second drive axle suspensions combined. Each of the drive axle suspensions on the tractor are assumed to have the same value, so they were combined into one value that was varied, and the individual axle suspension values were assumed to be equal to exactly half of that value. The steer axle was varied from 406,910 N/m to 755,690 N/m in increments of 17,439 N/m. This forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the steer axle stiffness. Each drive axle was varied from 410,830 N/m to 762,970 N/m in increments of 17,607 N/m. Like the steer axle, this forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the drive axle stiffness.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), and a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user. The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding stiffness values for the steer and drive axle suspensions. Also, the program plots the output information on surface plots to study trends in the information.
% opt_axleK_freq.m
% Developed by Ryan Spivey, 4/10/07
% Varies axle stiffness using weighted RMS acceleration in the
% frequency domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1) Vertical Disp. of Driver's Seat
% 2) Vertical Disp. of Cab
% 3) Pitch of Cab
% 4) Vertical Disp. of Engine
% 5) Vertical Disp. of Tractor Frame
% 6) Pitch of Tractor Frame
% 7) Beaming of Tractor Frame
% 8) Vertical Disp. of Trailer
% 9) Pitch of Trailer
% 10) Beaming of Trailer
% 11) Vertical Disp. of Axle #1
% 12) Vertical Disp. of Axle #2
% 13) Vertical Disp. of Axle #3
% 14) Vertical Disp. of Axle #4
% 15) Vertical Disp. of Axle #5

clc
clear all
% close all
format short e
format compact

global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr

disp('
Axle Stiffness Parameter Variation in the Frequency
Domain
Roadholding Model
',date))

disp([
 '
'])

disp(
 ',date])

% Choose a test vehicle
disp('
VEHICLE SELECTION
')

disp('
Please choose a vehicle : ');
disp('a: Ideal Tractor Semi-Trailer');
vehicle = input('Enter your choice : ', 's');

if vehicle == 'a'
 % Inertial Properties
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab

\[I_c = 2100; \quad \text{kg} \cdot \text{m}^2 \quad \text{M I of cab} \]
\[m_e = 2000; \quad \text{kg} \quad \text{mass of engine (ESTIMATE)} \]
\[m_t = 3783; \quad \text{kg} \quad \text{mass of tractor (5783 kg - engine)} \]
\[I_t = 46590.9; \quad \text{kg} \cdot \text{m}^2 \quad \text{M I of tractor} \]
\[m_{ul} = 10800; \quad \text{kg} \quad \text{mass of trailer (ESTIMATE)} \]
\[I_{trl} = 200000; \quad \text{kg} \cdot \text{m}^2 \quad \text{M I of trailer} \]
\[m_L = 14000; \quad \text{kg} \quad \text{mass of trailer load (ESTIMATE)} \]
\[m_{trl} = m_{ul} + m_L; \quad \text{kg} \quad \text{mass of loaded trailer} \]

\% Suspension Parameters
\[c_1 = 11270; \quad \text{N/(m/s)} \quad \text{damping const of axle #1} \]
\[c_2 = 27500; \quad \text{N/(m/s)} \quad \text{damping const of axle #2} \]
\[c_3 = 27500; \quad \text{N/(m/s)} \quad \text{damping const of axle #3} \]
\[c_4 = 70000; \quad \text{N/(m/s)} \quad \text{damping const of axle #4} \]
\[c_5 = 70000; \quad \text{N/(m/s)} \quad \text{damping const of axle #5} \]
\[c_e = 10000; \quad \text{N/(m/s)} \quad \text{damping const of engine mount} \]
\[k_4 = 1000000; \quad \text{N/m} \quad \text{spring const of axle #4} \]
\[k_5 = 1000000; \quad \text{N/m} \quad \text{spring const of axle #5} \]
\[k_e = 10e10; \quad \text{N/m} \quad \text{spring const of the engine mount} \]

\% Model Dimensions
\[b_{a1} = 1.065; \quad \text{m} \quad \text{Front end of the tractor to axle #1} \]
\[b_{cf} = 1.470; \quad \text{m} \quad \text{Front end of the tractor to cab front} \]
\[b_e = 2.797; \quad \text{m} \quad \text{Front end of the tractor to engine} \]
\[b_{cr} = 4.02; \quad \text{m} \quad \text{Front end of the tractor to cab rear} \]
\[b_{a2} = 6.035; \quad \text{m} \quad \text{Front end of the tractor to axle #2} \]
\[b_{fw} = 6.688; \quad \text{m} \quad \text{Front end of the tractor to 5th wheel} \]
\[b_{a3} = 7.34; \quad \text{m} \quad \text{Front end of the tractor to axle #3} \]
\[a_1 = 4.00607; \quad \text{m} \quad \text{Front end of the tractor to tractor cg} \]
\[b_{a4} = 8.58; \quad \text{m} \quad \text{From the fifth wheel to axle #4} \]
\[b_{a5} = 9.78; \quad \text{m} \quad \text{From the fifth wheel to axle #5} \]
\[L_t = 8.2; \quad \text{m} \quad \text{Length of Tractor} \]
\[L_{trl} = 9.78; \quad \text{m} \quad \text{Length of Trailer} \]
\[e = 5.62; \quad \text{m} \quad \text{From the trailer cg to fifth wheel} \]
\[f = 2.96; \quad \text{m} \quad \text{From the trailer cg to axle #4} \]
\[h = 4.16; \quad \text{m} \quad \text{From the trailer cg to axle #5} \]
\[a = 2.94107; \quad \text{m} \quad \text{From the tractor cg to axle #1} \]
\[b = 2.02893; \quad \text{m} \quad \text{From the tractor cg to axle #2} \]
\[d = 3.33393; \quad \text{m} \quad \text{From the tractor cg to axle #3} \]
\[l = 2.53607; \quad \text{m} \quad \text{From the tractor cg to cab front} \]
\[m = 1.209074; \quad \text{m} \quad \text{From the tractor cg to cab front} \]
\[j = 0.013926; \quad \text{m} \quad \text{From the tractor cg to cab rear} \]
% From the tractor cg to the fifth wheel
i = 2.68193; %m

% From the cab cg to cab front
n = 1.435; %m

% From the cab cg to cab rear
p = 1.115; %m

% From the cab cg to seat
r = -0.200; %m

% From the tractor cg to the cab cg
tc = 1.10107; %m

% Height of the driver over the cab
h1 = 1.0; %m

% acceleration due to gravity
g = 9.8; %m/s^2

% Mass per unit length
ML_t = m_t/L_t; %kg/m
(Tractor)
ML_tlr = m_ul/L_tlr; %kg/m
(Trailer)

%%%
%%
%%%%%%%%%%%%%%%%%%% Fifth Wheel Configuration
%%%%%%%%%%%%%%%%%%%
%%%
%%
disp('
Give your choice for the fifth wheel configuration: ')
disp('Note: If a fifth wheel suspension system is chosen, the beaming of
the tractor frame and trailer will be modeled as free-free. If
no suspension is chosen, the tractor frame and trailer will be
modeled as free-pinned and pinned-free respectively.
')
disp(' a : With fifth wheel suspension')
disp(' b : Without fifth wheel suspension')
z33 = input('Please give your choice : ', 's');

if z33 == 'a', % Choice 'a' is with fifth wheel suspension
 disp('
Input the fifth wheel spring constant (N/m): ');
disp('
Input the fifth wheel damping ratio (N/(m/s)): ');

disp('
The parameters for the first bending mode of the Tractor frame')
disp('
Input the Tractor frequency of beaming (hz) fhz : ');

 % The parameters for the first bending mode of the Trailer frame

end
disp(' ')
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz : ');

kb1 = 4.73004074; %Constant for the first bending mode (free-free)
alpha = 0.982502;

z1 = 'cosh(kb1*x1/b_fw) + cos(kb1*x1/b_fw) - ... alpha*(sinh(kb1*x1/b_fw)+sin(kb1*x1/b_fw))';
% free-free beam mode function
z1dd = '(kb1/b_fw)^2*(cosh(kb1*x1/b_fw) - cos(kb1*x1/b_fw) - ... alpha*(sinh(kb1*x1/b_fw)-sin(kb1*x1/b_fw)))';
% second derivative of free-free beam mode function

kb2 = 4.73004074; %Constant for the first bending mode (free-free)

z2 = 'cosh(kb2*x2/L_tlr) + cos(kb2*x2/L_tlr) - ... alpha*(sinh(kb2*x2/L_tlr)+sin(kb2*x2/L_tlr))';
% free-free beam mode function
z2dd = '(kb2/L_tlr)^2*(cosh(kb2*x2/L_tlr) - cos(kb2*x2/L_tlr) - ... alpha*(sinh(kb2*x2/L_tlr)-sin(kb2*x2/L_tlr)))';
% second derivative of free-free beam mode function

elseif z33 == 'b', % Choice 'b' is without fifth wheel suspension
kfw = 1000000000000; % (N/m) fifth wheel spring constant
cfw = 1000; % (N/(m/s)) fifth wheel damping ratio

% The parameters for the first bending mode of the Tractor frame
disp(' ')
fhz = input('Input the Tractor frequency of beaming (hz) fhz : ');

% The parameters for the first bending mode of the Trailer frame
disp(' ')
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz : ');

kb1 = 2.36502; % Constant for the first bending mode (free-pinned)
% (from Rao pg. 527)

z1 = '(cos(kb1*x1/b-fw) + cosh(kb1*x1/b-fw)) - ... ((cos(kb1)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*(sin(kb1*x1/b-fw)-... sinh(kb1*x1/b-fw))';
% free-pinned beam mode function
z1dd = '((kb1/b-fw)^2)*(-cos(kb1*x1/b-fw) + (cosh(kb1*x1/b-fw))... -((cos(kb1)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*(sin(kb1*x1/b-fw)-... sinh(kb1*x1/b-fw))');
% second derivative of free-pinned beam mode function
\[
\begin{align*}
\text{kb2} &= 3.926602; \quad \% \text{Constant for the first bending mode} \\
&\quad \text{(pinned-free)} \\
&\quad \% \text{(from Rao pg. 527)} \\
\text{z2} &= '(\sin(kb2 \times x2/L_{tlr}) + \ldots \right. \\
&\left. (\sin(kb2)/(\sinh(kb2))) \times (\sinh(kb2 \times x2/L_{tlr})))'); \\
&\quad \% \text{pinned-free beam mode function} \\
\text{z2dd} &= '(-kb2^2/L_{tlr}) \times (-\sin(kb2 \times x2/L_{tlr}) + \ldots \\
&\left. (\sin(kb2)/(\sinh(kb2))) \times (\sinh(kb2 \times x2/L_{tlr})))'); \\
&\quad \% \text{second derivative of pinned-free beam mode function} \\
\end{align*}
\]

else disp('Insufficient information regarding fifth wheel suspension.'))
end
E_e=modeD1_t(b_e); % Disp at engine due to tractor frame beaming
E_cr=modeD1_t(b_cr); % Disp at cab rear due to tractor frame beaming
E_a2=modeD1_t(b_a2); % Disp at axle #2 due to tractor frame beaming
E_fw=modeD1_t(b_fw); % Disp at fifth wheel due to tractor frame beaming
E_a3=modeD1_t(b_a3); % Disp at axle #3 due to tractor frame beaming
E_0=modeD1_tlr(0); % Disp at fifth wheel due to trailer beaming
E_a4=modeD1_tlr(b_a4); % Disp at axle #4 due to trailer beaming
E_a5=modeD1_tlr(b_a5); % Disp at axle #5 due to trailer beaming

EI_t = 4*pi^2*fhz^2*(b_fw/kb1)^4*ML_t; % Tractor frame flexural rigidity
EI_tlr = 4*pi^2*fhz2^2*(L_tlr/kb2)^4*ML_tlr; % Trailer flexural rigidity

% Seat Suspension Options
disp(' ')
disp('VEHICLE SUSPENSION OPTIONS')
disp(' ')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency mode')
disp(' because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');

if z11 == 'a',
 % Choice 'a' is with seat suspension
 cs = 1140; % Damping ratio of 0.5
 ks = 3403; % N/m(spring const of seat suspension)
elseif z11 == 'b',
 % Choice 'b' is without seat suspension
 cs = 1329; % N/(m/s)(damping const of seat suspension)
 ks = 1e10; % N/m(spring const of seat suspension)
else
 disp('Insufficient information regarding seat suspension.')
end

% Cab Suspension Options
disp(' ')
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp(' gives a very high frequency mode(s) because the corresponding')
disp(' stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');

if z22 == 'a',
 ccf = 7062; % N/(m/s) (damping const of front cab suspension)
 kcf = 88740; % N/m (spring const of front cab suspension)
 ccr = 6430; % N/(m/s) (damping const of rear cab suspension)
 kcr = 1e10; % N/m (spring const of rear cab suspension)
elseif z22 == 'b',
 ccr = 8000; % Reduced damping
 kcr = 65980; % N/m (spring const of rear cab suspension)
 ccf = 13120; % N/(m/s) (damping const of front cab suspension)
 kcf = 1e10; % N/m (spring const of front cab suspension)
elseif z22 == 'c',
 ccr = 5073.5; % N/(m/s) (damping const of rear cab suspension)
 kcr = 63757.5; % N/m (spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s) (damping const of front cab suspension)
 kcf = 86260.5; % N/m (spring const of front cab suspension)
elseif z22 == 'd',
 ccr = 6430; % N/(m/s) (damping const of rear cab suspension)
 kcr = 1e10; % N/m (spring const of rear cab suspension)
 ccf = 7062; % N/(m/s) (damping const of front cab suspension)
 kcf = 1e10; % N/m (spring const of front cab suspension)
else disp('Insufficient information regarding cab suspension.')
end

%%
%%
%%%%%%%%%%%%%%%%%%%% Vehicle Tire Selection
%%%%%%%%%%%%%%%%%%%%%
%%
%%
disp(' ')
disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd; % (m) Nominal cross section
width
mt1 = mt; % (kg) Mass of axle #1
P1 = P; % (psi) Tire pressure from TireData3.m
press1 = press; % (psi) Tire pressure array
numtires1 = numtires; % Number of tires on axle
Kstiff1 = Kstiff; % (N/m) Tire stiffness array
kt1 = KK * numtires1; % (N/m) Per-axle Rad Stiffness
c1 = ct; % (N/(m/s)) Per-axle Damping

disp('

DRIVE AXLE TIRE SELECTION

TireData3; % M-file for tire data
wd23 = wd; % (m) Nominal cross section
width
mt2 = mt; % (kg) Mass of axle #2
mt3 = mt; % (kg) Mass of axle #3
P23 = P; % (psi) Tire pressure from TireData3.m
press23 = press; % (psi) Tire Pressure array
numtires23 = numtires; % Number of tires on axle
Kstiff23 = Kstiff; % (N/m) Tire stiffness array
kt2 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
kt3 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
c2 = ct; % (N/(m/s)) Per-axle Damping
c3 = ct; % (N/(m/s)) Per-axle Damping

disp('

TRAILER AXLE TIRE SELECTION

TireData3; % M-file for tire data
wd45 = wd; % (m) Nominal cross section
width
mt4 = mt; % (kg) Mass of axle #4
mt5 = mt; % (kg) Mass of axle #5
P45 = P; % (psi) Tire pressure from TireData3.m
press45 = press; % (psi) Tire Pressure array
numtires45 = numtires; % Number of tires on axle
Kstiff45 = Kstiff; % (N/m) Tire stiffness array
kt4 = KK * numtires45; % (N/m) Per-axle Rad Stiffness
kt5 = KK * numtires45; % (N/m) Per-axle Rad Stiffness
c4 = ct; % (N/(m/s)) Per-axle Damping
c5 = ct; % (N/(m/s)) Per-axle Damping

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp('

VEHICLE VELOCITY

disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp(' ')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; \%Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.27778*vm; \%Velocity conversion from kph to m/s
end

T(1) = 0; \%Time delay between front axle and remaining axles
T(2) = (a+b)/v; \% Axle #2
T(3) = (a+d)/v; \% Axle #3
T(4) = (a+i+e+f)/v; \% Axle #4
T(5) = (a+i+e+h)/v; \% Axle #5

\\\n
\vspace{1cm}

\textbf{Road PSD Selection}

\begin{itemize}
 \item \textbf{a}: \text{Csp = 4.3e-11, N=3.8} \hspace{0.5cm} \text{Smooth Runway}
 \item \textbf{b}: \text{Csp = 8.1e-6, N=2.1} \hspace{0.5cm} \text{Rough Runway}
 \item \textbf{c}: \text{Csp = 4.8e-7, N=2.1} \hspace{0.5cm} \text{Smooth Highway}
 \item \textbf{d}: \text{Csp = 4.4e-6, N=2.1} \hspace{0.5cm} \text{Highway with Gravel}
\end{itemize}

\textbf{Input the road surface to be used : 'a','b','c','d'};
disp(' ') disp('J PENALTY OPTIONS') disp(' ') disp('Input the values for K1 and K2 in the J penalty function') disp('Note: Both values should add up to 1') disp(' ') K_1 = input('Input the value for K1 : '); disp(' ') K_2 = input('Input the value for K2 : '); % Start Loop on Axle Stiffness Properties % Stiffness values will range from 70% to 130% of the nominal value
for iiii=1:21;
 for jjjj=1:21;
 kf(iiii,jjjj)=17439*iiii;
 kr(iiii,jjjj)=35214*jjjj;

 k1 = 389471+kf(iiii,jjjj);
 k2 = (786446+kr(iiii,jjjj))*0.5;

%%% System Matrices
% THE SYSTEM IS WRITTEN AS (M*S*S+C*S+K)X(S)=(A*S+B)U(S)

% Mass Matrix
M = zeros(15,15);
M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
M(3,3) = I_c; % Eqn #3: Pitch of Cab
M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
M(5,5) = m_t; % Eqn #5: Vertical Disp of Tractor Frame
M(5,6) = ML_t*b_fw*(b_fw/2-a1);
M(5,7) = ML_t*I1_t;
M(6,5) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor Frame
M(6,6) = I_t;
M(6,7) = -ML_t*I2_t;
\[M(7,5) = ML_t * I_1_t; \] % Eqn #7: Beaming of Tractor Frame
\[M(7,6) = -ML_t * I_2_t; \]
\[M(7,7) = ML_t * I_3_t; \]
\[M(8,8) = m_{tlr}; \] % Eqn #8: Vertical Disp of Trailer
\[M(8,9) = -ML_{tlr} * L_{tlr} * (e-L_{tlr}/2); \]
\[M(8,10) = ML_{tlr} * I_1_{tlr}; \]
\[M(9,8) = -ML_{tlr} * L_{tlr} * (e-L_{tlr}/2); \] % Eqn #9: Pitch of Trailer
\[M(9,9) = I_{tlr}; \]
\[M(9,10) = -ML_{tlr} * I_2_{tlr}; \]
\[M(10,8) = ML_{tlr} * I_1_{tlr}; \] % Eqn #10: Beaming of Trailer
\[M(10,9) = -ML_{tlr} * I_2_{tlr}; \]
\[M(10,10) = ML_{tlr} * I_3_{tlr}; \]
\[M(11,11) = m_{t1}; \] % Eqn #11: Vertical Disp of Axle #1
\[M(12,12) = m_{t2}; \] % Eqn #12: Vertical Disp of Axle #2
\[M(13,13) = m_{t3}; \] % Eqn #13: Vertical Disp of Axle #3
\[M(14,14) = m_{t4}; \] % Eqn #14: Vertical Disp of Axle #4
\[M(15,15) = m_{t5}; \] % Eqn #15: Vertical Disp of Axle #5

\\
\textcolor{red}{\\
% Damping Matrix %\\
\\
C = zeros(15,15);
\\}
\\
C(1,1) = cs;
C(1,2) = -cs;
C(1,3) = r*cs;
C(2,1) = -cs;
C(2,2) = cs+ccf+p*ccr;
C(2,3) = -r*cs-n*ccf+p*ccr;
C(2,5) = -ccf-ccr;
C(2,6) = l*ccf-j*ccr;
C(2,7) = -ccf*E_{cf}-ccr*E_{cr};
C(3,1) = r*cs;
C(3,2) = -r*cs-n*ccf+p*ccr;
C(3,3) = (r^2)*cs+(n^2)*ccf+(p^2)*ccr;
C(3,5) = n*ccf-p*ccr;
C(3,6) = -n*l*ccf-p*j*ccr;
C(3,7) = n*ccf*E_cf-p*ccr*E_cr;

C(4,4) = ce;
C(4,5) = -ce;
C(4,6) = m*ce;
C(4,7) = -ce*E_e;

C(5,2) = -ccf-ccr;
C(5,3) = n*ccf-p*ccr;
C(5,4) = -ce;
C(5,5) = ce+ccf+ccr+cfw+c1+c2+c3;
C(5,6) = -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3;
C(5,7) = ce*E_e+ccf*E Cf+ccr*E_cr+cfw*E_fw+c1*E_a1+c2*E_a2+c3*E_a3;
C(5,8) = -cfw;
C(5,9) = e*cfw;
C(5,10) = -cfw*E_0;
C(5,11) = -c1;
C(5,12) = -c2;
C(5,13) = -c3;

C(6,2) = l*ccf-j*ccr;
C(6,3) = -n*l*ccf-p*j*ccr;
C(6,4) = m*ce;
C(6,5) = -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3;
C(6,6) = (m^2)*ce+(l^2)*ccf+(j^2)*ccr+(i^2)*cfw+(a^2)*c1+(b^2)*c2+(d^2)*c3;
C(6,7) = -m*ce*E e-l*ccf*E Cf+j*ccr*E Cr+i*cfw*E fw-
 a*c1*E a1+b*c2*E a2+...-
 d*c3*E a3;
C(6,8) = -i*cfw;
C(6,9) = e*i*cfw;
C(6,10) = -i*cfw*E_0;
C(6,11) = a*c1;
C(6,12) = -b*c2;
C(6,13) = -d*c3;

C(7,2) = -ccf*E Cf-ccr*E_cr;
C(7,3) = n*ccf*E Cf-p*ccr*E_cr;
C(7,4) = -ce*E_e;
C(7,5) =
 ce*E e+ccf*E Cf+ccr*E Cr+cfw*E fw+c1*E a1+c2*E a2+c3*E a3;
C(7,6) = -m*ce*E e-l*ccf*E Cf+j*ccr*E Cr+i*cfw*E fw-
 a*c1*E a1+b*c2*E a2+...-
 d*c3*E a3;
C(7,7) =
 ce*E e^2+ccf*E Cf^2+ccr*E Cr^2+cfw*E fw^2+c1*E a1^2+c2*E a2^2+...-
 c3*E a3^2;
C(7,8) = -cfw*E fw;
C(7,9) = e*cfw*E fw;
C(7,10) = -cfw*E_0*E fw;
C(7,11) = -c1*E a1;
C(7,12) = -c2*E a2;
C(7,13) = -c3*E a3;
C(8,5) = -cfw;
C(8,6) = -i*cfw;
C(8,7) = -cfw*E_fw;
C(8,8) = cfw+c4+c5;
C(8,9) = -e*cfw+f*c4+h*c5;
C(8,10) = cfw*E_0+c4*E_a4+c5*E_a5;
C(8,14) = -c4;
C(8,15) = -c5;

C(9,5) = e*cfw;
C(9,6) = e*i*cfw;
C(9,7) = e*cfw*E_fw;
C(9,8) = -e*cfw+f*c4+h*c5;
C(9,9) = (e^2)*cfw+(f^2)*c4+(h^2)*c5;
C(9,10) = -e*cfw*E_0+f*c4*E_a4+h*c5*E_a5;
C(9,14) = -f*c4;
C(9,15) = -h*c5;

C(10,5) = -cfw*E_0;
C(10,6) = -i*cfw*E_0;
C(10,7) = -cfw*E_fw*E_0;
C(10,8) = cfw*E_0*c4*E_a4+c5*E_a5;
C(10,9) = -e*cfw*E_0+f*c4*E_a4+h*c5*E_a5;
C(10,10) = -e*cfw*E_0^2+c4*E_a4^2+c5*E_a5^2;
C(10,14) = -c4*E_a4;
C(10,15) = -c5*E_a5;

C(11,5) = -c1;
C(11,6) = a*c1;
C(11,7) = -c1*E_a1;
C(11,11) = c1+ct1;

C(12,5) = -c2;
C(12,6) = -b*c2;
C(12,7) = -c2*E_a2;
C(12,12) = c2+ct2;

C(13,5) = -c3;
C(13,6) = -d*c3;
C(13,7) = -c3*E_a3;
C(13,13) = c3+ct3;

C(14,8) = -c4;
C(14,9) = -f*c4;
C(14,10) = -c4*E_a4;
C(14,14) = c4+ct4;

C(15,8) = -c5;
C(15,9) = -h*c5;
C(15,10) = -c5*E_a5;
C(15,15) = c5+ct5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Stiffness Matrix %%%

242
\[K = \text{zeros}(15,15); \]
\[K(1,1) = ks; \]
\[K(1,2) = -ks; \]
\[K(1,3) = r*ks; \]
\[K(2,1) = -ks; \]
\[K(2,2) = ks+kcf+kcr; \]
\[K(2,3) = -r*ks-n*kcf+p*kcr; \]
\[K(2,4) = -kcf-kcr; \]
\[K(2,5) = l*kcf-j*kcr; \]
\[K(2,6) = -kcf*E_cf-kcr*E_cr; \]
\[K(3,1) = r*ks; \]
\[K(3,2) = -r*ks-n*kcf+p*kcr; \]
\[K(3,3) = (r^2)*ks+(n^2)*kcf+(p^2)*kcr; \]
\[K(3,4) = n*kcf-p*kcr; \]
\[K(3,5) = n*kcf-p*kcr; \]
\[K(3,6) = -n*l*kcf-p*j*kcr; \]
\[K(3,7) = n*kcf*E_cf-p*kcr*E_cr; \]
\[K(4,4) = ke; \]
\[K(4,5) = -ke; \]
\[K(4,6) = m*ke; \]
\[K(4,7) = -ke*E_e; \]
\[K(5,2) = -kcf-kcr; \]
\[K(5,3) = n*kcf-p*kcr; \]
\[K(5,4) = -ke; \]
\[K(5,5) = ke+kcf+kcr+kfw+k1+k2+k3; \]
\[K(5,6) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \]
\[K(5,7) = ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3; \]
\[K(5,8) = -kfw; \]
\[K(5,9) = e*kfw; \]
\[K(5,10) = -kfw*E_0; \]
\[K(5,11) = -k1; \]
\[K(5,12) = -k2; \]
\[K(5,13) = -k3; \]
\[K(6,2) = 1*kcf-j*kcr; \]
\[K(6,3) = -n*1*kcf-p*j*kcr; \]
\[K(6,4) = m*ke; \]
\[K(6,5) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \]
\[K(6,6) = (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3; \]
\[K(6,7) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*k1*E_a1+b*k2*E_a2+... \]
\[d*k3*E_a3; \]
\[K(6,8) = -i*kfw; \]
\[K(6,9) = e*i*kfw; \]
\[K(6,10) = -i*kfw*E_0; \]
\[K(6,11) = a*k1; \]
\[K(6,12) = -b*k2; \]
\[K(6,13) = -d*k3; \]
\[
\begin{align*}
K(7,2) &= -kcf*E_{cf} - kcr*E_{cr}; \\
K(7,3) &= n*kcf*E_{cf} - p*kcr*E_{cr}; \\
K(7,4) &= -ke*E_e; \\
K(7,5) &= ke*E_e + kcf*E_{cf} + kcr*E_{cr} + kfw*E_{fw} + k1*E_{a1} + k2*E_{a2} + k3*E_{a3}; \\
K(7,6) &= -m*ke*E_e - l*kcf*E_{cf} + j*kcr*E_{cr} + i*kfw*E_{fw} - a*k1*E_{a1} + b*k2*E_{a2} ... \\
&+ d*k3*E_{a3}; \\
K(7,7) &= ke*E_e^2 + kcf*E_{cf}^2 + kcr*E_{cr}^2 + kfw*E_{fw}^2 + k1*E_{a1}^2 + k2*E_{a2}^2 ... \\
&+ k3*E_{a3}^2 + EI_{t}*I4_{t}; \\
K(7,8) &= -kfw*E_{fw}; \\
K(7,9) &= e*kfw*E_{fw}; \\
K(7,10) &= -kfw*E_{0}*E_{fw}; \\
K(7,11) &= -k1*E_{a1}; \\
K(7,12) &= -k2*E_{a2}; \\
K(7,13) &= -k3*E_{a3}; \\
K(8,5) &= -kfw; \\
K(8,6) &= -i*kfw; \\
K(8,7) &= -kfw*E_{fw}; \\
K(8,8) &= kfw+k4+k5; \\
K(8,9) &= -e*kfw+f*k4+h*k5; \\
K(8,10) &= kfw*E_{0}+k4*E_{a4}+k5*E_{a5}; \\
K(8,14) &= -k4; \\
K(8,15) &= -k5; \\
K(9,5) &= e*kfw; \\
K(9,6) &= e*i*kfw; \\
K(9,7) &= e*kfw*E_{fw}; \\
K(9,8) &= -e*kfw+f*k4+h*k5; \\
K(9,9) &= (e^2)*kfw+(f^2)*k4+(h^2)*k5; \\
K(9,10) &= -e*kfw*E_{0}+f*k4*E_{a4}+h*k5*E_{a5}; \\
K(9,14) &= -f*k4; \\
K(9,15) &= -h*k5; \\
K(10,5) &= -kfw*E_{0}; \\
K(10,6) &= -i*kfw*E_{0}; \\
K(10,7) &= -kfw*E_{fw}*E_{0}; \\
K(10,8) &= kfw*E_{0}+k4*E_{a4}+k5*E_{a5}; \\
K(10,9) &= -e*kfw*E_{0}+f*k4*E_{a4}+h*k5*E_{a5}; \\
K(10,10) &= kfw*E_{0}^2+k4*E_{a4}^2+k5*E_{a5}^2+EI_{tlr}*I4_{tlr}; \\
K(10,14) &= -k4*E_{a4}; \\
K(10,15) &= -k5*E_{a5}; \\
K(11,5) &= -k1; \\
K(11,6) &= a*k1; \\
K(11,7) &= -k1*E_{a1}; \\
K(11,11) &= k1+k1; \\
K(12,5) &= -k2; \\
K(12,6) &= -b*k2; \\
K(12,7) &= -k2*E_{a2}; \\
K(12,12) &= k2+k1; \\
\end{align*}
\]
\[
\begin{align*}
K(13,5) &= -k_3; \\
K(13,6) &= -d_k k_3; \\
K(13,7) &= -k_3 E_{a3}; \\
K(13,13) &= k_3 + k_t k_3; \\
K(14,8) &= -k_4; \\
K(14,9) &= -f_k k_4; \\
K(14,10) &= -k_4 E_{a4}; \\
K(14,14) &= k_4 + k_t k_4; \\
K(15,8) &= -k_5; \\
K(15,9) &= -h_k k_5; \\
K(15,10) &= -k_5 E_{a5}; \\
K(15,15) &= k_5 + k_t k_5; \\
\end{align*}
\]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
A = \text{zeros}(15,1);
\]
A(11) = c_t_1;
A(12) = c_t_2;
A(13) = c_t_3;
A(14) = c_t_4;
A(15) = c_t_5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
B = \text{zeros}(15,1);
\]
B(11) = k_t_1;
B(12) = k_t_2;
B(13) = k_t_3;
B(14) = k_t_4;
B(15) = k_t_5;

% System "A" Matrix
AA=[zeros(size(M)) eye(size(M)) % System state variable matrix
 -inv(M)*K -inv(M)*C];

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
\[
wc=[.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
whzc=[.1 .125 .16 .2 .25 .315 .4 .5 .63 .8 1 1.25 1.6 2 2.5 3.15 ...
 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
\]
% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,.71,...
 4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,.71,...
]
.9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

%--

% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,
8,10,12.5];

% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;
%--

whzcr = 2*pi*whzc; % Calculation of central frequencies in
rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];

imag=sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);

 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ... exp(-s*T(4)) exp(-s*T(5))];

 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*(time.')));

%%%% Transfer Functions %%%%%

z_s=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat
cg
long=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp
of driver
z_tlr=[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]*vectx; % vert
trailer cg
%%% Magnitudes %%%

% Acceleration Transfer Functions
magcfA1(ii,jj)=abs(s*s*z_s); % Mag of trans function, (m/s*s)/m
magcfAlong(ii,jj)=abs(s*s*long);
magcftlr(ii,jj)=abs(s*s*z_tlr);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PSDs %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Road PSD in m*m/(rad/s)
rpsd(ii,jj)=Csp*(((2*pi*v)^(N-1))/(w^N));

% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfA1(ii,jj)=magcfA1(ii,jj)*magcfA1(ii,jj)*rpsd(ii,jj);
psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);
psdcftlr(ii,jj)=magcftlr(ii,jj)*magcftlr(ii,jj)*rpsd(ii,jj);

end
end

for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msqyl1a(kk)=0.5*(psdcfA1(kk,1)+psdcfA1(kk,2))*(freq(kk,2)-freq(kk,1));
msqyl1b(kk)=0.5*(psdcfA1(kk,2)+psdcfA1(kk,3))*(freq(kk,3)-freq(kk,2));
msqyl(kk)=msqyl1a(kk)+msqyl1b(kk);
rmstlcf(kk)=sqrt(msqyl(kk));
% Long. Driver RMS
msqylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*(freq(kk,2)-freq(kk,1));
msqylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*(freq(kk,3)-freq(kk,2));
msqylong(kk)=msqylonga(kk)+msqylongb(kk);
rmsAlongcf(kk)=sqrt(msqylong(kk));
% Vert. Trailer cg RMS
msqyltra(kk)=0.5*(psdcftlr(kk,1)+psdcftlr(kk,2))*(freq(kk,2)-freq(kk,1));
msqyltrb(kk)=0.5*(psdcftlr(kk,2)+psdcftlr(kk,3))*(freq(kk,3)-freq(kk,2));
msqyltr(kk)=msqyltra(kk)+msqyltrb(kk);
rmsTrlrcf(kk)=sqrt(msqyltr(kk));
end

RMScf = [rmsAlcf',rmsAlongcf',rmsTrlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal

wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.63,.8,1,1.25,1.6,2,2.5,3.15,4,5,...
 6.3,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.482,.484,...
 .494,.531,.631,.804,.967,1.039,1.054,1.036,.988,.902,.768,.636,...
 .513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
 890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];

isovert = WgtV.*RMScf(1:28,1)'; % Weighted Vert. Driver RMS
 % Disp.
isolong = WgtL.*RMScf(1:28,2)'; % Weighted Long. Driver RMS
 % Disp.
isotlr = WgtV.*RMScf(1:28,3)'; % Weighted Vert. Trailer RMS
 % Disp.

 term2V=(WgtV.*rmsA1cf(1:28)).^2;
a0_V_dr=(sum(term2V))^0.5; % a0 for vert. disp of
 % driver

term2L=(WgtL.*rmsAlongcf(1:28)).^2;
a0_L_dr=(sum(term2L))^0.5; % a0 for long. disp of
 % driver

 aV=(a0_L_dr^2 + a0_V_dr^2)^0.5; % a0 for comb vert and long
 % disp

tlrV=(WgtV.*rmstlrcf(1:28)).^2;
a0_V_tlr=(sum(tlrV))^0.5; % a0 for vert. disp of
 % driver

 aVV(iiii,jjjj)=aV; % combined ISO wgt acc, m/s^2
 a0_VV_tlr(iiii,jjjj)=a0_V_tlr;
Jpenalty(iiii,jjjj)=K_1*(aVV(iiii,jjjj)/0.44814)+K_2*...
 (a0_VV_tlr(iiii,jjjj)/0.3239);

 end % end of jjjj loop on k2
end % end of iii loop on k1

disp(' ')
disp('RESULTS OF PARAMETER VARIATION')
disp(' ')
disp('Minimum aV, m/s^2')
disp(min(aVV(:))
disp(' ')
[ia,ja]=find(aVV==min(aVV(:)));
disp('Corresponding k1, k2, and k3 values, N/m')
disp([389471+kf(ia,ja) (786446+kr(ia,ja)))*0.5
(786446+kr(ia,ja))*0.5])
disp(' ')
disp(' ')}
disp('Minimum a0_V_tlr, m/s^2')
disp(min(a0_VV_tlr(:)))
disp(' ')
[it, jt]=find(a0_VV_tlr==min(a0_VV_tlr(:)));
disp('Corresponding k1, k2, and k3 values, N/m')
disp([389471+kf(it,jt) (786446+kr(it,jt))*0.5
(786446+kr(it,jt))*0.5])
disp(' ')

disp('Minimum Jpenalty')
disp('J=K1*aV/0.44814 + K2*a0_V_tlr/0.3239')
disp([' K1 K2'])
disp(' ')
disp(min(Jpenalty(:)))
disp(' ')
[iJ, jJ]=find(Jpenalty==min(Jpenalty(:)));
disp('Corresponding k1, k2, and k3 values, N/m')
disp([389471+kf(iJ,jJ) (786446+kr(iJ,jJ))*0.5
(786446+kr(iJ,jJ))*0.5])
disp(' ')
figure(1)
surf(389471+kf,(786446+kr)/2,aVV)
xlabel('Steer Axle K, N/m')
ylabel('Single Drive Axle K, N/m')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Suspension Stiffness Variation')

figure(2)
surf((786446+kr)/2,389471+kf,a0_VV_tlr)
xlabel('Steer Axle K, N/m')
ylabel('Single Drive Axle K, N/m')
zlabel('Trailer Wgt Vert Acc, m/s^2')
% title('Tractor Suspension Stiffness Variation')

figure(3)
surf(389471+kf,(786446+kr)/2,Jpenalty)
xlabel('Steer Axle K, N/m')
ylabel('Single Drive Axle K, N/m')
zlabel('Penalty Function')
title(['K1 = ', num2str(K_1), ' K2 = ', num2str(K_2)])
Appendix H: opt_axleC_freq.m

This parameter variation program varies the damping of the steer axle suspension and the damping of the first and second drive axle suspensions combined. Each of the drive axle suspensions on the tractor are assumed to have the same value, so they were combined into one value that was varied, and the individual axle suspension values were assumed to be equal to exactly half of that value. The steer axle was varied from 7,889 N/(m/s) to 14,651 N/(m/s) in increments of 338.1 N/(m/s). This forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the steer axle damping. Each drive axle was varied from 19,250 N/(m/s) to 35,750 N/(m/s) in increments of 825 N/(m/s). Like the steer axle, this forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the drive axle damping.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), and a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user. The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding damping values for the steer and drive axle suspensions. Also, the program plots the output information on surface plots to study trends in the information.
% Developed by Ryan Spivey, 4/10/07
% Varies axle damping using weighted RMS acceleration in the frequency domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1) Vertical Disp. of Driver's Seat
% 2) Vertical Disp. of Cab
% 3) Pitch of Cab
% 4) Vertical Disp. of Engine
% 5) Vertical Disp. of Tractor Frame
% 6) Pitch of Tractor Frame
% 7) Beaming of Tractor Frame
% 8) Vertical Disp. of Trailer
% 9) Pitch of Trailer
% 10) Beaming of Trailer
% 11) Vertical Disp. of Axle #1
% 12) Vertical Disp. of Axle #2
% 13) Vertical Disp. of Axle #3
% 14) Vertical Disp. of Axle #4
% 15) Vertical Disp. of Axle #5

clc
clear all
close all
format short e
format compact

global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr
global e al kbl kb2 b_fw L_tlr alpha

disp(' ')
disp('Axle Damping Parameter Variation in the Frequency Domain')
disp(' Roadholding Model ')
disp(' ', date)'

% Choose a test vehicle
disp(' ')
disp('VEHICLE SELECTION')
disp(' ')
disp('Please choose a vehicle : ');
disp('a: Ideal Tractor Semi-Trailer');
vehicle = input('Enter your choice : ', 's');

if vehicle == 'a'
 % Inertial Properties
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab
 I_c = 2100; %kg*m^2 M I of cab
 m_e = 2000; %kg mass of engine (ESTIMATE)
\[
\begin{align*}
 m_t &= 3783; \quad \text{mass of tractor (5783 kg - engine)} \\
 I_t &= 46590.9; \quad \text{M I of tractor} \\
 m_{ul} &= 10800; \quad \text{mass of trailer (ESTIMATE)} \\
 I_{trl} &= 200000; \quad \text{M I of trailer} \\
 m_L &= 14000; \quad \text{mass of trailer load (ESTIMATE)} \\
 m_{trl} &= m_{ul} + m_L; \quad \text{mass of loaded trailer} \\

\% \text{Suspension Parameters} \\
 c_4 &= 70000; \quad \text{damping const of axle \#4} \\
 c_5 &= 70000; \quad \text{damping const of axle \#5} \\
 c_e &= 10000; \quad \text{damping const of engine mount} \\
 k_1 &= 581300; \quad \text{spring const of axle \#1} \\
 k_2 &= 586900; \quad \text{spring const of axle \#2} \\
 k_3 &= 586900; \quad \text{spring const of axle \#3} \\
 k_4 &= 1000000; \quad \text{spring const of axle \#4} \\
 k_5 &= 1000000; \quad \text{spring const of axle \#5} \\
 k_e &= 1e10; \quad \text{spring const of the engine mount} \\

\% \text{Model Dimensions} \\
 b_{a1} &= 1.065; \quad \text{Front end of the tractor to axle \#1} \\
 b_{cf} &= 1.470; \quad \text{Front end of the tractor to cab front} \\
 b_e &= 2.797; \quad \text{Front end of the tractor to engine} \\
 b_{cr} &= 4.02; \quad \text{Front end of the tractor to cab rear} \\
 b_{a2} &= 6.035; \quad \text{Front end of the tractor to axle \#2} \\
 b_{fw} &= 6.688; \quad \text{Front end of the tractor to 5th wheel} \\
 b_{a3} &= 7.34; \quad \text{Front end of the tractor to axle \#3} \\
 a_1 &= 4.00607; \quad \text{Front end of the tractor to tractor cg} \\
 b_{a4} &= 8.58; \quad \text{From the fifth wheel to axle \#4} \\
 b_{a5} &= 9.78; \quad \text{From the fifth wheel to axle \#5} \\
 L_t &= 8.2; \quad \text{Length of Tractor} \\
 L_{trl} &= 9.78; \quad \text{Length of Trailer} \\
 e &= 5.62; \quad \text{From the trailer cg to fifth wheel} \\
 f &= 2.96; \quad \text{From the trailer cg to axle \#4} \\
 h &= 4.16; \quad \text{From the trailer cg to axle \#5} \\
 a &= 2.94107; \quad \text{From the tractor cg to axle \#1} \\
 b &= 2.02893; \quad \text{From the tractor cg to axle \#2} \\
 d &= 3.33393; \quad \text{From the tractor cg to axle \#3} \\
 l &= 2.53607; \quad \text{From the tractor cg to cab front} \\
 m &= 1.209074; \quad \text{From the tractor cg to engine} \\
 j &= 0.013926; \quad \text{From the tractor cg to cab rear} \\
 i &= 2.68193; \quad \text{From the tractor cg to the fifth wheel}
\end{align*}
\]
n = 1.435; %m From the cab cg to cab front
p = 1.115; %m From the cab cg to cab rear
r = -0.200; %m From the cab cg to seat
tc = 1.10107; %m From the tractor cg to the cab
h1 = 1.0; %m Height of the driver over the cab
g = 9.8; %m/s^2 acceleration due to gravity

ML_t = m_t/L_t; %kg/m Mass per unit length (Tractor)
ML_tlr = m_ul/L_tlr; %kg/m Mass per unit length (Trailer)

%%%
%%%% Fifth Wheel Configuration
%%%%
%%%

\texttt{disp('Give your choice for the fifth wheel configuration: ')}
\texttt{disp('Note: If a fifth wheel suspension system is chosen, the beaming of')}
\texttt{disp('the tractor frame and trailer will be modeled as free-free. If')}
\texttt{disp('no suspension is chosen, the tractor frame and trailer will be')}
\texttt{disp('modeled as free-pinned and pinned-free respectively.'))}
\texttt{disp('a : With fifth wheel suspension')}
\texttt{disp('b : Without fifth wheel suspension')}
\texttt{z33 = input('Please give your choice : ', 's');}

if z33 == 'a', % Choice 'a' is with fifth wheel suspension
\texttt{disp('')}
\texttt{kfw = input('Input the fifth wheel spring constant (N/m): ');
\texttt{disp('')}
\texttt{cfw = input('Input the fifth wheel damping ratio (N/(m/s)): ');
\texttt{)}

\texttt{\% The parameters for the first bending mode of the Tractor frame}
\texttt{\textbf{disp(' ')}
\texttt{fhz = input('Input the Tractor frequency of beaming (hz) fhz : ');
\texttt{\% The parameters for the first bending mode of the Trailer frame}
\texttt{\textbf{disp(' ')}

254
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz :
');

kb1 = 4.73004074; %Constant for the first bending mode
alpha = 0.982502;

z1 = '\(\cosh(kb1*x1/b_fw) + \cos(kb1*x1/b_fw) - ...\)
\(\alpha*(\sinh(kb1*x1/b_fw)+\sin(kb1*x1/b_fw))\)';
% free-free beam mode function
z1dd = '\((kb1/b_fw)^2*(\cosh(kb1*x1/b_fw) - \cos(kb1*x1/b_fw) - ... \alpha*(\sinh(kb1*x1/b_fw)-\sin(kb1*x1/b_fw))\)';
% second derivative of free-free beam mode function

kb2 = 4.73004074; %Constant for the first bending mode

z2 = '\(\cosh(kb2*x2/L_tlr) + \cos(kb2*x2/L_tlr) - ...\)
\(\alpha*(\sinh(kb2*x2/L_tlr)+\sin(kb2*x2/L_tlr))\)';
% free-free beam mode function
z2dd = '\((kb2/L_tlr)^2*(\cosh(kb2*x2/L_tlr) - \cos(kb2*x2/L_tlr) - ... \alpha*(\sinh(kb2*x2/L_tlr)-\sin(kb2*x2/L_tlr))\)';
% second derivative of free-free beam mode function

elseif z33 == 'b', % Choice 'b' is without fifth wheel suspension
kfw = 1000000000000; %(N/m) fifth wheel spring constant
cfw = 1000; %(N/(m/s)) fifth wheel damping ratio

% The parameters for the first bending mode of the Tractor frame

disp(' ')
fhz = input('Input the Tractor frequency of beaming (hz) fhz :
');

disp(' ')

% The parameters for the first bending mode of the Trailer frame

disp(' ')
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz :
');

kb1 = 2.36502; % Constant for the first bending mode

z1 = '\((\cos(kb1*x1/b_fw) + (\cosh(kb1*x1/b_fw)) - ...\)
\((\cos(kb1)+\cosh(kb1))/(\sin(kb1)-\sinh(kb1))\)*(\sin(kb1*x1/b_fw)- ... \sinh(kb1*x1/b_fw))\)';
% free-pinned beam mode function
z1dd = '\((kb1/b_fw)^2*(-\cos(kb1*x1/b_fw) + \cosh(kb1*x1/b_fw) - ... \alpha*(\sinh(kb1*x1/b_fw)- ... \sinh(kb1*x1/b_fw))\)';
% second derivative of free-pinned beam mode function
\[\text{kb2} = 3.926602; \quad \% \text{Constant for the first bending mode (pinned-free)} \]
\[
\% \quad (\text{from Rao pg. 527})
\]
\[z2 = \left(\sin(\text{kb2} \times \text{x2} / \text{L_tlr}) + \ldots \right) \]
\[
\left(\left(\frac{\sin(\text{kb2})}{\sinh(\text{kb2})} \right) \times \sinh(\text{kb2} \times \text{x2} / \text{L_tlr}) \right)';
\% \text{pinned-free beam mode function}
\]
\[z2dd = \left(\frac{\text{kb2}}{\text{L_tlr}} \right)^2 \times \left(-\sin(\text{kb2} \times \text{x2} / \text{L_tlr}) + \ldots \right)
\]
\[
\left(\left(\frac{\sin(\text{kb2})}{\sinh(\text{kb2})} \right) \times \sinh(\text{kb2} \times \text{x2} / \text{L_tlr}) \right)';
\% \text{second derivative of pinned-free beam mode function}
\]

else disp('Insufficient information regarding fifth wheel suspension.')
end

%%
% %%%
% %%%%%%%%%%%%%%%%%%%% Computation of Integrals
% %%%
% %%%

D1_t=['(','z1,')']; \% Tractor frame beaming
equations to be
D2_t=['((a1-\text{x1}).*(','z1,'))']; \% used in the integrals
(string form)
D3_t=['(('','z1,').*(','z1,'))'];
D4_t=['(('','z1dd,').*(','z1dd,'))'];

D1_tlr=['(','z2,')']; \% Trailer beaming equations
to be
D2_tlr=['((e-\text{x2}).*(','z2,'))']; \% used in the integrals
(string form)
D3_tlr=['(('','z2,').*(','z2,'))'];
D4_tlr=['(('','z2dd,').*(','z2dd,'))'];

I1_t=quadl('modeD1_t',0,b_fw); \% Integrals of functions
defined above
I2_t=quadl('modeD2_t',0,b_fw); \% (along length of tractor
frame)
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

I1_tlr=quadl('modeD1_tlr',0,L_tlr); % Integrals of functions
defined above
I2_tlr=quadl('modeD2_tlr',0,L_tlr); % (along length of trailer)
I3_tlr=quadl('modeD3_tlr',0,L_tlr);
I4_tlr=quadl('modeD4_tlr',0,L_tlr);

E_{a1}=modeD1_t(b_{a1}); \% Disp at axle #1 due to tractor frame
Beaming
E_{cf}=modeD1_t(b_{cf}); \% Disp at cab front due to tractor
frame beaming
E_{e}=modeD1_t(b_{e}); \% Disp at engine due to tractor frame
Beaming

256
\[E_{cr} = \text{modeD1}_t(b_{cr}); \quad \% \text{Disp at cab rear due to tractor frame} \]
\[E_{a2} = \text{modeD1}_t(b_{a2}); \quad \% \text{Disp at axle #2 due to tractor frame} \]
\[E_{fw} = \text{modeD1}_t(b_{fw}); \quad \% \text{Disp at fifth wheel due to tractor frame} \]
\[E_{a3} = \text{modeD1}_t(b_{a3}); \quad \% \text{Disp at axle #3 due to tractor frame} \]
\[E_0 = \text{modeD1}_tlr(0); \quad \% \text{Disp at fifth wheel due to trailer} \]
\[E_{a4} = \text{modeD1}_tlr(b_{a4}); \quad \% \text{Disp at axle #4 due to trailer} \]
\[E_{a5} = \text{modeD1}_tlr(b_{a5}); \quad \% \text{Disp at axle #5 due to trailer} \]

\[EI_t = 4\pi^2 f_{hz}^2 (b_{fw}/k_{b1})^4 M_{L_t}; \quad \% \text{Tractor frame flexural rigidity} \]
\[EI_{tlr} = 4\pi^2 f_{hz2}^2 (L_{tlr}/k_{b2})^4 M_{L_{tlr}}; \quad \% \text{Trailer flexural rigidity} \]

% Seat Suspension Options
\n\n\text{disp(' ');}
\text{disp('VEHICLE SUSPENSION OPTIONS')}
\text{disp(' ');}
\text{disp('Give your choice for seat suspension: ')}
\text{disp('Note: Without seat suspension gives a very high frequency mode')}
\text{disp('because the stiffness is set to a high value.')}
\text{disp('a : With seat suspension (~0.9 Hz)')}
\text{disp('b : Without seat suspension')}
\text{z11 = input('Enter your choice : '), 's');}

if z11 == 'a',
\% Choice 'a' is with seat suspension
cs = 1140; \% Damping ratio of 0.5
ks = 3403; \% N/m(spring const of seat suspension)
elseif z11 == 'b',
\% Choice 'b' is without seat suspension
cs = 1329; \% N/(m/s)(damping const of seat suspension)
ks = 1e10; \% N/m(spring const of seat suspension)\nelse disp('Insufficient information regarding seat suspension.');\nend

% Cab Suspension Options
\n\n\text{disp(' ');}
\text{disp('Give your choice for cab suspension: ')}
\text{disp('Note: With front or rear or without cab suspension')}
\text{disp('gives a very high frequency mode(s) because the corresponding')}
\text{disp('stiffness(es) is set to a high value.')}
\text{disp('a : With front cab suspension')}
\text{disp('b : With rear cab suspension')}
\text{disp('c : With front & rear cab suspension')}
\text{disp('d : Without cab suspension')}
\text{z22 = input('Enter your choice : '), 's');}
if z22 == 'a',
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 88740; % N/m(spring const of front cab suspension)
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
elseif z22 == 'b', % Choice 'b' is rear cab suspension
 ccr = 8000; % Reduced damping
 kcr = 65980; % N/m(spring const of rear cab suspension)
 ccf = 13120; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)
elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
 ccr = 5073.5; % N/(m/s)(damping const of rear cab suspension)
 kcr = 63757.5; % N/m(spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s)(damping const of front cab suspension)
 kcf = 86260.5; % N/m(spring const of front cab suspension)
elseif z22 == 'd', % Choice 'd' is without cab suspension
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)
else
 disp('Insufficient information regarding cab suspension.')
end

disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd;
\text{Nominal cross section width}
mt1 = mt;
\text{Mass of axle #1}
P1 = P;
\text{Tire pressure from TireData3.m}
press1 = press;
\text{Tire pressure array}
numtire1 = numtires;
\text{Number of tires on axle}
Kstiff1 = Kstiff;
\text{Tire stiffness array}
kt1 = KK * numtires1;
\text{Per-axle Rad Stiffness}
ct1 = ct;
\text{Per-axle Damping}

\text{DRIVE AXLE TIRE SELECTION}
\text{TireData3; \text{M-file for tire data}}
wd23 = wd;
\text{Nominal cross section width}
mt2 = mt;
\text{Mass of axle #2}
mt3 = mt;
\text{Mass of axle #3}
P23 = P;
\text{Tire pressure from TireData3.m}
press23 = press;
\text{Tire Pressure array}
numtires23 = numtires;
\text{Number of tires on axle}
Kstiff23 = Kstiff;
\text{Tire stiffness array}
kt2 = KK * numtires23;
\text{Per-axle Rad Stiffness}
kt3 = KK * numtires23;
\text{Per-axle Rad Stiffness}
ct2 = ct;
\text{Per-axle Damping}
ct3 = ct;
\text{Per-axle Damping}

\text{TRAILER AXLE TIRE SELECTION}
\text{TireData3; \text{M-file for tire data}}
wd45 = wd;
\text{Nominal cross section width}
mt4 = mt;
\text{Mass of axle #4}
mt5 = mt;
\text{Mass of axle #5}
P45 = P;
\text{Tire pressure from TireData3.m}
press45 = press;
\text{Tire Pressure array}
numtires45 = numtires;
\text{Number of tires on axle}
Kstiff45 = Kstiff;
\text{Tire stiffness array}
kt4 = KK * numtires45;
\text{Per-axle Rad Stiffness}
kt5 = KK * numtires45;
\text{Per-axle Rad Stiffness}
c4 = ct;
\text{Per-axle Damping}
c5 = ct;
\text{Per-axle Damping}

\text{\\\
disp(' ')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
v = 0.4473*vm;
elseif vel == 'b'
v = 0.277778*vm;
end

T(1) = 0;
T(2) = (a+b)/v;
T(3) = (a+d)/v;
T(4) = (a+i+e+f)/v;
T(5) = (a+i+e+h)/v;

%%%
% Road PSD Selection
%%%

disp(' ')
disp('ROAD PSD SELECTION')
disp(' ')
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp(' ')
disp('a : Csp = 4.3e-11,N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')

disp(' ')
tabchoice11=input('Input the road surface to be used : ','s');

if tabchoice11== 'a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11== 'b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11 == 'c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11 == 'd', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
else
 disp(' ')
disp('J PENALTY OPTIONS')
disp('')
disp('Input the values for K1 and K2 in the J penalty function')
disp('Note: Both values should add up to 1')
disp('')
K_1 = input('Input the value for K1 : ');
disp('')
K_2 = input('Input the value for K2 : ');

% Start Loop on Axle Damping Properties
% Damping values will range from 70% to 130% of the nominal value
for iiii=1:21;
 for jjjj=1:21;
 cf(iiii,jjjj)=338.1*iiii;
 cr(iiii,jjjj)=1650*jjjj;
 c1 = 7550.9+cf(iiii,jjjj);
 c2 = (36850+cr(iiii,jjjj))*0.5;
 c3 = (36850+cr(iiii,jjjj))*0.5;

 % System Matrices

 % THE SYSTEM IS WRITTEN AS (M*Š*S+C*Š*S+K)X(Š)=(A*Š+S+B)U(Š)

 % Mass Matrix
 M = zeros(15,15);

 M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
 M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
 M(3,3) = I_c; % Eqn #3: Pitch of Cab
 M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
 M(5,5) = m_t; % Eqn #5: Vertical Disp of Tractor Frame
 M(5,6) = ML_t*b_fw*(b_fw/2-a1);
 M(5,7) = ML_t*I1_t;
 M(6,5) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor Frame
 M(6,6) = I_t;
 M(6,7) = -ML_t*I2_t;
\[
\begin{align*}
M(7,5) &= ML_t I_{1_t}; && \text{Eqn #7: Beaming of Tractor Frame} \\
M(7,6) &= -ML_t I_{2_t}; \\
M(7,7) &= ML_t I_{3_t}; \\
M(8,8) &= m_{tlr}; && \text{Eqn #8: Vertical Disp of Trailer} \\
M(8,9) &= -ML_{tlr} L_{tlr} (e - L_{tlr}/2); \\
M(8,10) &= ML_{tlr} I_{1_{tlr}}; \\
M(9,8) &= ML_{tlr} L_{tlr} (e - L_{tlr}/2); && \text{Eqn #9: Pitch of Trailer} \\
M(9,9) &= I_{tlr}; \\
M(9,10) &= -ML_{tlr} I_{2_{tlr}}; \\
M(10,8) &= ML_{tlr} I_{1_{tlr}}; && \text{Eqn #10: Beaming of Trailer} \\
M(10,9) &= -ML_{tlr} I_{2_{tlr}}; \\
M(10,10) &= ML_{tlr} I_{3_{tlr}}; \\
M(11,11) &= m_{t1}; && \text{Eqn #11: Vertical Disp of Axle #1} \\
M(12,12) &= m_{t2}; && \text{Eqn #12: Vertical Disp of Axle #2} \\
M(13,13) &= m_{t3}; && \text{Eqn #13: Vertical Disp of Axle #3} \\
M(14,14) &= m_{t4}; && \text{Eqn #14: Vertical Disp of Axle #4} \\
M(15,15) &= m_{t5}; && \text{Eqn #15: Vertical Disp of Axle #5} \\
\end{align*}
\]

\[
C = \text{zeros(15,15)}; \\
C(1,1) &= cs; \\
C(1,2) &= -cs; \\
C(1,3) &= r*cs; \\
C(2,1) &= -cs; \\
C(2,2) &= cs+ccf+ccr; \\
C(2,3) &= -r*cs-n*ccf+p*ccr; \\
C(2,5) &= -ccf-ccr; \\
C(2,6) &= l*ccf-j*ccr; \\
C(2,7) &= -ccf*E_{cf}-ccr*E_{cr}; \\
C(3,1) &= r*cs; \\
C(3,2) &= -r*cs-n*ccf+p*ccr; \\
C(3,3) &= (r^2)*cs+(n^2)*ccf+(p^2)*ccr; \\
C(3,5) &= n*ccf-p*ccr; \\
C(3,6) &= -n*l*ccf-p*j*ccr; \\
\]
\[C(3,7) = n*ccf*E_{cf}-p*ccr*E_{cr}; \]
\[C(4,4) = ce; \]
\[C(4,5) = -ce; \]
\[C(4,6) = m*ce; \]
\[C(4,7) = -ce*E_e; \]
\[C(5,2) = -ccf-ccr; \]
\[C(5,3) = n*ccf-p*ccr; \]
\[C(5,4) = -ce; \]
\[C(5,5) = ce+ccf+ccr+cfw+c1+c2+c3; \]
\[C(5,6) = -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3; \]
\[C(5,7) = ce*E_e+ccf*E_{cf}+ccr*E_{cr}+cfw*E_{fw}+c1*E_{a1}+c2*E_{a2}+c3*E_{a3}; \]
\[C(5,8) = -cfw; \]
\[C(5,9) = e*cfw; \]
\[C(5,10) = -cfw*E_0; \]
\[C(5,11) = -c1; \]
\[C(5,12) = -c2; \]
\[C(5,13) = -c3; \]
\[C(6,2) = l*ccf-j*ccr; \]
\[C(6,3) = -n*1*ccf-p*j*ccr; \]
\[C(6,4) = m*ce; \]
\[C(6,5) = -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3; \]
\[C(6,6) = (m^2)*ce+(l^2)*ccf+(j^2)*ccr+(i^2)*cfw+a*c1+b*c2+c1+c2+c3; \]
\[C(6,7) = -m*ce*E_e-l*ccf*E_{cf}+j*ccr*E_{cr}+i*cfw*E_{fw}-a*c1*E_{a1}+b*c2*E_{a2}+... \]
\[d*c3*E_{a3}; \]
\[C(6,8) = -i*cfw; \]
\[C(6,9) = e*i*cfw; \]
\[C(6,10) = -i*cfw*E_0; \]
\[C(6,11) = a*c1; \]
\[C(6,12) = -b*c2; \]
\[C(6,13) = -d*c3; \]
\[C(7,2) = -ccf*E_{cf}-ccr*E_{cr}; \]
\[C(7,3) = n*ccf*E_{cf}+ccr*E_{cr}; \]
\[C(7,4) = -ce*E_e; \]
\[C(7,5) = ce*E_e+ccf*E_{cf}+ccr*E_{cr}+cfw*E_{fw}+c1*E_{a1}+c2*E_{a2}+c3*E_{a3}; \]
\[C(7,6) = -m*ce*E_e-l*ccf*E_{cf}+j*ccr*E_{cr}+i*cfw*E_{fw}-a*c1*E_{a1}+b*c2*E_{a2}+... \]
\[+d*c3*E_{a3}; \]
\[C(7,7) = ce*E_e^2+ccf*E_{cf}^2+ccr*E_{cr}^2+cfw*E_{fw}^2+c1*E_{a1}^2+c2*E_{a2}^2+... \]
\[+c3*E_{a3}^2; \]
\[C(7,8) = -cfw*E_{fw}; \]
\[C(7,9) = e*cfw*E_{fw}; \]
\[C(7,10) = -cfw*E_0*E_{fw}; \]
\[C(7,11) = -c1*E_{a1}; \]
\[C(7,12) = -c2*E_{a2}; \]
\[C(7,13) = -c3*E_{a3}; \]
<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(-cfw)</td>
<td>(-i*cfw)</td>
<td>(-cfw*E_{-fw})</td>
<td>(cfw+c4+c5)</td>
<td>(-ecfw+fc4+h*c5)</td>
<td>(cfwE_0+c4E_{a4}+c5*E_{a5})</td>
<td>(-c4)</td>
<td>(-c5)</td>
<td>(e*cfw)</td>
<td>(eicfw)</td>
<td>(ecfwE_{-fw})</td>
</tr>
<tr>
<td>9</td>
<td>(e*cfw)</td>
<td>(eicfw)</td>
<td>(ecfwE_{-fw})</td>
<td>(-ecfw+fc4+h*c5)</td>
<td>((e^2)*cfw+(f^2)*c4+(h^2)*c5)</td>
<td>(ecfwE_0+fc4E_{a4}+hc5E_{a5})</td>
<td>(-f*c4)</td>
<td>(-h*c5)</td>
<td>(-cfw*E_0)</td>
<td>(-icfwE_0)</td>
<td>(-cfw*E_{-fw}*E_0)</td>
</tr>
<tr>
<td>10</td>
<td>(-cfw*E_0)</td>
<td>(-icfwE_0)</td>
<td>(-cfw*E_{-fw}*E_0)</td>
<td>(cfwE_0+c4E_{a4}+c5*E_{a5})</td>
<td>(-ecfwE_0+fc4E_{a4}+hc5E_{a5})</td>
<td>(cfwE_0^2+c4E_{a4}^2+c5*E_{a5}^2)</td>
<td>(-c4*E_{a4})</td>
<td>(-c5*E_{a5})</td>
<td>(-c1)</td>
<td>(a*c1)</td>
<td>(-c1*E_{a1})</td>
</tr>
<tr>
<td>11</td>
<td>(-c2)</td>
<td>(-b*c2)</td>
<td>(-c2*E_{a2})</td>
<td>(c2+ct2)</td>
<td>(-c3)</td>
<td>(-d*c3)</td>
<td>(-c3*E_{a3})</td>
<td>(c3+ct3)</td>
<td>(-c4)</td>
<td>(-f*c4)</td>
<td>(-c4*E_{a4})</td>
</tr>
<tr>
<td>12</td>
<td>(-c2)</td>
<td>(-b*c2)</td>
<td>(-c2*E_{a2})</td>
<td>(c2+ct2)</td>
<td>(-c3)</td>
<td>(-d*c3)</td>
<td>(-c3*E_{a3})</td>
<td>(c3+ct3)</td>
<td>(-c4)</td>
<td>(-f*c4)</td>
<td>(-c4*E_{a4})</td>
</tr>
<tr>
<td>13</td>
<td>(-c2)</td>
<td>(-b*c2)</td>
<td>(-c2*E_{a2})</td>
<td>(c2+ct2)</td>
<td>(-c3)</td>
<td>(-d*c3)</td>
<td>(-c3*E_{a3})</td>
<td>(c3+ct3)</td>
<td>(-c4)</td>
<td>(-f*c4)</td>
<td>(-c4*E_{a4})</td>
</tr>
<tr>
<td>14</td>
<td>(-c5)</td>
<td>(-h*c5)</td>
<td>(-c5*E_{a5})</td>
<td>(c5+ct5)</td>
<td>(-c4)</td>
<td>(-f*c4)</td>
<td>(-c4*E_{a4})</td>
<td>(c4+ct4)</td>
<td>(-c5)</td>
<td>(-h*c5)</td>
<td>(-c5*E_{a5})</td>
</tr>
<tr>
<td>15</td>
<td>(-c5)</td>
<td>(-h*c5)</td>
<td>(-c5*E_{a5})</td>
<td>(c5+ct5)</td>
<td>(-c4)</td>
<td>(-f*c4)</td>
<td>(-c4*E_{a4})</td>
<td>(c4+ct4)</td>
<td>(-c5)</td>
<td>(-h*c5)</td>
<td>(-c5*E_{a5})</td>
</tr>
</tbody>
</table>

Stiffness Matrix

264
\[K = \text{zeros(15,15)}; \]

\[
\begin{align*}
K(1,1) &= ks; \\
K(1,2) &= -ks; \\
K(1,3) &= r*ks; \\
K(2,1) &= -ks; \\
K(2,2) &= ks+kcf+kcr; \\
K(2,3) &= -r*ks-n*kcf+p*kcr; \\
K(2,5) &= -kcf-kcr; \\
K(2,6) &= l*kcf-j*kcr; \\
K(2,7) &= -kcf*E_{cf}=kcr*E_{cr}; \\
K(3,1) &= r*ks; \\
K(3,2) &= -r*ks-n*kcf+p*kcr; \\
K(3,3) &= (r^2)*ks+(n^2)*kcf+(p^2)*kcr; \\
K(3,5) &= n*kcf-p*kcr; \\
K(3,6) &= -n*l*kcf-p*j*kcr; \\
K(3,7) &= n*kcf*E_{cf}-p*kcr*E_{cr}; \\
K(4,4) &= ke; \\
K(4,5) &= -ke; \\
K(4,6) &= m*ke; \\
K(4,7) &= -ke*E_{e}; \\
K(5,2) &= -kcf-kcr; \\
K(5,3) &= n*kcf-p*kcr; \\
K(5,4) &= -ke; \\
K(5,5) &= ke+kcf+kcr+kfw+k1+k2+k3; \\
K(5,6) &= -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \\
K(5,7) &= ke*E_1+kcf*E_{cf}+kcr*E_{cr}+kfw*E_{fw}+k1*E_{a1}+k2*E_{a2}+k3*E_{a3}; \\
K(5,8) &= -kfw; \\
K(5,9) &= e*kfw; \\
K(5,10) &= -kfw*E_{0}; \\
K(5,11) &= -k1; \\
K(5,12) &= -k2; \\
K(5,13) &= -k3; \\
K(6,2) &= l*kcf-j*kcr; \\
K(6,3) &= -n*l*kcf-p*j*kcr; \\
K(6,4) &= m*ke; \\
K(6,5) &= -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \\
K(6,6) &= (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3; \\
K(6,7) &= -m*ke*E_{e}-l*kcf*E_{cf}+j*kcr*E_{cr}+i*kfw*E_{fw}-a*k1*E_{a1}+b*k2*E_{a2}+... \\
&= d*k3*E_{a3}; \\
K(6,8) &= -i*kfw; \\
K(6,9) &= e*i*kfw; \\
K(6,10) &= -i*kfw*E_{0}; \\
K(6,11) &= a*k1; \\
K(6,12) &= -b*k2; \\
K(6,13) &= -d*k3; \\
\end{align*}
\]
\[K(7,2) = -kcf*E_{cf} - kcr*E_{cr}; \]
\[K(7,3) = n*kcf*E_{cf} - p*kcr*E_{cr}; \]
\[K(7,4) = -ke*E_{e}; \]
\[K(7,5) = ke*E_{e} + kcf*E_{cf} + kcr*E_{cr} + kfw*E_{fw} + kl*E_{a1} + k2*E_{a2} + k3*E_{a3}; \]
\[K(7,6) = -m*ke*E_{e} - i*kcf*E_{cf} - j*kcr*E_{cr} + i*kfw*E_{fw} - a*kl*E_{a1} + b*k2*E_{a2} \ldots \]
\[+ d*k3*E_{a3}; \]
\[K(7,7) = ke*E_{e}^2 + kcf*E_{cf}^2 + kcr*E_{cr}^2 + kfw*E_{fw}^2 + kl*E_{a1}^2 + k2*E_{a2}^2 \ldots \]
\[+ k3*E_{a3}^2 + EI_{t}*I_{4_{t}}; \]
\[K(7,8) = -kfw*E_{fw}; \]
\[K(7,9) = e*kfw*E_{fw}; \]
\[K(7,10) = -kfw*E_{0}*E_{fw}; \]
\[K(7,11) = -kl*E_{a1}; \]
\[K(7,12) = -k2*E_{a2}; \]
\[K(7,13) = -k3*E_{a3}; \]
\[K(8,5) = -kfw; \]
\[K(8,6) = -i*kfw; \]
\[K(8,7) = -kfw*E_{fw}; \]
\[K(8,8) = kfw+k4+k5; \]
\[K(8,9) = -e*kfw+f*k4+h*k5; \]
\[K(8,10) = kfw*E_{0}+k4*E_{a4}+k5*E_{a5}; \]
\[K(8,14) = -k4; \]
\[K(8,15) = -k5; \]
\[K(9,5) = e*kfw; \]
\[K(9,6) = e*i*kfw; \]
\[K(9,7) = e*kfw*E_{fw}; \]
\[K(9,8) = -e*kfw+f*k4+h*k5; \]
\[K(9,9) = (e^2)*kfw+(f^2)*k4+(h^2)*k5; \]
\[K(9,10) = -e*kfw*E_{0}+f*k4*E_{a4}+h*k5*E_{a5}; \]
\[K(9,14) = -f*k4; \]
\[K(9,15) = -h*k5; \]
\[K(10,5) = -kfw*E_{0}; \]
\[K(10,6) = -i*kfw*E_{0}; \]
\[K(10,7) = -kfw*E_{fw}*E_{0}; \]
\[K(10,8) = kfw*E_{0}+k4*E_{a4}+k5*E_{a5}; \]
\[K(10,9) = -e*kfw*E_{0}+f*k4*E_{a4}+h*k5*E_{a5}; \]
\[K(10,10) = kfw*E_{0}^2+k4*E_{a4}^2+k5*E_{a5}^2+EI_{tlr}*I_{4_{tlr}}; \]
\[K(10,14) = -k4*E_{a4}; \]
\[K(10,15) = -k5*E_{a5}; \]
\[K(11,5) = -kl; \]
\[K(11,6) = a*kl; \]
\[K(11,7) = -kl*E_{a1}; \]
\[K(11,11) = k1+k\ell_{1}; \]
\[K(12,5) = -k2; \]
\[K(12,6) = -b*k2; \]
\[K(12,7) = -k2*E_{a2}; \]
\[K(12,12) = k2+k\ell_{2}; \]
\[K(13,5) = -k3; \]
\[K(13,6) = -d*k3; \]
\[K(13,7) = -k3*E_a3; \]
\[K(13,13) = k3+kt3; \]
\[K(14,8) = -k4; \]
\[K(14,9) = -f*k4; \]
\[K(14,10) = -k4*E_a4; \]
\[K(14,14) = k4+kt4; \]
\[K(15,8) = -k5; \]
\[K(15,9) = -h*k5; \]
\[K(15,10) = -k5*E_a5; \]
\[K(15,15) = k5+kt5; \]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
A = \text{zeros}(15,1); \\
A(11) = ct1; \\
A(12) = ct2; \\
A(13) = ct3; \\
A(14) = ct4; \\
A(15) = ct5;
\]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Stiffness Matrix %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
B = \text{zeros}(15,1); \\
B(11) = kt1; \\
B(12) = kt2; \\
B(13) = kt3; \\
B(14) = kt4; \\
B(15) = kt5;
\]

% System "A" Matrix
\[
AA = [\text{zeros(size}(M)) \ \text{eye}(\text{size}(M)) \ -\text{inv}(M)*K \ -\text{inv}(M)*C];
\]

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
\[
w_c = [0.1 \ 1 \ 1.25 \ 1.6 \ 2 \ 2.5 \ 3.15 \ 4 \ 5 \ 6.3 \ 8 \ 10 \ 12.5 \ 16 \ 20 \ 25 \ 31.5 \ 40 \ 50];
\]
\[
wh_{zc} = [0.1 \ 0.125 \ 0.16 \ 0.2 \ 0.25 \ 0.315 \ 0.4 \ 0.5 \ 0.63 \ 0.8 \ 1 \ 1.25 \ 1.6 \ 2 \ 2.5 \ 3.15 \ 4 \ 5 \ 6.3 \ 8 \ 10 \ 12.5 \ 16 \ 20 \ 25 \ 31.5 \ 40 \ 50];
\]

% 2.5 hr FATIGUE BOUNDARY
\[
f_{at1} = [4.284, 1.4, 1.25, 1.12, 1, .9, .8, .71, .71, .71, .71, ...]
\]
.9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

%--
% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,
8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;

whzcr = 2*pi*whzc; % Calculation of central frequencies in
% Calculation of central frequencies in rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];

imag=sqrt(-1);
for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);

 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ...]
 exp(-s*T(4)) exp(-s*T(5))];

 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*(time.')));

//**
*** Transfer Functions ***
//**

 z_s=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat
 cg
 long=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp
 of driver
 z_tlr=[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]*vectx; % vert
trailer cg

**
%%% Magnitudes %%%

% Acceleration Transter Functions
magcfA1(ii,jj)=abs(s*s*z_s); % Mag of trans function, (m/s*s)/m
magcfAlong(ii,jj)=abs(s*s*long);
magcftlr(ii,jj)=abs(s*s*z_tlr);

%%%%%%%%%%%%%%%%%%%%
%%% PSDs %%%
%%%%%%%%%%%%%%%%%%%%

% Road PSD in m*m/(rad/s)
rpsd(ii,jj)=Csp*(((2*pi*v)^(N-1))/(w^N));

% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfA1(ii,jj)=magcfA1(ii,jj)*magcfA1(ii,jj)*rpsd(ii,jj);
psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);
psdcftlr(ii,jj)=magcftlr(ii,jj)*magcftlr(ii,jj)*rpsd(ii,jj);
end
end

for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msgyla(kk)=0.5*(psdcfAl(kk,1)+psdcfAl(kk,2))*(freq(kk,2)-freq(kk,1));
msgylb(kk)=0.5*(psdcfAl(kk,2)+psdcfAl(kk,3))*(freq(kk,3)-freq(kk,2));
msgyl(kk)=msgyla(kk)+msgylb(kk);
rmsAlcf(kk)=sqrt(msgyl(kk));
% Long. Driver RMS
msgylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*... (freq(kk,2)-freq(kk,1));
msgylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*... (freq(kk,3)-freq(kk,2));
msgylong(kk)=msgylonga(kk)+msgylongb(kk);
rmsAlongcf(kk)=sqrt(msgylong(kk));
% Vert. Trailer cg RMS
msgyltra(kk)=0.5*(psdcftlr(kk,1)+psdcftlr(kk,2))*(freq(kk,2)-freq(kk,1));
msgyltrb(kk)=0.5*(psdcftlr(kk,2)+psdcftlr(kk,3))*(freq(kk,3)-freq(kk,2));
msgylr(kk)=msgyltra(kk)+msgyltrb(kk);
rmsTlrcf(kk)=sqrt(msgylr(kk));
end

RMScf = [rmsAlcf',rmsAlongcf',rmsTlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal

wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.63,.8,1,1.25,1.6,2,2.5,3.15,4,5,...
6.3,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.482,.484,...
.494,.531,.631,.804,.967,1.039,1.054,1.036,.988,.902,.768,.636,...
.513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];

isovert = WgtV.*RMScf(1:28,1)'; % Weighted Vert. Driver RMS
Accel.
isolong = WgtL.*RMScf(1:28,2)'; % Weighted Long. Driver RMS
Accel.
isotlr = WgtV.*RMScf(1:28,3)'; % Weighted Vert. Trailer RMS
Accel.

term2V=(WgtV.*rmsA1cf(1:28)).^2;
a0_V_dr=(sum(term2V))^0.5; % a0 for vert. disp of
 driver
term2L=(WgtL.*rmsAlongcf(1:28)).^2;
a0_L_dr=(sum(term2L))^0.5; % a0 for long. disp of
 driver
aV=(a0_L_dr^2 + a0_V_dr^2)^0.5; % a0 for comb vert and long
disp
tlrV=(WgtV.*rmstlrcf(1:28)).^2;
a0_V_tlr=(sum(tlrV))^0.5; % a0 for vert. disp of
driver

aVV(iiii,jjjj)=aV; % combined ISO wgt acc, m/s^2
a0_VV_tlr(iiii,jjjj)=a0_V_tlr;
Jpenalty(iiii,jjjj)=K_1*(aVV(iiii,jjjj)/0.44814)+K_2*...
(a0_VV_tlr(iiii,jjjj)/0.3239);

end % end of jjjj loop on c2
end % end of iiii loop on c1

disp(' ')
disp('RESULTS OF VARIATION')
disp(' ')
disp('Minimum aV, m/s^2')
disp(min(aVV(:)))
disp(' ')
[ia,ja]=find(aVV==min(aVV(:)));
disp('Corresponding c1, c2, and c3 values, N/(m/s)')

270
disp([7550.9+cf(ia,ja) (36850+cr(ia,ja))*0.5
(36850+cr(ia,ja))*0.5])
disp(' ')

disp('Minimum a0 V_tlr, m/s^2')
disp(min(a0_VV_tlr(:)))
disp(' ')
[it,jt]=find(a0_VV_tlr==min(a0_VV_tlr(:)));
disp('Corresponding c1, c2, and c3 values, N/(m/s)')
disp([7550.9+cf(it,jt) (36850+cr(it,jt))*0.5
(36850+cr(it,jt))*0.5])
disp(' ')

disp('Minimum Jpenalty')
disp('J=K1*aV/0.44814 + K2*a0_V_tlr/0.3239')
disp([K_1 K_2])
disp(' ')
disp(min(Jpenalty(:)))
disp(' ')
[iJ,jJ]=find(Jpenalty==min(Jpenalty(:)));
disp('Corresponding c1, c2, and c3 values, N/(m/s)')
disp([7550.9+cf(iJ,jJ) (36850+cr(iJ,jJ))*0.5
(36850+cr(iJ,jJ))*0.5])
disp(' ')

figure(1)
surf(7550.9+cf,(36850+cr)/2,aVV)
xlabel('Steer Axle C, N/(m/s)')
ylabel('Single Drive Axle C, N/(m/s)')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Suspension Damping Parameter Variation')

figure(2)
surf(7550.9+cf,(36850+cr)/2,a0_VV_tlr)
xlabel('Steer Axle C, N/(m/s)')
ylabel('Single Drive Axle C, N/(m/s)')
zlabel('Trailer Wgt Vert Acc, m/s^2')
% title('Tractor Suspension Damping Parameter Variation')

figure(3)
surf(7550.9+cf,(36850+cr)/2,Jpenalty)
xlabel('Steer Axle C, N/(m/s)')
ylabel('Single Drive Axle C, N/(m/s)')
zlabel('Penalty Function')
title(['K1 = ', num2str(K_1),' K2 = ', num2str(K_2)])
Appendix I: opt_tireK_freq.m

This parameter variation program varies the stiffness of the steer axle tires and the stiffness of the first and second drive axle tires combined. Each of the drive axle tires on the tractor are assumed to have the same value, so they were combined into one value that was varied, and the individual drive axle tire values were assumed to be equal to exactly half of that value. The steer tires were varied from 906,500 N/m to 1,683,500 N/m in increments of 38,850 N/m. This forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the steer tire stiffnesses. The drive axle tires were varied from 1,671,740 N/m to 3,104,660 N/m in increments of 71,646 N/m. Like the steer tires, this forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the drive tire stiffnesses.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), and a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user. The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding stiffness values for the steer and drive tires. Also, the program plots the output information on surface plots to study trends in the information.
% opt_tireK_freq.m
% Developed by Ryan Spivey, 4/10/07
% Varies tire stiffness using weighted RMS acceleration in the frequecncy domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1)Vertical Disp. of Driver's Seat
% 2)Vertical Disp. of Cab
% 3)Pitch of Cab
% 4)Vertical Disp. of Engine
% 5)Vertical Disp. of Tractor Frame
% 6)Pitch of Tractor Frame
% 7)Beaming of Tractor Frame
% 8)Vertical Disp. of Trailer
% 9)Pitch of Trailer
% 10)Beaming of Trailer
% 11)Vertical Disp. of Axle #1
% 12)Vertical Disp. of Axle #2
% 13)Vertical Disp. of Axle #3
% 14)Vertical Disp. of Axle #4
% 15)Vertical Disp. of Axle #5

clc
clear all
close all
format short e
format compact

global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr
global e al kb1 kb2 b_fw L_tlr alpha

disp(' ') disp('Tire Stiffness Parameter Variation in the Frequency Domain')
disp(' Roadholding Model ')
disp(['',date])

% Choose a test vehicle
disp('') disp('VEHICLE SELECTION')
disp('')
disp('Please choose a vehicle : '); disp('a: Ideal Tractor Semi-Trailer'); vehicle = input('Enter your choice : ', 's');

if vehicle == 'a'
 % Inertial Properties
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab
end
I_c = 2100; %kg*m^2 M I of cab
m_e = 2000; %kg mass of engine (ESTIMATE)
m_t = 3783; %kg mass of tractor (5783 kg - engine)
I_t = 46590.9; %kg*m^2 M I of tractor
mUl = 10800; %kg mass of trailer (ESTIMATE)
I_tlr = 20000; %kg*m^2 M I of trailer
m_L = 14000; %kg mass of trailer load (ESTIMATE)
m_tlr = m Ul + m_L; %kb mass of loaded trailer

% Suspension Parameters

% Model Dimensions
b_a1 = 1.065; %m Front end of the tractor to axle #1
b_cF = 1.470; %m Front end of the tractor to cab front
b_e = 2.797; %m Front end of the tractor to engine
b_cr = 4.02; %m Front end of the tractor to cab rear
b_a2 = 6.035; %m Front end of the tractor to axle #2
b_fw = 6.688; %m Front end of the tractor to 5th wheel
b_a3 = 7.34; %m Front end of the tractor to axle #3
a1 = 4.00607; %m Front end of the tractor to tractor cg
b_a4 = 8.58; %m From the fifth wheel to axle #4
b_a5 = 9.78; %m From the fifth wheel to axle #5

L_t = 8.2; %m Length of Tractor
L_tlr = 9.78; %m Length of Trailer

e = 5.62; %m From the trailer cg to fifth wheel
f = 2.96; %m From the trailer cg to axle #4
h = 4.16; %m From the trailer cg to axle #5

a = 2.94107; %m From the tractor cg to axle #1
b = 2.02893; %m From the tractor cg to axle #2
d = 3.33393; %m From the tractor cg to axle #3
l = 2.53607; %m From the tractor cg to cab front
m = 1.209074; %m From the tractor cg to engine
j = 0.013926; %m From the tractor cg to cab rear
i = 2.68193; %m From the tractor cg to the fifth
wheel
n = 1.435; %m From the cab cg to cab front
p = 1.115; %m From the cab cg to cab rear
r = -0.200; %m From the cab cg to seat
tc = 1.10107; %m From the tractor cg to the cab
cg
h1 = 1.0; %m Height of the driver over the
cab
g = 9.8; %m/s^2 acceleration due to gravity
ML_t = m_t/L_t; %kg/m Mass per unit length
(Tractor)
ML_tlr = m_ul/L_tlr; %kg/m Mass per unit length
(Trailer)
end
%%%
%%
%%%%%%%%%%%%%%%%%%% Fifth Wheel Configuration
%%%%%%%%%%%%%%%%%%%
%%%
%%
disp('Give your choice for the fifth wheel configuration: ')
disp('Note: If a fifth wheel suspension system is chosen, the beaming of')
disp('the tractor frame and trailer will be modeled as free-free. If')
disp('no suspension is chosen, the tractor frame and trailer will be')
disp('modeled as free-pinned and pinned-free respectively.')
disp('a : With fifth wheel suspension')
disp('b : Without fifth wheel suspension')
z33 = input('Please give your choice : ', 's');
if z33 == 'a', % Choice 'a' is with fifth wheel suspension
disp('Input the fifth wheel spring constant (N/m): ');
disp('Input the fifth wheel damping ratio (N/(m/s)): ');
% The parameters for the first bending mode of the Tractor frame
disp('Input the Tractor frequency of beaming (hz) fhz : ');

end
% The parameters for the first bending mode of the Trailer frame

disp(' ')
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz : ');

kb1 = 4.73004074; % Constant for the first bending mode (free-free)
alpha = 0.982502;

z1 = 'cosh(kb1*x1/b_fw) + cos(kb1*x1/b_fw) - ...
 alpha*(sinh(kb1*x1/b_fw)+sin(kb1*x1/b_fw))';
% free-free beam mode function
z1dd = '(kb1/b_fw)^2*(cosh(kb1*x1/b_fw) - cos(kb1*x1/b_fw) - ...
 alpha*(sinh(kb1*x1/b_fw)-sin(kb1*x1/b_fw)))';
% second derivative of free-free beam mode function

kb2 = 4.73004074; % Constant for the first bending mode (free-free)

z2 = 'cosh(kb2*x2/L_tlr) + cos(kb2*x2/L_tlr) - ...
 alpha*(sinh(kb2*x2/L_tlr)+sin(kb2*x2/L_tlr))';
% free-free beam mode function
z2dd = '(kb2/L_tlr)^2*(cosh(kb2*x2/L_tlr) - cos(kb2*x2/L_tlr) - ...
 alpha*(sinh(kb2*x2/L_tlr)-sin(kb2*x2/L_tlr)))';
% second derivative of free-free beam mode function

elseif z33 == 'b', % Choice 'b' is without fifth wheel suspension
 kfw = 1000000000000; %(N/m) fifth wheel spring constant
cfw = 1000; %(N/(m/s)) fifth wheel damping ratio

% The parameters for the first bending mode of the Tractor frame

disp(' ')
fhz = input('Input the Tractor frequency of beaming (hz) fhz : ');

% The parameters for the first bending mode of the Trailer frame

disp(' ')
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz : ');

kb1 = 2.36502; % Constant for the first bending mode (free-pinned)
% (from Rao pg. 527)
%
% z1 = '(cos(kb1*x1/b_fw) + (cosh(kb1*x1/b_fw)) - ...
% ((cos(kb1)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*(sin(kb1*x1/b_fw)- ...
% sinh(kb1*x1/b_fw)))';
% free-pinned beam mode function
\[
z_{1dd} = \left(\frac{kb_1}{b_{fw}}\right)^2 \left(-\cos(kb_1x_1/b_{fw}) + \cosh(kb_1x_1/b_{fw})\right) - \left(\cos(kb_1) + \cosh(kb_1)\right) / \left(\sin(kb_1) - \sinh(kb_1)\right) \left(-\sin(kb_1x_1/b_{fw}) - \sinh(kb_1x_1/b_{fw})\right)\];
\]
% second derivative of free-pinned beam mode function

\[
kb_2 = 3.926602; \quad \text{% Constant for the first bending mode (pinned-free)}
\]
% (from Rao pg. 527)

\[
z = \left(\sin(kb_2x_2/L_{tlr}) + \frac{\sin(kb_2)}{\sinh(kb_2)} \sinh(kb_2x_2/L_{tlr})\right)\];
\]
% pinned-free beam mode function

\[
z_{2dd} = \left(\frac{kb_2}{L_{tlr}}\right)^2 \left(-\sin(kb_2x_2/L_{tlr}) + \frac{\sin(kb_2)}{\sinh(kb_2)} \sinh(kb_2x_2/L_{tlr})\right)\];
\]
% second derivative of pinned-free beam mode function

\text{else disp('Insufficient information regarding fifth wheel suspension.'))}
\text{end}

%%%
% %%%
%%%%%%%%%%%%%%%%%%% Computation of Integrals
%%%%%%%%%%%%%%%%%%% %%%
%%%

\[
D_1_t = ['(',z_1,')']; \quad \% \text{Tractor frame beaming equations to be}
\]
\[
D_2_t = ['((a_1-x_1)\ast(',z_1,')')']; \quad \% \text{used in the integrals (string form)}
\]
\[
D_3_t = ['(',z_1,')\ast(',z_1,')'];
D_4_t = ['(',z_{1dd},')\ast(',z_{1dd},')'];
\]

\[
D_1_{tlr} = ['(',z_2,')']; \quad \% \text{Trailer beaming equations to be}
\]
\[
D_2_{tlr} = ['((e-x_2)\ast(',z_2,')')']; \quad \% \text{used in the integrals (string form)}
\]
\[
D_{3_{tlr}} = ['(',z_2,')\ast(',z_2,')'];
D_{4_{tlr}} = ['(',z_{2dd},')\ast(',z_{2dd},')'];
\]

\[
I_1_t = \text{quadl('modeD1_t',0,b_{fw})}; \quad \% \text{Integrals of functions defined above}
\]
\[
I_2_t = \text{quadl('modeD2_t',0,b_{fw})}; \quad \% \text{(along length of tractor frame)}
\]
\[
I_3_t = \text{quadl('modeD3_t',0,b_{fw})};
I_4_t = \text{quadl('modeD4_t',0,b_{fw})};
\]

\[
I_{1_{tlr}} = \text{quadl('modeD1_{tlr}',0,L_{tlr})}; \quad \% \text{Integrals of functions defined above}
\]
\[
I_{2_{tlr}} = \text{quadl('modeD2_{tlr}',0,L_{tlr})}; \quad \% \text{(along length of trailer)}
\]
\[
I_{3_{tlr}} = \text{quadl('modeD3_{tlr}',0,L_{tlr})};
I_{4_{tlr}} = \text{quadl('modeD4_{tlr}',0,L_{tlr})};
\]
E_a1=modeD1_t(b_a1); \% Disp at axle #1 due to tractor frame beaming
E_cf=modeD1_t(b_cf); \% Disp at cab front due to tractor frame beaming
E_e=modeD1_t(b_e); \% Disp at engine due to tractor frame beaming
E_cr=modeD1_t(b_cr); \% Disp at cab rear due to tractor frame beaming
E_a2=modeD1_t(b_a2); \% Disp at axle #2 due to tractor frame beaming
E_fw=modeD1_t(b_fw); \% Disp at fifth wheel due to tractor frame beaming
E_a3=modeD1_t(b_a3); \% Disp at axle #3 due to tractor frame beaming
E_0=modeD1_tlr(0); \% Disp at fifth wheel due to trailer beaming
E_a4=modeD1_tlr(b_a4); \% Disp at axle #4 due to trailer beaming
E_a5=modeD1_tlr(b_a5); \% Disp at axle #5 due to trailer beaming

EI_t = 4*pi^2*fhz^2*(b_fw/kb1)^4*ML_t; \% Tractor frame flexural rigidity
EI_tlr = 4*pi^2*fhz2^2*(L_tlr/kb2)^4*ML_tlr; \% Trailer flexural rigidity

\% Seat Suspension Options
disp('VEHICLE SUSPENSION OPTIONS')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency mode')
disp('because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');

if z11 == 'a', \% Choice 'a' is with seat suspension
cs = 1140; \% Damping ratio of 0.5
ks = 3403; \% N/m(spring const of seat suspension)
elseif z11 == 'b', \% Choice 'b' is without seat suspension
cs = 1329; \% N/(m/s)(damping const of seat suspension)
ks = 1e10; \% N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.') end

\% Cab Suspension Options
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp('gives a very high frequency mode(s) because the corresponding')
disp('stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');
if z22 == 'a', % Choice 'a' is front cab suspension
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 88740; % N/m(spring const of front cab suspension)
elseif z22 == 'b', % Choice 'b' is rear cab suspension
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
 ccr = 5073.5; % N/(m/s)(damping const of rear cab suspension)
 kcr = 63757.5; % N/m(spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s)(damping const of front cab suspension)
 kcf = 86260.5; % N/m(spring const of front cab suspension)
elseif z22 == 'd', % Choice 'd' is without cab suspension
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)
else disp('Insufficient information regarding cab suspension.')
end

%%%
%%
%%%%%%%%%%%%%%%%%%%% Vehicle Tire Selection
%%%%%%%%%%%%%%%%%%%%%

%%%
%%
% Values shown represent Wide Singles

mt1 = 374; % kg Mass of Steer Axle
mt2 = 648.3; % kg Mass of Drive Axle #1
mt3 = 648.3; % kg Mass of Drive Axle #2
mt4 = 648.3; % kg Mass of Trailer Axle #1
mt5 = 648.3; % kg Mass of Trailer Axle #2

c1 = 517; % N/(m/s) Steer Axle Damping Const.
c2 = 648.3; % N/(m/s) Drive Axle #1 Damping Const.
c3 = 648.3; % N/(m/s) Drive Axle #2 Damping Const.
c4 = 648.3; % N/(m/s) Trailer Axle #1 Damping Const.
c5 = 648.3; % N/(m/s) Trailer Axle #2 Damping Const.

kt4 = 2.3882e6; % N/m Trailer Axle #1 Spring Const.
kt5 = 2.3882e6; % N/m Trailer Axle #2 Spring Const.

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('VEHICLE VELOCITY')
disp(' ')
disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp(' ')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; %Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.277778*vm; %Velocity conversion from kph to m/s
end

T(1) = 0; %Time delay between front axle and remaining axles
T(2) = (a+b)/v; % Axle #2
T(3) = (a+d)/v; % Axle #3
T(4) = (a+i+e+f)/v; % Axle #4
T(5) = (a+i+e+h)/v; % Axle #5

%%%
%%%%%%%%%%%%%%%%%%%% Road PSD Selection %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('ROAD PSD SELECTION')
disp(' ')
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp('')
disp('a : Csp = 4.3e-11,N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp('')
tabchoice11=input('Input the road surface to be used : ','s');

if tabchoice11== 'a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11== 'b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11 == 'c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11 == 'd', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
end

disp('')
disp('J PENALTY OPTIONS')
disp('')
disp('Input the values for K1 and K2 in the J penalty function')
disp('Note: Both values should add up to 1')
disp('')
K_1 = input('Input the value for K1 : ');
disp('')
K_2 = input('Input the value for K2 : ');

% Start Loop on Tire Stiffness Properties
% Stiffness values will range from 70% to 130% of the nominal value

for iii1=1:21;
 for jjjj=1:21;
 ktf(iii1,jjjj)=38850*iiii;
 ktr(iii1,jjjj)=143292*jjjj;
 kt1 = 867650+ktf(iii1,jjjj);
 kt2 = (3200190+ktr(iii1,jjjj))*0.5;
 kt3 = (3200190+ktr(iii1,jjjj))*0.5;
 end
end

%%%
% THE SYSTEM IS WRITTEN AS (M*S*S+C*S+K)*X(S)=(A*S+B)*U(S)

Mass Matrix

M = zeros(15,15);
M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
M(3,3) = I_c; % Eqn #3: Pitch of Cab
M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
M(5,5) = m_t; % Eqn #5: Vertical Disp of Tractor Frame
M(5,6) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor Frame
M(5,7) = ML_t*I1_t;
M(6,5) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor Frame
M(6,6) = I_t;
M(6,7) = -ML_t*I2_t;
M(7,5) = ML_t*I1_t; % Eqn #7: Beaming of Tractor Frame
M(7,6) = -ML_t*I2_t;
M(7,7) = ML_t*I3_t;
M(8,8) = m_tlr; % Eqn #8: Vertical Disp of Trailer
M(8,9) = -ML_tlr*L_tlr*(e-L_tlr/2); % Eqn #9: Pitch of Trailer
M(8,10) = ML_tlr*I1_tlr;
M(9,8) = -ML_tlr*L_tlr*(e-L_tlr/2); % Eqn #9: Pitch of Trailer
M(9,9) = I_tlr;
M(9,10) = -ML_tlr*I2_tlr;
M(10,8) = ML_tlr*I1_tlr; % Eqn #10: Beaming of Trailer
M(10,9) = -ML_tlr*I2_tlr;
M(10,10) = ML_tlr*I3_tlr;
M(11,11) = mt1; % Eqn #11: Vertical Disp of Axle #1
M(12,12) = mt2; % Eqn #12: Vertical Disp of Axle #2
\[M(13,13) = m t_3; \] % Eqn #13: Vertical Disp of Axle #3

\[M(14,14) = m t_4; \] % Eqn #14: Vertical Disp of Axle #4

\[M(15,15) = m t_5; \] % Eqn #15: Vertical Disp of Axle #5

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%

\[C = \text{zeros}(15,15); \]

\begin{align*}
C(1,1) &= cs; \\
C(1,2) &= -cs; \\
C(1,3) &= r*cs; \\
C(2,1) &= -cs; \\
C(2,2) &= cs+ccf+ccr; \\
C(2,3) &= -r*cs-n*ccf+p*ccr; \\
C(2,5) &= -ccf-ccr; \\
C(2,6) &= 1*ccf-j*ccr; \\
C(2,7) &= -ccf*E_{cf}-ccr*E_{cr}; \\
C(3,1) &= r*cs; \\
C(3,2) &= -r*cs-n*ccf+p*ccr; \\
C(3,3) &= (r^2)*cs+(n^2)*ccf+(p^2)*ccr; \\
C(3,5) &= n*ccf-p*ccr; \\
C(3,6) &= -n*l*ccf+p*j*ccr; \\
C(3,7) &= n*ccf*E_{cf}-p*ccr*E_{cr}; \\
C(4,4) &= ce; \\
C(4,5) &= -ce; \\
C(4,6) &= m*ce; \\
C(4,7) &= -ce*E_e; \\
C(5,2) &= -ccf-ccr; \\
C(5,3) &= n*ccf-p*ccr; \\
C(5,4) &= -ce; \\
C(5,5) &= ce+ccf+ccr+cfw+c1+c2+c3; \\
C(5,6) &= -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3; \\
C(5,7) &= ce*E_e+ccf*E_{cf}+ccr*E_{cr}+cfw*E_{fw}+c1*E_{a1}+c2*E_{a2}+c3*E_{a3}; \\
C(5,8) &= -cfw; \\
C(5,9) &= e*cfw; \\
C(5,10) &= -cfw*E_{0}; \\
C(5,11) &= -c1; \\
C(5,12) &= -c2; \\
C(5,13) &= -c3; \\
C(6,2) &= 1*ccf-j*ccr; \\
C(6,3) &= -n*l*ccf-p*j*ccr; \\
C(6,4) &= m*ce; \\
C(6,5) &= -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3;
\end{align*}
C(6,6) =
(m^2)*c_e+(l^2)*c_{cf}+(j^2)*c_{cr}+(i^2)*c_{fw}+(a^2)*c_1+(b^2)*c_2+(d^2)*c_3
;

C(6,7) = -m*c_{E_e}+l*c_{cf}+j*c_{cr}+i*c_{fw}+a*c_1+b*c_2+c_1\ E_0+...
 +d*c_3*E_a3;

C(6,8) = -i*c_{fw};
C(6,9) = e*i*c_{fw};
C(6,10) = -i*c_{fw}*E_0;
C(6,11) = a*c_1;
C(6,12) = -b*c_2;
C(6,13) = -d*c_3;

C(7,2) = -c_{cf}-c_{cr}*E_cr;
C(7,3) = r*c_{cf}-p*c_{cr}*E_cr;
C(7,4) = -c_{E_e};
C(7,5) =
 c_{E_e}+c_{cf}+c_{cr}-c_{cf}+c_{cr}+c_{cf}+c_{fw}-c_1*E_a1+c_2*E_a2+...$
 +d*c_3*E_a3;

C(7,6) = -m*c_{E_e}+l*c_{cf}+j*c_{cr}+i*c_{fw}+a*c_1+b*c_2+c_1\ E_0+...
 +d*c_3*E_a3;

C(7,8) = -c_{fw}+E_{fw};
C(7,9) = e*c_{fw}+E_{fw};
C(7,10) = -c_{fw}*E_0+E_{fw};
C(7,11) = -c_1*E_a1;
C(7,12) = -c_2*E_a2;
C(7,13) = -c_3*E_a3;

C(8,5) = -c_{fw};
C(8,6) = -i*c_{fw};
C(8,7) = -c_{fw}+E_{fw};
C(8,8) = c_{fw}+c_4+c_5;
C(8,9) = -e*c_{fw}+f*c_4+h*c_5;
C(8,10) = c_{fw}+E_0+c_4+e_4+c_5+c_5;
C(8,14) = -c_4;
C(8,15) = -c_5;

C(9,5) = e*c_{fw};
C(9,6) = e*i*c_{fw};
C(9,7) = e*c_{fw}+E_{fw};
C(9,8) = -e*c_{fw}+f*c_4+h*c_5;
C(9,9) = (e^2)*c_{fw}+(f^2)*c_4+(h^2)*c_5;
C(9,10) = -e*c_{fw}+f*c_4+e_4+h_5+c_5+c_5;
C(9,14) = -f*c_4;
C(9,15) = -h*c_5;

C(10,5) = -c_{fw}+E_0;
C(10,6) = -i*c_{fw}+E_0;
C(10,7) = -c_{fw}+E_{fw}+E_0;
C(10,8) = c_{fw}+E_0+c_4+c_5+c_5+c_5;
C(10,9) = -e*c_{fw}+f*c_4+e_4+h_5+c_5+c_5;
C(10,10) = c_{fw}+E_0^2+c_4+c_5+c_5+c_5^2;
C(10,14) = -c_4+c_5;
\[
\begin{align*}
C(10,15) &= -c_5 E_{a5}; \\
C(11,5) &= -c_1; \\
C(11,6) &= a c_1; \\
C(11,7) &= -c_1 E_{a1}; \\
C(11,11) &= c_1 + c_{t1}; \\
C(12,5) &= -c_2; \\
C(12,6) &= -b c_2; \\
C(12,7) &= -c_2 E_{a2}; \\
C(12,12) &= c_2 + c_{t2}; \\
C(13,5) &= -c_3; \\
C(13,6) &= -d c_3; \\
C(13,7) &= -c_3 E_{a3}; \\
C(13,13) &= c_3 + c_{t3}; \\
C(14,8) &= -c_4; \\
C(14,9) &= -f c_4; \\
C(14,10) &= -c_4 E_{a4}; \\
C(14,14) &= c_4 + c_{t4}; \\
C(15,8) &= -c_5; \\
C(15,9) &= -h c_5; \\
C(15,10) &= -c_5 E_{a5}; \\
C(15,15) &= c_5 + c_{t5};
\end{align*}
\]

\[\begin{align*}
\text{%%%%%%%%%%%%%%%%%%%%%%%%%%%} \\
\text{%%% Stiffness Matrix %%%} \\
\text{%%%%%%%%%%%%%%%%%%%%%%%%%%%} \\
K &= \text{zeros}(15,15); \\
K(1,1) &= k_s; \\
K(1,2) &= -k_s; \\
K(1,3) &= r^*k_s; \\
K(2,1) &= -k_s; \\
K(2,2) &= k_s + k_{cf} + k_{cr}; \\
K(2,3) &= -r^*k_s - n^2 k_{cf} + p^2 k_{cr}; \\
K(2,5) &= -k_{cf} - k_{cr}; \\
K(2,6) &= l^2 k_{cf} - j^2 k_{cr}; \\
K(2,7) &= -k_{cf} + k_{cr} E_{cf}; \\
K(3,1) &= r^*k_s; \\
K(3,2) &= -r^*k_s - n^2 k_{cf} + p^2 k_{cr}; \\
K(3,3) &= (r^2 k_s + n^2 k_{cf} + p^2 k_{cr}); \\
K(3,5) &= n^2 k_{cf} - p^2 k_{cr}; \\
K(3,6) &= -n^2 l^2 k_{cf} - j^2 k_{cr}; \\
K(3,7) &= n^2 k_{cf} + p^2 k_{cr} E_{cr}; \\
K(4,4) &= k_e; \\
K(4,5) &= -k_e; \\
K(4,6) &= m^2 k_e; \\
K(4,7) &= -k_e E_{e};
\end{align*}\]
\[\begin{align*}
K(5,2) &= -kcf-kcr; \\
K(5,3) &= n*kcf-p*kcr; \\
K(5,4) &= -ke; \\
K(5,5) &= ke+kcf+kcr+kfw+k1+k2+k3; \\
K(5,6) &= -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \\
K(5,7) &= ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3; \\
K(5,8) &= -kfw; \\
K(5,9) &= e*kfw; \\
K(5,10) &= kfw*E_0; \\
K(5,11) &= -k1; \\
K(5,12) &= -k2; \\
K(5,13) &= -k3; \\
K(6,2) &= -l*kcf+j*kcr; \\
K(6,3) &= -n*l*kcf-j*kcr; \\
K(6,4) &= m*ke; \\
K(6,5) &= -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \\
K(6,6) &= (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3; \\
K(6,7) &= -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*k1*E_a1+b*k2*E_a2+...-d*k3*E_a3; \\
K(6,8) &= -i*kfw; \\
K(6,9) &= e*i*kfw; \\
K(6,10) &= -i*kfw*E_0; \\
K(6,11) &= a*k1; \\
K(6,12) &= -b*k2; \\
K(6,13) &= -d*k3; \\
K(7,2) &= -kcf*E_cf-kcr*E_cr; \\
K(7,3) &= n*kcf*E_cf-p*kcr*E_cr; \\
K(7,4) &= -ke*E_e; \\
K(7,5) &= ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3; \\
K(7,6) &= -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*k1*E_a1+b*k2*E_a2+...-d*k3*E_a3; \\
K(7,7) &= ke*E_e^2+kcf*E_cf^2+kcr*E_cr^2+kfw*E_fw^2+k1*E_a1^2+k2*E_a2^2+...+k3*E_a3^2+EI_t*I4_t; \\
K(7,8) &= -kfw*E_fw; \\
K(7,9) &= e*kfw*E_fw; \\
K(7,10) &= -kfw*E_0*E_fw; \\
K(7,11) &= -k1*E_a1; \\
K(7,12) &= -k2*E_a2; \\
K(7,13) &= -k3*E_a3; \\
K(8,5) &= -kfw; \\
K(8,6) &= -i*kfw; \\
K(8,7) &= -kfw*E_fw; \\
K(8,8) &= kfw+k4+k5; \\
K(8,9) &= -e*kfw+f*k4+h*k5; \\
K(8,10) &= kfw*E_0+k4*E_a4+k5*E_a5; \\
K(8,14) &= -k4;
\end{align*} \]
\[K(8,15) = -k_5; \]
\[K(9,5) = e \cdot k_{fw}; \]
\[K(9,6) = e \cdot i \cdot k_{fw}; \]
\[K(9,7) = e \cdot k_{fw} \cdot E_{fw}; \]
\[K(9,8) = -e \cdot k_{fw} \cdot f \cdot k_4 + h \cdot k_5; \]
\[K(9,9) = (e^2) \cdot k_{fw} + (f^2) \cdot k_4 + (h^2) \cdot k_5; \]
\[K(9,10) = -e \cdot k_{fw} \cdot E_0 + f \cdot k_4 \cdot E_a4 + h \cdot k_5 \cdot E_a5; \]
\[K(9,14) = -f \cdot k_4; \]
\[K(9,15) = -h \cdot k_5; \]
\[K(10,5) = -k_{fw} \cdot E_0; \]
\[K(10,6) = -i \cdot k_{fw} \cdot E_0; \]
\[K(10,7) = -k_{fw} \cdot E_{fw} \cdot E_0; \]
\[K(10,8) = k_{fw} \cdot E_0 \cdot k_4 \cdot E_a4 + k_5 \cdot E_a5; \]
\[K(10,9) = -e \cdot k_{fw} \cdot E_0 + f \cdot k_4 \cdot E_a4 + h \cdot k_5 \cdot E_a5; \]
\[K(10,10) = k_{fw} \cdot E_0^2 + k_4 \cdot E_a4^2 + k_5 \cdot E_a5^2 + E_{I1r} \cdot I_{4_{1lr}}; \]
\[K(10,14) = -k_4 \cdot E_a4; \]
\[K(10,15) = -k_5 \cdot E_a5; \]
\[K(11,5) = -k_1; \]
\[K(11,6) = a \cdot k_1; \]
\[K(11,7) = -k_1 \cdot E_a1; \]
\[K(11,11) = k_1 \cdot k_{t1}; \]
\[K(12,5) = -k_2; \]
\[K(12,6) = -b \cdot k_2; \]
\[K(12,7) = -k_2 \cdot E_a2; \]
\[K(12,12) = k_2 \cdot k_{t2}; \]
\[K(13,5) = -k_3; \]
\[K(13,6) = -d \cdot k_3; \]
\[K(13,7) = -k_3 \cdot E_a3; \]
\[K(13,13) = k_3 \cdot k_{t3}; \]
\[K(14,8) = -k_4; \]
\[K(14,9) = -f \cdot k_4; \]
\[K(14,10) = -k_4 \cdot E_a4; \]
\[K(14,14) = k_4 \cdot k_{t4}; \]
\[K(15,8) = -k_5; \]
\[K(15,9) = -h \cdot k_5; \]
\[K(15,10) = -k_5 \cdot E_a5; \]
\[K(15,15) = k_5 \cdot k_{t5}; \]

%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%

A = zeros(15,1);
A(11) = ct1;
A(12) = ct2;
A(13) = ct3;
A(14) = ct4;
A(15) = ct5;
Tire Stiffness Matrix

\[
B = \text{zeros}(15,1);
\]

\[
B(11) = kt_1;
B(12) = kt_2;
B(13) = kt_3;
B(14) = kt_4;
B(15) = kt_5;
\]

% System "A" Matrix

\[
AA = [\text{zeros(size}(M)) \hspace{1cm} \text{eye}(\text{size}(M)) \hspace{1cm} \text{inv}(M)*K \hspace{1cm} \text{inv}(M)*C];
\]

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)

\[
w_c = [.1 \hspace{1cm} 1 \hspace{1cm} 1.25 \hspace{1cm} 1.6 \hspace{1cm} 2 \hspace{1cm} 2.5 \hspace{1cm} 3.15 \hspace{1cm} 4 \hspace{1cm} 5 \hspace{1cm} 6.3 \hspace{1cm} 8 \hspace{1cm} 10 \hspace{1cm} 12.5 \hspace{1cm} 16 \hspace{1cm} 20 \hspace{1cm} 25 \hspace{1cm} 31.5 \hspace{1cm} 40 \hspace{1cm} 50];
w_{hc} = [.1 \hspace{1cm} .125 \hspace{1cm} .16 \hspace{1cm} .2 \hspace{1cm} .25 \hspace{1cm} .315 \hspace{1cm} .4 \hspace{1cm} .5 \hspace{1cm} .63 \hspace{1cm} .8 \hspace{1cm} 1 \hspace{1cm} 1.25 \hspace{1cm} 1.6 \hspace{1cm} 2 \hspace{1cm} 2.5 \hspace{1cm} 3.15 \hspace{1cm} 4 \hspace{1cm} 5 \hspace{1cm} 6.3 \hspace{1cm} 8 \hspace{1cm} 10 \hspace{1cm} 12.5 \hspace{1cm} 16 \hspace{1cm} 20 \hspace{1cm} 25 \hspace{1cm} 31.5 \hspace{1cm} 40 \hspace{1cm} 50];
\]

% 2.5 hr FATIGUE BOUNDARY

\[
fat_1 = [4.284, 1.4, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40];
fat_2 = [0.5, 0.5, 0.5, 0.5, 0.5, 0.63, 0.8, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10, 12.5];
\]

% 2.5 hr REDUCED COMFORT BOUNDARY

\[
comf1 = \frac{fat_1}{3.15};
comf2 = \frac{comf1}{2.25};
\]

% 8 hr REDUCED COMFORT BOUNDARY

\[
comf3 = \frac{comf2}{2.25};
comf4 = \frac{comf3}{2.25};
\]

%Calculation of central frequencies in rad/s

\[
whzcr = 2*\pi*whzc;
freqlow = 0.89*whzcr;
freqhigh = 1.12*whzcr;
freq = [freqlow, whzcr, freqhigh];
\]
imag = sqrt(-1);

for ii = 1:length(whzc);
 for jj = 1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii, jj);
 s = imag * w;
 dp = sqrt(h1^2 + r^2);

 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ... exp(-s*T(4)) exp(-s*T(5))];

 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*(time.')))

 z_s = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] * vectx; % vert seat
cg
 long = [0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0] * vectx; % long disp
 of driver
 z_tlr = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] * vectx; % vert
 trailer cg

 % Acceleration Transfer Functions
 magcfA1(ii, jj) = abs(s*s*z_s); % Mag of trans function,
 (m/s*s)/m
 magcfAlong(ii, jj) = abs(s*s*long);
 magcftlr(ii, jj) = abs(s*s*z_tlr);

 % Road PSD in m*m/(rad/s)
 rpsd(ii, jj) = Csp*(((2*pi*v)^(N-1))/(w^N));

 % Acceleration PSDs in (m/s^2)^2/(rad/s)
 psdcfA1(ii, jj) = magcfA1(ii, jj) * rpsd(ii, jj);
 psdcfAlong(ii, jj) = magcfAlong(ii, jj) * rpsd(ii, jj);
 psdcftlr(ii, jj) = magcftlr(ii, jj) * rpsd(ii, jj);
 end
end
for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msgyla(kk)=0.5*(psdcfAl(kk,1)+psdcfAl(kk,2))*(freq(kk,2)-
 freq(kk,1));
msgylb(kk)=0.5*(psdcfAl(kk,2)+psdcfAl(kk,3))*(freq(kk,3)-
 freq(kk,2));
msgyl1(kk)=msgyla(kk)+msgylb(kk);
rmsA1cf(kk)=sqrt(msgyl1(kk));
% Long. Driver RMS
msgylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*...
(freq(kk,2)-freq(kk,1));
msgylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*...
(freq(kk,3)-freq(kk,2));
msgylong1(kk)=msgylonga(kk)+msgylongb(kk);
rmsAlongcf(kk)=sqrt(msgylong1(kk));
% Vert. Trailer cg RMS
msgyltra(kk)=0.5*(psdctlr(kk,1)+psdctlr(kk,2))*(freq(kk,2)-
 freq(kk,1));
msgyltrb(kk)=0.5*(psdctlr(kk,2)+psdctlr(kk,3))*(freq(kk,3)-
 freq(kk,2));
msgyltr1(kk)=msgyltra(kk)+msgyltrb(kk);
rmsstlrcf(kk)=sqrt(msgyltr1(kk));
end
RMScf = [rmsA1cf',rmsAlongcf',rmsstlrcf']; % Accel. RMS
Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal
wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.63,1.1.25,1.6,2,2.5,3.15,4,5,...
 6.3,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.482,.484,...
 .494,.531,.631,.804,.967,1.039,1.054,1.036,.988,.902,.768,.636,...
 .513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
 890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];

isovert = WgtV.*RMScf(1:28,1)'; % Weighted Vert. Driver RMS
Accel.
isolong = WgtL.*RMScf(1:28,2)'; % Weighted Long. Driver RMS
Accel.
isotl = WgtV.*RMScf(1:28,3)'; % Weighted Vert. Trailer RMS
Accel.

term2V=(WgtV.*rmsA1cf(1:28)).^2;
a0_V_dr=(sum(term2V))^0.5; % a0 for vert. disp of
driver
term2L = (WgtL.*rmsAlongcf(1:28)).^2;
a0_L_dr = (sum(term2L))^0.5; % a0 for long. disp of driver

aV = (a0_L_dr^2 + a0_V_dr^2)^0.5; % a0 for comb vert and long disp
tlrV = (WgtV.*rmsTlrcf(1:28)).^2;
a0_V_tlr = (sum(tlrV))^0.5; % a0 for vert. disp of driver

aVV(iiii,jjjj) = aV; % combined ISO wgt acc, m/s^2
a0_VV_tlr(iiii,jjjj) = a0_V_tlr;
Jpenalty(iiii,jjjj) = K_1*(aVV(iiii,jjjj)/0.44814) + K_2*...
(a0_VV_tlr(iiii,jjjj)/0.3239);

end % end of jjjj loop on kt2
end % end of iiii loop on kt1

disp(' ')
disp('RESULTS OF PARAMETER VARIATION')
disp(' ')
disp('Minimum aV, m/s^2')
disp(min(aVV(:))
disp(' ')
[ia, ja] = find(aVV == min(aVV(:,)));
disp('Corresponding kt1, kt2, and kt3 values, N/m')
disp([867650+ktf(ia, ja) (3200190+ktr(ia, ja))*0.5
(3200190+ktr(ia, ja))*0.5])
disp(' ')

disp(' ')
disp('Minimum a0_V_tlr, m/s^2')
disp(min(a0_VV_tlr(:)))
disp(' ')
[it, jt] = find(a0_VV_tlr == min(a0_VV_tlr(:)));
disp('Corresponding kt1, kt2, and kt3 values, N/m')
disp([867650+ktf(it, jt) (3200190+ktr(it, jt))*0.5
(3200190+ktr(it, jt))*0.5])
disp(' ')

disp(' ')
disp('Minimum Jpenalty')
disp('J = K1*aV/0.44814 + K2*a0_V_tlr/0.3239')
disp('K1 K2')
disp([K_1 K_2])
disp(' ')
disp(min(Jpenalty(:))
disp(' ')
[iJ, jJ] = find(Jpenalty == min(Jpenalty(:)));
disp('Corresponding kt1, kt2, and kt3 values, N/m')
disp([867650+ktf(iJ, jJ) (3200190+ktr(iJ, jJ))*0.5
(3200190+ktr(iJ, jJ))*0.5])
disp(' ')
figure(1)
surf(B67650+ktf,(3200190+ktr)/2,aVV)
xlabel('Steer Tire K, N/m')
ylabel('Single Drive Tire K, N/m')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Tire Stiffness Parameter Variation')

figure(2)
surf(B67650+ktf,(3200190+ktr)/2,a0_VV_tlr)
xlabel('Steer Tire K, N/m')
ylabel('Single Drive Tire K, N/m')
zlabel('Trailer Wgt Vert Acc, m/s^2')
% title('Tractor Tire Stiffness Parameter Variation')

figure(3)
surf(B67650+ktf,(3200190+ktr)/2,Jpenalty)
xlabel('Steer Tire K, N/m')
ylabel('Single Drive Tire K, N/m')
zlabel('Penalty Function')
title(['K1 = ', num2str(K_1),', K2 = ', num2str(K_2)])
Appendix J: opt_tireC_freq.m

This parameter variation program varies the damping of the steer axle tires and the damping of the first and second drive axle tires combined. Each of the drive axle tires on the tractor are assumed to have the same value, so they were combined into one value that was varied, and the individual drive axle tire values were assumed to be equal to exactly half of that value. The steer tires were varied from 361.9 N/(m/s) to 672.1 N/(m/s) in increments of 15.51 N/(m/s). This forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the steer tire damping. The drive axle tires were varied from 453.81 N/(m/s) to 842.79 N/(m/s) in increments of 19.45 N/(m/s). Like the steer tires, this forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the drive tire damping.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), and a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user. The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding damping values for the steer and drive tires. Also, the program plots the output information on surface plots to study trends in the information.
% opt_tireC_freq.m
% Developed by Ryan Spivey, 4/10/07
% Varies tire damping using weighted RMS acceleration in the frequency domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1)Vertical Disp. of Driver's Seat
% 2)Vertical Disp. of Cab
% 3)Pitch of Cab
% 4)Vertical Disp. of Engine
% 5)Vertical Disp. of Tractor Frame
% 6)Pitch of Tractor Frame
% 7)Beaming of Tractor Frame
% 8)Vertical Disp. of Trailer
% 9)Pitch of Trailer
% 10)Beaming of Trailer
% 11)Vertical Disp. of Axle #1
% 12)Vertical Disp. of Axle #2
% 13)Vertical Disp. of Axle #3
% 14)Vertical Disp. of Axle #4
% 15)Vertical Disp. of Axle #5
clc
clear all
close all
format short e
format compact
global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr
global e al kbl kb2 b_fw L_tlr alpha
disp(' ')
disp('Tire Damping Parameter Variation in the Frequency Domain')
disp('Roadholding Model ')
disp(['',date])

% Choose a test vehicle
disp(' ')
disp('VEHICLE SELECTION')
disp(' ')
disp('Please choose a vehicle : ');
disp('a: Ideal Tractor Semi-Trailer');
vehicle = input('Enter your choice : ', 's');
if vehicle == 'a'
 % Inertial Properties
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab
 I_c = 2100; %kg*m^2 M I of cab
 m_e = 2000; %kg mass of engine (ESTIMATE)
% suspended Parameters
\[m_t = 3783; \quad \text{kg} \quad \text{mass of tractor (5783 kg - engine)} \]
\[I_t = 46590.9; \quad \text{kg} \cdot \text{m}^2 \quad \text{M I of tractor} \]
\[m_{ul} = 10800; \quad \text{kg} \quad \text{mass of trailer (ESTIMATE)} \]
\[I_{tlr} = 200000; \quad \text{kg} \cdot \text{m}^2 \quad \text{M I of trailer} \]
\[m_L = 14000; \quad \text{kg} \quad \text{mass of trailer load (ESTIMATE)} \]
\[m_{tlr} = m_{ul} + m_L; \quad \text{kg} \quad \text{mass of loaded trailer} \]

% Suspension Parameters
\[\begin{align*}
 c_1 &= 11270; \quad \text{N/(m/s)} \quad \text{damping const of axle #1} \\
 c_2 &= 27500; \quad \text{N/(m/s)} \quad \text{damping const of axle #2} \\
 c_3 &= 27500; \quad \text{N/(m/s)} \quad \text{damping const of axle #3} \\
 c_4 &= 70000; \quad \text{N/(m/s)} \quad \text{damping const of axle #4} \\
 c_5 &= 70000; \quad \text{N/(m/s)} \quad \text{damping const of axle #5} \\
 c_e &= 10000; \quad \text{N/(m/s)} \quad \text{damping const of engine mount} \\
 k_1 &= 581300; \quad \text{N/m} \quad \text{spring const of axle #1} \\
 k_2 &= 586900; \quad \text{N/m} \quad \text{spring const of axle #2} \\
 k_3 &= 586900; \quad \text{N/m} \quad \text{spring const of axle #3} \\
 k_4 &= 1000000; \quad \text{N/m} \quad \text{spring const of axle #4} \\
 k_5 &= 1000000; \quad \text{N/m} \quad \text{spring const of axle #5} \\
 k_e &= 1e10; \quad \text{N/m} \quad \text{spring const of the engine mount}
\end{align*} \]

% Model Dimensions
\[\begin{align*}
 b_{a1} &= 1.065; \quad \text{m} \quad \text{Front end of the tractor to axle #1} \\
 b_{cf} &= 1.470; \quad \text{m} \quad \text{Front end of the tractor to cab front} \\
 b_e &= 2.797; \quad \text{m} \quad \text{Front end of the tractor to engine} \\
 b_{cr} &= 4.02; \quad \text{m} \quad \text{Front end of the tractor to cab rear} \\
 b_{a2} &= 6.035; \quad \text{m} \quad \text{Front end of the tractor to axle #2} \\
 b_{fw} &= 6.688; \quad \text{m} \quad \text{Front end of the tractor to 5th wheel} \\
 b_{a3} &= 7.34; \quad \text{m} \quad \text{Front end of the tractor to axle #3} \\
 a1 &= 4.00607; \quad \text{m} \quad \text{Front end of the tractor to tractor cg} \\
 b_{a4} &= 8.58; \quad \text{m} \quad \text{From the fifth wheel to axle #4} \\
 b_{a5} &= 9.78; \quad \text{m} \quad \text{From the fifth wheel to axle #5} \\
 L_t &= 8.2; \quad \text{m} \quad \text{Length of Tractor} \\
 L_{tlr} &= 9.78; \quad \text{m} \quad \text{Length of Trailer} \\
 e &= 5.62; \quad \text{m} \quad \text{From the trailer cg to fifth wheel} \\
 f &= 2.96; \quad \text{m} \quad \text{From the trailer cg to axle #4} \\
 h &= 4.16; \quad \text{m} \quad \text{From the trailer cg to axle #5} \\
 a &= 2.94107; \quad \text{m} \quad \text{From the tractor cg to axle #1} \\
 b &= 2.02893; \quad \text{m} \quad \text{From the tractor cg to axle #2} \\
 d &= 3.33939; \quad \text{m} \quad \text{From the tractor cg to axle #3} \\
 l &= 2.53607; \quad \text{m} \quad \text{From the tractor cg to cab front} \\
 m &= 1.209074; \quad \text{m} \quad \text{From the tractor cg to engine}
\end{align*} \]
j = 0.013926; \quad \text{%m} \quad \text{From the tractor cg to cab rear}

i = 2.68193; \quad \text{%m} \quad \text{From the tractor cg to the fifth wheel}

n = 1.435; \quad \text{%m} \quad \text{From the cab cg to cab front}

p = 1.115; \quad \text{%m} \quad \text{From the cab cg to cab rear}

r = -0.200; \quad \text{%m} \quad \text{From the cab cg to seat}

tc = 1.10107; \quad \text{%m} \quad \text{From the tractor cg to the cab cg}

h1 = 1.0; \quad \text{%m} \quad \text{Height of the driver over the cab}

g = 9.8; \quad \text{%m/s^2} \quad \text{acceleration due to gravity}

ML_t = m_t/L_t; \quad \text{%kg/m} \quad \text{Mass per unit length (Tractor)}

ML_tlr = m_ul/L_tlr; \quad \text{%kg/m} \quad \text{Mass per unit length (Trailer)}

%%%
%%
%%%%%%%%%%%%%%%%%%% Fifth Wheel Configuration
%%%%%%%%%%%%%%%%%%%
%%%
%%

disp('')
disp('Give your choice for the fifth wheel configuration: ')
disp('Note: If a fifth wheel suspension system is chosen, the beaming of')
disp('the tractor frame and trailer will be modeled as free-free. If')
disp('no suspension is chosen, the tractor frame and trailer will be')
disp('modeled as free-pinned and pinned-free respectively.')
disp('a : With fifth wheel suspension')
disp('b : Without fifth wheel suspension')
z33 = input('Please give your choice : ', 's');

if z33 == 'a', \quad \text{% Choice 'a' is with fifth wheel suspension}
suspension
 disp('')
 kfw = input('Input the fifth wheel spring constant (N/m): '); disp('')
 cfw = input('Input the fifth wheel damping ratio (N/(m/s)): ');

 \quad \text{% The parameters for the first bending mode of the Tractor frame}
 disp('')
 fhz = input('Input the Tractor frequency of beaming (hz) fhz : ');
% The parameters for the first bending mode of the Trailer frame
disp(' ');
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz :
: ');

kb1 = 4.73004074; %Constant for the first bending mode (free-free)
alpha = 0.982502;

z1 = 'cosh(kb1*x1/b-fw) + cos(kb1*x1/b-fw) - ...
alpha*(sinh(kb1*x1/b-fw)+sin(kb1*x1/b-fw))';
% free-free beam mode function
z1dd = '(kb1/b-fw)^2*(cosh(kb1*x1/b-fw) - cos(kb1*x1/b-fw) - ...
... alpha*(sinh(kb1*x1/b-fw)-sin(kb1*x1/b-fw)))';
% second derivative of free-free beam mode function

kb2 = 4.73004074; %Constant for the first bending mode (free-free)

z2 = 'cosh(kb2*x2/L_tlr) + cos(kb2*x2/L_tlr) - ...
alpha*(sinh(kb2*x2/L_tlr)+sin(kb2*x2/L_tlr))';
% free-free beam mode function
z2dd = '(kb2/L_tlr)^2*(cosh(kb2*x2/L_tlr) - cos(kb2*x2/L_tlr) - ...
... alpha*(sinh(kb2*x2/L_tlr)-sin(kb2*x2/L_tlr)))';
% second derivative of free-free beam mode function

elseif z33 == 'b', % Choice 'b' is without fifth wheel suspension
kfw = 1000000000000; % (N/m) fifth wheel spring constant
cfw = 1000; % (N/(m/s)) fifth wheel damping ratio

% The parameters for the first bending mode of the Tractor frame
disp(' ');
fhz = input('Input the Tractor frequency of beaming (hz) fhz :
: ');

% The parameters for the first bending mode of the Trailer frame
disp(' ');
fhz2 = input('Input the Trailer frequency of beaming (hz) fhz :
: ');

kb1 = 2.36502; % Constant for the first bending mode (free-pinned)
% (from Rao pg. 527)

z1 = '(cos(kb1*x1/b-fw) + (cosh(kb1*x1/b-fw)) - ...
((cos(kb1)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*(sin(kb1*x1/b-fw)- ...
... sinh(kb1*x1/b-fw)))';
% free-pinned beam mode function
z1dd = '((kb1/b_fw)^2)*(-cos(kb1*x1/b_fw) +
 (cosh(kb1*x1/b_fw)) - ... ((cos(kb1)+cosh(kb1))/(sin(kb1)-
 sinh(kb1)))*(-sin(kb1*x1/b_fw)- ... sinh(kb1*x1/b_fw)))';
 % second derivative of free-pinned beam mode function

kb2 = 3.926602; % Constant for the first bending mode
 % (pinned-free)
 % (from Rao pg. 527)

z2 = '(sin(kb2*x2/L_tlr) + ...
 ((sin(kb2))/(sinh(kb2)))*(sinh(kb2*x2/L_tlr)))';
 % pinned-free beam mode function
z2dd = '(kb2/L_tlr)^2*(-sin(kb2*x2/L_tlr) + ...
 ((sin(kb2))/(sinh(kb2)))*(sinh(kb2*x2/L_tlr)))';
 % second derivative of pinned-free beam mode function

else disp('Insufficient information regarding fifth wheel
 suspension.')
end

%%%
% Computation of Integrals
%%%

D1_t=['('','z1,'')]'; % Tractor frame beaming
 % equations to be
D2_t=['((a1-x1).*(','z1,')]'; % used in the integrals
 % (string form)
D3_t=['(','z1,').*(','z1,')]';
D4_t=['(','z1dd,').*(','z1dd,')]';

D1_tlr=['(','z2,')]'; % Trailer beaming equations
to be
D2_tlr=['((e-x2).*(','z2,')]'; % used in the integrals
 % (string form)
D3_tlr=['(','z2,').*(','z2,')]';
D4_tlr=['(','z2dd,').*(','z2dd,')]';

I1_t=quadl('modeD1_t',0,b_fw); % Integrals of functions
defined above
I2_t=quadl('modeD2_t',0,b_fw); % (along length of tractor
 % frame)
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

I1_tlr=quadl('modeD1_tlr',0,L_tlr); % Integrals of functions
defined above
I2_tlr=quadl('modeD2_tlr',0,L_tlr); % (along length of trailer)
I3_tlr=quadl('modeD3_tlr',0,L_tlr);
I4_tlr=quadl('modeD4_tlr',0,L_tlr);
E_a1=modeD1_t(b_a1); % Disp at axle #1 due to tractor frame beaming
E_cf=modeD1_t(b_cf); % Disp at cab front due to tractor frame beaming
E_e=modeD1_t(b_e); % Disp at engine due to tractor frame beaming
E_cr=modeD1_t(b_cr); % Disp at cab rear due to tractor frame beaming
E_a2=modeD1_t(b_a2); % Disp at axle #2 due to tractor frame beaming
E_fw=modeD1_t(b_fw); % Disp at fifth wheel due to tractor frame beaming
E_a3=modeD1_t(b_a3); % Disp at axle #3 due to tractor frame beaming
E_0=modeD1_tlr(0); % Disp at fifth wheel due to trailer beaming
E_a4=modeD1_tlr(b_a4); % Disp at axle #4 due to trailer beaming
E_a5=modeD1_tlr(b_a5); % Disp at axle #5 due to trailer beaming

EI_t = 4*pi^2*fhz^2*(b_fw/kb1)^4*ML_t; %Tractor frame flexural rigidity
EI_tlr = 4*pi^2*fhz2^2*(L_tlr/kb2)^4*ML_tlr; %Trailer flexural rigidity

% Seat Suspension Options
disp(' ') disp('VEHICLE SUSPENSION OPTIONS') disp(' ') disp('Give your choice for seat suspension: ') disp('Note: Without seat suspension gives a very high frequency mode') disp(' because the stiffness is set to a high value.') disp('a : With seat suspension (~0.9 Hz)') disp('b : Without seat suspension') z11 = input('Enter your choice : ', 's');

if z11 == 'a', % Choice 'a' is with seat suspension
 cs = 1140; % Damping ratio of 0.5
 ks = 3403; % N/m(spring const of seat suspension)
elseif z11 == 'b', % Choice 'b' is without seat suspension
 cs = 1329; % N/(m/s)(damping const of seat suspension)
 ks = 1e10; % N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.')
end

% Cab Suspension Options
disp(' ') disp('Give your choice for cab suspension: ') disp('Note: With front or rear or without cab suspension') disp(' gives a very high frequency mode(s) because the corresponding')
disp('stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');

if z22 == 'a',
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 88740; % N/m(spring const of front cab suspension)
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
elseif z22 == 'b',
 ccr = 8000; % Reduced damping
 kcr = 65980; % N/m(spring const of rear cab suspension)
 ccf = 13120; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)
elseif z22 == 'c',
 ccr = 5073.5; % N/(m/s)(damping const of rear cab suspension)
 kcr = 63757.5; % N/m(spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s)(damping const of front cab suspension)
 kcf = 86260.5; % N/m(spring const of front cab suspension)
elseif z22 == 'd',
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 1e10; % N/m(spring const of front cab suspension)
else
 disp('Insufficient information regarding cab suspension.')
end

%%%
%%
%%%%%%%%%%%%%%%%%%%% Vehicle Tire Selection
%%%%%%%%%%%%%%%%%%%%%
%%%
%%

302
% Values shown represent Wide Singles

\[m_{t1} = 374; \quad \text{kg} \quad \text{Mass of Steer Axle} \]
\[m_{t2} = 648.3; \quad \text{kg} \quad \text{Mass of Drive Axle #1} \]
\[m_{t3} = 648.3; \quad \text{kg} \quad \text{Mass of Drive Axle #2} \]
\[m_{t4} = 648.3; \quad \text{kg} \quad \text{Mass of Trailer Axle #1} \]
\[m_{t5} = 648.3; \quad \text{kg} \quad \text{Mass of Trailer Axle #2} \]

\[c_{t4} = 648.3; \quad \text{N/(m/s)} \quad \text{Trailer Axle #1 Damping Const.} \]
\[c_{t5} = 648.3; \quad \text{N/(m/s)} \quad \text{Trailer Axle #2 Damping Const.} \]

\[k_{t1} = 1.295 \times 10^6; \quad \text{N/m} \quad \text{Steer Axle Spring Const.} \]
\[k_{t2} = 2.3882 \times 10^6; \quad \text{N/m} \quad \text{Drive Axle #1 Spring Const.} \]
\[k_{t3} = 2.3882 \times 10^6; \quad \text{N/m} \quad \text{Drive Axle #2 Spring Const.} \]
\[k_{t4} = 2.3882 \times 10^6; \quad \text{N/m} \quad \text{Trailer Axle #1 Spring Const.} \]
\[k_{t5} = 2.3882 \times 10^6; \quad \text{N/m} \quad \text{Trailer Axle #2 Spring Const.} \]

% Speed of the Vehicle

disp('')
disp('VEHICLE VELOCITY')
disp('')
disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp('')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; %Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.277778*vm; %Velocity conversion from kph to m/s
end

T(1) = 0; %Time delay between front axle and remaining axles
T(2) = (a+b)/v; % Axle #2
T(3) = (a+d)/v; % Axle #3
T(4) = (a+i+e+f)/v; % Axle #4
T(5) = (a+i+e+h)/v; % Axle #5

% Road PSD Selection

disp('')
disp('ROAD PSD SELECTION')
disp('')
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp('')
disp('a : Csp = 4.3e-11, N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp('')
tabchoice11=input('Input the road surface to be used : ','s');

if tabchoice11== 'a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11== 'b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11 == 'c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11 == 'd', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
end

% Start Loop on Tire Damping Properties
% Damping values will range from 70% to 130% of the nominal value
for iii=1:21;
 for jjj=1:21;
 ctf(iii,jjj)=15.51*iiii;
 ctr(iii,jjj)=38.898*jjjj;
 ct1 = 346.39+ctf(iii,jjj);
 ct2 = (868.722+ctr(iii,jjj))*0.5;
 ct3 = (868.722+ctr(iii,jjj))*0.5;

%%%
%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% System Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%

% THE SYSTEM IS WRITTEN AS (M*S*S+C*S+K)X(S)=(A*S+B)U(S)

%%%
%% Mass Matrix %%
%%%
M = zeros(15,15);
M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
M(3,3) = I_c; % Eqn #3: Pitch of Cab
M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
M(5,5) = m_t; % Eqn #5: Vertical Disp of
 Tractor Frame
M(5,6) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor
 Frame
M(5,7) = ML_t*I1_t;
M(6,5) = ML_t*b_fw*(b_fw/2-a1); % Eqn #6: Pitch of Tractor
 Frame
M(6,6) = I_t;
M(6,7) = -ML_t*I2_t;
M(7,5) = ML_t*I1_t; % Eqn #7: Beaming of Tractor
 Frame
M(7,6) = -ML_t*I2_t;
M(7,7) = ML_t*I3_t;
M(8,8) = m_tlr; % Eqn #8: Vertical Disp of
 Trailer
M(8,9) = -ML_tlr*L_tlr*(e-L_tlr/2);
M(8,10) = ML_tlr*I1_tlr;
M(9,8) = -ML_tlr*L_tlr*(e-L_tlr/2); % Eqn #9: Pitch of Trailer
M(9,9) = I_tlr;
M(9,10) = -ML_tlr*I2_tlr;
M(10,8) = ML_tlr*I1_tlr; % Eqn #10: Beaming of Trailer
M(10,9) = -ML_tlr*I2_tlr;
M(10,10) = ML_tlr*I3_tlr;
M(11,11) = mt1; % Eqn #11: Vertical Disp of Axle
 #1
M(12,12) = mt2; % Eqn #12: Vertical Disp of Axle
 #2
M(13,13) = mt3; % Eqn #13: Vertical Disp of Axle
 #3
M(14,14) = mt4; % Eqn #14: Vertical Disp of Axle
 #4
M(15,15) = mt5; % Eqn #15: Vertical Disp of Axle
 #5

%%%
%%% Damping Matrix %%%
\[
\begin{align*}
C &= \text{zeros}(15,15); \\
C(1,1) &= cs; \\
C(1,2) &= -cs; \\
C(1,3) &= r*cs; \\
C(2,1) &= -cs; \\
C(2,2) &= cs+ccf+ccr; \\
C(2,3) &= -r*cs-n*ccf+p*ccr; \\
C(2,5) &= -ccf-ccr; \\
C(2,6) &= l*ccf-j*ccr; \\
C(2,7) &= -ccf*E_cf-ccr*E_cr; \\
C(3,1) &= r*cs; \\
C(3,2) &= -r*cs-n*ccf+p*ccr; \\
C(3,3) &= (r^2)*cs+(n^2)*ccf+(p^2)*ccr; \\
C(3,5) &= n*ccf-p*ccr; \\
C(3,6) &= n*l*ccf-p*j*ccr; \\
C(3,7) &= n*ccf*E_cf-p*ccr*E_cr; \\
C(4,4) &= ce; \\
C(4,5) &= -ce; \\
C(4,6) &= m*ce; \\
C(4,7) &= -ce*E_e; \\
C(5,2) &= -ccf-ccr; \\
C(5,3) &= n*ccf-p*ccr; \\
C(5,4) &= -ce; \\
C(5,5) &= ce+ccf+ccr+cfw+c1+c2+c3; \\
C(5,6) &= -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3; \\
C(5,7) &= ce*E_e+ccf*E_cf+ccr*E_cr+cfw*E_Fw+c1*E_A1+c2*E_A2+c3*E_A3; \\
C(5,8) &= -cfw; \\
C(5,9) &= e*cfw; \\
C(5,10) &= -cfw*E_0; \\
C(5,11) &= -c1; \\
C(5,12) &= -c2; \\
C(5,13) &= -c3; \\
C(6,2) &= l*ccf-j*ccr; \\
C(6,3) &= -n*l*ccf-p*j*ccr; \\
C(6,4) &= m*ce; \\
C(6,5) &= -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3; \\
C(6,6) &= (m^2)*ce+(l^2)*ccf+(j^2)*ccr+(i^2)*cfw+(a^2)*c1+(b^2)*c2+(d^2)*c3; \\
C(6,7) &= -m*ce*E_e-l*ccf*E_cf+j*ccr*E_cr+i*cfw*E_Fw-a*c1*E_A1+b*c2*E_A2+... \\
&\quad d*c3*E_A3; \\
C(6,8) &= -i*cfw; \\
C(6,9) &= e*i*cfw; \\
C(6,10) &= -i*cfw*E_0; \\
C(6,11) &= a*c1; \\
C(6,12) &= -b*c2; \\
C(6,13) &= -d*c3;
\end{align*}
\]
\[C(7,2) = -ccf*E_{cf} - ccr*E_{cr}; \]
\[C(7,3) = n*ccf*E_{cf} - p*ccr*E_{cr}; \]
\[C(7,4) = -ce*E_{e}; \]
\[C(7,5) = \]
\[ce*E_{e} + ccf*E_{cf} + ccr*E_{cr} + cfw*E_{fw} + c1*E_{a1} + c2*E_{a2} + c3*E_{a3}; \]
\[C(7,6) = -m*ce*E_{e} - l*ccf*E_{cf} - j*ccr*E_{cr} - a*c1*E_{a1} + b*c2*E_{a2} \]
\[+ d*c3*E_{a3}; \]
\[C(7,7) = \]
\[ce*E_{e}^2 + ccf*E_{cf}^2 + ccr*E_{cr}^2 + cfw*E_{fw}^2 + c1*E_{a1}^2 + c2*E_{a2}^2 + c3*E_{a3}^2; \]
\[C(7,8) = -cfw*E_{fw}; \]
\[C(7,9) = e*cfw*E_{fw}; \]
\[C(7,10) = -cfw*E_{0}*E_{fw}; \]
\[C(7,11) = -c1*E_{a1}; \]
\[C(7,12) = -c2*E_{a2}; \]
\[C(7,13) = -c3*E_{a3}; \]
\[C(8,5) = -cfw; \]
\[C(8,6) = -i*cfw; \]
\[C(8,7) = -cfw*E_{fw}; \]
\[C(8,8) = cfw+c4+c5; \]
\[C(8,9) = -e*cfw+f*c4+h*c5; \]
\[C(8,10) = cfw*E_{0}+c4*E_{a4}+c5*E_{a5}; \]
\[C(8,14) = -c4; \]
\[C(8,15) = -c5; \]
\[C(9,5) = e*cfw; \]
\[C(9,6) = e*i*cfw; \]
\[C(9,7) = e*cfw*E_{fw}; \]
\[C(9,8) = -e*cfw+f*c4+h*c5; \]
\[C(9,9) = (e^2)*cfw+(f^2)*c4+(h^2)*c5; \]
\[C(9,10) = -e*cfw*E_{0}+f*c4*E_{a4}+h*c5*E_{a5}; \]
\[C(9,14) = -f*c4; \]
\[C(9,15) = -h*c5; \]
\[C(10,5) = -cfw*E_{0}; \]
\[C(10,6) = -i*cfw*E_{0}; \]
\[C(10,7) = -cfw*E_{fw}*E_{0}; \]
\[C(10,8) = cfw*E_{0}+c4*E_{a4}+c5*E_{a5}; \]
\[C(10,9) = -e*cfw*E_{0}+f*c4*E_{a4}+h*c5*E_{a5}; \]
\[C(10,10) = cfw*E_{0}^2+c4*E_{a4}^2+c5*E_{a5}^2; \]
\[C(10,14) = -c4*E_{a4}; \]
\[C(10,15) = -c5*E_{a5}; \]
\[C(11,5) = -c1; \]
\[C(11,6) = a*c1; \]
\[C(11,7) = -c1*E_{a1}; \]
\[C(11,11) = c1+ct1; \]
\[C(12,5) = -c2; \]
\[C(12,6) = -b*c2; \]
\[C(12,7) = -c2*E_{a2}; \]
\[C(12,12) = c2+cE_{2}; \]
C(13,5) = -c3;
C(13,6) = -d*c3;
C(13,7) = -c3*E_a3;
C(13,13) = c3+ct3;

C(14,8) = -c4;
C(14,9) = -f*c4;
C(14,10) = -c4*E_a4;
C(14,14) = c4+ct4;

C(15,8) = -c5;
C(15,9) = -h*c5;
C(15,10) = -c5*E_a5;
C(15,15) = c5+ct5;

%%% Stiffness Matrix %%%

K = zeros(15,15);
K(1,1) = ks;
K(1,2) = -ks;
K(1,3) = r*ks;

K(2,1) = -ks;
K(2,2) = ks+kcf+kcr;
K(2,3) = -r*ks-n*kcf+p*kcr;
K(2,5) = -kcf-kcr;
K(2,6) = l*kcf-j*kcr;
K(2,7) = -kcf*E_cf-kcr*E_cr;

K(3,1) = r*ks;
K(3,2) = -r*ks-n*kcf+p*kcr;
K(3,3) = (r^2)*ks+(n^2)*kcf+(p^2)*kcr;
K(3,5) = n*kcf-p*kcr;
K(3,6) = -n*l*kcf-p*j*kcr;
K(3,7) = n*kcf*E_cf-p*kcr*E_cr;

K(4,4) = ke;
K(4,5) = -ke;
K(4,6) = m*ke;
K(4,7) = -ke*E_e;

K(5,2) = -kcf-kcr;
K(5,3) = n*kcf-p*kcr;
K(5,4) = -ke;
K(5,5) = ke+kcf+kcr+kfw+kl+k2+k3;
K(5,6) = -m*ke-l*kcf+j*kcr+i*kfw-a*kl+b*k2+d*k3;
K(5,7) = ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+kl*E_a1+k2*E_a2+k3*E_a3;
K(5,8) = -kfw;
K(5,9) = e*kfw;
K(5,10) = -kfw*E_0;
K(5,11) = -k1;
K(5,12) = -k2;
K(5,13) = -k3;

K(6,2) = l*kcf-j*kcr;
K(6,3) = -n*l*kcf-p*j*kcr;
K(6,4) = m*ke;
K(6,5) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3;
K(6,6) = (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3;
K(6,7) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-
a*k1*E_al+b*k2*E_a2+...-d*k3*E_a3;
K(6,8) = -i*kfw;
K(6,9) = e*i*kfw;
K(6,10) = -i*kfw*E_0;
K(6,11) = a*k1;
K(6,12) = -b*k2;
K(6,13) = -d*k3;

K(7,2) = -kcf*E_cf-kcr*E_cr;
K(7,3) = n*kcf*E_cf-p*kcr*E_cr;
K(7,4) = -ke*E_e;
K(7,5) = ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+k1*E_al+k2*E_a2+k3*E_a3;
K(7,6) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-
a*k1*E_al+b*k2*E_a2+...+d*k3*E_a3;
K(7,7) = ke*E_e^2+kcf*E_cf^2+kcr*E_cr^2+kfw*E_fw^2+k1*E_al^2+k2*E_a2^2+...+
k3*E_a3^2+EI_t*I4_t;
K(7,8) = -kfw*E_fw;
K(7,9) = e*kfw*E_fw;
K(7,10) = -kfw*E_0*E_fw;
K(7,11) = -k1*E_a1;
K(7,12) = -k2*E_a2;
K(7,13) = -k3*E_a3;

K(8,5) = -kfw;
K(8,6) = -i*kfw;
K(8,7) = -kfw*E_fw;
K(8,8) = kfw+k4+k5;
K(8,9) = -e*kfw+f*k4+h*k5;
K(8,10) = kfw*E_0+k4*E_a4+k5*E_a5;
K(8,14) = -k4;
K(8,15) = -k5;

K(9,5) = e*kfw;
K(9,6) = e*i*kfw;
K(9,7) = e*kfw*E_fw;
K(9,8) = -e*kfw+f*k4+h*k5;
K(9,9) = (e^2)*kfw+(f^2)*k4+(h^2)*k5;
K(9,10) = -e*kfw*E_0+f*k4*E_a4+h*k5*E_a5;
K(9,14) = -f*k4;
K(9,15) = -h*k5;
\(K(10,5) = -kfwE_0; \)
\(K(10,6) = -i*kfwE_0; \)
\(K(10,7) = -kfwE_{fw}E_0; \)
\(K(10,8) = kfwE_0+k4E_{a4}+k5E_{a5}; \)
\(K(10,9) = -e*kfwE_0+f*k4E_{a4}+h*k5E_{a5}; \)
\(K(10,10) = kfwE_0^2+k4E_{a4}^2+k5E_{a5}^2+EI_{tlr}I_{4_tlr}; \)
\(K(10,14) = -k4E_{a4}; \)
\(K(10,15) = -k5E_{a5}; \)

\(K(11,5) = -k1; \)
\(K(11,6) = a*k1; \)
\(K(11,7) = -k1E_{a1}; \)
\(K(11,11) = k1+kt1; \)

\(K(12,5) = -k2; \)
\(K(12,6) = -b*k2; \)
\(K(12,7) = -k2E_{a2}; \)
\(K(12,12) = k2+kt2; \)

\(K(13,5) = -k3; \)
\(K(13,6) = -d*k3; \)
\(K(13,7) = -k3E_{a3}; \)
\(K(13,13) = k3+kt3; \)

\(K(14,8) = -k4; \)
\(K(14,9) = -f*k4; \)
\(K(14,10) = -k4E_{a4}; \)
\(K(14,14) = k4+kt4; \)

\(K(15,8) = -k5; \)
\(K(15,9) = -h*k5; \)
\(K(15,10) = -k5E_{a5}; \)
\(K(15,15) = k5+kt5; \)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
A = \text{zeros}(15,1);
\]
\(A(11) = ct1; \)
\(A(12) = ct2; \)
\(A(13) = ct3; \)
\(A(14) = ct4; \)
\(A(15) = ct5; \)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[
B = \text{zeros}(15,1);
\]
\(B(11) = kt1; \)
\(B(12) = kt2; \)
\(B(13) = kt3; \)
\(B(14) = kt4; \)
\(B(15) = kt5; \)

310
% System "A" Matrix
AA=[zeros(size(M)) eye(size(M)) % System state variable matrix
 -inv(M)*K -inv(M)*C];

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
wc=[.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40
 50];
whzc=[.1 .125 .16 .2 .25 .315 .4 .5 .63 .8 1 1.25 1.6 2 2.5 3.15 ...
 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];

% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,...
 .9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

%---
% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,
 8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;
%---

whzcr = 2*pi*whzc; % Calculation of central frequencies in rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];
imag=sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);
 % Time delay array
time = [0 0 0 0 0 0 0 0 0 1 \exp(-s*T(2)) \exp(-s*T(3))
\exp(-s*T(4)) \exp(-s*T(5))];

% TF Matrix
vectx = (inv(M*s*s+C*s+K)*((A*s+B).*time.'));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Transfer Functions %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

z_s=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat
cg
long=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp
of driver
z_tlr=[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]*vectx; % vert truck cg

%%%%%%%%%%%%%%%%%%%%
%%% Magnitudes %%%
%%%%%%%%%%%%%%%%%%%%

% Acceleration Transter Functions
magcfAl(ii,jj)=abs(s*s*z_s); % Mag of trans function,
(m/s*s)/m
magcfAlong(ii,jj)=abs(s*s*long);
magcftlr(ii,jj)=abs(s*s*z_tlr);

%%%%%%%%%%%%%%%%%%%%
%%% PSDs %%%
%%%%%%%%%%%%%%%%%%%%

% Road PSD in m*m/(rad/s)
rpsd(ii,jj)=Csp*(((2*pi*v)^(N-1))/(w^N));

% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfAl(ii,jj)=magcfAl(ii,jj)*magcfAl(ii,jj)*rpsd(ii,jj);
psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);
psdcftlr(ii,jj)=magcftlr(ii,jj)*magcftlr(ii,jj)*rpsd(ii,jj);

end end

for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msqy1a(kk)=0.5*(psdcfAl(kk,1)+psdcfAl(kk,2))*(freq(kk,2)-
freq(kk,1));
msqy1b(kk)=0.5*(psdcfAl(kk,2)+psdcfAl(kk,3))*(freq(kk,3)-
freq(kk,2));
msqy1(kk)=msqy1a(kk)+msqy1b(kk);
rmsAcf(kk)=sqrt(msqy1(kk));
% Long. Driver RMS

msqylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*(freq(kk,2)-freq(kk,1));
msqylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*(freq(kk,3)-freq(kk,2));
msqylong(kk)=msqylonga(kk)+msqylongb(kk);
rmsAlongcf(kk)=sqrt(msqylong(kk));
% Vert. Trailer cg RMS
msqytlra(kk)=0.5*(psdcftlr(kk,1)+psdcftlr(kk,2))*(freq(kk,2)-freq(kk,1));
msqytlrb(kk)=0.5*(psdcftlr(kk,2)+psdcftlr(kk,3))*(freq(kk,3)-freq(kk,2));
msqytlr(kk)=msqytlra(kk)+msqytlrb(kk);
rmstlrcf(kk)=sqrt(msqytlr(kk));
end

RMScf = [rmsA1cf',rmsAlongcf',rmstlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal

wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.63,1,1.25,1.6,2,2.5,3.15,4,5,...
 6.3,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.482,.484,...
 .513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
 890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];

 isovert = WgtV.*RMScf(1:28,1)'; % Weighted Vert. Driver RMS Accel.
 isolong = WgtL.*RMScf(1:28,2)'; % Weighted Long. Driver RMS Accel.
 isotlr = WgtV.*RMScf(1:28,3)'; % Weighted Vert. Trailer RMS Accel.

 term2V=(WgtV.*rmsA1cf(1:28)).^2;
a0_V_dr=(sum(term2V)).^0.5; % a0 for vert. disp of driver

 term2L=(WgtL.*rmsAlongcf(1:28)).^2;
a0_L_dr=(sum(term2L)).^0.5; % a0 for long. disp of driver

 aV=(a0_L_dr^2 + a0_V_dr^2).^0.5; % a0 for comb vert and long disp

 tlrV=(WgtV.*rmstlrcf(1:28)).^2;
a0_V_tlr=(sum(tlrV))^0.5; % a0 for vert. disp of driver

aVV(iiii,jjjj)=aV; % combined ISO wgt acc, m/s^2
a0_VV_tlr(iiii,jjjj)=a0_V_tlr;
end % end of jjjj loop on ct2
end % end of iiii loop on ct1

disp(' ')
disp('RESULTS OF PARAMETER VARIATION')
disp(' ')
disp('Minimum aV, m/s^2')
disp(min(aVV(:)))
disp(' ')
[ia,ja]=find(aVV==min(aVV(:)));
disp('Corresponding ct1, ct2, and ct3 values, N/(m/s)')
disp([346.39+ctf(ia,ja) (868.722+ctr(ia,ja))*0.5 (868.722+ctr(ia,ja))*0.5])
disp(' ')

disp(' ')
disp('Minimum a0_V_tlr, m/s^2')
disp(min(a0_VV_tlr(:)))
disp(' ')
[it,jt]=find(a0_VV_tlr==min(a0_VV_tlr(:)));
disp('Corresponding ct1, ct2, and ct3 values, N/(m/s)')
disp([346.39+ctf(it,jt) (868.722+ctr(it,jt))*0.5 (868.722+ctr(it,jt))*0.5])
disp(' ')

figure(1)
surf((868.722+ctr)/2,346.39+ctf,aVV)
ylabel('Steer Tire C, N/(m/s)')
xlabel('Single Drive Tire C, N/(m/s)')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Tire Damping Parameter Variation')

figure(2)
surf((868.722+ctr)/2,346.39+ctf,a0_VV_tlr)
ylabel('Steer Tire C, N/(m/s)')
xlabel('Single Drive Tire C, N/(m/s)')
zlabel('Trailer Wgt Vert Acc, m/s^2')
% title('Tractor Tire Damping Parameter Variation')
Appendix K: opt_tlr_axlebeam.m

This parameter variation program varies the stiffness values for the trailer axle suspensions and the beaming frequency of the trailer frame. Each of the trailer axle suspensions are assumed to have the same value, so they were combined into one value that was varied, and the individual axle suspension values were assumed to be equal to exactly half of that value. The trailer axles were varied from 700,000 N/m to 1,300,000 N/m in increments of 30,000 N/m. This forms a vector with a length of 21 values that ranges from 30% below to 30% above the nominal value for the trailer axle stiffness. The beaming frequency of the trailer frame was varied from 10 Hz to 30 Hz. in increments of 1 Hz. These frequency values were chosen to represent values close to wheel hop frequencies as well as values known to be higher than recorded resonance frequencies for these types of frames.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), and a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user. The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding stiffness values for the trailer axles and the beaming frequency of the trailer frame. Also, the program plots the output information on surface plots to study trends in the information.
opt_tlr_axlebeam.m

% Developed by Ryan Spivey, 4/10/07
% Varies trailer axle stiffness and beaming frequency using weighted RMS
% acceleration in the frequency domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1) Vertical Disp. of Driver's Seat
% 2) Vertical Disp. of Cab
% 3) Pitch of Cab
% 4) Vertical Disp. of Engine
% 5) Vertical Disp. of Tractor Frame
% 6) Pitch of Tractor Frame
% 7) Beaming of Tractor Frame
% 8) Vertical Disp. of Trailer
% 9) Pitch of Trailer
% 10) Beaming of Trailer
% 11) Vertical Disp. of Axle #1
% 12) Vertical Disp. of Axle #2
% 13) Vertical Disp. of Axle #3
% 14) Vertical Disp. of Axle #4
% 15) Vertical Disp. of Axle #5

c1c
clear all
% close all
format short e
format compact

% Inertial Properties
m_s = 106.7; %kg mass of seat
m_c = 1208; %kg mass of cab
I_c = 2100; %kg*m^2 M I of cab
m_e = 2000; %kg mass of engine (ESTIMATE)
m_t = 3783; %kg mass of tractor (5783 kg - engine)
I_t = 46590.9; %kg*m^2 M I of tractor
m_ul = 10800; %kg mass of trailer (ESTIMATE)
I_tlr = 200000; %kg*m^2 M I of trailer
m_L = 14000; %kg mass of trailer load (ESTIMATE)
m_tlr = m_ul+m_L; %kb mass of loaded trailer

% Suspension Parameters
c1 = 11270; %N/(m/s) damping const of axle #1
c2 = 27500; %N/(m/s) damping const of axle #2
c3 = 27500; %N/(m/s) damping const of axle #3
c4 = 70000; %N/(m/s) damping const of axle #4
c5 = 70000; %N/(m/s) damping const of axle #5
ce = 10000; %N/(m/s) damping const of engine mount
k1 = 581300; %N/m spring const of axle #1
k2 = 586900; %N/m spring const of axle #2
k3 = 586900; %N/m spring const of axle #3
ke = 1e10; %N/m spring const of the engine mount

% Model Dimensions
b_al = 1.065; %m Front end of the tractor to axle #1
b_cf = 1.470; %m Front end of the tractor to cab front
b_e = 2.797; %m Front end of the tractor to engine
b_cr = 4.02; %m Front end of the tractor to cab rear
b_a2 = 6.035; %m Front end of the tractor to axle #2
b_fw = 6.688; %m Front end of the tractor to 5th wheel
b_a3 = 7.34; %m Front end of the tractor to axle #3
a1 = 4.00607; %m Front end of the tractor to tractor cg
b_a4 = 8.58; %m From the fifth wheel to axle #4
b_a5 = 9.78; %m From the fifth wheel to axle #5
L_t = 8.2; %m Length of Tractor
L_tlr = 9.78; %m Length of Trailer
e = 5.62; %m From the trailer cg to fifth wheel
f = 2.96; %m From the trailer cg to axle #4
h = 4.16; %m From the trailer cg to axle #5
a = 2.94107; %m From the tractor cg to axle #1
b = 2.02893; %m From the tractor cg to axle #2
d = 3.33393; %m From the tractor cg to axle #3
l = 2.53607; %m From the tractor cg to cab front
m = 1.209074; %m From the tractor cg to engine
j = 0.013926; %m From the tractor cg to cab rear
\[
\begin{align*}
i &= 2.68193; \quad \text{\%m \quad From the tractor cg to the fifth wheel} \\
n &= 1.435; \quad \text{\%m \quad From the cab cg to cab front} \\
p &= 1.115; \quad \text{\%m \quad From the cab cg to cab rear} \\
r &= -0.200; \quad \text{\%m \quad From the cab cg to seat} \\
tc &= 1.10107; \quad \text{\%m \quad From the tractor cg to the cab cg} \\
h1 &= 1.0; \quad \text{\%m \quad Height of the driver over the cab} \\
g &= 9.8; \quad \text{\%m/s^2 \ acceleration due to gravity} \\
ML_t &= m_t/L_t; \quad \text{\%kg/m \ Mass per unit length (Tractor)} \\
ML_tlr &= m_ul/L_tlr; \quad \text{\%kg/m \ Mass per unit length (Trailer)} \\
\end{align*}
\]

\%
%%%%%%%%%%%%%%%%%%% Fifth Wheel Configuration
%%%%%%%%%%%%%%%%%%%%

\%

\begin{align*}
kfw &= 1000000000000; \quad \text{(N/m) \ fifth wheel spring constant} \\
cfw &= 1000; \quad \text{(N/(m/s)) \ fifth wheel damping ratio} \\
kb1 &= 2.36502; \quad \text{\% Constant for the first bending mode (free-pinned)} \\
\quad \text{(from Rao pg. 527)} \\
fhz &= 20; \\
z1 &= '(\cos(kb1*x1/b_fw)) + (\cosh(kb1*x1/b_fw)) - ... \\
\quad ((\cos(kb1)+\cosh(kb1))/(\sin(kb1)-\sinh(kb1)))*(\sin(kb1*x1/b_fw)- ... \\
\quad \quad \sinh(kb1*x1/b_fw)))'; \\
% \ free-pinned beam mode function \\
z1dd &= '((kb1/b_fw)^2)*(-\cos(kb1*x1/b_fw)) + (\cosh(kb1*x1/b_fw)) - ... \\
\quad ((\cos(kb1)+\cosh(kb1))/(\sin(kb1)-\sinh(kb1)))*(- \\
\quad \quad \sin(kb1*x1/b_fw)- ... \ \sinh(kb1*x1/b_fw)))'; \\
% \ second derivative of free-pinned beam mode function \\
kb2 &= 3.926602; \quad \text{\% Constant for the first bending mode (pinned-free)} \\
\quad \text{(from Rao pg. 527)} \\
\z2 &= '(\sin(kb2*x2/L_tlr)) + \\
\quad ((\sin(kb2))/(\sinh(kb2)))*(\sinh(kb2*x2/L_tlr)))'; \\
% \ pinned-free beam mode function \\
z2dd &= '((kb2/L_tlr)^2)*(-\sin(kb2*x2/L_tlr)) + ... \\
\quad ((\sin(kb2))/(\sinh(kb2)))*(\sinh(kb2*x2/L_tlr)))'; \\
% \ second derivative of pinned-free beam mode function
\end{align*}
\]
% Computation of Integrals

D1_t=['(',z1,')'; % Tractor frame beaming equations to be
D2_t=['((a1-x1).*(',z1,'))']; % used in the integrals
 (string form)
D3_t=['(('z1,').*(',z1,')');
D4_t=['(('z1dd,').*(',z1dd,')');

D1_tlr=['(',z2,')'; % Trailer beaming equations to be
D2_tlr=['((e-x2).*(',z2,'))']; % used in the integrals
 (string form)
D3_tlr=['(('z2,').*(',z2,')');
D4_tlr=['(('z2dd,').*(',z2dd,')');

I1_t=quadl('modeD1_t',0,b_fw); % Integrals of functions defined above
I2_t=quadl('modeD2_t',0,b_fw); % (along length of tractor frame)
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

I1_tlr=quadl('modeD1_tlr',0,L_tlr); % Integrals of functions defined above
I2_tlr=quadl('modeD2_tlr',0,L_tlr); % (along length of trailer)
I3_tlr=quadl('modeD3_tlr',0,L_tlr);
I4_tlr=quadl('modeD4_tlr',0,L_tlr);

E_a1=modeD1_t(b_a1); % Disp at axle #1 due to tractor frame beaming
E_cf=modeD1_t(b_cf); % Disp at cab front due to tractor frame beaming
E_e=modeD1_t(b_e); % Disp at engine due to tractor frame beaming
E_cr=modeD1_t(b_cr); % Disp at cab rear due to tractor frame beaming
E_a2=modeD1_t(b_a2); % Disp at axle #2 due to tractor frame beaming
E-fw=modeD1_t(b_fw); % Disp at fifth wheel due to tractor frame beaming
E_a3=modeD1_t(b_a3); % Disp at axle #3 due to tractor frame beaming
E_0=modeD1_tlr(0); % Disp at fifth wheel due to trailer beaming
E_a4=modeD1_tlr(b_a4); % Disp at axle #4 due to trailer beaming
E_a5=modeD1_tlr(b_a5); % Disp at axle #5 due to trailer beaming

% Seat Suspension Options
disp(' ')
disp('VEHICLE SUSPENSION OPTIONS')
disp(' ')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency
mode')
disp(' because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');
if z11 == 'a',
 % Choice 'a' is with seat suspension
 cs = 1140;
 % Damping ratio of 0.5
 ks = 3403;
 % N/m(spring const of seat suspension)
elseif z11 == 'b',
 % Choice 'b' is without seat suspension
 cs = 1329;
 % N/(m/s)(damping const of seat
 suspension)
 ks = 1e10;
 % N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.')
end

% Cab Suspension Options
disp(' ')
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp(' gives a very high frequency mode(s) because the
 corresponding')
disp(' stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');
if z22 == 'a',
 % Choice 'a' is front cab suspension
 ccf = 7062;
 % N/(m/s)(damping const of front cab
 suspension)
 kcf = 88740;
 % N/m(spring const of front cab
 suspension)
 ccr = 6430;
 % N/(m/s)(damping const of rear cab
 suspension)
 kcr = 1e10;
 % N/m(spring const of rear cab
 suspension)
elseif z22 == 'b',
 % Choice 'b' is rear cab suspension
 ccr = 8000;
 % Reduced damping
 kcr = 65980;
 % N/m(spring const of rear cab
 suspension)
 ccf = 13120;
 % N/(m/s)(damping const of front cab
 suspension)
 kcf = 1e10;
 % N/m(spring const of front cab
 suspension)
else disp('Insufficient information regarding cab suspension.')
end
elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
 ccr = 5073.5; % N/(m/s) (damping const of rear cab suspension)
 kcr = 63757.5; % N/m (spring const of rear cab suspension)
 ccf = 6864.35; % N/(m/s) (damping const of front cab suspension)
 kcf = 86260.5; % N/m (spring const of front cab suspension)
elseif z22 == 'd', % Choice 'd' is without cab suspension
 ccr = 6430; % N/(m/s) (damping const of rear cab suspension)
 kcr = 1e10; % N/m (spring const of rear cab suspension)
 ccf = 7062; % N/(m/s) (damping const of front cab suspension)
 kcf = 1e10; % N/m (spring const of front cab suspension)
else disp('Insufficient information regarding cab suspension.')
end

%%%
%%
%%%%%%%%%%%%%%%%%%%% Vehicle Tire Selection
%%%%%%%%%%%%%%%%%%%%%
%%%
%%
disp('')
disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd; % (m) Nominal cross section width
mt1 = mt; % (kg) Mass of axle #1
P1 = P; % (psi) Tire pressure from TireData3.m
press1 = press; % (psi) Tire pressure array
numtires1 = numtires; % Number of tires on axle
Kstiff1 = Kstiff; % (N/m) Tire stiffness array
kt1 = KK * numtires1; % (N/m) Per-axle Rad Stiffness
c1 = ct; % (N/(m/s)) Per-axle Damping
disp('')
disp('DRIVE AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd23 = wd; % (m) Nominal cross section width
mt2 = mt; % (kg) Mass of axle #2
mt3 = mt; % (kg) Mass of axle #3
P23 = P; % (psi) Tire pressure from TireData3.m
press23 = press; % (psi) Tire Pressure array
numtires23 = numtires; % Number of tires on axle
Kstiff23 = Kstiff; %(N/m) Tire stiffness array
kt2 = KK * numtires23; %(N/m) Per-axle Rad Stiffness
kt3 = KK * numtires23; %(N/m) Per-axle Rad Stiffness
c2 = ct; %(N/(m/s)) Per-axle Damping
c3 = ct; %(N/(m/s)) Per-axle Damping

disp(' ')
TireData3; % M-file for tire data
wd45 = wd; %(m) Nominal cross section
width
mt4 = mt; %(kg) Mass of axle #4
mt5 = mt; %(kg) Mass of axle #5
P45 = P; %(psi) Tire pressure from
TireData3.m
press45 = press; %(psi) Tire Pressure array
numtires45 = numtires; % Number of tires on axle
Kstiff45 = Kstiff; %(N/m) Tire stiffness array
kt4 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
kt5 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
c4 = ct; %(N/(m/s)) Per-axle Damping
c5 = ct; %(N/(m/s)) Per-axle Damping

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('VEHICLE VELOCITY')
disp(' ')

disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b) : ', 's');
disp(' ')
vm = input('Input the velocity of the vehicle, vm : '); if vel == 'a'
 v = 0.4473*vm; %Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.277778*vm; %Velocity conversion from kph to m/s
end

T(1) = 0; %Time delay between front axle and remaining axles
T(2) = (a+b)/v; % Axle #2
T(3) = (a+d)/v; % Axle #3
T(4) = (a+i+e+f)/v; % Axle #4
T(5) = (a+i+e+h)/v; % Axle #5

%%%
%%%%%%%%%%%%%%%%%%%% Road PSD Selection %%%%%%%%%%%%%%%%%%%%%
%%%

322
disp('
disp('ROAD PSD SELECTION')
disp('
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp('
disp('a : Csp = 4.3e-11,N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp('
if tabchoice11== 'a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11== 'b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11 == 'c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11 == 'd', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
end

disp('
disp('J PENALTY OPTIONS')
disp('
disp('Input the values for K1 and K2 in the J penalty function')
disp('Note: Both values should add up to 1')
disp('
K_1 = input('Input the value for K1 : ');
disp('
K_2 = input('Input the value for K2 : ');

% Start Loop on Axle Stiffness Properties
% Stiffness values will range from 70% to 130% of the nominal value

for ii=1:21;
 for jj=1:21;
 kr(ii,jj)=60000*ii;
 k4 = (1.34e6+kr(ii,jj))*0.5;
 k5 = (1.34e6+kr(ii,jj))*0.5;
 fffz2(ii,jj)=jj;
 end
end
\(fhz2 = 9+ffhz2(\text{i iii}, \text{j jjj}); \)

\[
EI_t = 4\pi^2(fhz^2)(b_{fw}/kb1)^4*ML_t; \quad \%\text{Tractor frame flexural rigidity}
\]

\[
EI_{tlr} = 4\pi^2(fhz2^2)(L_{tlr}/kb2)^4*ML_{tlr}; \quad \%\text{Trailer flexural rigidity}
\]

%%%
%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% System Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%%%%%%

% THE SYSTEM IS WRITTEN AS (M*S*S+C*S+K)X(S)=(A*S+B)U(S)

%%%
%%%% Mass Matrix %%%%
%%%

M = zeros(15,15);

M(1,1) = m_s; \quad % \text{Eqn #1: Vertical Disp of Seat}

M(2,2) = m_c; \quad % \text{Eqn #2: Vertical Disp of Cab}

M(3,3) = I_c; \quad % \text{Eqn #3: Pitch of Cab}

M(4,4) = m_e; \quad % \text{Eqn #4: Vertical Disp of Engine}

M(5,5) = m_t; \quad % \text{Eqn #5: Vertical Disp of Tractor Frame}

M(5,6) = ML_t*b_{fw}*(b_{fw}/2-a1);
M(5,7) = ML_t*I1_t;

M(6,5) = ML_t*b_{fw}*(b_{fw}/2-a1); \quad % \text{Eqn #6: Pitch of Tractor Frame}
M(6,6) = I_t;
M(6,7) = -ML_t*I2_t;

M(7,5) = ML_t*I1_t; \quad % \text{Eqn #7: Beaming of Tractor Frame}
M(7,6) = -ML_t*I2_t;
M(7,7) = ML_t*I3_t;

M(8,8) = m_{tlr}; \quad % \text{Eqn #8: Vertical Disp of Trailer}
M(8,9) = -ML_{tlr}*L_{tlr}*(e-L_{tlr}/2);
M(8,10) = ML_{tlr}*I1_{tlr};

M(9,8) = -ML_{tlr}*L_{tlr}*(e-L_{tlr}/2); % \text{Eqn #9: Pitch of Trailer}
M(9,9) = I_{tlr};
M(9,10) = -ML_{tlr}*I2_{tlr};
\begin{verbatim}
M(10,8) = ML_tlr*I1_tlr; % Eqn #10: Beaming of Trailer
M(10,9) = -ML_tlr*I2_tlr;
M(10,10) = ML_tlr*I3_tlr;

M(11,11) = mt1; % Eqn #11: Vertical Disp of Axle
#1
M(12,12) = mt2; % Eqn #12: Vertical Disp of Axle
#2
M(13,13) = mt3; % Eqn #13: Vertical Disp of Axle
#3
M(14,14) = mt4; % Eqn #14: Vertical Disp of Axle
#4
M(15,15) = mt5; % Eqn #15: Vertical Disp of Axle
#5

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(15,15);

C(1,1) = cs;
C(1,2) = -cs;
C(1,3) = r*cs;

C(2,1) = -cs;
C(2,2) = cs+ccf+ccr;
C(2,3) = -r*cs-n*ccf+p*ccr;
C(2,5) = -ccf-ccr;
C(2,6) = l*ccf-j*ccr;
C(2,7) = -ccf*E_cf-ccr*E_cr;

C(3,1) = r*cs;
C(3,2) = -r*cs-n*ccf+p*ccr;
C(3,3) = (r^2)*cs+(n^2)*ccf+(p^2)*ccr;
C(3,5) = n*ccf-p*ccr;
C(3,6) = -n*l*ccf-p*j*ccr;
C(3,7) = n*ccf*E_cf-p*ccr*E_cr;

C(4,4) = ce;
C(4,5) = -ce;
C(4,6) = m*ce;
C(4,7) = -ce*E_e;

C(5,2) = -ccf-ccr;
C(5,3) = n*ccf-p*ccr;
C(5,4) = -ce;
C(5,5) = ce+ccf+ccr+c_{fw}+c_{1}+c_{2}+c_{3};
C(5,6) = -m*ce-l*ccf+j*ccr+i*c_{fw}-a*c_{1}+b*c_{2}+d*c_{3};
C(5,7) = ce*E_e+ccf*E_{cf}+ccr*E_{cr}+c_{fw}*E_{fw}+c_{1}*E_{a1}+c_{2}*E_{a2}+c_{3}*E_{a3};
C(5,8) = -c_{fw};
\end{verbatim}
\[C(5,9) = e \cdot cfw; \]
\[C(5,10) = -cfw \cdot E_0; \]
\[C(5,11) = -c1; \]
\[C(5,12) = -c2; \]
\[C(5,13) = -c3; \]

\[C(6,2) = l \cdot ccf - j \cdot ccr; \]
\[C(6,3) = -n \cdot ccf - p \cdot ccr; \]
\[C(6,4) = m \cdot ce; \]
\[C(6,5) = -m \cdot ce - l \cdot ccf + j \cdot ccr + i \cdot cfw - a \cdot c1 + b \cdot c2 + d \cdot c3; \]
\[C(6,6) = (m^2) \cdot ce + (l^2) \cdot ccf + (j^2) \cdot ccr + (i^2) \cdot cfw + (a^2) \cdot c1 + (b^2) \cdot c2 + (d^2) \cdot c3; \]
\[C(6,7) = -m \cdot ce \cdot E_e - l \cdot ccf \cdot E_cf + j \cdot ccr \cdot E_cr + i \cdot cfw \cdot E_fw - a \cdot c1 \cdot E_{a1} + b \cdot c2 \cdot E_{a2} + ... \]
\[-d \cdot c3 \cdot E_{a3}; \]
\[C(6,8) = -i \cdot cfw; \]
\[C(6,9) = e \cdot i \cdot cfw; \]
\[C(6,10) = -i \cdot cfw \cdot E_0; \]
\[C(6,11) = a \cdot c1; \]
\[C(6,12) = -b \cdot c2; \]
\[C(6,13) = -d \cdot c3; \]

\[C(7,2) = -ccf \cdot E_cf - ccr \cdot E_cr; \]
\[C(7,3) = n \cdot ccf \cdot E_cf - p \cdot ccr \cdot E_cr; \]
\[C(7,4) = -ce \cdot E_e; \]
\[C(7,5) = \]
\[ce \cdot E_e + ccf \cdot E_cf \cdot ccr \cdot E_cr + cfw \cdot E_fw + c1 \cdot E_{a1} + c2 \cdot E_{a2} + c3 \cdot E_{a3}; \]
\[C(7,6) = -m \cdot ce \cdot E_e - l \cdot ccf \cdot E_cf + j \cdot ccr \cdot E_cr + i \cdot cfw \cdot E_fw - a \cdot c1 \cdot E_{a1} + b \cdot c2 \cdot E_{a2} ... \]
\[+ d \cdot c3 \cdot E_{a3}; \]
\[C(7,7) = ce \cdot E_e \cdot E_e + ccf \cdot E_cf \cdot E_cf + ccr \cdot E_cr \cdot E_cr + cfw \cdot E_fw \cdot E_fw + c1 \cdot E_{a1} \cdot E_{a1} + c2 \cdot E_{a2} \cdot E_{a2} ... \]
\[+ c3 \cdot E_{a3} \cdot E_{a3}; \]
\[C(7,8) = -cfw \cdot E_fw; \]
\[C(7,9) = e \cdot cfw \cdot E_fw; \]
\[C(7,10) = -cfw \cdot E_0 \cdot E_fw; \]
\[C(7,11) = -c1 \cdot E_{a1}; \]
\[C(7,12) = -c2 \cdot E_{a2}; \]
\[C(7,13) = -c3 \cdot E_{a3}; \]

\[C(8,5) = -cfw; \]
\[C(8,6) = -i \cdot cfw; \]
\[C(8,7) = -cfw \cdot E_fw; \]
\[C(8,8) = cfw \cdot c4 + c5; \]
\[C(8,9) = -e \cdot cfw \cdot f \cdot c4 + h \cdot c5; \]
\[C(8,10) = cfw \cdot E_0 + c4 \cdot E_{a4} + c5 \cdot E_{a5}; \]
\[C(8,14) = -c4; \]
\[C(8,15) = -c5; \]

\[C(9,5) = e \cdot cfw; \]
\[C(9,6) = e \cdot i \cdot cfw; \]
\[C(9,7) = e \cdot cfw \cdot E_fw; \]
\[C(9,8) = -e \cdot cfw \cdot f \cdot c4 + h \cdot c5; \]
\[C(9,9) = (e^2) \cdot cfw + (f^2) \cdot c4 + (h^2) \cdot c5; \]
\[C(9,10) = -e \cdot cfw \cdot E_0 + f \cdot c4 \cdot E_{a4} + h \cdot c5 \cdot E_{a5}; \]
\[
\begin{align*}
C(9,14) &= -f*c4; \\
C(9,15) &= -h*c5; \\
C(10,5) &= -cfw*E_0; \\
C(10,6) &= -i*cfw*E_0; \\
C(10,7) &= -cfw*E_f*E_0; \\
C(10,8) &= cfw*E_0 + c4*E_a4 + c5*E_a5; \\
C(10,9) &= -e*cfw*E_0 + f*c4*E_a4 + h*c5*E_a5; \\
C(10,10) &= cfw*E_0^2 + c4*E_a4^2 + c5*E_a5^2; \\
C(10,14) &= -c4*E_a4; \\
C(10,15) &= -c5*E_a5; \\
C(11,5) &= -c1; \\
C(11,6) &= a*c1; \\
C(11,7) &= -c1*E_a1; \\
C(11,11) &= c1 + ct1; \\
C(12,5) &= -c2; \\
C(12,6) &= -b*c2; \\
C(12,7) &= -c2*E_a2; \\
C(12,12) &= c2 + ct2; \\
C(13,5) &= -c3; \\
C(13,6) &= -d*c3; \\
C(13,7) &= -c3*E_a3; \\
C(13,13) &= c3 + ct3; \\
C(14,8) &= -c4; \\
C(14,9) &= -f*c4; \\
C(14,10) &= -c4*E_a4; \\
C(14,14) &= c4 + ct4; \\
C(15,8) &= -c5; \\
C(15,9) &= -h*c5; \\
C(15,10) &= -c5*E_a5; \\
C(15,15) &= c5 + ct5; \\
\end{align*}
\]

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%

K = zeros(15,15);
K(1,1) = ks;
K(1,2) = -ks;
K(1,3) = r*ks;
K(2,1) = -ks;
K(2,2) = ks + kcf + kcr;
K(2,3) = -r*ks - n*kcf + p*kcr;
K(2,5) = -kcf - kcr;
K(2,6) = l*kcf - j*kcr;
K(2,7) = -kcf*E_cm - kcr*E_cr;
K(3,1) = r*ks;
K(3,2) = -r*ks - n*kcf + p*kcr;
K(3,3) = (r^2)*ks+(n^2)*kcf+(p^2)*kcr;
K(3,5) = n*kcf-p*kcr;
K(3,6) = -n*l*kcf-p*j*kcr;
K(3,7) = n*kcf*E Cf-p*kcr*E cr;

K(4,4) = ke;
K(4,5) = -ke;
K(4,6) = m*ke;
K(4,7) = -ke*E e;

K(5,2) = -kcf-kcr;
K(5,3) = n*kcf-p*kcr;
K(5,4) = -ke;
K(5,5) = ke+kcf+kcr+kfw+k1+k2+k3;
K(5,6) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3;
K(5,7) =
ke*E e+kcf*E Cf+kcr*E cr+kfw*E fw+kl*E_a1+k2*E_a2+k3*E_a3;
K(5,8) = -kfw;
K(5,9) = e*kfw;
K(5,10) = -kfw*E 0;
K(5,11) = -k1;
K(5,12) = -k2;
K(5,13) = -k3;

K(6,2) = l*kcf-j*kcr;
K(6,3) = -n*l*kcf-p*j*kcr;
K(6,4) = m*ke;
K(6,5) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3;
K(6,6) =
(m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3;
K(6,7) = -m*ke*E e-l*kcf*E Cf+j*kcr*E cr+i*kfw*E fw-
a*k1*E a1+b*k2*E a2+...
d*k3*E a3;
K(6,8) = -i*kfw;
K(6,9) = e*i*kfw;
K(6,10) = -i*kfw*E 0;
K(6,11) = a*k1;
K(6,12) = -b*k2;
K(6,13) = -d*k3;

K(7,2) = -kcf*E Cf-kcr*E cr;
K(7,3) = n*kcf*E Cf-p*kcr*E cr;
K(7,4) = -ke*E e;
K(7,5) =
ke*E e+kcf*E Cf+kcr*E cr+kfw*E fw+kl*E_a1+k2*E_a2+k3*E_a3;
K(7,6) = -m*ke*E e-l*kcf*E Cf+j*kcr*E cr+i*kfw*E fw-
a*k1*E a1+b*k2*E a2+...
d*k3*E a3;
K(7,7) =
ke*E e^2+kcf*E Cf^2+kcr*E cr^2+kfw*E fw^2+kl*E_a1^2+k2*E_a2^2+...
k3*E a3^2+El_t*I4_t;
K(7,8) = -kfw*E fw;
K(7,9) = e*kfw*E fw;
K(7,10) = -kfw*E 0*E fw;
K(7,11) = -k1*E a1;
\[
\begin{align*}
K(7,12) &= -k_2 E_{a2}; \\
K(7,13) &= -k_3 E_{a3}; \\
K(8,5) &= -kfw; \\
K(8,6) &= -i*kfw; \\
K(8,7) &= -kfw E_{fw}; \\
K(8,8) &= kfw+k_4+k_5; \\
K(8,9) &= -e*kfw+f*k4+h*k5; \\
K(8,10) &= kfw E_0+k_4 E_{a4}+k_5 E_{a5}; \\
K(8,14) &= -k_4; \\
K(8,15) &= -k_5; \\
K(9,5) &= e*kfw; \\
K(9,6) &= e*i*kfw; \\
K(9,7) &= e*kfw E_{fw}; \\
K(9,8) &= -e*kfw+f*k4+h*k5; \\
K(9,9) &= (e^2) kfw+(f^2) k4+(h^2) k5; \\
K(9,10) &= -e*kfw E_0+f*k4 E_{a4}+h*k5 E_{a5}; \\
K(9,14) &= -f*k4; \\
K(9,15) &= -h*k5; \\
K(10,5) &= -kfw E_0; \\
K(10,6) &= -i*kfw E_{fw}; \\
K(10,7) &= -kfw E_{fw} E_0; \\
K(10,8) &= kfw E_0 k4 E_{a4}+k5 E_{a5}; \\
K(10,9) &= -e*kfw E_0+f*k4 E_{a4}+h*k5 E_{a5}; \\
K(10,10) &= kfw E_0^2 k4 E_{a4}+k5 E_{a5}^2+E_I tlr I 4 tlr; \\
K(10,14) &= -k4 E_{a4}; \\
K(10,15) &= -k5 E_{a5}; \\
K(11,5) &= -k_1; \\
K(11,6) &= a * k_1; \\
K(11,7) &= -k_1 E_{a1}; \\
K(11,11) &= k_1 k_1 t1; \\
K(12,5) &= -k_2; \\
K(12,6) &= -b * k_2; \\
K(12,7) &= -k_2 E_{a2}; \\
K(12,12) &= k_2 k_2 t2; \\
K(13,5) &= -k_3; \\
K(13,6) &= -d * k_3; \\
K(13,7) &= -k_3 E_{a3}; \\
K(13,13) &= k_3 k_3 t3; \\
K(14,8) &= -k_4; \\
K(14,9) &= -f * k_4; \\
K(14,10) &= -k_4 E_{a4}; \\
K(14,14) &= k_4 k_4 t4; \\
K(15,8) &= -k_5; \\
K(15,9) &= -h * k_5; \\
K(15,10) &= -k_5 E_{a5}; \\
K(15,15) &= k_5 k_5 t5;
\end{align*}
\]
A = zeros(15,1);
A(11) = ct1;
A(12) = ct2;
A(13) = ct3;
A(14) = ct4;
A(15) = ct5;

B = zeros(15,1);
B(11) = kt1;
B(12) = kt2;
B(13) = kt3;
B(14) = kt4;
B(15) = kt5;

% System "A" Matrix
AA=[zeros(size(M)) eye(size(M)) % System state variable matrix
 -inv(M)*K -inv(M)*C];

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
wc=[.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
whzc=[.1 .125 .16 .2 .25 .315 .4 .5 .63 .8 1 1.25 1.6 2 2.5 3.15 ...
 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];

% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,...
 .9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4 = comf3/2.254;

whzcr = 2*pi*whzc; % Calculation of central frequencies in rad/s
freqlow = 0.89*whzcr; % Lower octave band
freqhigh = 1.12*whzcr; % Upper octave band
freq = [freqlow' whzcr' freqhigh'];

imag = sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);
 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ... exp(-s*T(4)) exp(-s*T(5))];

 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*(time.')));

 % Transfer Functions
 z_s = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat cg
 long = [0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp of driver
 z_tlr = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert trailer cg

 % Magnitudes
 magcfAl(ii,jj) = abs(s*s*z_s); % Mag of trans function, (m/s*s)/m
 magcfAlong(ii,jj) = abs(s*s*long);
 magcftlr(ii,jj) = abs(s*s*z_tlr);

 % PSDs
 rpsd(ii,jj) = Csp*(((2*pi*v)^(N-1))/(w^N));

end end
% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfA1(ii,jj)=magcfA1(ii,jj)*magcfA1(ii,jj)*rpsd(ii,jj);

psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);

psdcftrlr(ii,jj)=magcftrlr(ii,jj)*magcftrlr(ii,jj)*rpsd(ii,jj);

end
end
for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msqy1a(kk)=0.5*(psdcfA1(kk,1)+psdcfA1(kk,2))*(freq(kk,2)-freq(kk,1));
msqy1b(kk)=0.5*(psdcfA1(kk,2)+psdcfA1(kk,3))*(freq(kk,3)-freq(kk,2));
msqy1(kk)=msqy1a(kk)+msqy1b(kk);
rmsA1cf(kk)=sqrt(msqy1(kk));
% Long. Driver RMS
msqylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*(freq(kk,2)-freq(kk,1));
msqylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*(freq(kk,3)-freq(kk,2));
msqylong(kk)=msqylonga(kk)+msqylongb(kk);
rmsAlongcf(kk)=sqrt(msqylong(kk));
% Vert. Trailer cg RMS
msqyltra(kk)=0.5*(psdcftrlr(kk,1)+psdcftrlr(kk,2))*(freq(kk,2)-freq(kk,1));
msqyltrb(kk)=0.5*(psdcftrlr(kk,2)+psdcftrlr(kk,3))*(freq(kk,3)-freq(kk,2));
msqyltr(kk)=msqyltra(kk)+msqyltrb(kk);
rmsstlrcf(kk)=sqrt(msqyltr(kk));
end

RMScf = [rmsA1cf',rmsAlongcf',rmsstlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal
wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.63,.8,1,1.25,1.6,2,2.5,3.15,4,5,...
 6.3,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.494,.531,...
 .631,.804,.967,1.039,1.054,1.036,.988,.902,.768,.636,...
 .513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
 890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];
isovert = WgtV.*RMScf(1:28,1)'; % Weighted Vert. Driver RMS Accel.
isolong = WgtL.*RMScf(1:28,2)'; % Weighted Long. Driver RMS Accel.
isotlr = WgtV.*RMScf(1:28,3)'; % Weighted Vert. Trailer RMS Accel.

\[\text{term2V} = (WgtV.*\text{rmsA1cf}(1:28)).^2; \]
\[a_0 \text{V}_{dr} = (\text{sum}(\text{term2V}))^{0.5}; \] % a0 for vert. disp of driver

\[\text{term2L} = (WgtL.*\text{rmsAlongcf}(1:28)).^2; \]
\[a_0 \text{L}_{dr} = (\text{sum}(\text{term2L}))^{0.5}; \] % a0 for long. disp of driver

\[a_V = (a_0 \text{L}_{dr}^2 + a_0 \text{V}_{dr}^2)^{0.5}; \] % a0 for comb vert and long disp

\[\text{tlrV} = (WgtV.*\text{rmstlrcf}(1:28)).^2; \]
\[a_0 \text{V}_{tlr} = (\text{sum}(\text{tlrV}))^{0.5}; \] % a0 for vert. disp of driver

\[\text{aVV(iii,jjjj)} = a_V; \] % combined ISO wgt acc, m/s^2
\[a_0 \text{VV}_{tlr(iii,jjjj)} = a_0 \text{V}_{tlr}; \]
\[J_{penalty(iii,jjjj)} = K_1 \frac{(a_V(iii,jjjj)/0.44814) + K_2 ...}{(a_0 \text{VV}_{tlr(iii,jjjj)}/0.3239)}; \]

end % end of jjjj loop on fhz2
end % end of iiii loop on k4,5

disp('')
disp('RESULTS OF PARAMETER VARIATION')
disp('')
disp('Minimum aV, m/s^2')
disp(min(aVV(:)))
disp('')
\[[\text{ia, ja}] = \text{find}(aVV == \text{min}(aVV(:))); \]
disp('Corresponding k4 and k5 values, N/m')
disp([\text{(1.34e6+kr(ia, ja))}^{0.5} \ (1.34e6+kr(ia, ja))^{0.5}])
disp('')
disp('Corresponding Trailer Beaming Frequency, Hz')
disp([9+ffhz2(ia, ja)])
disp('')

disp('')
disp('Minimum a0 V_{tlr}, m/s^2')
disp(min(a0_VV_tlr(:)))
disp('')
\[[\text{it, jt}] = \text{find}(a0 \text{VV}_{tlr} == \text{min}(a0 \text{VV}_{tlr}())); \]
disp('Corresponding k4 and k5 values, N/m')
disp([\text{(1.34e6+kr(it, jt))}^{0.5} \ (1.34e6+kr(it, jt))^{0.5}])
disp('')
disp('Corresponding Trailer Beaming Frequency, Hz')
disp([9+ffhz2(it, jt)])

333
disp(' ')

disp(' ')
disp('Minimum Jpenalty')
disp('J=K1*aV/0.44814 + K2*a0_V_tlr/0.3239')
disp('
K1 K2')
disp([K_1 K_2])
disp(' ')
disp(min(Jpenalty(:)))
disp(' ')
[iJ,jJ]=find(Jpenalty==min(Jpenalty(:)));
disp('Corresponding k4 and k5 values, N/m')
disp(([1.34e6+kr(iJ,jJ))*0.5 (1.34e6+kr(iJ,jJ))*0.5])
disp(' ')
disp('Corresponding Trailer Beaming Frequency, Hz')
disp([9+ffhz2(iJ,jJ)])
disp(' ')

figure(1)
surf(9+ffhz2,(1.34e6+kr)/2,aVV)
xlabel('Trailer Beaming, Hz')
ylabel('Single Trailer Axle K, N/m')
zlabel('ISO Combined Wgt Acc, m/s^2')
title('Tractor Suspension Stiffness Parameter Variation')

figure(2)
surf((1.34e6+kr)/2,9+ffhz2,a0_VV_tlr)
xlabel('Trailer Beaming, Hz')
ylabel('Single Trailer Axle K, N/m')
zlabel('Trailer Wgt Vert Acc, m/s^2')
title('Tractor Suspension Stiffness Parameter Variation')

figure(3)
surf(9+ffhz2,(1.34e6+kr)/2,Jpenalty)
xlabel('Trailer Beaming, Hz')
ylabel('Single Trailer Axle K, N/m')
zlabel('Penalty Function')
title(['K1 = ', num2str(K_1),', K2 = ', num2str(K_2)])
This parameter variation program varies the beaming frequencies of the tractor and trailer frames individually. The beaming frequency of the tractor frame was varied from 10 Hz to 30 Hz. in increments of 1 Hz. These frequency values were chosen to represent values close to wheel hop frequencies as well as values known to be higher than recorded resonance frequencies for these types of frames. Likewise, the beaming frequency of the trailer frame was varied from 10 Hz to 30 Hz. in increments of 1 Hz. These frequency values were chosen to represent values close to wheel hop frequencies as well as values known to be higher than recorded resonance frequencies for these types of frames.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat and the ISO vertical weighted acceleration at the trailer center-of-gravity (CG). The program finds the minimum values for each of these outputs, and displays them in tabular form along with the corresponding beaming frequencies of the tractor and trailer frames. Also, the program plots the output information on surface plots to study trends in the information.

do_opt_beam_freq

% Developed by Ryan Spivey, 4/10/07
% Varies beaming frequency of the tractor and trailer using
% weighted
% RMS acceleration in the frequency domain.
% Tractor and trailer beaming are treated as free-pinned and
% pinned free
% respectively.
% Incorporates model from dof15_freq2.m
% DOFs include - 1)Vertical Disp. of Driver's Seat
% 2)Vertical Disp. of Cab
% 3)Pitch of Cab
% 4)Vertical Disp. of Engine
% 5)Vertical Disp. of Tractor Frame
% 6)Pitch of Tractor Frame
% 7)Beaming of Tractor Frame
% 8)Vertical Disp. of Trailer
% 9)Pitch of Trailer
% 10)Beaming of Trailer
% 11)Vertical Disp. of Axle #1
% 12)Vertical Disp. of Axle #2
% 13)Vertical Disp. of Axle #3
% 14)Vertical Disp. of Axle #4
% 15)Vertical Disp. of Axle #5

clc
clear all
close all
format short e
format compact

global D1_t D2_t D3_t D4_t D1_tlr D2_tlr D3_tlr D4_tlr
global e al kb1 kb2 b_fw L_tlr alpha

disp(' ')
disp('Beaming Frequency Variation in the Frequency Domain')
disp(' Roadholding Model')
disp([' ',date])

% Choose a test vehicle
disp(' ')
disp('VEHICLE SELECTION')
disp(' ')
disp('Please choose a vehicle : ');
disp('a: Ideal Tractor Semi-Trailer');
vehicle = input('Enter your choice : ', 's');

if vehicle == 'a'
% Inertial Properties
m_s = 106.7; %kg mass of seat
m_c = 1208; %kg mass of cab
I_c = 2100; %kg*m^2 M I of cab
m_e = 2000; %kg mass of engine (ESTIMATE)
m_t = 3783; %kg mass of tractor (5783 kg -
engine)
I_t = 46590.9; %kg*m^2 M I of tractor
m_ul = 10800; %kg mass of trailer (ESTIMATE)
I_tlr = 200000; %kg*m^2 M I of trailer
m_L = 14000; %kg mass of trailer load (ESTIMATE)
m_tlr = m_ul+m_L; %kb mass of loaded trailer

% Suspension Parameters
c1 = 11270; %N/(m/s) damping const of axle #1
c2 = 27500; %N/(m/s) damping const of axle #2
c3 = 27500; %N/(m/s) damping const of axle #3
c4 = 70000; %N/(m/s) damping const of axle #4
c5 = 70000; %N/(m/s) damping const of axle #5
ce = 10000; %N/(m/s) damping const of engine mount
k1 = 581300; %N/m spring const of axle #1
k2 = 586900; %N/m spring const of axle #2
k3 = 586900; %N/m spring const of axle #3
k4 = 1000000; %N/m spring const of axle #4
k5 = 1000000; %N/m spring const of axle #5
ke = 1e10; %N/m spring const of the engine mount

% Model Dimensions
b_a1 = 1.065; %m Front end of the tractor to axle
#1
b_cf = 1.470; %m Front end of the tractor to cab
front
b_e = 2.797; %m Front end of the tractor to
engine
b_cr = 4.02; %m Front end of the tractor to cab
rear
b_a2 = 6.035; %m Front end of the tractor to axle
#2
b_fw = 6.688; %m Front end of the tractor to 5th
wheel
b_a3 = 7.34; %m Front end of the tractor to axle
#3
a1 = 4.00607; %m Front end of the tractor to
tractor cg
b_a4 = 8.58; %m From the fifth wheel to axle #4
b_a5 = 9.78; %m From the fifth wheel to axle #5
L_t = 8.2; %m Length of Tractor
L_tlr = 9.78; %m Length of Trailer
e = 5.62; %m From the trailer cg to fifth
wheel
f = 2.96; %m From the trailer cg to axle #4
h = 4.16; %m From the trailer cg to axle #5
a = 2.94107; %m From the tractor cg to axle #1
b = 2.02893; %m From the tractor cg to axle #2
d = 3.33393; %m From the tractor cg to axle #3
l = 2.53607; %m From the tractor cg to cab front
m = 1.209074; %m From the tractor cg to engine
j = 0.013926; %m From the tractor cg to cab rear
i = 2.68193; %m From the tractor cg to the fifth
wheel
n = 1.435; %m From the cab cg to cab front
p = 1.115; %m From the cab cg to cab rear
r = -0.200; %m From the cab cg to seat
tc = 1.10107; %m From the tractor cg to the cab
cg
h1 = 1.0; %m Height of the driver over the
cab
g = 9.8; %m/s^2 acceleration due to gravity

ML_t = m_t/L_t; %kg/m Mass per unit length
(Tractor)
ML_tlr = m_ul/L_tlr; %kg/m Mass per unit length
(Trailer)
end

%%%
%%%% Firth Wheel Configuration
%%%

kfw = 1000000000000; %(N/m) fifth wheel spring constant
cfw = 1000; %(N/(m/s)) fifth wheel damping ratio

kb1 = 2.36502; % Constant for the first bending mode (free-
pinned)
% (from Rao pg. 527)

z1 = '((cos(kb1*x1/b_fw)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*((sin(kb1*x1/b_fw)-
... sinh(kb1*x1/b_fw)))';
% free-pinned beam mode function
z1dd = '((-cos(kb1*x1/b_fw)+cosh(kb1))/(sin(kb1)-sinh(kb1)))*((sin(kb1*x1/b_fw)+
... sinh(kb1*x1/b_fw)))';
% second derivative of free-pinned beam mode function

kb2 = 3.926602; % Constant for the first bending mode
(pinned-free)
% (from Rao pg. 527)

z2 = '((sin(kb2*x2/L_tlr)+
((sin(kb2))/(sinh(kb2)))*(sinh(kb2*x2/L_tlr))));
% pinned-free beam mode function
$$z_{2dd} = (k_{b2}/L_{tlr})^2 \left(-\sin(k_{b2}x_2/L_{tlr}) + \cdots \right)$$

\[
\left(\sin(k_{b2})/\sinh(k_{b2}) \right) \left(\sinh(k_{b2}x_2/L_{tlr}) \right)
\]

% second derivative of pinned-free beam mode function

%%%

% Computation of Integrals
%%%

D1_t=[',z1,'];
D2_t=['(a1-x1).*(',z1,')'];
D3_t=[',z1,').*(',z1,')'];
D4_t=[',z1dd,').*(',z1dd,')'];

D1_tlr=[',z2,'];
D2_tlr=['(e-x2).*(',z2,')'];
D3_tlr=[',z2,').*(',z2,')'];
D4_tlr=[',z2dd,').*(',z2dd,')'];

I1_t=quadl('modeD1_t',0,b_fw);
I2_t=quadl('modeD2_t',0,b_fw);
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

E_a1=modeD1_t(b_a1);
E_cf=modeD1_t(b_cf);
E_e=modeD1_t(b_e);
E_cr=modeD1_t(b_cr);
E_a2=modeD1_t(b_a2);
E_fw=modeD1_t(b_fw);
E_a3=modeD1_t(b_a3);
E_0=modeD1_tlr(0);
E_a4=modeD1_tlr(b_a4);

E_a1=modeD1_t(b_a1);
E Cf=modeD1_t(b_cf);
E_e=modeD1_t(b_e);
E cr=modeD1_t(b_cr);
E_a2=modeD1_t(b_a2);
E fw=modeD1_t(b_fw);
E_a3=modeD1_t(b_a3);
E 0=modeD1_tlr(0);
E a4=modeD1_tlr(b_a4);
\[E_{a5} = \text{modeD1_tlr}(b_{a5}) \] % Disp at axle #5 due to trailer beaming

% Seat Suspension Options
disp(' ')
disp('VEHICLE SUSPENSION OPTIONS')
disp(' ')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency mode')
disp('because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');

if z11 == 'a',
 % Choice 'a' is with seat suspension
 cs = 1140; % Damping ratio of 0.5
 ks = 3403; % N/m(spring const of seat suspension)
elseif z11 == 'b',
 % Choice 'b' is without seat suspension
 cs = 1329; % N/(m/s)(damping const of seat suspension)
 ks = 1e10; % N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.')
end

% Cab Suspension Options
disp(' ')
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp('gives a very high frequency mode(s) because the corresponding')
disp('stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');

if z22 == 'a',
 % Choice 'a' is front cab suspension
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 88740; % N/m(spring const of front cab suspension)
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
elseif z22 == 'b',
 % Choice 'b' is rear cab suspension
 ccr = 8000; % Reduced damping
 kcr = 65980; % N/m(spring const of rear cab suspension)
ccf = 13120; % N/(m/s) (damping const of front cab suspension)
kcf = 1e10; % N/m (spring const of front cab suspension)

elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
ccr = 5073.5; % N/(m/s) (damping const of rear cab suspension)
kcr = 63757.5; % N/m (spring const of rear cab suspension)
ccf = 6864.35; % N/(m/s) (damping const of front cab suspension)
kcf = 86260.5; % N/m (spring const of front cab suspension)

elseif z22 == 'd', % Choice 'd' is without cab suspension
ccr = 6430; % N/(m/s) (damping const of rear cab suspension)
kcr = 1e10; % N/m (spring const of rear cab suspension)
ccf = 7062; % N/(m/s) (damping const of front cab suspension)
kcf = 1e10; % N/m (spring const of front cab suspension)

else disp('Insufficient information regarding cab suspension. ')
end

%%%
%% % Vehicle Tire Selection
%%%

disp(' ')
disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd; % (m) Nominal cross section width
mt1 = mt; % (kg) Mass of axle #1
P1 = P; % (psi) Tire pressure from TireData3.m
press1 = press; % (psi) Tire pressure array
numtires1 = numtires; % Number of tires on axle
Kstiff1 = Kstiff; % (N/m) Tire stiffness array
kt1 = KK * numtires1; % (N/m) Per-axle Rad Stiffness
c1 = ct; % (N/(m/s)) Per-axle Damping

disp(' ')
disp('DRIVE AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd23 = wd; % (m) Nominal cross section width
mt2 = mt; % (kg) Mass of axle #2
mt3 = mt; % (kg) Mass of axle #3
P23 = P; % (psi) Tire pressure from
TireData3.m
press23 = press; % (psi) Tire Pressure array
numtires23 = numtires; % Number of tires on axle
Kstiff23 = Kstiff; % (N/m) Tire stiffness array
kt2 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
kt3 = KK * numtires23; % (N/m) Per-axle Rad Stiffness
c2t = ct; % (N/(m/s)) Per-axle Damping
c3t = ct; % (N/(m/s)) Per-axle Damping

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('TRAILER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd45 = wd; % (m) Nominal cross section
width
mt4 = mt; % (kg) Mass of axle #4
mt5 = mt; % (kg) Mass of axle #5
P45 = P; % (psi) Tire pressure from
TireData3.m
press45 = press; % (psi) Tire Pressure array
numtires45 = numtires; % Number of tires on axle
Kstiff45 = Kstiff; % (N/m) Tire stiffness array
kt4 = KK * numtires45; % (N/m) Per-axle Rad Stiffness
kt5 = KK * numtires45; % (N/m) Per-axle Rad Stiffness
c4t = ct; % (N/(m/s)) Per-axle Damping
c5t = ct; % (N/(m/s)) Per-axle Damping

disp(' ')
disp('VEHICLE VELOCITY')
disp(' ')
disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp(' ')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; % Velocity conversion from mph to
elseif vel == 'b'
 v = 0.277778*vm; % Velocity conversion from kph to
end

T(1) = 0; % Time delay between front axle and
remaining axles
T(2) = (a+b)/v; % Axle #2
T(3) = (a+d)/v; % Axle #3
T(4) = (a+i+e+f)/v; % Axle #4
T(5) = (a+i+e+h)/v; % Axle #5
disp('
ROAD PSD SELECTION

Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp('
a : Csp = 4.3e-11, N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp('
tabchoice11=input('Input the road surface to be used : ','s');

if tabchoice11=='a', % smooth runway
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoice11=='b', % rough runway
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoice11=='c', % smooth highway
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoice11=='d', % highway with gravel
 Csp = 4.4e-6;
 N=2.1;
end

% Start Loop on Beaming Frequencies
% Frequency will range from 10 Hz to 30 Hz for tractor and trailer

for iiii=1:21;
 for jjjj=1:21;
 ffhz(iiii,jjjj)=iiii;
 ffhz2(iiii,jjjj)=jjjj;
 fhz = 9+ffhz(iiii,jjjj);
 fhz2 = 9+ffhz2(iiii,jjjj);
 EI_t = 4*pi^2*fhz^2*(b_fw/(kb1))^4*ML_t; %Tractor frame flexural rigidity
 EI_tlr = 4*pi^2*fhz2^2*(L_tlr/(kb2))^4*ML_tlr; %Trailer flexural rigidity
%% System Matrices

%%% Mass Matrix %%%

M = zeros(15,15);

M(1,1) = m_s; % Eqn #1: Vertical Disp of Seat
M(2,2) = m_c; % Eqn #2: Vertical Disp of Cab
M(3,3) = I_c; % Eqn #3: Pitch of Cab
M(4,4) = m_e; % Eqn #4: Vertical Disp of Engine
M(5,5) = m_t; % Eqn #5: Vertical Disp of Tractor Frame
M(5,6) = ML_t*b_dw*(b_dw/2-a_1);
M(5,7) = ML_t*I1_t;
M(6,5) = ML_t*b_dw*(b_dw/2-a_1); % Eqn #6: Pitch of Tractor Frame
M(6,6) = I_t;
M(6,7) = -ML_t*I2_t;
M(7,5) = ML_t*I1_t; % Eqn #7: Beaming of Tractor Frame
M(7,6) = -ML_t*I2_t;
M(7,7) = ML_t*I3_t;
M(8,8) = m_tlr; % Eqn #8: Vertical Disp of Trailer
M(8,9) = -ML_tlr*L_tlr*(e-L_tlr/2);
M(8,10) = ML_tlr*I1_tlr;
M(9,8) = -ML_tlr*L_tlr*(e-L_tlr/2); % Eqn #9: Pitch of Trailer
M(9,9) = I_tlr;
M(9,10) = -ML_tlr*I2_tlr;
M(10,8) = ML_tlr*I1_tlr; % Eqn #10: Beaming of Trailer
M(10,9) = -ML_tlr*I2_tlr;
M(10,10) = ML_tlr*I3_tlr;
M(11,11) = mt1; % Eqn #11: Vertical Disp of Axle #1
\[M(12,12) = mt_2; \] % Eqn #12: Vertical Disp of Axle #2

\[M(13,13) = mt_3; \] % Eqn #13: Vertical Disp of Axle #3

\[M(14,14) = mt_4; \] % Eqn #14: Vertical Disp of Axle #4

\[M(15,15) = mt_5; \] % Eqn #15: Vertical Disp of Axle #5

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%

\[C = \text{zeros}(15,15); \]

\[C(1,1) = cs; \]
\[C(1,2) = -cs; \]
\[C(1,3) = r*cs; \]

\[C(2,1) = -cs; \]
\[C(2,2) = cs+ccf+ccr; \]
\[C(2,3) = -r*cs-n*ccf+p*ccr; \]
\[C(2,5) = -ccf-ccr; \]
\[C(2,6) = 1*ccf-j*ccr; \]
\[C(2,7) = -ccf*E_{cf}-ccr*E_{cr}; \]

\[C(3,1) = r*cs; \]
\[C(3,2) = -r*cs-n*ccf+p*ccr; \]
\[C(3,3) = (r^2)*cs+(n^2)*ccf+(p^2)*ccr; \]
\[C(3,5) = n*ccf-p*ccr; \]
\[C(3,6) = -n*1*ccf-p*j*ccr; \]
\[C(3,7) = n*ccf*E_{cf}-p*ccr*E_{cr}; \]

\[C(4,4) = ce; \]
\[C(4,5) = -ce; \]
\[C(4,6) = m*ce; \]
\[C(4,7) = -ce*E_{e}; \]

\[C(5,2) = -ccf-ccr; \]
\[C(5,3) = n*ccf-p*ccr; \]
\[C(5,4) = -ce; \]
\[C(5,5) = ce+ccf+ccr+cfl+c1+c2+c3; \]
\[C(5,6) = -m*ce-1*ccf+j*ccr+i*cfl-a*c1+b*c2+d*c3; \]
\[C(5,7) = ce*E_{e}+ccf*E_{cf}+ccr*E_{cr}+cfl*E_{fw}+c1*E_{a1}+c2*E_{a2}+c3*E_{a3}; \]
\[C(5,8) = -cfl; \]
\[C(5,9) = e*cfl; \]
\[C(5,10) = -cfl*E_{0}; \]
\[C(5,11) = -c1; \]
\[C(5,12) = -c2; \]
\[C(5,13) = -c3; \]
\[C(6,2) = 1*ccf-j*ccr; \]
\[C(6,3) = -n^1 * ccf - p^1 * ccr;\]
\[C(6,4) = m * ce;\]
\[C(6,5) = -m * ce - 1 * ccf + j * ccr + i * cfw - a * c1 + b * c2 + d * c3;\]
\[C(6,6) = (m^2) * ce + (l^2) * ccf + (j^2) * ccr + (i^2) * cfw + (a^2) * c1 + (b^2) * c2 + (d^2) * c3;\]
\[C(6,7) = -m * ce * E_e - 1 * ccf * E_cf + j * ccr * E_cr + i * cfw * E_fw - a * c1 * E_a1 + b * c2 * E_a2 + ...\]
\[d * c3 * E_a3;\]
\[C(6,8) = -i * cfw;\]
\[C(6,9) = e^1 * i * cfw;\]
\[C(6,10) = -i * cfw * E_0;\]
\[C(6,11) = a * c1;\]
\[C(6,12) = -b * c2;\]
\[C(6,13) = -d * c3;\]
\[C(7,2) = -ccf * E_cf - ccr * E_cr;\]
\[C(7,3) = n * ccf * E_cf - p * ccr * E_cr;\]
\[C(7,4) = -ce * E_e;\]
\[C(7,5) = ce * E_e + ccf * E Cf + ccr * E_cr + cfw * E_fw + c1 * E_a1 + c2 * E_a2 + c3 * E_a3;\]
\[C(7,6) = -m * ce * E_e - 1 * ccf * E Cf + j * ccr * E_cr + i * cfw * E_fw - a * c1 * E_a1 + b * c2 * E_a2 + ...\]
\[+ d * c3 * E_a3;\]
\[C(7,7) = ce * E_e^2 + ccf * E Cf^2 + ccr * E_cr^2 + cfw * E_fw^2 + c1 * E_a1^2 + c2 * E_a2^2 + c3 * E_a3^2;\]
\[C(7,8) = -cfw * E/fw;\]
\[C(7,9) = e^1 * cfw * E_fw;\]
\[C(7,10) = -cfw * E_0 * E_fw;\]
\[C(7,11) = -c1 * E_a1;\]
\[C(7,12) = -c2 * E_a2;\]
\[C(7,13) = -c3 * E_a3;\]
\[C(8,5) = -cfw;\]
\[C(8,6) = -i * cfw;\]
\[C(8,7) = -cfw * E_fw;\]
\[C(8,8) = cfw + c4 + c5;\]
\[C(8,9) = -e * cfw + f * c4 + h * c5;\]
\[C(8,10) = cfw * E_0 + c4 * E_a4 + c5 * E_a5;\]
\[C(8,14) = -c4;\]
\[C(8,15) = -c5;\]
\[C(9,5) = e * cfw;\]
\[C(9,6) = e^1 * cfw;\]
\[C(9,7) = e * cfw * E_fw;\]
\[C(9,8) = -e * cfw + f * c4 + h * c5;\]
\[C(9,9) = (e^2) * cfw + (f^2) * c4 + (h^2) * c5;\]
\[C(9,10) = -e * cfw * E_0 + f * c4 * E_a4 + h * c5 * E_a5;\]
\[C(9,14) = -f * c4;\]
\[C(9,15) = -h * c5;\]
\[C(10,5) = -cfw * E_0;\]
\[C(10,6) = -i * cfw * E_0;\]
\[C(10,7) = -cfw * E_fw * E_0;\]
\[C(10,8) = cfw * E_0 + c4 * E_a4 + c5 * E_a5;\]
\[
\begin{align*}
C(10,9) &= -e*cfw*E_0+f*c4*E_a4+h*c5*E_a5; \\
C(10,10) &= cfw*E_0^2+c4*E_a4^2+c5*E_a5^2; \\
C(10,14) &= -c4*E_a4; \\
C(10,15) &= -c5*E_a5; \\
C(11,5) &= -c1; \\
C(11,6) &= a*c1; \\
C(11,7) &= -c1*E_a1; \\
C(11,11) &= c1+ct1; \\
C(12,5) &= -c2; \\
C(12,6) &= -b*c2; \\
C(12,7) &= -c2*E_a2; \\
C(12,12) &= c2+ct2; \\
C(13,5) &= -c3; \\
C(13,6) &= -d*c3; \\
C(13,7) &= -c3*E_a3; \\
C(13,13) &= c3+ct3; \\
C(14,8) &= -c4; \\
C(14,9) &= -f*c4; \\
C(14,10) &= -c4*E_a4; \\
C(14,14) &= c4+ct4; \\
C(15,8) &= -c5; \\
C(15,9) &= -h*c5; \\
C(15,10) &= -c5*E_a5; \\
C(15,15) &= c5+ct5; \\
\end{align*}
\]

\textbf{Stiffness Matrix}

\[
K = \text{zeros}(15,15);
\]

\[
\begin{align*}
K(1,1) &= ks; \\
K(1,2) &= -ks; \\
K(1,3) &= r*ks; \\
K(2,1) &= -ks; \\
K(2,2) &= ks+kcf+kcr; \\
K(2,3) &= -r*ks-n*kcf+p*kcr; \\
K(2,5) &= -kcf-kcr; \\
K(2,6) &= l*kcf-j*kcr; \\
K(2,7) &= n*kcf*E_cf-p*kcr*E_cr; \\
K(3,1) &= r*ks; \\
K(3,2) &= -r*ks-n*kcf+p*kcr; \\
K(3,3) &= (r^2)*ks+(n^2)*kcf+(p^2)*kcr; \\
K(3,5) &= n*kcf-p*kcr; \\
K(3,6) &= -n*l*kcf-p*j*kcr; \\
K(3,7) &= n*kcf*E_cf-p*kcr*E_cr; \\
K(4,4) &= ke; \\
K(4,5) &= -ke;
\end{align*}
\]
K(4,6) = m*ke;
K(4,7) = -ke*E_e;

K(5,2) = -kcf-kcr;
K(5,3) = n*kcf-p*kcr;
K(5,4) = -ke;
K(5,5) = ke+kcf+kcr+kfw+kl+k2+k3;
K(5,6) = -m*ke-l*ke+j*kcr+i*kfw-a*kl+b*k2+d*k3;
K(5,7) = ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+kl*E_al+k2*E_a2+k3*E_a3;
K(5,8) = -kfw;
K(5,9) = e*kfw;
K(5,10) = -kfw*E_0;
K(5,11) = -kl;
K(5,12) = -k2;
K(5,13) = -k3;

K(6,2) = l*kcf-j*kcr;
K(6,3) = -n*l*kcf-p*j*kcr;
K(6,4) = m*ke;
K(6,5) = -m*ke-l*ke+j*kcr+i*kfw-a*kl+b*k2+d*k3;
K(6,6) = (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*kl+(b^2)*k2+(d^2)*k3;
K(6,7) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*kl*E_al+b*k2*E_a2+... d*k3*E_a3;
K(6,8) = -i*kfw;
K(6,9) = e*i*kfw;
K(6,10) = -i*kfw*E_0;
K(6,11) = a*kl;
K(6,12) = -b*k2;
K(6,13) = -d*k3;

K(7,2) = -kcf*E_cf-kcr*E_cr;
K(7,3) = n*kcf*E_cf-p*kcr*E_cr;
K(7,4) = -ke*E_e;
K(7,5) = ke*E_e+kcf*E_cf+kcr*E_cr+kfw*E_fw+kl*E_al+k2*E_a2+k3*E_a3;
K(7,6) = -m*ke*E_e-l*kcf*E_cf+j*kcr*E_cr+i*kfw*E_fw-a*kl*E_al+b*k2*E_a2+... d*k3*E_a3;
K(7,7) = ke*E_e^2+kcf*E_cf^2+kcr*E_cr^2+kfw*E_fw^2+kl*E_al^2+k2*E_a2^2+... k3*E_a3^2+EI_t*I4_t;
K(7,8) = -kfw*E_fw;
K(7,9) = e*kfw*E_fw;
K(7,10) = -kfw*E_0*E_fw;
K(7,11) = -kl*E_al;
K(7,12) = -k2*E_a2;
K(7,13) = -k3*E_a3;

K(8,5) = -kfw;
K(8,6) = -i*kfw;
K(8,7) = -kf*E_fw;
K(8,8) = kfw+k4+k5;
\[K(8,9) = -e*kfw+f*k4+h*k5; \]
\[K(8,10) = kfw*E_0+k4*E_a4+k5*E_a5; \]
\[K(8,14) = -k4; \]
\[K(8,15) = -k5; \]
\[K(9,5) = e*kfw; \]
\[K(9,6) = e*i*kfw; \]
\[K(9,7) = e*kfw*E_fw; \]
\[K(9,8) = -e*kfw+f*k4+h*k5; \]
\[K(9,9) = (e^2)*kfw+(f^2)*k4+(h^2)*k5; \]
\[K(9,10) = -e*kfw*E_0+f*k4*E_a4+h*k5*E_a5; \]
\[K(9,14) = -f*k4; \]
\[K(9,15) = -h*k5; \]
\[K(10,5) = -kfw*E_0; \]
\[K(10,6) = -i*kfw*E_0; \]
\[K(10,7) = -kfw*E_fw*E_0; \]
\[K(10,8) = kfw*E_0+k4*E_a4+k5*E_a5; \]
\[K(10,9) = -e*kfw*E_0+f*k4*E_a4+h*k5*E_a5; \]
\[K(10,10) = kfw*E_0^2+k4*E_a4^2+k5*E_a5^2+EI_tlr*I4_tlr; \]
\[K(10,14) = -k4*E_a4; \]
\[K(10,15) = -k5*E_a5; \]
\[K(11,5) = -k1; \]
\[K(11,6) = a*k1; \]
\[K(11,7) = -k1*E_a1; \]
\[K(11,11) = k1+k1; \]
\[K(12,5) = -k2; \]
\[K(12,6) = -b*k2; \]
\[K(12,7) = -k2*E_a2; \]
\[K(12,12) = k2+k2; \]
\[K(13,5) = -k3; \]
\[K(13,6) = -d*k3; \]
\[K(13,7) = -k3*E_a3; \]
\[K(13,13) = k3+k3; \]
\[K(14,8) = -k4; \]
\[K(14,9) = -f*k4; \]
\[K(14,10) = -k4*E_a4; \]
\[K(14,14) = k4+k4; \]
\[K(15,8) = -k5; \]
\[K(15,9) = -h*k5; \]
\[K(15,10) = -k5*E_a5; \]
\[K(15,15) = k5+k5; \]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(15,1);
A(11) = ct1;
A(12) = ct2;
A(13) = ct3;
A(14) = ct4;
A(15) = ct5;

%%
%%% Tire Stiffness Matrix %%%
%%
B = zeros(15,1);
B(11) = kt1;
B(12) = kt2;
B(13) = kt3;
B(14) = kt4;
B(15) = kt5;

% System "A" Matrix
AA=[zeros(size(M)) eye(size(M)) % System state variable
 -inv(M)*K -inv(M)*C];

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)
wc=[.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
whzc=[.1 .125 .16 .2 .25 .315 .4 .5 .63 .8 1 1.25 1.6 2 2.5 3.15 ...
 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];

% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,1,.9,.8,.71,.71,.71,...
 .9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

%---
% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,
 8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;
%---

whzcr = 2*pi*whzc; % Calculation of central frequencies in rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];

imag=sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq
 % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);
 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ... exp(-s*T(4)) exp(-s*T(5))];
 end;
end;

% TF Matrix
vectx = (inv(M*s*s+C*s+K)*((A*s+B).*time.'));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Transfer Functions %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

z_s=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat
g
c long=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp
of driver
z_tlr=[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]*vectx; % vert
trailer cg

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Magnitudes %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Acceleration Transfer Functions
magcfA1(ii,jj)=abs(s*s*z_s); % Mag of trans function,
(m/s*s)/m
magcfAlong(ii,jj)=abs(s*s*long);
magcftrlr(ii,jj)=abs(s*s*z_tlr);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PSDs %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Road PSD in m*m/(rad/s)
rpsd(ii,jj)=Csp*(((2*pi*v)^(N-1))/(w^N));

% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfA1(ii,jj)=magcfA1(ii,jj)*magcfA1(ii,jj)*rpsd(ii,jj);
psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);
end
end

for kk=1:length(whzc)
 % Vert. Driver's Seat RMS
 msqy1a(kk)=0.5*(psdcfA1(kk,1)+psdcfA1(kk,2))*(freq(kk,2)-freq(kk,1));
 msqy1b(kk)=0.5*(psdcfA1(kk,2)+psdcfA1(kk,3))*(freq(kk,3)-freq(kk,2));
 msqy1(kk)=msqy1a(kk)+msqy1b(kk);
 rmsA1cf(kk)=sqrt(msqy1(kk));
 % Long. Driver RMS
 msqylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*(freq(kk,2)-freq(kk,1));
 msqylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*(freq(kk,3)-freq(kk,2));
 msqylong(kk)=msqylonga(kk)+msqylongb(kk);
 rmsAlongcf(kk)=sqrt(msqylong(kk));
 % Vert. Trailer cg RMS
 msqyltra(kk)=0.5*(psdcftlr(kk,1)+psdcftlr(kk,2))*(freq(kk,2)-freq(kk,1));
 msqyltrb(kk)=0.5*(psdcftlr(kk,2)+psdcftlr(kk,3))*(freq(kk,3)-freq(kk,2));
 msqyltr(kk)=msqyltra(kk)+msqyltrb(kk);
 rmstlrcf(kk)=sqrt(msqyltr(kk));
end

RMScf = [rmsA1cf',rmsAlongcf',rmstlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal
wcc=[.1,.125,.16,.2,.25,.315,.4,.5,.6,.8,1,1.25,1.6,2,2.5,3.15,4,5,...
 6,8,10,12.5,16,20,25,31.5,40,50];
WgtV=[.0312,.0486,.079,.121,.182,.263,.352,.418,.459,.477,.482,.494,...
 .531,.631,.804,.967,1.039,1.054,1.036,.988,.902,.768,.636,..
 .513,.405,.314,.246];
WgtL=0.001*[62.4,97.3,158,243,365,530,713,853,944,992,1011,1008,968,...
 890,776,642,512,409,323,253,212,161,125,100,80,63.2,49.4,38.8];

isovert = WgtV.*RMScf(1:28,1); % Weighted Vert. Driver RMS Accel.
isolong = WgtL.*RMScf(1:28,2); % Weighted Long. Driver RMS Accel.
isotlr = WgtV.*RMScf(1:28,3); % Weighted Vert. Trailer RMS Accel.
term2V = (WgtV * rmsA1cf(1:28)).^2;

\[a_0 _V _dr = (\text{sum}(\text{term2V}))^{0.5}; \]
\% a0 for vert. disp of driver

term2L = (WgtL * rmsAlongcf(1:28)).^2;

\[a_0 _L _dr = (\text{sum}(\text{term2L}))^{0.5}; \]
\% a0 for long. disp of driver

\[aV = (a_0 _L _dr^2 + a_0 _V _dr^2)^{0.5}; \]
\% a0 for comb vert and long disp

tlrV = (WgtV * rmstlrcf(1:28)).^2;

\[a0 _V _tlr = (\text{sum}(\text{tlrV}))^{0.5}; \]
\% a0 for vert. disp of driver

\[a0 _VV _dr(iiii,jjjj) = a0 _V _dr; \]
\% vertical ISO wgt acc, m/s^2

\[a0 _LL _dr(iiii,jjjj) = a0 _L _dr; \]
\% longitudinal ISO wgt acc, m/s^2

\[aVV(iiii,jjjj) = aV; \]
\% combined ISO wgt acc, m/s^2

end \% end of j jjjj loop on fhz2

end \% end of i iiiii loop on fhz

disp(' ')
disp('RESULTS OF PARAMETER VARIATION')
disp(' ')
disp('Minimum aV, m/s^2')
disp(min(aVV(:)))
disp(' ')
[ia, ja] = find(aVV == min(aVV(:)));
disp('Corresponding Tractor Beaming Frequency, Hz')
disp([9+ffhz(ia, ja)])
disp(' ')
disp('Corresponding Trailer Beaming Frequency, Hz')
disp([9+ffhz2(ia, ja)])
disp(' ')

figure(1)
surf(9+ffhz, 9+ffhz2, aVV)
xlabel('Tractor Beaming, Hz')
ylabel('Trailer Beaming, Hz')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Suspension Stiffness Parameter Variation')

figure(2)
surf(9+ffhz, 9+ffhz2, a0_VV_dr)
xlabel('Tractor Beaming, Hz')
ylabel('Trailer Beaming, Hz')
zlabel('ISO Vertical Wgt Acc, m/s^2')

figure(3)
surf(9+ffhz, 9+ffhz2, a0_LL_dr)
xlabel('Tractor Beaming, Hz')
ylabel('Trailer Beaming, Hz')
zlabel('ISO Long Wgt Acc, m/s^2')
Appendix M: opt_5wKC_freq.m

This parameter variation program varies the stiffness and damping values across the fifth wheel, assuming that a fifth wheel suspension system has been implemented. The values for the fifth wheel suspension stiffness range from 50,000 N/m to 1,000,000 N/m in increments of 50,000 N/m. The lower end of this range was chosen by observing the RMS stroke across the fifth wheel at different values for the stiffness, and the higher end is meant to simulate a rigid connection. The values for the fifth wheel suspension damping range from 2,000 N/(m/s) to 40,000 N/(m/s) in increments of 2,000 N/(m/s). These values were chosen by inserting values for the fifth wheel suspension damping into the dof15_freq2.m simulation and observing the damping ratios at the eigenvalues corresponding to motions across the fifth wheel.

The desired output values from this program were the ISO combined weighted acceleration at the driver’s seat, the ISO vertical weighted acceleration at the trailer center-of-gravity (CG), a value called the J penalty, which weighs the importance of the driver ride comfort versus trailer acceleration using weights assigned to them by the user, and the RMS stroke across the fifth wheel. The program finds the minimum values for the accelerations and the J penalty, and displays them in tabular form along with the corresponding stiffness and damping values for the fifth wheel suspension system. Also, the program plots the output information on surface plots to study trends in the information.
% Developed by Ryan Spivey, 4/10/07
% Varies 5th wheel suspension parameters using weighted RMS acceleration in the frequency domain
% Incorporates model from dof15_freq2.m
% DOFs include - 1) Vertical Disp. of Driver's Seat
% 2) Vertical Disp. of Cab
% 3) Pitch of Cab
% 4) Vertical Disp. of Engine
% 5) Vertical Disp. of Tractor Frame
% 6) Pitch of Tractor Frame
% 7) Beaming of Tractor Frame
% 8) Vertical Disp. of Trailer
% 9) Pitch of Trailer
% 10) Beaming of Trailer
% 11) Vertical Disp. of Axle #1
% 12) Vertical Disp. of Axle #2
% 13) Vertical Disp. of Axle #3
% 14) Vertical Disp. of Axle #4
% 15) Vertical Disp. of Axle #5

clear all
format short e
format compact

% Choose a test vehicle

if vehicle == 'a'
 m_s = 106.7; %kg mass of seat
 m_c = 1208; %kg mass of cab
 I_c = 2100; %kg*m^2 M I of cab
 m_e = 2000; %kg mass of engine (ESTIMATE)
end
m_t = 3783; %kg mass of tractor (5783 kg - engine)
I_t = 46590.9; %kg*m^2 M I of tractor
m_ul = 10800; %kg mass of trailer (ESTIMATE)
I_tlr = 200000; %kg*m^2 M I of trailer
m_L = 14000; %kg mass of trailer load (ESTIMATE)
m_tlr = m_ul+m_L; %kb mass of loaded trailer

% Suspension Parameters
cl = 11270; %N/(m/s) damping const of axle #1
c2 = 27500; %N/(m/s) damping const of axle #2
c3 = 27500; %N/(m/s) damping const of axle #3
c4 = 70000; %N/(m/s) damping const of axle #4
c5 = 70000; %N/(m/s) damping const of axle #5
ce = 10000; %N/(m/s) damping const of engine mount
k1 = 581300; %N/m spring const of axle #1
k2 = 586900; %N/m spring const of axle #2
k3 = 586900; %N/m spring const of axle #3
k4 = 1000000; %N/m spring const of axle #4
k5 = 1000000; %N/m spring const of axle #5
ke = 1e10; %N/m spring const of the engine mount

% Model Dimensions
b_a1 = 1.065; %m Front end of the tractor to axle #1
b_cf = 1.470; %m Front end of the tractor to cab front
b_e = 2.797; %m Front end of the tractor to engine
b_cr = 4.02; %m Front end of the tractor to cab rear
b_a2 = 6.035; %m Front end of the tractor to axle #2
b_fw = 6.688; %m Front end of the tractor to 5th wheel
b_a3 = 7.34; %m Front end of the tractor to axle #3
a1 = 4.00607; %m Front end of the tractor to tractor cg
b_a4 = 8.58; %m From the fifth wheel to axle #4
b_a5 = 9.78; %m From the fifth wheel to axle #5
L_t = 8.2; %m Length of Tractor
L_tlr = 9.78; %m Length of Trailer
e = 5.62; %m From the trailer cg to fifth wheel
f = 2.96; %m From the trailer cg to axle #4
h = 4.16; %m From the trailer cg to axle #5
a = 2.94107; %m From the tractor cg to axle #1
b = 2.02893; %m From the tractor cg to axle #2
d = 3.33393; %m From the tractor cg to axle #3
l = 2.53607; %m From the tractor cg to cab front
m = 1.209074; %m From the tractor cg to engine
\[j = 0.013926; \quad \text{m} \quad \text{From the tractor cg to cab rear} \]
\[i = 2.68193; \quad \text{m} \quad \text{From the tractor cg to the fifth wheel} \]
\[n = 1.435; \quad \text{m} \quad \text{From the cab cg to cab front} \]
\[p = 1.115; \quad \text{m} \quad \text{From the cab cg to cab rear} \]
\[r = -0.200; \quad \text{m} \quad \text{From the cab cg to seat} \]
\[tc = 1.10107; \quad \text{m} \quad \text{From the tractor cg to the cab cg} \]
\[h_1 = 1.0; \quad \text{m} \quad \text{Height of the driver over the cab} \]
\[g = 9.8; \quad \text{m/s}^2 \quad \text{acceleration due to gravity} \]

\[ML_t = \frac{m_t}{L_t}; \quad \text{kg/m} \quad \text{Mass per unit length (Tractor)} \]
\[ML_{tlr} = \frac{m_{ul}}{L_{tlr}}; \quad \text{kg/m} \quad \text{Mass per unit length (Trailer)} \]

%%%%%%%%%%%%%%%%%%% Fifth Wheel Configuration
上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的上海证券交易所是国家工商行政管理总局批准设立的
% second derivative of free-free beam mode function

% %%
% %%%%%%%%%%%%%%%%%%%% Computation of Integrals
% %%
% %

D1_t=['(','z1,')']; % Tractor frame beaming
equations to be
D2_t=['((a1-x1).*(','z1,'))']; % used in the integrals
(string form)
D3_t=['((','z1,').*(','z1,'))'];
D4_t=['((','z1dd,').*(','z1dd,'))'];

D1_tlr=['(','z2,')']; % Trailer beaming equations
to be
D2_tlr=['((e-x2).*(','z2,'))']; % used in the integrals
(string form)
D3_tlr=['((','z2,').*(','z2,'))'];
D4_tlr=['((','z2dd,').*(','z2dd,'))'];

I1_t=quadl('modeD1_t',0,b_fw); % Integrals of functions
defined above
I2_t=quadl('modeD2_t',0,b_fw); % (along length of tractor
(frame)
I3_t=quadl('modeD3_t',0,b_fw);
I4_t=quadl('modeD4_t',0,b_fw);

I1_tlr=quadl('modeD1_tlr',0,L_tlr); % Integrals of functions
defined above
I2_tlr=quadl('modeD2_tlr',0,L_tlr); % (along length of trailer)
I3_tlr=quadl('modeD3_tlr',0,L_tlr);
I4_tlr=quadl('modeD4_tlr',0,L_tlr);

E_a1=modeD1_t(b_a1); % Disp at axle #1 due to tractor frame
beaming
E_cf=modeD1_t(b Cf); % Disp at cab front due to tractor
frame beaming
E_e=modeD1_t(b e); % Disp at engine due to tractor frame
beaming
E_cr=modeD1_t(b cr); % Disp at cab rear due to tractor frame
beaming
E_a2=modeD1_t(b a2); % Disp at axle #2 due to tractor frame
beaming
E_fw=modeD1_t(b fw); % Disp at fifth wheel due to tractor
frame beaming
E_a3=modeD1_t(b a3); % Disp at axle #3 due to tractor frame
beaming
E_0=modeD1_tlr(0); % Disp at fifth wheel due to trailer
beaming
E_a4=modeD1_tlr(b a4); % Disp at axle #4 due to trailer
beaming
E_a5=modeD1_tlr(b a5); % Disp at axle #5 due to trailer
beaming
EI_t = 4*pi^2*fhz^2*(b_fw/kb1)^4*ML_t; %Tractor frame flexural rigidity
EI_tlr = 4*pi^2*fhz2^2*(L_tlr/kb2)^4*ML_tlr; %Trailer flexural rigidity

% Seat Suspension Options
disp('VEHICLE SUSPENSION OPTIONS')
disp('Give your choice for seat suspension: ')
disp('Note: Without seat suspension gives a very high frequency mode')
disp('because the stiffness is set to a high value.')
disp('a : With seat suspension (~0.9 Hz)')
disp('b : Without seat suspension')
z11 = input('Enter your choice : ', 's');

if z11 == 'a', % Choice 'a' is with seat suspension
 cs = 1140; % Damping ratio of 0.5
 ks = 3403; % N/m(spring const of seat suspension)
elseif z11 == 'b', % Choice 'b' is without seat suspension
 cs = 1329; % N/(m/s)(damping const of seat suspension)
 ks = 1e10; % N/m(spring const of seat suspension)
else disp('Insufficient information regarding seat suspension.') end

% Cab Suspension Options
disp('Give your choice for cab suspension: ')
disp('Note: With front or rear or without cab suspension')
disp('gives a very high frequency mode(s) because the corresponding')
disp('stiffness(es) is set to a high value.')
disp('a : With front cab suspension')
disp('b : With rear cab suspension')
disp('c : With front & rear cab suspension')
disp('d : Without cab suspension')
z22 = input('Enter your choice : ', 's');

if z22 == 'a', % Choice 'a' is front cab suspension
 ccf = 7062; % N/(m/s)(damping const of front cab suspension)
 kcf = 88740; % N/m(spring const of front cab suspension)
 ccr = 6430; % N/(m/s)(damping const of rear cab suspension)
 kcr = 1e10; % N/m(spring const of rear cab suspension)
elseif z22 == 'b', % Choice 'b' is rear cab suspension
 ccr = 8000; % Reduced damping
kcr = 65980; % N/m (spring const of rear cab suspension)
ccf = 13120; % N/(m/s) (damping const of front cab suspension)
kcf = 1e10; % N/m (spring const of front cab suspension)

elseif z22 == 'c', % Choice 'c' is front & rear cab suspension
ccr = 5073.5; % N/(m/s) (damping const of rear cab suspension)
kcr = 63757.5; % N/m (spring const of rear cab suspension)
ccf = 6864.35; % N/(m/s) (damping const of front cab suspension)
kcf = 86260.5; % N/m (spring const of front cab suspension)

elseif z22 == 'd', % Choice 'd' is without cab suspension
ccr = 6430; % N/(m/s) (damping const of rear cab suspension)
kcr = 1e10; % N/m (spring const of rear cab suspension)
ccf = 7062; % N/(m/s) (damping const of front cab suspension)
kcf = 1e10; % N/m (spring const of front cab suspension)

else disp('Insufficient information regarding cab suspension. ')
end

%%%
%%
%%%%%%%%%%%%%%%%%%%% Vehicle Tire Selection
%%%%%%%%%%%%%%%%%%%%%
%%%
%%
disp(' ')
disp('STEER AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd1 = wd; % (m) Nominal cross section width
mt1 = mt; % (kg) Mass of axle #1
P1 = P; % (psi) Tire pressure from TireData3.m
press1 = press; % (psi) Tire pressure array
numtires1 = numtires; % Number of tires on axle
Kstiff1 = Kstiff; % (N/m) Tire stiffness array
kt1 = KK * numtires1; % (N/m) Per-axle Rad Stiffness
c11 = ct; % (N/(m/s)) Per-axle Damping

disp(' ')
disp('DRIVE AXLE TIRE SELECTION')
TireData3; % M-file for tire data
wd23 = wd; %(m) Nominal cross section width
mt2 = mt; %(kg) Mass of axle #2
mt3 = mt; %(kg) Mass of axle #3
P23 = P; %(psi) Tire pressure from TireData3.m
press23 = press; %(psi) Tire Pressure array
numtires23 = numtires; % Number of tires on axle
Kstiff23 = Kstiff; %(N/m) Tire stiffness array
kt2 = KK * numtires23; %(N/m) Per-axle Rad Stiffness
kt3 = KK * numtires23; %(N/m) Per-axle Rad Stiffness
c2 = ct; %(N/(m/s)) Per-axle Damping
c3 = ct; %(N/(m/s)) Per-axle Damping

press45 = press; %(psi) Tire Pressure array
numtires45 = numtires; % Number of tires on axle
Kstiff45 = Kstiff; %(N/m) Tire stiffness array
kt4 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
kt5 = KK * numtires45; %(N/m) Per-axle Rad Stiffness
c4 = ct; %(N/(m/s)) Per-axle Damping
c5 = ct; %(N/(m/s)) Per-axle Damping

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ') disp('TRAILER AXLE TIRE SELECTION')
disp(')
TireData3; % M-file for tire data
disp(')
wd45 = wd; %(m) Nominal cross section width
mt4 = mt; %(kg) Mass of axle #4
mt5 = mt; %(kg) Mass of axle #5
P45 = P; %(psi) Tire pressure from TireData3.m

%%%
%%%%%%%%%%%%%%%%%%%% Speed of the Vehicle %%%%%%%%%%%%%%%%%%%%%
%%%

disp(')
disp('VEHICLE VELOCITY')
disp(')
disp('Please choose the unit of velocity');
disp('a : Miles per Hour (mph)');
disp('b : Kilometers per Hour (kph)');
vel = input('Input the unit of velocity (a/b): ', 's');
disp(')
vm = input('Input the velocity of the vehicle, vm : ');

if vel == 'a'
 v = 0.4473*vm; %Velocity conversion from mph to m/s
elseif vel == 'b'
 v = 0.277778*vm; %Velocity conversion from kph to m/s
end

T(1) = 0; %Time delay between front axle and remaining axles
T(2) = (a+b)/v; % Axle #2
$T(3) = \frac{(a+d)}{v}$; \hspace{1cm} \text{% Axle #3} \\
$T(4) = \frac{(a+i+e+f)}{v}$; \hspace{1cm} \text{% Axle #4} \\
$T(5) = \frac{(a+i+e+h)}{v}$; \hspace{1cm} \text{% Axle #5} \\

%%%
% Road PSD Selection %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

disp(' ')
disp('ROAD PSD SELECTION')
disp(' ')
disp('Road PSD Constants, m^2/cyc/m, Ref: Wong, Theory of Ground Vehicles')
disp(' ')
disp('S(W)=Csp/W^N where W=spatial frequency')
disp(' ')
disp('a : Csp = 4.3e-11, N=3.8 Smooth Runway')
disp('b : Csp = 8.1e-6, N=2.1 Rough Runway')
disp('c : Csp = 4.8e-7, N=2.1 Smooth Highway')
disp('d : Csp = 4.4e-6, N=2.1 Highway with Gravel')
disp(' ')
tabchoicell=input('Input the road surface to be used : ','s');

if tabchoicell== 'a', \hspace{1cm} \text{% smooth runway}
 Csp = 4.3e-11;
 N=3.8;
elseif tabchoicell== 'b', \hspace{1cm} \text{% rough runway}
 Csp = 8.1e-6;
 N=2.1;
elseif tabchoicell == 'c', \hspace{1cm} \text{% smooth highway}
 Csp = 4.8e-7;
 N=2.1;
elseif tabchoicell == 'd', \hspace{1cm} \text{% highway with gravel}
 Csp = 4.4e-6;
 N=2.1;
end

disp(' ')
disp('J PENALTY OPTIONS')
disp(' ')
disp('Input the values for K1 and K2 in the J penalty function')
disp(' ')
K_1 = input('Input the value for K1 : ');
disp(' ')
K_2 = input('Input the value for K2 : ');

% Start Loop on 5th Wheel Suspension Properties
for iiii=1:20;
 for jjjj=1:20;
 kfww(iiii,jjjj)=50000*iiii;
 end
end
\[cfww(iiii,jjjj) = 2000 \times jjjj; \]

\[kfw = cfww(iiii,jjjj); \]
\[cfw = cfww(iiii,jjjj); \]

\\
\\
\\
\\
\\
\\

System Matrices

\% THE SYSTEM IS WRITTEN AS \((M*S*S+C*S+K)X(S)=(A*S+B)U(S)\)

\%

\\
\\
\\
\\

Mass Matrix

\[M = \text{zeros}(15,15); \]

\[M(1,1) = m_s; \quad \text{\% Eqn #1: Vertical Disp of Seat} \]

\[M(2,2) = m_c; \quad \text{\% Eqn #2: Vertical Disp of Cab} \]

\[M(3,3) = I_c; \quad \text{\% Eqn #3: Pitch of Cab} \]

\[M(4,4) = m_e; \quad \text{\% Eqn #4: Vertical Disp of Engine} \]

\[M(5,5) = m_t; \quad \text{\% Eqn #5: Vertical Disp of Tractor Frame} \]

\[M(5,6) = ML_t*b_{fw}*(b_{fw}/2-a_1); \]
\[M(5,7) = ML_t*I1_t; \]

\[M(6,5) = ML_t*b_{fw}*(b_{fw}/2-a_1); \quad \text{\% Eqn #6: Pitch of Tractor Frame} \]
\[M(6,6) = I_t; \]
\[M(6,7) = -ML_t*I2_t; \]

\[M(7,5) = ML_t*I1_t; \quad \text{\% Eqn #7: Beaming of Tractor Frame} \]
\[M(7,6) = -ML_t*I2_t; \]
\[M(7,7) = ML_t*I3_t; \]

\[M(8,8) = m_{tlr}; \quad \text{\% Eqn #8: Vertical Disp of Trailer} \]
\[M(8,9) = -ML_{tlr}*L_{tlr}*(e-L_{tlr}/2); \]
\[M(8,10) = ML_{tlr}*I1_{tlr}; \]

\[M(9,8) = -ML_{tlr}*L_{tlr}*(e-L_{tlr}/2); \quad \text{\% Eqn #9: Pitch of Trailer} \]
\[M(9,9) = I_{tlr}; \]
\[M(9,10) = -ML_{tlr}*I2_{tlr}; \]

\[M(10,8) = ML_{tlr}*I1_{tlr}; \quad \text{\% Eqn #10: Beaming of Trailer} \]
\[M(10,9) = -ML_{tlr}*I2_{tlr}; \]
\[M(10,10) = ML_{tlr}*I3_{tlr}; \]
M(11,11) = mt1; % Eqn #11: Vertical Disp of Axle
#1
M(12,12) = mt2; % Eqn #12: Vertical Disp of Axle
#2
M(13,13) = mt3; % Eqn #13: Vertical Disp of Axle
#3
M(14,14) = mt4; % Eqn #14: Vertical Disp of Axle
#4
M(15,15) = mt5; % Eqn #15: Vertical Disp of Axle
#5

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(15,15);
C(1,1) = cs;
C(1,2) = -cs;
C(1,3) = r*cs;
C(1,4) = ce;
C(1,5) = -ce;
C(1,6) = m*ce;
C(1,7) = -ce*E_e;
C(2,1) = -cs;
C(2,2) = cs+ccf+ccr;
C(2,3) = -r*cs-n*ccf+p*ccr;
C(2,4) = -ccf-ccr;
C(2,5) = l*ccf-j*ccr;
C(2,6) = -ccf*E_cf-ccr*E_cr;
C(3,1) = r*cs;
C(3,2) = -r*cs-n*ccf+p*ccr;
C(3,3) = (r^2)*cs+(n^2)*ccf+(p^2)*ccr;
C(3,4) = -ccf-p*ccr;
C(3,5) = n*ccf-p*ccr;
C(3,6) = -n*l*ccf-p*j*ccr;
C(3,7) = n*ccf*E_cf-p*ccr*E_cr;
C(4,4) = ce;
C(4,5) = -ce;
C(4,6) = m*ce;
C(4,7) = -ce*E_e;
C(5,2) = -ccf-ccr;
C(5,3) = n*ccf-p*ccr;
C(5,4) = -ce;
C(5,5) = ce+ccf+ccr+cfw+c1+c2+c3;
C(5,6) = -m*ce-l*ccf+j*ccr+i*cfw-a*c1+b*c2+d*c3;
C(5,7) = ce*E_e+ccf*E_cf+ccr*E_cr+cfw*E_fw+c1*E_a1+c2*E_a2+3*E_a3;
C(5,8) = -cfw;
C(5,9) = e*cfw;
C(5,10) = -cfw*E_0;
C(5,11) = -c1;
C(5,12) = -c2;
C(10,6) = -i*cfw*E_0;
C(10,7) = -cfw*E_fw*E_0;
C(10,8) = cfw*E_0+c4*E_a4+c5*E_a5;
C(10,9) = -e*cfw*E_0+f*c4*E_a4+h*c5*E_a5;
C(10,10) = cfw*E_0^2+c4*E_a4^2+c5*E_a5^2;
C(10,14) = -c4*E_a4;
C(10,15) = -c5*E_a5;
C(11,5) = -c1;
C(11,6) = a*c1;
C(11,7) = -c1*E_a1;
C(11,11) = c1+ct1;
C(12,5) = -c2;
C(12,6) = -b*c2;
C(12,7) = -c2*E_a2;
C(12,12) = c2+ct2;
C(13,5) = -c3;
C(13,6) = -d*c3;
C(13,7) = -c3*E_a3;
C(13,13) = c3+ct3;
C(14,8) = -c4;
C(14,9) = -f*c4;
C(14,10) = -c4*E_a4;
C(14,14) = c4+ct4;
C(15,8) = -c5;
C(15,9) = -h*c5;
C(15,10) = -c5*E_a5;
C(15,15) = c5+ct5;

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Stiffness Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
K = zeros(15,15);
K(1,1) = ks;
K(1,2) = -ks;
K(1,3) = r*ks;
K(2,1) = -ks;
K(2,2) = ks+kcf+kcr;
K(2,3) = -r*ks-n*kcf+p*kcr;
K(2,5) = -kcf-kcr;
K(2,6) = l*kcf-j*kcr;
K(2,7) = n*kcf*E_cf-kcr*E_cr;
K(3,1) = r*ks;
K(3,2) = -r*ks-n*kcf+p*kcr;
K(3,3) = (r^2)*ks+(n^2)*kcf+(p^2)*kcr;
K(3,5) = n*kcf-p*kcr;
K(3,6) = -n*l*kcf-p*j*kcr;
K(3,7) = n*kcf*E_cf-p*kcr*E_cr;
\[K(4,4) = ke; \]
\[K(4,5) = -ke; \]
\[K(4,6) = m*ke; \]
\[K(4,7) = -ke*E_e; \]
\[K(5,2) = -kcf-kcr; \]
\[K(5,3) = n*kcf-p*kcr; \]
\[K(5,4) = -ke; \]
\[K(5,5) = ke+kcf+kcr+kfw+k1+k2+k3; \]
\[K(5,6) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \]
\[K(5,7) = ke*E_e+kcf*E Cf+kcr*E Cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3; \]
\[K(5,8) = -kfw; \]
\[K(5,9) = e*kfw; \]
\[K(5,10) = -kfw*E_0; \]
\[K(5,11) = -k1; \]
\[K(5,12) = -k2; \]
\[K(5,13) = -k3; \]
\[K(6,2) = l*kcf-j*kcr; \]
\[K(6,3) = -n*l*kcf-p*j*kcr; \]
\[K(6,4) = m*ke; \]
\[K(6,5) = -m*ke-l*kcf+j*kcr+i*kfw-a*k1+b*k2+d*k3; \]
\[K(6,6) = (m^2)*ke+(l^2)*kcf+(j^2)*kcr+(i^2)*kfw+(a^2)*k1+(b^2)*k2+(d^2)*k3; \]
\[K(6,7) = -m*ke*E_e-l*kcf*E Cf+j*kcr*E Cr+i*kfw*E_fw-a*k1*E_a1+b*k2*E_a2+... \]
\[+d*k3*E_a3; \]
\[K(6,8) = -i*kfw; \]
\[K(6,9) = e*i*kfw; \]
\[K(6,10) = -i*kfw*E_0; \]
\[K(6,11) = a*k1; \]
\[K(6,12) = -b*k2; \]
\[K(6,13) = -d*k3; \]
\[K(7,2) = -kcf*E Cf-kcr*E Cr; \]
\[K(7,3) = n*kcf*E Cf-p*kcr*E Cr; \]
\[K(7,4) = -ke*E_e; \]
\[K(7,5) = ke*E_e+kcf*E Cf+kcr*E Cr+kfw*E_fw+k1*E_a1+k2*E_a2+k3*E_a3; \]
\[K(7,6) = -m*ke*E_e-l*kcf*E Cf+j*kcr*E Cr+i*kfw*E_fw-a*k1*E_a1+b*k2*E_a2+... \]
\[+d*k3*E_a3; \]
\[K(7,7) = ke*E_e^2+kcf*E Cf^2+kcr*E Cr^2+kfw*E_fw^2+k1*E_a1^2+k2*E_a2^2+... \]
\[+k3*E_a3^2+EI_t*I4_t; \]
\[K(7,8) = -kfw*E_fw; \]
\[K(7,9) = e*kfw*E_fw; \]
\[K(7,10) = -kfw*E_0*E_fw; \]
\[K(7,11) = -k1*E_a1; \]
\[K(7,12) = -k2*E_a2; \]
\[K(7,13) = -k3*E_a3; \]
\[K(8,5) = -kfw; \]

370
\[
\begin{align*}
K(8,6) &= -1kfw; \\
K(8,7) &= -kfw*E_{fw}; \\
K(8,8) &= kfw+k4+k5; \\
K(8,9) &= -e*kfw+f*k4+h*k5; \\
K(8,10) &= kfw*E_0+k4*E_{a4}+k5*E_{a5}; \\
K(8,14) &= -k4; \\
K(8,15) &= -k5; \\

K(9,5) &= e*kfw; \\
K(9,6) &= e*i*kfw; \\
K(9,7) &= e*kfw*E_{fw}; \\
K(9,8) &= -e*kfw+f*k4+h*k5; \\
K(9,9) &= (e^2)*kfw+(f^2)*k4+(h^2)*k5; \\
K(9,10) &= -e*kfw*E_0+f*k4*E_{a4}+h*k5*E_{a5}; \\
K(9,14) &= -f*k4; \\
K(9,15) &= -h*k5; \\

K(10,5) &= -kfw*E_{0}; \\
K(10,6) &= -i*kfw*E_{0}; \\
K(10,7) &= -kfw*E_{fw}*E_{0}; \\
K(10,8) &= kfw*E_{0}+k4*E_{a4}+k5*E_{a5}; \\
K(10,9) &= -e*kfw*E_{0}+f*k4*E_{a4}+h*k5*E_{a5}; \\
K(10,10) &= kfw*E_{0}^2+k4*E_{a4}^2+k5*E_{a5}^2+EI_{tlr}*I4_{tlr}; \\
K(10,14) &= -k4*E_{a4}; \\
K(10,15) &= -k5*E_{a5}; \\

K(11,5) &= -k1; \\
K(11,6) &= a*k1; \\
K(11,7) &= -k1*E_{a1}; \\
K(11,11) &= k1+kT1; \\

K(12,5) &= -k2; \\
K(12,6) &= -b*k2; \\
K(12,7) &= -k2*E_{a2}; \\
K(12,12) &= k2+kT2; \\

K(13,5) &= -k3; \\
K(13,6) &= -d*k3; \\
K(13,7) &= -k3*E_{a3}; \\
K(13,13) &= k3+kT3; \\

K(14,8) &= -k4; \\
K(14,9) &= -f*k4; \\
K(14,10) &= -k4*E_{a4}; \\
K(14,14) &= k4+kt4; \\

K(15,8) &= -k5; \\
K(15,9) &= -h*k5; \\
K(15,10) &= -k5*E_{a5}; \\
K(15,15) &= k5+kt5; \\

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Tire Damping Matrix %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(15,1);

371
A(11) = ct1;
A(12) = ct2;
A(13) = ct3;
A(14) = ct4;
A(15) = ct5;

%%% Tire Stiffness Matrix %%%
B = zeros(15,1);
B(11) = kt1;
B(12) = kt2;
B(13) = kt3;
B(14) = kt4;
B(15) = kt5;

% System "A" Matrix
AA=[zeros(size(M)) eye(size(M)) % System state variable
 -inv(M)*K -inv(M)*C];

% ISO 2631 FOR REDUCED COMFORT BOUNDARY
% COMFORT BOUNDARIES FOR VERTICAL ACCELERATION
% THE ISO CENTRAL FREQUENCIES (Hz)

wc=[0.1 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];
whzc=[0.1 0.125 0.16 0.2 0.25 0.315 0.4 0.5 0.63 0.8 1 1.25 1.6 2 2.5 3.15 ... 4 5 6.3 8 10 12.5 16 20 25 31.5 40 50];

% 2.5 hr FATIGUE BOUNDARY
fat1=[4.284,1.4,1.25,1.12,.9,.8,.71,.71,.71,.71,0.9,1.12,1.4,1.8,2.24,2.8,3.55,4.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf1=fat1/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf2= comf1/2.254;

% COMFORT BOUNDARIES FOR LONGITUDINAL AND LATERAL ACC
% 2.5hr FATIGUE BOUNDARY
fat2=[0.5,0.5,0.5,0.5,0.5,0.63,0.8,1,1.25,1.6,2,2.5,3.15,4,5,6.3,8,10,12.5];
% 2.5hr REDUCED COMFORT BOUNDARY
comf3=fat2/3.15;
% 8hr REDUCED COMFORT BOUNDARY
comf4= comf3/2.254;
whzcr = 2*pi*whzc; % Calculation of central frequencies in rad/s
freqlow=0.89*whzcr; % Lower octave band
freqhigh=1.12*whzcr; % Upper octave band
freq=[freqlow' whzcr' freqhigh'];

imag=sqrt(-1);

for ii=1:length(whzc);
 for jj=1:3; % jj=1 is freqlow, jj=2 is center freq % jj=3 is freqhigh
 w = freq(ii,jj);
 s = imag*w;
 dp = sqrt(h1^2+r^2);
 % Time delay array
 time = [0 0 0 0 0 0 0 0 0 0 1 exp(-s*T(2)) exp(-s*T(3))
 ...
 exp(-s*T(4)) exp(-s*T(5))];
 % TF Matrix
 vectx = (inv(M*s*s+C*s+K)*((A*s+B).*time.'));

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%% Transfer Functions %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 z_s=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % vert seat
 long=[0 0 -h1 0 0 0 0 0 0 0 0 0 0 0 0]*vectx; % long disp
 of driver
 z_tlr=[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]*vectx; % vert trailer cg
 stroke=[0 0 0 0 1 i E_fw -1 e -E_0 0 0 0 0 0]*vectx;% 5th
 wh stroke

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%% Magnitudes %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Acceleration Transter Functions
 magcfAl(ii,jj)=abs(s*s*z_s); % Mag of trans function,
 (m/s*s)/m
 magcfAlong(ii,jj)=abs(s*s*long);
 magcfTLR(ii,jj)=abs(s*s*z_tlr);

 % Displacement Transfer Functions
 magcfstroke(ii,jj)=abs(stroke);

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%% PSDs %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Road PSD in m*m/(rad/s)
 rpsd(ii,jj)=Csp*(((2*pi*v)^(N-1))/(w^N));

373
% Acceleration PSDs in (m/s^2)^2/(rad/s)
psdcfAl(ii,jj)=magcfAl(ii,jj)*magcfAl(ii,jj)*rpsd(ii,jj);

psdcfAlong(ii,jj)=magcfAlong(ii,jj)*magcfAlong(ii,jj)*rpsd(ii,jj);

psdcftlr(ii,jj)=magcftlr(ii,jj)*magcftlr(ii,jj)*rpsd(ii,jj);

% 5th Wheel Stroke PSD in m^2/(rad/s)
psdcfstroke(ii,jj)=magcfstroke(ii,jj)*magcfstroke(ii,jj)*rpsd(ii,jj);

end
end

for kk=1:length(whzc)
% Vert. Driver's Seat RMS
msgyla(kk)=0.5*(psdcfAl(kk,1)+psdcfAl(kk,2))*(freq(kk,2)-freq(kk,1));
msgylb(kk)=0.5*(psdcfAl(kk,2)+psdcfAl(kk,3))*(freq(kk,3)-freq(kk,2));
msgyl(kk)=msgyla(kk)+msgylb(kk);
rmsAlcf(kk)=sqrt(msgyl(kk));

% Long. Driver RMS
msgylonga(kk)=0.5*(psdcfAlong(kk,1)+psdcfAlong(kk,2))*(freq(kk,2)-freq(kk,1));
msgylongb(kk)=0.5*(psdcfAlong(kk,2)+psdcfAlong(kk,3))*(freq(kk,3)-freq(kk,2));
msgylong(kk)=msgylonga(kk)+msgylongb(kk);
rmsAlongcf(kk)=sqrt(msgylong(kk));

% Vert. Trailer cg RMS
msgyltra(kk)=0.5*(psdcftlr(kk,1)+psdcftlr(kk,2))*(freq(kk,2)-freq(kk,1));
msgyltrb(kk)=0.5*(psdcftlr(kk,2)+psdcftlr(kk,3))*(freq(kk,3)-freq(kk,2));
msgyltr(kk)=msgyltra(kk)+msgyltrb(kk);
rmsTlrcf(kk)=sqrt(msgyltr(kk));

% 5th Wheel Stroke RMS
msgystrokea(kk)=0.5*(psdcfstroke(kk,1)+psdcfstroke(kk,2))*(freq(kk,2)-freq(kk,1));
msgystrokeb(kk)=0.5*(psdcfstroke(kk,2)+psdcfstroke(kk,3))*(freq(kk,3)-freq(kk,2));
msgystroke(kk)=msgystrokea(kk)+msgystrokeb(kk);
rmsstrokecf(kk)=sqrt(msgystroke(kk));
end

RMScf = [rmsAlcf',rmsAlongcf',rmsTlrcf']; % Accel. RMS Matrix

% Calculate weighted rms acceleration from 0.1 to 50 Hz
% at the ISO Center Frequencies Wgt are the ISO weights
% Ref: ISO 2631-1:1997(E); V=vertical; L=longitudinal
\[wcc = [0.1, 0.125, 0.16, 0.2, 0.25, 0.315, 0.4, 0.5, 0.63, 0.8, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, \ldots, 6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40, 50]; \]
\[WgtV = [0.0312, 0.0486, 0.079, 0.121, 0.182, 0.263, 0.352, 0.418, 0.459, 0.477, 0.482, 0.484, \ldots, 0.513, 0.405, 0.314, 0.246]; \]
\[WgtL = 0.001*[62.4, 97.3, 158, 243, 365, 530, 713, 853, 944, 992, 1011, 1008, 968, \ldots, 890, 776, 642, 512, 409, 323, 253, 212, 161, 125, 100, 80, 63.2, 49.4, 38.8]; \]

\[\text{iso} = WgtV.*\text{RMScf}(1:28,1)'; \quad \% \text{Weighted Vert. Driver RMS Accel.} \]
\[\text{isolong} = WgtL.*\text{RMScf}(1:28,2)'; \quad \% \text{Weighted Long. Driver RMS Accel.} \]
\[\text{isotlr} = WgtV.*\text{RMScf}(1:28,3)'; \quad \% \text{Weighted Vert. Trailer RMS Accel.} \]

\[\text{term2V} = (WgtV.*\text{rmsA1cf}(1:28)).^2; \]
\[a0_V_dr = (\text{sum(term2V)})^{0.5}; \quad \% \text{a0 for vert. disp of driver} \]

\[\text{term2L} = (WgtL.*\text{rmA2cf}(1:28)).^2; \]
\[a0_L_dr = (\text{sum(term2L)})^{0.5}; \quad \% \text{a0 for long. disp of driver} \]

\[aV = (a0_L_dr^2 + a0_V_dr^2)^{0.5}; \quad \% \text{a0 for comb vert and long disp} \]

\[\text{tlrV} = (WgtV.*\text{rmStlrcf}(1:28)).^2; \]
\[a0_V_tlr = (\text{sum(tlrV)})^{0.5}; \quad \% \text{a0 for vert. disp of driver} \]

\[\text{term2S} = (\text{rmStrokelf}(1:28)).^2; \]
\[\text{aStroke} = (\text{sum(term2S)})^{0.5}; \]

\[aVV(iiii,jjjj) = aV; \quad \% \text{combined ISO wgt acc, m/s}^2 \]
\[a0_VV_tlr(iiii,jjjj) = a0_V_tlr; \]
\[Jpenalty(iiii,jjjj) = K_1*(aVV(iiii,jjjj)/0.44814)+K_2*\ldots \]
\[(a0_VV_tlr(iiii,jjjj)/0.3239); \]
\[aStroke2(iiii,jjjj) = \text{aStroke}; \]

end \quad \% \text{end of jjjj loop on cfw} \]
end \quad \% \text{end of iiii loop on kfw} \]

disp(' ') \]
disp('RESULTS OF PARAMETER VARIATION') \]
disp(' ') \]
disp('Minimum aV, m/s^2') \]
disp(min(aVV(:))) \]
disp(' ') \]
[ia,ja]=find(aVV==min(aVV(:))); \]
disp('Corresponding kfw, N/m, and cfw, N/(m/s), values')
disp([kfww(ia,ja) cfww(ia,ja)])

disp(' ')

disp(' ')
disp('Minimum a0_V_tlr, m/s^2')
disp(min(a0_VV_tlr(:)))
disp(' ')
[it, jt]=find(a0_VV_tlr==min(a0_VV_tlr(:)));
disp('Corresponding kfw, N/m, and cfw, N/(m/s), values')
disp([kfww(it,jt) cfww(it,jt)])
disp(' ')

disp(' ')
disp('Minimum Jpenalty')
disp('J=K1*aV/0.44814 + K2*a0_V_tlr/0.3239')
disp(' K1 K2')
disp([K_1 K_2])
disp(' ')
disp(min(Jpenalty(:)))
disp(' ')
[iJ, jJ]=find(Jpenalty==min(Jpenalty(:)));
disp('Corresponding kfw, N/m, and cfw, N/(m/s), values')
disp([kfww(iJ,jJ) cfww(iJ,jJ)])

disp(' ')

figure(1)
surf(cfww,kfww,aVV)
ylabel('5th Wheel K, N/m')
xlabel('5th Wheel C, N/(m/s)')
zlabel('ISO Combined Wgt Acc, m/s^2')
% title('Tractor Suspension Stiffness Parameter Variation')

figure(2)
surf(cfww,kfww,a0_VV_tlr)
ylabel('5th Wheel K, N/m')
xlabel('5th Wheel C, N/(m/s)')
zlabel('Trailer Wgt Vert Acc, m/s^2')
% title('Tractor Suspension Stiffness Parameter Variation')

figure(3)
surf(cfww,kfww,Jpenalty)
ylabel('5th Wheel K, N/m')
xlabel('5th Wheel C, N/(m/s)')
zlabel('Penalty Function')
title(['K1 = ', num2str(K_1),', K2 = ', num2str(K_2)])

figure(4)
surf(cfww,kfww,aStroke2*1000)
ylabel('5th Wheel K, N/m')
xlabel('5th Wheel C, N/(m/s)')
zlabel('5th Wheel RMS Stroke, mm')
REFERENCES

[21] Email Correspondence between Dr. E. Harry Law and Mrs. Sue Nelson, Manager of Truck Tire Innovation at Michelin Americas R&D Corporation, April 16, 2007.