Nonlinear Control Strategies for Advanced Vehicle Thermal Management Systems

Mohammad Salah
Clemson University, msalah@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations
Part of the Electrical and Computer Engineering Commons

Recommended Citation
https://tigerprints.clemson.edu/all_dissertations/123

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
NONLINEAR CONTROL STRATEGIES FOR ADVANCED VEHICLE THERMAL MANAGEMENT SYSTEMS

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Electrical and Computer Engineering

by
Mohammad Hasan Salah
August 2007

Accepted by:
Dr. Darren Dawson, Committee Chair
John Wagner
Ian Walker
Timothy Burg
ABSTRACT

Advanced thermal management systems for internal combustion engines can improve coolant temperature regulation and servo–motor power consumption to positively impact the tailpipe emissions, fuel economy, and parasitic losses by better regulating the combustion process with multiple computer controlled components. The traditional thermostat valve, coolant pump, and clutch–driven radiator fan are upgraded with servo–motor actuators. When the system components function harmoniously, desired thermal conditions can be accomplished in a power efficient manner. Although the vehicle’s mechanical loads can be driven by electric servo–motors, the power demands often require large actuator sizes and electrical currents. Integrating hydraulically–driven actuators in the cooling circuit offers higher torques in a smaller package space. Hydraulics are widely applied in transportation and manufacturing systems due to their high power density, design flexibility for power transmission, and ease of computer control.

In this dissertation, several comprehensive nonlinear control architectures are proposed for transient temperature tracking in automotive cooling circuits. First, a single loop experimental cooling system has been fabricated and assembled which features a variable position smart valve, variable speed electric coolant pump, variable speed electric radiator fan, engine block, radiator, steam–based heat exchanger, and various sensors. Second, a multiple loop experimental cooling system has been assembled which features a variable position smart thermostat valve, two variable speed electric pumps, variable speed electric radiator fan, engine block, transmission, radiator, steam–based
heat exchanger, and sensors. Third, a single loop experimental hydraulic–based thermal system has been assembled which features a variable speed hydraulic coolant pump and radiator fan, radiator, and immersion heaters. In the first and second configured systems, the steam–based heat exchanger emulates the engine’s combustion process and transmission heat. For the third test platform, immersion heating coils emulate the combustion heat.

For the first configured system, representative numerical and experimental results are discussed to demonstrate the thermal management system operation in precisely tracking desired temperature profiles and minimizing electrical power consumption. The experimental results show that less than 0.2°K temperature tracking error can be achieved with a 14% improvement in the system component power consumption. In the second configured system, representative experimental results are discussed to investigate the functionality of the multi–loop thermal management system under normal and elevated ambient temperatures. The presented results clearly show that the proposed robust controller–based thermal management system can accurately track prescribed engine and transmission temperature profiles within 0.13°K and 0.65°K, respectively, and minimize electrical power consumption by 92% when compared to the traditional factory control method. Finally, representative numerical and experimental results are discussed to demonstrate the performance of the hydraulic actuators–based advance thermal management system in tracking prescribed temperature profiles (e.g., 42% improvement in the temperature tracking error) and minimizing satisfactorily hydraulic power consumption when compared to other common control method.
DEDICATION

This Dissertation is dedicated to my wife, Fida, for her love and sacrifice.
ACKNOWLEDGMENTS

I would like to express a sincere gratitude to my advisor Dr. Darren Dawson for his guidance, motivation, and the knowledge he has imparted in me throughout my doctoral studies. I would also like to express a deep gratitude to my co-advisor and committee member Dr. John Wagner for his support and encouragement throughout my doctoral studies. To Dr. Ian Walker and Dr. Timothy Burg, I extend my gratitude for serving on my dissertation committee and for their much appreciated feedback.

To my wife, Fida, I would like to convey my deepest appreciation for her unending and unconditional love, patience, support, encouragement, and sacrifice throughout my life. I would also like to thank my lovely daughter, Leen, for the joy and pleasure she added to my life. To my mother, I would like to express a sincere gratitude for her love and patience, as well as for the merits she has imparted in me throughout my life. I would also like to thank my sisters and my parents in law for their support and encouragement.

A special thanks to Tom Mitchell for his hard work in the lab. Most of the experimental work in this dissertation would not have been accomplished without his perseverance. I would like to thank my colleagues who assisted me during my doctoral studies, Dr. Enver Tatlicioglu, Dr. David Braganza, Dr. Michael McIntyre, and Dr. Vilas Chitrakaran. Thanks also to Yousef Qaroush, Daniel Fain, Peyton Frick, Apoorva Kapadia, Michael Justice, and Jamie Cole for their appreciated help and assistance. Finally, I would like to thank my cousin Dr. Wael Abu-Shammala for his support, and encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>NOMNECLATURE LIST</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. ROBUST CONTROL STRATEGY FOR ADVANCED VEHICLE</td>
<td>1</td>
</tr>
<tr>
<td>THERMAL MANAGEMENT SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Automotive Thermal Management Models</td>
<td>3</td>
</tr>
<tr>
<td>Cooling System Thermal Descriptions</td>
<td>4</td>
</tr>
<tr>
<td>Variable Position Smart Valve</td>
<td>6</td>
</tr>
<tr>
<td>Variable Speed Coolant Pump</td>
<td>6</td>
</tr>
<tr>
<td>Variable Speed Radiator Fan</td>
<td>7</td>
</tr>
<tr>
<td>Thermal System Control Design</td>
<td>7</td>
</tr>
<tr>
<td>Backstepping Robust Control Objective</td>
<td>8</td>
</tr>
<tr>
<td>Closed–Loop Error System Development and Controller</td>
<td>9</td>
</tr>
<tr>
<td>Formulation</td>
<td></td>
</tr>
<tr>
<td>Stability Analysis</td>
<td>11</td>
</tr>
<tr>
<td>Normal Radiator Operation Strategy</td>
<td>11</td>
</tr>
<tr>
<td>Thermal Test Bench</td>
<td>13</td>
</tr>
<tr>
<td>Numerical and Experimental Results</td>
<td>15</td>
</tr>
<tr>
<td>Backstepping Robust Control</td>
<td>16</td>
</tr>
<tr>
<td>Normal Radiator Operation Strategy</td>
<td>19</td>
</tr>
<tr>
<td>Concluded Remarks</td>
<td>25</td>
</tr>
</tbody>
</table>
2. MULTIPLE COOLING LOOPS IN ADVANCED VEHICLE THERMAL MANAGEMENT SYSTEMS .. 26

- Introduction ... 26
- Automotive Multi–Loop Cooling System Behavior 29
- Control System Design for Multiple Thermal Loops 31
 - Control Objective for Multi–Loop Thermal System 33
 - Controller Formulation and Development 33
- Multi–Loop Thermal Test Bench and Test Profiles 36
- Experimental Results ... 40
 - Robust Controller Applied to Four Operating Scenarios 41
 - Comparison of Three Controllers for Steady Heating and Ram Air Disturbance ... 48
- Concluded Remarks ... 50

3. HYDRAULIC ACTUATED AUTOMOTIVE COOLING SYSTEMS – NONLINEAR CONTROL AND TEST .. 51

- Introduction ... 51
- Mathematical Models ... 53
 - Automotive Engine and Radiator Thermal Dynamics 54
 - Hydraulic–Driven Coolant Pump and Radiator Fan Dynamics 54
- Hydraulic Controller Design .. 56
 - Backstepping Robust Control Objective 58
- Closed–Loop Error System Development and Controller Formulation .. 60
- Stability Analysis .. 62
- Experimental Test Bench .. 63
- Numerical and Experimental Results 66
 - Numerical Simulation .. 67
 - Experimental Testing .. 69
- Concluded Remarks ... 72

4. CONCLUSIONS .. 74

APPENDICES ... 76

- A: Proof of Theorem 1.1 .. 77
- B: Finding the Expression $C_r T_{vr}$ 80
- C: Parameter Definitions for the Controller in Table 3.1 81
- D: Proof of Theorem 3.1 .. 84
LIST OF TABLES

Table Page
1.1 Simulation and Experimental Results Summary for Four Control Strategies.. 24
2.1 Test Profiles for the Multi–Loop Thermal System ... 39
2.2 Experimental Summary of Three Cooling System Control Strategies for an Engine and a Transmission Configuration with Steady Heat and Ram Air Disturbance (Test 5).. 50
3.1 The Control Laws $u_e(t)$, $u_r(t)$, $u_p(t)$, and $u_f(t)$ for the Hydraulic Control ... 62
3.2 Numerical Simulation Parameter Values. Some of these Parameter Values are Used to Implement the Experimental Backstepping Robust Control Strategy .. 66
3.3 Numerical Simulation Response Summary for the Applied Heat and Disturbance per Figures 3.4a and 3.4b... 69
3.4 Experimental Summary for Three Cooling System Control Strategies with Steady Heat and no Ram Air Disturbance (First Test)............... 71
D.1 Four Cases Realized in the Lyapunov Stability Analysis................................. 86
D.2 Four Cases for Final Lyapunov Inequalities... 90
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Advanced Cooling System</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Experimental Thermal Test Bench</td>
<td>14</td>
</tr>
<tr>
<td>1.3</td>
<td>Numerical Response of the Backstepping Robust Controller for Variable Engine thermal Loads</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>First Experimental Test Scenario for the Backstepping Robust Controller with Emulated Speed of 20km/h and $Q_{in}=35$ kW</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Second Experimental Test Scenario for the Backstepping Robust Controller where the Input Heat and Ram Air Disturbance Vary with Time</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Numerical Response of the Normal Radiator Operation for Variable Engine thermal Loads</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>First Experimental Test Scenario for the Normal Radiator Operation Controller with Emulated Speed of 20km/h and $Q_{in}=35$ kW</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>Second Experimental Test Scenario for the Normal Radiator Operation Controller where the Input Heat and Ram Air Disturbance Vary with Time</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Multi–Loop Advanced Cooling System</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Experimental Thermal Test Bench (Schematic and Actual)</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Experimental Input Heat Profile and Ram Air Disturbance to Emulate Different Vehicle Speeds for the Fourth Test</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>First Experimental Test Scenario for the Robust Controller with Emulated Vehicle Speed of 75km/h, $Q_{in}=35$ kW, and Normal Ambient Temperature of $T_\infty=294$°K</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Portable Kerosene Forced–Air Heater Exhaust Stream Used to Elevate the Ambient Air Temperature Entering the Cooling System for Test Two</td>
<td>43</td>
</tr>
</tbody>
</table>
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Second Experimental Test Scenario for the Robust Controller with Emulated Vehicle Speed of 75km/h, $Q_{in}=35kW$, and Elevated Ambient Temperature of $T_{\infty}=325^\circ K$</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Third Experimental Test Scenario for the Robust Controller with Emulated Vehicle Speed of 75km/h, $Q_{in}=39kW$, and Normal Ambient Temperature of $T_{\infty}=292^\circ K$</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Forth Experimental Test Scenario for the Robust Controller where the Input Heat and Ram Air Disturbance Vary with Time and the Ambient Temperature $T_{\infty}=295^\circ K$</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>An Automotive Hydraulic Actuated Advanced Cooling System</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>A Servo–Solenoid Hydraulic Control Valve Schematic Showing Two Inlets and Two Outlets with Corresponding Acting Forces</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental Hydraulic–based Thermal Test Bench</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Numerical Response for Variable Engine Thermal Loads and Ram Air Disturbance</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>First Experimental Test with an Input Heat of $Q_{in}=12kW$ and no Ram Air Disturbance</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Second Experimental Test with a Variable Input Heat and Ram Air Disturbance</td>
<td>72</td>
</tr>
</tbody>
</table>
NOMENCLATURE LIST

\(a \) solenoid contact length [mm]
\(A_f \) frontal area of the fan [m\(^2\)]
\(A_p \) area of thermostat valve plate [m\(^2\)]
\(A_{sr} \) secondary radiator frontal area [m\(^2\)]
\(b \) coolant pump inlet impeller width [m]
\(b_f \) radiator fan motor damping coefficient [N.m.s/rad]
\(b_p \) coolant pump motor damping coefficient [N.m.s/rad]
\(b_v \) thermostat valve motor damping coefficient [N.m.s/rad]
\(b_{val} \) hydraulic valve damping coefficient [N.s/cm]
\(B_m \) hydraulic motor damping coefficient [N.m.s/rad]
\(B_{mf} \) hydraulic fan motor damping coefficient [N.m.s/rad]
\(B_{mp} \) hydraulic pump motor damping coefficient [N.m.s/rad]
\(c \) coulomb friction [N]
\(c_a \) real positive constant
\(c_c \) real positive constant
\(c_{pa} \) air specific heat [kJ/kg.ºK]
\(c_{pc} \) coolant specific heat [kJ/kg.ºK]
\(c_{po} \) oil specific heat [kJ/kg.ºK]
C_a charge–air–cooler air–side thermal capacity [kJ/ºK]

C_c charge–air–cooler coolant–side thermal capacity [kJ/ºK]

C_d hydraulic motor damping coefficient

C_{df} hydraulic fan motor damping coefficient

C_{dp} hydraulic pump motor damping coefficient

C_e engine block thermal capacity [kJ/ºK]

C_{im} internal hydraulic motor leakage coefficient [cm5/N.s]

C_{imf} internal hydraulic fan motor leakage coefficient [cm5/N.s]

C_{imp} internal hydraulic pump motor leakage coefficient [cm5/N.s]

C_r radiator thermal capacity [kJ/ºK]

C_{sr} secondary radiator thermal capacity [kJ/ºK]

C_t transmission thermal capacity [kJ/ºK]

d gear pitch [mm]

D_m hydraulic motor displacement [m3/rev]

D_{mf} hydraulic fan motor displacement [m3/rev]

D_{mp} hydraulic pump motor displacement [m3/rev]

e engine temperature tracking error [ºK]

e_o initial engine temperature tracking error [ºK]

e_{ss} engine temperature steady state error [ºK]
\(F_s \) force generated by the solenoid coil [N]

\(F_{ss} \) steady state fluid force on the solenoid [N]

\(F_{ss1} \) steady state force due to fluid exiting the main valve chamber to port A [N]

\(F_{ss2} \) steady state force due to fluid exiting port B to tank [N]

\(F_{tr} \) transient fluid force on the solenoid [N]

\(F_{tr1} \) transient force due to fluid acceleration between loads A and B [N]

\(F_{tr2} \) transient force due to fluid acceleration to the right of land B [N]

\(h \) hydraulic valve piston translational displacement [m]

\(h_{sr} \) secondary radiator forced heat transfer coefficient [kW/m².ºK]

\(H \) normalized valve position [%]

\(\overline{H} \) normalized valve position for \(\overline{m} \) [%]

\(H_o \) minimum normalized valve position [%]

\(i \) servo solenoid control valve coil current [A]

\(i_{af} \) radiator fan motor armature current [A]

\(i_{ap} \) coolant pump motor armature current [A]

\(i_{av} \) thermostat valve motor armature current [A]

\(J \) hydraulic motor and load inertia [kg.m²]

\(J_f \) radiator fan motor inertia [kg.m²]

\(J_p \) coolant pump motor inertia [kg.m²]

\(J_v \) thermostat valve motor inertia [kg.m²]
k_e real positive control gain

k_f real positive control gain

k_p real positive control gain

k_r real positive control gain

k_i real positive control gain

k_{val} hydraulic valve spring constant [N/m]

K_{bf} radiator fan motor back EMF constant [V.s/rad]

K_{bp} coolant pump motor back EMF constant [V.s/rad]

K_{bv} thermostat valve motor back EMF constant [V.s/rad]

K_{mf} radiator fan motor torque constant [N.m/A]

K_{mp} coolant pump motor torque constant [N.m/A]

K_{mv} thermostat valve motor torque constant [N.m/A]

l_v solenoid valve reluctance gap [mm]

L control valve coil internal inductance [H]

L_{af} radiator fan inductance [H]

L_{ap} coolant pump motor inductance [H]

L_{av} thermostat valve motor inductance [H]

L_d damping length [mm]

m_s hydraulic valve spool mass [g]
\(\bar{m} \) radiator coolant mass flow rate control input [kg/s]

\(\dot{m}_a \) air mass flow rate through the charge–air–cooler air–side [kg/s]

\(\dot{m}_{ar} \) air mass flow rate through the radiator fan [kg/s]

\(\dot{m}_{asr} \) air mass flow rate through the secondary radiator [kg/s]

\(\dot{m}_c \) pump coolant mass flow rate [kg/s]

\(\dot{m}_{ce} \) coolant mass flow rate through the engine pump [kg/s]

\(\dot{m}_{cr} \) coolant mass flow rate through the radiator [kg/s]

\(\dot{m}_{csr} \) coolant mass flow rate through the secondary radiator [kg/s]

\(\dot{m}_f \) air mass flow rate through the radiator fan [kg/s]

\(m_o \) minimum coolant mass flow rate through the radiator [kg/s]

\(\dot{m}_{ot} \) oil mass flow rate through the transmission pump [kg/s]

\(\dot{m}_r \) coolant mass flow rate through the radiator [kg/s]

\(N \) worm to thermostat valve motor gear ratio

\(N_t \) number of turns in solenoid coil

\(P_A \) hydraulic motor supply pressure [psi]

\(P_B \) hydraulic motor return pressure [psi]

\(P_L \) hydraulic motor load pressure [psi]

\(P_{Lp} \) hydraulic pump motor load pressure [psi]

\(P_{Lf} \) hydraulic fan motor load pressure [psi]
\(P_s \) supply pressure [psi]

\(P_{Sp} \) hydraulic pump motor supply pressure [psi]

\(P_{Sf} \) hydraulic fan motor supply pressure [psi]

\(P_{sys} \) cooling system average power consumption [W]

\(P_T \) tank pressure [psi]

\(\Delta P \) pressure drop across the thermostat valve [Pa]

\(Q_a \) radiator heat lost due to uncontrollable air flow [kW]

\(Q_e \) combustion process heat energy [kW]

\(Q_{in} \) combustion process heat energy [kW]

\(Q_L \) hydraulic motor load flow [LPM]

\(Q_{Lf} \) hydraulic fan motor load flow [LPM]

\(Q_{Lp} \) hydraulic pump motor load flow [LPM]

\(Q_o \) radiator heat lost due to uncontrollable air flow [kW]

\(Q_{rf} \) secondary radiator heat loss due to primary radiator fan [kW]

\(Q_{sr} \) secondary radiator heat loss due to ram air flow and primary radiator fan [kW]

\(Q_t \) transmission heat energy [kW]

\(r \) coolant pump inlet to impeller blade length [m]

\(R \) control valve coil internal resistance [\(\Omega \)]

\(R_{af} \) radiator fan motor resistor [\(\Omega \)]
\(R_{ap} \) coolant pump motor resistor [\(\Omega \)]

\(R_{av} \) thermostat valve motor resistor [\(\Omega \)]

\(R_f \) nonlinear fluid/air resistance [\(\Omega \)]

\(\text{sgn} \) standard signum function

t current time [s]

t_0 initial time [s]

\(T_{a_i} \) air temperature at the charge–air–cooler inlet [\(^{\circ}\text{K} \)]

\(T_{a_o} \) air temperature at the charge–air–cooler outlet [\(^{\circ}\text{K} \)]

\(T_{c_i} \) coolant temperature at charge–air–cooler inlet [\(^{\circ}\text{K} \)]

\(T_{c_o} \) coolant temperature at the charge–air–cooler outlet [\(^{\circ}\text{K} \)]

\(T_e \) coolant temperature at the engine outlet [\(^{\circ}\text{K} \)]

\(T_{ed} \) desired engine coolant temperature trajectory [\(^{\circ}\text{K} \)]

\(T_g \) hydraulic motor generated torque [N.m]

\(T_H \) liquid wax temperature [\(^{\circ}\text{K} \)]

\(T_L \) wax softening temperature [\(^{\circ}\text{K} \)]

\(T_{Lf} \) hydraulic fan motor load torque [N.m]

\(T_{Load} \) hydraulic motor load torque [N.m]

\(T_{Lp} \) hydraulic pump motor load torque [N.m]

\(T_r \) coolant temperature at the radiator outlet [\(^{\circ}\text{K} \)]
\(T_{re} \) coolant temperature at the radiator outlet \([^{°K}]\)

\(T_{rt} \) oil temperature at the radiator oil outlet \([^{°K}]\)

\(T_{i} \) oil temperature at the transmission outlet \([^{°K}]\)

\(T_{td} \) desired transmission oil temperature \([^{°K}]\)

\(T_{vr} \) virtual reference for the radiator temperature \([^{°K}]\)

\(T_{vro} \) minimum virtual reference for the radiator temperature \([^{°K}]\)

\(\bar{T}_{vr} \) virtual reference control input for the radiator temperature \([^{°K}]\)

\(T_{\infty} \) surrounding ambient temperature \([^{°K}]\)

\(\Delta T \) desired engine temperature boundary layer \([^{°K}]\)

\(v \) inlet radial coolant velocity \([\text{m/s}]\)

\(V \) control valve coil voltage \([\text{V}]\)

\(V_{af} \) air volume per fan rotation \([\text{m}^3/\text{rad}]\)

\(V_{ep} \) engine coolant pump applied voltage \([\text{V}]\)

\(V_{f} \) voltage applied on the radiator fan \([\text{V}]\)

\(V_{o} \) fluid volume per radian of pump motor shaft rotation \([\text{m}^3/\text{rad}]\)

\(V_{p} \) voltage applied on the pump \([\text{V}]\)

\(V_{pt} \) transmission oil pump applied voltage \([\text{V}]\)

\(V_{ram} \) ram air velocity \([\text{km/h}]\)

\(V_{sf} \) radiator fan applied voltage \([\text{V}]\)
V_r volum of compressed fluid [cm3]

V_{rf} volum of compressed fluid in the hydraulic radiator fan [cm3]

V_{qp} volum of compressed fluid in the hydraulic coolant pump [cm3]

V_v voltage applied on the thermostat valve [V]

w orifice area gradient [cm2/cm]

w_f hydraulic fan orifice area gradient [cm2/cm]

w_p hydraulic pump orifice area gradient [cm2/cm]

x control valve spool displacement [mm]

x_{mf} hydraulic fan valve maximum spool displacement [mm]

x_{mp} hydraulic pump valve maximum spool displacement [mm]

x_f hydraulic fan control valve spool displacement [mm]

x_p hydraulic fan control valve spool displacement [mm]

X_f hydraulic fan control valve spool displacement ratio [%]

X_p hydraulic pump control valve spool displacement ratio [%]

α_e real positive control gain

α_t real positive control gain

β bulk modulus of hydraulic fluid [MPa]

β_f bulk modulus of coolant pump hydraulic fluid [MPa]

β_{im} inlet impeller angle [rad]
\(\beta_p \) bulk modulus of the radiator fan hydraulic fluid [MPa]

\(\beta_r \) positive constant [rad/sec.m^2]

\(\varepsilon \) radiator effectiveness [%]

\(\varepsilon_{cac} \) charge–air–cooler effectiveness [%]

\(\varepsilon_r \) radiator effectiveness [%]

\(\eta \) radiator temperature tracking error [ºK]

\(\eta_e \) engine coolant temperature error [ºK]

\(\eta_{eo} \) initial engine coolant temperature error [ºK]

\(\eta_{ess} \) engine coolant temperature steady–state error [ºK]

\(\eta_f \) radiator fan speed tracking error [rad/s]

\(\eta_{fan} \) radiator fan efficiency [%]

\(\eta_p \) pump speed tracking error [rad/s]

\(\eta_r \) radiator temperature tracking error [ºK]

\(\eta_t \) transmission oil temperature error [ºK]

\(\eta_{to} \) initial transmission oil temperature error [ºK]

\(\eta_{tss} \) transmission oil temperature steady–state error [ºK]

\(\theta \) temperature [ºK]

\(\theta_v \) thermostat valve motor angular displacement [rad]

\(\mu_o \) solenoid armature permeability [H/mm]
\(\rho \) fluid density [kg/m\(^3\)]

\(\rho_a \) air density [kg/m\(^3\)]

\(\rho_c \) coolant density [kg/m\(^3\)]

\(\rho_e \) real positive control gain

\(\rho_f \) hydraulic fan fluid density [kg/m\(^3\)]

\(\rho_p \) hydraulic pump fluid density [kg/m\(^3\)]

\(\rho_t \) real positive control gain

\(\omega \) hydraulic motor angular velocity [rad/s]

\(\omega_f \) radiator fan motor angular velocity [rad/s]

\(\omega_{fd} \) designed desired fan velocity [rad/s]

\(\omega_p \) coolant pump motor angular velocity [rad/s]

\(\omega_{pd} \) designed desired pump velocity [rad/s]

\(\omega_{po} \) minimum coolant pump velocity [rad/s]

\(\bar{\omega}_p \) control input [rad/s]
CHAPTER 1
ROBUST CONTROL STRATEGY FOR ADVANCED VEHICLE THERMAL MANAGEMTN SYSTEMS

Introduction

Internal combustion engine active thermal management systems offer enhanced coolant temperature tracking during transient and steady–state operation. Although the conventional automotive cooling system has proven satisfactory for many decades, servomotor controlled cooling components have the potential to reduce the fuel consumption, parasitic losses, and tailpipe emissions (Brace et al., 2001). Advanced automotive cooling systems replace the conventional wax thermostat valve with a variable position smart valve, and replace the mechanical coolant pump and radiator fan with electric and/or hydraulic driven actuators (Choukroun and Chanfreau, 2001). This later action decouples the coolant pump and radiator fan from the engine crankshaft. Hence, the problem of having over/under cooling, due to the mechanical coupling, is solved as well as parasitic losses reduced which arose from operating mechanical components at high rotational speeds (Chalgren and Barron, 2003).

An assessment of thermal management strategies for large on–highway trucks and high–efficiency vehicles has been reported by Wambsganss (1999). Chanfreau et al. (2001) studied the benefits of engine cooling with fuel economy and emissions over the FTP drive cycle on a dual voltage 42V–12V minivan. Cho et al. (2004) investigated a controllable electric coolant pump in a class–3 medium duty diesel engine truck. It was shown that the radiator size can be reduced by replacing the mechanical pump with an electrical one. Chalgren and Allen (2005) and Chalgren and Traczyk (2005) improved the
temperature control, while decreasing parasitic losses, by replacing the conventional cooling system of a light duty diesel truck with an electric cooling system.

To create an efficient automotive thermal management system, the vehicle’s cooling system behavior and transient response must be analyzed. Wagner et al. (2001, 2002, 2003) pursued a lumped parameter modeling approach and presented multi–node thermal models which estimated internal engine temperature. Eberth et al. (2004) created a mathematical model to analytically predict the dynamic behavior of a 4.6L spark ignition engine. To accompany the mathematical model, analytical/empirical descriptions were developed to describe the smart cooling system components. Henry et al. (2001) presented a simulation model of powertrain cooling systems for ground vehicles. The model was validated against test results which featured basic system components (e.g., radiator, coolant pump, surge (return) tank, hoses and pipes, and engine thermal load).

A multiple node lumped parameter–based thermal network with a suite of mathematical models, describing controllable electromechanical actuators, was introduced by Setlur et al. (2005) to support controller studies. The proposed simplified cooling system used electrical immersion heaters to emulate the engine’s combustion process and servomotor actuators, with nonlinear control algorithms, to regulate the temperature. In their experiments, the coolant pump and radiator fan were set to run at constant speeds, while the smart thermostat valve was controlled to track coolant temperature set points. Cipollone and Villante (2004) tested three cooling control schemes (e.g., closed–loop, model–based, and mixed) and compared them against a traditional “thermostat–based” controller. Page et al. (2005) conducted experimental tests
on a medium–sized tactical vehicle that was equipped with an intelligent thermal management system. The authors investigated improvements in the engine’s peak fuel consumption and thermal operating conditions. Finally, Redfield et al. (2006) operated a class 8 tractor at highway speeds to study potential energy saving and demonstrated engine cooling to within ±3ºC of a set point value.

In this chapter, nonlinear control strategies are presented to actively regulate the coolant temperature in internal combustion engines. An advanced thermal management system has been implemented on a laboratory test bench that featured a smart thermostat valve, variable speed electric coolant pump and fan, radiator, engine block, and a steam–based heat exchanger to emulate the combustion heating process. The proposed backstepping robust control strategy, selected to accommodate disturbances and uncertainties, has been verified by simulation techniques and validated by experimental testing. In Section 1.2, a set of mathematical models are presented to describe the automotive cooling components and thermal system dynamics. Nonlinear tracking control strategies are introduced in Section 1.3. The experimental test bench is presented in Section 1.4 and Section 1.5 introduces numerical and experimental results, while the concluded remarks are contained in Section 1.6.

Automotive Thermal Management Models

A suite of mathematical models will be presented to describe the dynamic behavior of the advanced cooling system. The system components include a 6.0L diesel engine with a steam–based heat exchanger to emulate the combustion heat, a three–way
smart valve, a variable speed electric coolant pump, and a radiator with a variable speed electric fan.

Cooling System Thermal Descriptions

A reduced order two–node lumped parameter thermal model (refer to Figure 1.1) describes the cooling system’s transient response and minimizes the computational burden for in–vehicle implementation. The engine block and radiator behavior can be described by

\[C_e \dot{T}_e = Q_{in} - c_{pe} \dot{m}_r (T_e - T_r) \]
\[C_r \dot{T}_r = -Q_o + c_{pe} \dot{m}_r (T_e - T_r) - \varepsilon c_{pf} \dot{m}_f (T_e - T_{in}) \]

The variables \(Q_{in}(t) \) and \(Q_o(t) \) represent the input heat generated by the combustion process and the radiator heat loss due to uncontrollable air flow, respectively. An adjustable double pass steam–based heat exchanger delivers the emulated heat of combustion at a maximum of 55kW in a controllable and repeatable manner. In an actual vehicle, the combustion process will generate this heat which is transferred to the coolant through the block’s coolant jacket.

For a three–way servo–driven thermostat valve, the radiator coolant mass flow rate, \(\dot{m}_r(t) \), is based on the pump flow rate and normalized valve position as \(\dot{m}_r = H \dot{m}_p \) where the variable \(H(t) \) satisfies the condition \(0 \leq H \leq 1 \). Note that \(H = 1(0) \) corresponds to a fully closed (open) valve position and coolant flow through the radiator (bypass) loop.
Figure 1.1 Advanced cooling system which features a smart valve, variable speed pump, variable speed fan, engine block, radiator, and sensors (temperature, mass flow rate, and power)

To facilitate the controller design process, three assumptions are imposed:

Assumption 1.1: The signals $\dot{Q}_{in}(t)$ and $\dot{Q}_{o}(t)$ always remain positive in (1.1) and (1.2) (i.e., $\dot{Q}_{in}(t), \dot{Q}_{o}(t) \geq 0$). Further, the signals $\dot{Q}_{in}(t), \dot{Q}_{in}(t), \dot{Q}_{in}(t)$ and $\dot{Q}_{o}(t)$ remain bounded at all time, such that $\dot{Q}_{in}(t), \dot{Q}_{in}(t), \dot{Q}_{in}(t), \dot{Q}_{o}(t) \in L_{\infty}$.

Assumption 1.2: The surrounding ambient temperature $T_\infty(t)$ is uniform and satisfies $T_e(t) - T_\infty(t) \geq \varepsilon_1, \forall t \geq 0$ where $\varepsilon_1 \in \mathbb{R}^+$ is a constant.

Assumption 1.3: The engine block and radiator temperatures satisfy the condition $T_e(t) - T_r(t) \geq \varepsilon_2, \forall t \geq 0$ where $\varepsilon_2 \in \mathbb{R}^+$ is a constant. Further, $T_e(0) \geq T_r(0)$ to facilitate the boundedness of signal argument.

This final assumption allows the engine and radiator to initially be the same temperature (e.g., cold start). The unlikely case of $T_e(0) < T_r(0)$ is not considered.
Variable Position Smart Valve

A dc servo–motor has been actuated in both directions to operate the multi–position smart thermostat valve. The compact motor, with integrated external potentiometer for position feedback, is attached to a worm gear assembly that is connected to the valve’s piston. The governing equation for the motor’s armature current, \(i_{av}(t) \), can be written as

\[
\frac{di_{av}}{dt} = \frac{1}{L_{av}} \left(V_v - R_{av} i_{av} - K_{bv} \frac{d\theta_v}{dt} \right). \tag{1.3}
\]

The thermostat valve motor’s angular acceleration, \(\frac{d^2 \theta_v(t)}{dt^2} \), may be computed as

\[
\frac{d^2 \theta_v}{dt^2} = \frac{1}{J_v} \left(-b_v \frac{d\theta_v}{dt} + K_{mv} i_{av} + 0.5dN_s \left(A_p \Delta P + c \text{ sgn} \left(\frac{dh}{dt} \right) \right) \right). \tag{1.4}
\]

Note that the motor is operated by a high gain proportional control to reduce the position error and speed up the overall piston response.

Variable Speed Coolant Pump

A computer controlled electric motor operates the high capacity centrifugal coolant pump. The motor’s armature current, \(i_{ap}(t) \), can be described as

\[
\frac{di_{ap}}{dt} = \frac{1}{L_{ap}} \left(V_p - R_{ap} i_{ap} - K_{bp} \omega_p \right) \tag{1.5}
\]

where the motor’s angular velocity, \(\omega_p(t) \), can be computed as

\[
\frac{d\omega_p}{dt} = \frac{1}{J_p} \left(-\left(b_p + R_f V_o^2 \right) \omega_p + K_{mp} i_{ap} \right). \tag{1.6}
\]
The coolant mass flow rate for a centrifugal coolant pump depends on the coolant density, shaft speed, system geometry, and pump configuration. The mass flow rate may be computed as \(\dot{m}_c = \rho_c (2\pi rbv) \) where \(v = (r\omega_p)\tan\beta_{im} \). It is assumed that the coolant flow enters normal to the impeller.

Variable Speed Radiator Fan

A cross flow heat exchanger and a dc servo–motor driven fan form the radiator assembly. The electric motor directly drives a multi–blade fan that pulls the surrounding air through the radiator assembly. The air mass flow rate going through the radiator is affected directly by the fan’s rotational speed, \(\omega_f(t) \), so that

\[
\frac{d\omega_f}{dt} = \frac{1}{J_f} \left(-b_f \omega_f + K_{mf}i_{af} - \rho_f A_f R_f V_{af}^2 \right)
\]

where \(V_{af} = \left[(K_{mf}/\eta_{fan}\rho_f A_f)i_{af}\omega_f \right]^{0.3} \). The corresponding air mass flow rate is written as \(\dot{m}_f = \beta_f\rho_f A_f V_{af} \). The fan motor’s armature current, \(i_{af}(t) \), can be described as

\[
\frac{di_{af}}{dt} = \frac{1}{L_{af}} \left(V_f - R_{af}i_{af} - K_\text{bf}\omega_f \right).
\]

Note that a voltage divider circuit has been inserted into the experimental system to measure the current drawn by the fan and estimate the power consumed.

Thermal System Control Design

A Lyapunov–based nonlinear control algorithm will be presented to maintain a desired engine block temperature, \(T_{ed}(t) \). The controller’s main objective is to precisely
track engine temperature set points while compensating for system uncertainties \(i.e., \) combustion process input heat, \(Q_{in}(t), \) radiator heat loss, \(Q_o(t) \) by harmoniously controlling the system actuators. Although other linear and nonlinear control algorithms may be formulated, this particular control strategy demonstrated outstanding disturbance rejection qualities. Referring to Figure 1.1, the system servo–actuators are a three–way smart valve, a coolant pump, and a radiator fan. Another important objective is to reduce the electric power consumed by these actuators, \(P_{sys}(t) \). The main concern is pointed towards the fact that the radiator fan consumes the most power of all cooling system components followed by the pump. It is also important to point out that in (1.1) and (1.2), the signals \(T_e(t), T_r(t) \) and \(T_\infty(t) \) can be measured by either thermocouples or thermistors, and the system parameters \(c_{pc}, c_{pa}, C_e, C_r, \) and \(\varepsilon \) are assumed to be constant and fully known.

Backstepping Robust Control Objective

The control objective is to ensure that the actual temperatures of the engine, \(T_e(t) \), and the radiator, \(T_r(t) \), track the desired trajectories \(T_{ed}(t) \) and \(T_{vr}(t) \),

\[
\left| T_{ed}(t) - T_e(t) \right| \leq \varepsilon_e, \quad \left| T_r(t) - T_{vr}(t) \right| \leq \varepsilon_r \quad \text{as } t \to \infty
\]

while compensating for the system variable uncertainties \(Q_{in}(t) \) and \(Q_o(t) \) where \(\varepsilon_e \) and \(\varepsilon_r \) are real positive constants.

Assumption 1.4: The engine temperature profiles are always bounded and chosen such that their first three time derivatives remain bounded at all times \(i.e., T_{ed}(t), \ddot{T}_{ed}(t), \dddot{T}_{ed}(t) \in L_\infty \). Further, \(T_{ed}(t) \gg T_\infty(t) \) at all times.
Remark 1.1: Although it is unlikely that the desired radiator temperature setpoint, $T_{vr}(t)$, is required (or known) by the automotive engineer, it will be shown that the radiator setpoint can be indirectly designed based on the engine’s thermal conditions and commutation strategy (refer to Remark 1.2).

To facilitate the controller’s development and quantify the temperature tracking control objective, the tracking error signals $e(t)$ and $\eta(t)$ are defined as

$$e \triangleq T_{ed} - T_e, \quad \eta \triangleq T_r - T_{vr}.$$ \hspace{1cm} (1.10)

By adding and subtracting $MT_{vr}(t)$ to (1.1), and expanding the variables $M = c_{pc}m_o$ and $\dot{m}_r = m_o + \bar{m} = H_o \dot{m}_c + \bar{H} \dot{m}_c$, the engine and radiator dynamics can be rewritten as

$$C_e \dot{T}_e = Q_{in} - M (T_e - T_{vr}) - c_{pc} \bar{m} (T_e - T_r) + M \eta$$ \hspace{1cm} (1.11)

$$C_r \dot{T}_r = -Q_o + c_{pc} (m_o + \bar{m}) (T_e - T_r) - \varepsilon c_{pf} \bar{m}_f (T_e - T_x)$$ \hspace{1cm} (1.12)

where $\eta(t)$ was introduced in (1.10), and m_o and H_o are real positive design constants.

Closed–Loop Error System Development and Controller Formulation

The open–loop error system can be analyzed by taking the first time derivative of both expressions in (1.10) and then multiplying both sides of the resulting equations by C_e and C_r for the engine and radiator dynamics, respectively. Thus, the system dynamics described in (1.11) and (1.12) can be substituted and then reformatted to realize

$$C_e \dot{e} = C_e \dot{T}_{ed} - Q_{in} + M (T_e - T_{vr}) - u_e - M \eta$$ \hspace{1cm} (1.13)

$$C_r \dot{\eta} = M (T_e - T_r) - Q_o + u_r - C_r \dot{T}_{vr}.$$ \hspace{1cm} (1.14)
In these expressions, (1.10) was utilized as well as \(T_{vr} \triangleq T_{vro} + \bar{T}_{vr} \),
\[u_e = MT_{vr} - c_{pc} \bar{m}(T_e - T_r), \quad \text{and} \quad u_r = c_{pc} \bar{m}(T_e - T_r) - \epsilon c_{pa} \bar{m}_f (T_e - T_x) \]. The parameter \(T_{vro} \) is a real positive design constant.

Remark 1.2: The control inputs \(\bar{m}(t) \), \(\bar{T}_{vr}(t) \) and \(\bar{m}_f(t) \) are uni–polar. Hence, commutation strategies are designed to implement the bi–polar inputs \(u_e(t) \) and \(u_r(t) \) as
\[
\bar{m} \triangleq \frac{u_e \left[\text{sgn}(u_e) - 1 \right]}{2c_{pc}(T_e - T_r)}, \quad \bar{T}_{vr} \triangleq \frac{u_e \left[1 + \text{sgn}(u_e) \right]}{2M}, \quad \bar{m}_f \triangleq \frac{F \left[1 + \text{sgn}(F) \right]}{2\epsilon c_{pa}(T_e - T_o)} \quad (1.15)
\]
where \(F \triangleq c_{pc} \bar{m}(T_e - T_r) - u_r \). The control input, \(\bar{m}_f(t) \) is obtained from (1.15) after \(\bar{m}(t) \) is computed. From these definitions, it is clear that if \(u_e(t), u_r(t) \in L_\infty \forall t \geq 0 \), then \(\bar{m}(t), \bar{T}_{vr}(t), \bar{m}_f(t) \in L_\infty \forall t \geq 0 \).

To facilitate the subsequent analysis, the expressions in (1.13) and (1.14) are rewritten as
\[
C_e \dot{e} = \tilde{N}_e + N_{ed} - u_e - M\eta, \quad C_r \dot{\eta} = \tilde{N}_r + N_{rd} + u_r - C_r \bar{T}_{vr} \quad (1.16)
\]
where the auxiliary signals \(\tilde{N}_e(T_e,t) \) and \(\tilde{N}_r(T_e,T_r,t) \) are defined as
\[
\tilde{N}_e \triangleq N_e - N_{ed}, \quad \tilde{N}_r \triangleq N_r - N_{rd} \quad (1.17)
\]
Further, the signals \(N_e(T_e,t) \) and \(N_r(T_e,T_r,t) \) are defined as
\[
N_e \triangleq C_e \dot{T}_{ed} - Q_{in} + M(T_e - T_{vro}), \quad N_r \triangleq M(T_e - T_r) - Q_o \quad (1.18)
\]
with both \(N_{ed}(t) \) and \(N_{rd}(t) \) represented as
\[
N_{ed} \triangleq N_e \big|_{T_e = T_o} = C_e \dot{T}_{ed} - Q_{in} + M(T_{ed} - T_{vro}), \quad N_{rd} \triangleq N_r \big|_{T_e = T_o, T_r = T_o} = M(T_{ed} - T_{vr}) - Q_o \quad (1.19)
\]
Based on (1.17) through (1.19), the control laws $u_e(t)$ and $u_r(t)$ introduced in (1.16) are designed as

$$u_e = k_x e, \quad u_r = -k_e \eta + \bar{u}_r$$

(1.20)

where $\bar{u}_r(t)$ is selected as

$$\bar{u}_r = \begin{cases} 2M e, & \forall u_e \in (-\infty, 0) \\ 2M - \frac{k_x C_r - C_e k^2}{C_e M} e - \frac{C_x k_e}{C_e} \eta, & \forall u_e \in [0, \infty) \end{cases}$$

(1.21)

Knowledge of $u_e(t)$ and $u_r(t)$, based on (1.20) and (1.21), allows the commutation relationships of (1.15) to be calculated which provides $\dot{m}_c(t)$ and $\dot{m}_f(t)$. Finally, the voltage signals for the pump and fan are prescribed using $\dot{m}_c(t)$ and $\dot{m}_f(t)$ with a priori empirical relationships.

Stability Analysis

A Lyapunov–based stability analysis guarantees that the advanced thermal management system will be stable when applying the control laws introduced in (1.20) and (1.21).

Theorem 1.1: The controller given in (1.20) and (1.21) ensures that: (i) all closed-loop signals stay bounded for all time; and (ii) tracking is uniformly ultimately bounded (UUB) in the sense that $|e(t)| \leq \varepsilon_e$ and $|\eta(t)| \leq \varepsilon_r$ as $t \to \infty$ where $\varepsilon_e, \varepsilon_r \in \mathbb{R}^+$ are small constants.

Proof: See Appendix A for the complete Lyapunov–based stability analysis.

Normal Radiator Operation Strategy

The electric radiator fan must be controlled harmoniously with the other thermal management system actuators to ensure proper power consumption. From the
backstepping robust control strategy, a virtual reference for the radiator temperature, $T_{rv}(t)$, is designed to facilitate the radiator fan control law (refer to Remark 1.1). A tracking error signal, $\eta(t)$, is introduced for the radiator temperature. Based on the radiator’s mathematical description in (1.2), the radiator may operate normally, as a heat exchanger, if the effort of the radiator fan $\varepsilon c_{pa} \dot{m}_f (T_e - T_{av})$, denoted by $u_r(t)$ in (1.23), is set to equal the effort produced by the coolant pump $c_{pm} \dot{m}_r (T_e - T_r)$, denoted by $u_e(t)$ in (1.22) and (1.23). Therefore, the control input $u_e(t)$ provides the signals $\dot{m}_r(t)$ and $\dot{m}_f(t)$.

To derive the operating strategy, the system dynamics (1.1) and (1.2) can be written as

$$ C_e \dot{T}_e = Q_{in} - u_e \quad (1.22) $$

$$ C_r \dot{T}_r = -Q_o + u_e - u_r \quad (1.23) $$

If $u_r(t)$ is selected so that it equals $u_e(t)$, then the radiator operates normally. The control input $u_e(t)$ can be designed, utilizing a Lyapunov–based analysis, to robustly regulate the temperature of the engine block as

$$ u_e = -(k_e + \alpha_e)[e - e_o] - \int_t^\tau \left[\alpha_e (k_e + \alpha_e) e(\tau) + \rho_e \text{sgn}(e(\tau)) \right] d\tau \quad (1.24) $$

where the last term in (1.24) compensates for the variable unmeasurable input heat, $Q_{in}(t)$. Refer to Setlur et al. (2005) for more details on this robust control design method.
Remark 1.3: The control input $m_r(t)$ is uni–polar. Again, a commutation strategy may be designed to implement the bi–polar input $u_e(t)$ as

$$m_r = \frac{u_e [1 + \text{sgn}(u_e)]}{2c_{pc} (T_e - T_r)}.$$

(1.25)

From this definition, if $u_e(t) \in L_\infty \forall t \geq 0$, then $m_r(t) \in L_\infty \forall t \geq 0$. The choice of the valve position and coolant pump's speed to produce the required control input $m_r(t)$, defined in (1.25), can be determined based on energy optimization issues. Further, this allows $m_r(t)$ to approach zero without stagnation of the coolant since $m_r = Hm_e$ and $0 \leq H \leq 1$. Another commutation strategy is needed to compute the uni–polar control input $m_f(t)$ so that

$$m_f = \frac{u_r [1 + \text{sgn}(u_r)]}{2c_{pa} (T_e - T_x)}.$$

(1.26)

where $u_r = u_e$. From this definition, if $u_r(t) \in L_\infty \forall t \geq 0$, then $m_f(t) \in L_\infty \forall t \geq 0$.

Thermal Test Bench

An experimental test bench (refer to Figure 1.2) has been fabricated to demonstrate the proposed advanced thermal management system controller design. The assembled test bench offers a flexible, rapid, repeatable, and safe testing environment. Clemson University facilities generated steam is utilized to rapidly heat the coolant circulating within the cooling system via a two–pass shell and tube heat exchanger. The heated coolant is then routed through a 6.0L diesel engine block to emulate the combustion process heat. From the engine block, the coolant flows to a three–way smart valve and then either through the bypass or radiator to the coolant pump to close the loop. The thermal response of the engine block to the adjustable, externally applied heat source emulates the heat transfer process between the combustion gases, cylinder wall, and coolant jacket in an actual operating engine. As shown in Figure 1, the system sensors
include three J–type thermocouples (e.g., $T_1 =$ engine temperature, $T_2 =$ radiator temperature, and $T_3 =$ ambient temperature), two mass flow meters (e.g., $M_1 =$ coolant mass flow meter, and $M_2 =$ air mass flow meter), and electric voltage and current measurements (e.g., $P_1 =$ valve power consumed, $P_2 =$ pump power consumed, and $P_3 =$ fan power consumed).

![Steam Heat Exchanger](image)

Figure 1.2 Experimental thermal test bench that features a 6.0L diesel engine block, three-way smart valve, electric coolant pump, electric radiator fan, radiator, and steam-based heat exchanger.

The steam bench can provide up to 55kW of energy. High pressure saturated steam (412kPa) is routed from the campus facilities plant to the steam test bench, where a pressure regulator reduces the steam pressure to 172kPa before it enters the low pressure filter. The low pressure saturated steam is then routed to the double pass steam heat
exchanger to heat the system’s coolant. The amount of energy transferred to the system is controlled by the main valve mounted on the heat exchanger. The mass flow rate of condensate is proportional to the energy transfer to the circulating coolant. Condensed steam may be collected and measured to calculate the rate of energy transfer. From steam tables, the enthalpy of condensation can be acquired. To facilitate the analysis, pure saturated steam and condensate at approximately $T=100^\circ\text{C}$ determines the enthalpy of condensation. Baseline testing was performed to determine the average energy transferred to the coolant at various steam control valve positions. The coolant temperatures were initialized at $T_e=67^\circ\text{C}$ before measuring the condensate. Each test was executed for different time periods.

Numerical and Experimental Results

In this section, the numerical and experimental results are presented to verify and validate the mathematical models and control design. First, a set of Matlab/Simulink™ simulations have been created and executed to evaluate the backstepping robust control design and the normal radiator operation strategy. The proposed thermal model parameters used in the simulations are $C_e=17.14\text{kJ/}^\circ\text{K}$, $C_r=8.36\text{kJ/}^\circ\text{K}$, $c_{pc}=4.18\text{kJ/kg.}^\circ\text{K}$, $c_{pd}=1\text{kJ/kg.}^\circ\text{K}$, $\varepsilon=0.6$, and $T_\infty=293^\circ\text{K}$. Second, a set of experimental tests have been conducted on the steam–based thermal test bench to investigate the control design and operation strategies.
Backstepping Robust Control

A numerical simulation of the backstepping robust control strategy, introduced in Section 1.3, has been performed on the system dynamics (1.1) and (1.2) to demonstrate the performance of the proposed controller in (1.20) and (1.21). For added reality, band-limited white noise was added to the plant using a MATLAB block (noise power = 0.1). To simplify the subsequent analysis, a fixed smart valve position of \(H = 1 \) (e.g., fully closed for 100\% radiator flow) has been applied to investigate the coolant pump’s ability to regulate the engine temperature. An external ram air disturbance was introduced to emulate a vehicle traveling at 20km/h with varying input heat of \(Q_{in} = [50\text{kw}, 40\text{kw}, 20\text{kw}, 35\text{kw}] \) as shown in Figure 1.3. The initial simulation conditions were \(T_e(0) = 350^\circ\text{K} \) and \(T_r(0) = 340^\circ\text{K} \). The control design constants are \(T_{vro} = 356^\circ\text{K} \) and \(m_o = 0.4 \). Similarly, the controller gains were selected as \(k_v = 40 \) and \(k_r = 0.005 \). The desired engine temperature varied as \(T_{ed} = 363 + \sin(0.05t)^\circ\text{K} \). This time varying setpoint allows the controller’s tracking performance to be studied.

In Figure 1.3a, the backstepping robust controller readily handles the heat fluctuations in the system at \(t = [200\text{sec}, 500\text{sec}, 800\text{sec}] \). For instance, when \(Q_{in} = 50\text{kw} \) (heavy thermal load) is applied from \(0 \leq t \leq 200 \text{sec} \), as well as when \(Q_{in} = 20\text{kw} \) (light thermal load) is applied at \(500 \leq t \leq 800 \text{sec} \), the controller is able to maintain a maximum absolute value tracking error of 1.5\(^{\circ}\text{K} \). Under the presented operating condition, the error in Figure 1.3b fluctuates between \(-0.4^{\circ}\text{K} \) and \(-1.5^{\circ}\text{K} \). In Figures 1.3c and 1.3d, the
coolant pump (maximum flow limit of 2.6kg/sec) works harder than the radiator fan which is ideal for power minimization.

Remark 1.4: The error fluctuation in Figure 1.3b is quite good when compared to the overall amount of heat handled by the cooling system components.

Figure 1.3 Numerical response of the backstepping robust controller for variable engine thermal loads. (a) Simulated engine temperature response for desired engine temperature profile $T_{ed} = 363 + \sin(0.05t) \degree K$; (b) Simulated engine commanded temperature tracking error; (c) Simulated mass flow rate through the pump; and (d) Simulated air mass flow rate through the radiator fan.

Two scenarios have been implemented to investigate the controller’s performance on the experimental test bench. The first case applies a fixed input heat of $Q_i = 35kW$ and a ram air disturbance which emulates a vehicle traveling at 20km/h as shown in Figure 1.4. From Figure 1.4b, the controller can achieve a steady state absolute value
temperature tracking error of 0.7ºK. In Figures 1.4c and 1.4d, the coolant pump works harder than the radiator fan which again is ideal for power minimization. Note that the coolant pump reaches its maximum mass flow rate of 2.6kg/sec, and that the fan runs at 73% of its maximum speed (e.g., maximum air mass flow rate is 1.16kg/sec). The fluctuation in the coolant and air mass flow rates during $0 \leq t \leq 400$ sec (refer to Figures 1.4c and 1.4d) is due to the fluctuation in the actual radiator temperature about the radiator temperature virtual reference $T_{vro}=356ºK$ as shown in Figure 1.4a.

Figure 1.4 First experimental test scenario for the backstepping robust controller with emulated vehicle speed of 20km/h and $Q_{in}=35kW$. (a) Experimental engine and radiator temperatures with a desired engine temperature $T_{ed}=363ºK$; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan
The second scenario varies both the input heat and disturbance. Specifically, $Q_{in}(t)$ changes from 50kW to 35kW at $t=200$sec while $Q_{o}(t)$ varies from 20km/h to 40km/h to 20km/h at $t=400$sec and 700sec (refer to Figure 1.5). From Figure 1.5b, it is clear that the proposed control strategy handles the input heat and ram air variations nicely. During the ram air variation between 550sec and 750sec, the temperature error fluctuates within 1ºK due to the oscillations in the coolant pump and radiator fan flow rates per Figures 1.5c and 1.5d. This behavior may be attributed to the supplied ram air that causes the actual radiator temperature, $T_r(t)$, to fluctuate about the radiator temperature virtual reference $T_{vro}=356$ºK in Figure 1.5a.

Normal Radiator Operation Strategy

The normal radiator operation strategy, introduced in Section 1.3, has been numerically simulated using system dynamics (1.1) and (1.2) to investigate the robust tracking controller performance given in (1.24). The simulated thermal system’s parameters, initial simulation conditions, and desired engine temperature were equivalent to Section 1.5.1. Again, a band–limited white noise was added to the plant using a MATLAB block with noise power =0.1. A fixed 100% radiator flow smart valve position allows the coolant pump’s ability to regulate the engine temperature to be studied. The external ram air emulated a vehicle traveling at 20km/h; the input heat was varied as shown in Figure 1.6 (e.g., $Q_{in}=[50$kW, 40kW, 20kW, 35kW]). The control gains were set as $k_e=10$, $\alpha_e=0.005$, and $\rho_e=0.01$. Although the normal radiator operation accommodated the heat variations in Figure 1.6a, its performance was inferior to the
backstepping robust control. However, the normal radiator operation achieved less tracking error under the same operating condition when Figure 1.3b and 1.6b are compared. In this case, the maximum temperature tracking error fluctuation was 1ºK. In Figures 1.6c and 1.6d, the pump works harder than the fan which is preferred for power minimization. Note that the power consumption is larger than that achieved by the backstepping robust controller (refer to Figures 1.3c, 1.3d, 1.6c, and 1.6d).

Figure 1.5 Second experimental test scenario for the backstepping robust controller where the input heat and ram air disturbance vary with time. (a) Experimental engine and radiator temperatures with a desired engine temperature $T_{ed} = 363ºK$; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan.
Figure 1.6 Numerical response of the normal radiator operation for variable engine thermal loads. (a) Simulated engine temperature response for desired engine temperature profile $T_{ed} = 363 + \sin(0.05t) \degree K$; (b) Simulated engine commanded temperature tracking error; (c) Simulated mass flow rate through the pump; and (d) Simulated air mass flow rate through the radiator fan.

The same two experimental scenarios presented for the backstepping robust controller are now implemented for the normal radiator operation strategy on the thermal test bench. In the first scenario, a fixed input heat and ram air disturbance, $Q_{in} = 35kW$ and 20km/h vehicle speed, were applied. In Figure 1.7a, the normal radiator operation overshoot and settling time are larger than the backstepping robust control (refer to Figure 1.4a). As shown in Figure 1.7b, an improved engine temperature tracking error was demonstrated but with greater power consumption in comparison to the backstepping
robust control (refer to Figure 1.4b). Finally, the coolant pump operated continuously at its maximum per Figure 1.7c.

Figure 1.7 First experimental test scenario for the normal radiator operation controller with emulated speed of 20km/h and $Q_{in}=35$ kW. (a) Experimental engine and radiator temperatures with a desired engine temperature $T_{ed}^e=363$ºK; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan.

For the second test scenario, the input heat and disturbance are both varied as previously described for the backstepping robust control. The normal radiator operation maintained the established control gains. In Figure 1.8b, the temperature error remains within a ±0.4ºK neighborhood of zero despite variations in the input heat and ram air.
Although the temperature tracking error is quite good, this strategy does not minimize power consumption in comparison to the backstepping robust control strategy.

Figure 1.8 Second experimental test scenario for the normal radiator operation controller where the input heat and ram air disturbance vary with time. (a) Experimental engine and radiator temperatures with a desired engine temperature $T_{ed}=363^\circ K$; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan

The simulation and experimental results are summarized in Table 1.1 to compare the controller strategies. To ensure uniform operating conditions, all reported data corresponds to the first scenario thermal conditions. Further, the controller gains, initial conditions, and temperature set points were maintained for both the simulation and experimental tests. Note that adaptive and robust controllers were also designed and
implemented (Salah et al., 2006) for comparison purposes. However, the designs are not reported in this paper. For these two controllers, the radiator temperature set point was required which may be considered a weakness.

Overall, the normal radiator operation strategy was better than the adaptive and robust control strategies. However, it is not as good as the backstepping control when compared in terms of power consumption despite achieving less temperature tracking error. Therefore, the backstepping robust control strategy is considered to be the best among all controllers and operation strategies. The power measure is the minimum, the heat change handling is more satisfactory, and a set point for the radiator temperature is not required. From Table 1.1, it is clear that the variations in the actual coolant temperature about the set point, quantified by the steady state tracking error, are relatively minor given that the maximum absolute tracking error is 0.3% (e.g., adaptive control).

Remark 1.5: The cooling system power consumption P_{sys}(\bar{m}_c, \bar{m}_f) measures/calculates the average power consumed by the system actuators over the time $T=20\text{min}$. Power measure is performed for the duration of the experimental test (T) using the trapezoidal method of integration. The power consumed by the smart valve is considered to be quite small so it is neglected.

| Description | $|e_{ss}|$ [°K] | P_{sys} [W] |
|------------------------------------|----------------|---------------|
| | Simulation | Experiment | Simulation | Experiment |
| Backstepping robust control | 0.616 | 0.695 | 31.625 | 33.231 |
| Normal radiator operation strategy | 0.105 | 0.175 | 38.052 | 38.699 |
| Adaptive control | 1.003 | 1.075 | 37.497 | 37.968 |
| Robust control | 0.905 | 0.935 | 34.346 | 35.786 |

Table 1.1 Simulation and experimental results summary for four control strategies
Concluded Remarks

Advanced automotive thermal management system can have a positive impact on gasoline and diesel engine cooling systems. In this paper, a suit of servo–motor based–cooling system components have been assembled and controlled using a Lyapunov–based nonlinear control technique. The control algorithm has been investigated using both simulation and experimental tests. Two detailed and two supplemental controllers were applied to regulate the engine temperature. In each instance, the controllers successfully maintained the engine block to setpoint temperatures with small error percentages. It has also been shown that the power consumed by the system actuators can be reduced. Overall, the findings demonstrated that setpoint temperatures can be maintained satisfactory while minimizing power consumption which ultimately impacts fuel economy.
CHAPTER 2
MULTIPLE COOLING LOOPS IN ADVANCED VEHICLE THERMAL MANAGEMENT SYSTEMS

Introduction

Advance automotive thermal management systems can effectively maintain the desired temperature in internal combustion engines for enhanced performance (Melzer et al., 1999). Automotive cooling systems can be upgraded to computer controlled servo–motor actuated components rather than the conventional wax–based thermostat valve, mechanical coolant pump, and viscous clutch radiator fan (Chalgren and Barron, 2003). The adjustment of thermal system operation per driving condition can reduce the fuel consumption, parasitic losses, and tailpipe emissions during transient and steady–state operation (Wambsganss, 1999). Geels et al. (2003) reported that reductions of 5%, 20%, and 10% in engine fuel consumption and tailpipe emissions for CO and HC can be achieved when transforming from mechanical to electrical cooling system components within the vehicle. The underhood powertrain components and cabin environment must be maintained within desired temperature ranges. The main cooling loop ensures that the engine block does not overheat leading to coolant boiling. Similarly, the transmission oil is cooled by pumping the fluid through an auxiliary heat exchanger typically located inside the radiator. Further, the compressed air exiting a turbocharger’s compressor may be cooled before entering the engine’s cylinders using a charge–air–cooler. Finally, the heater core conditions the passenger compartment air temperature for occupant specified comfort levels.
A short literature review will be presented. Cho et al. (2004) investigated a controllable electric coolant pump in a class–three medium duty diesel engine truck in terms of cooling circuit thermal performance. Page et al. (2005) implemented an intelligent thermal management system on a medium–sized tactical vehicle to study improvements in the engine’s peak fuel consumption and thermal operating conditions. Redfield et al. (2006) examined potential energy savings for engine cooling in class–eight tractors. They demonstrated ±3°C temperature tracking for prescribed set point values. Although advanced automotive thermal management systems offer significant benefits, few researches have focused on secondary cooling loops (Chalgren and Traczyk, 2005). Chalgren and Allen (2005) applied advanced thermal management systems concepts to the transmission, EGR cooler, and charge–air–cooler for a light duty diesel truck. They reported that temperature controllability was remarkably improved for the intake manifold air, engine block, engine coolant, and engine oil as well as a greater heat rejection capability while decreasing the cooling system parasitic losses. Note that the charge–air–cooler loop can improve the fuel economy and combustion by decreasing the compressed inlet air temperature (Taitt et al., 2006).

A wide range of controller designs have been implemented to control the smart components in advanced cooling systems. Wagner et al. (2002 and 2003) introduced real–time thermal control algorithms for the synchronous regulation of the servo–motor driven thermostat valve and coolant pump. Choukroun and Chanfreau (2001) modified the classic cooling loop by using electro–mechanical components and a proportional integral (PI) control technique. Cipollone and Villante (2004) proposed different cooling
control schemes for a proportional valve as a replacement to the traditional thermostat valve. Setlur et al. (2005) presented a suite of mathematical models to describe the engine cooling loop thermal behavior and controllable electro–mechanical multiple actuators. They developed nonlinear control algorithms for the servo–motor cooling system actuators for temperature regulation. Salah et al. (2008) developed a backstepping robust controller and a normal radiator operation using a lumped parameter model to operate harmoniously the system actuators.

In this chapter, a multiple (i.e., engine and transmission) loop advanced thermal management system will be investigated and analyzed. Section 2.2 presents mathematical models to describe the cooling system dynamics. Nonlinear tracking control strategies are introduced in Section 2.3 to accommodate disturbances and uncertainties. Section 2.4 presents the experimental test bench that features a smart thermostat valve, variable speed electric coolant and transmission pumps, variable speed electric radiator fan, radiator, 6.0L engine block, automatic transmission, and a multiple output steam–based heat exchanger to emulate the combustion and transmission heating processes. In Section 2.5, representative experimental results are introduced for five test cases (e.g., steady input heat for normal and elevated ambient temperature, variable set point temperature, variable input heat with ram air disturbance, and controller design comparisons). The summary is contained in Section 2.6.
Automotive Multi–Loop Cooling System Behavior

The thermal response of a multi–loop advanced cooling system can be represented by a suite of lumped parameter mathematical descriptions. The automotive powertrain elements included a 6.0L diesel engine, automatic transmission, and radiator as shown in Figure 2.1. The engine’s thermal management system features a three–way smart valve, variable speed electric coolant pump, and a variable speed electric radiator fan. The transmission loop features a variable speed electric pump with a secondary radiator. Finally, the charge–air–cooler (air–to–coolant heat exchanger) was a simple loop to reduce air temperature after compression with an integrated coolant pump. A multiple output steam–based heat exchanger emulated the engine combustion and transmission heat processes.

Figure 2.1 Multi–loop advanced cooling system which features a three–way smart valve, two variable speed electric pumps, constant speed electric pump, a variable speed electric radiator fan, an engine block, a transmission, a radiator, a charge–air–cooler, and various sensors (temperature, mass flow rate, and power)
A series of reduced–order thermal models describe the multi–loop cooling system’s transient response to minimize the computational burden for in–vehicle implementation. The thermal behavior of the engine, transmission, and radiator can be described as

\[C_e \dot{T}_e = Q_e - c_{pe} \dot{m}_c (T_e - T_{re}) \] \tag{2.1}

\[C_t \dot{T}_t = Q_t - c_{po} \dot{m}_{ot} (T_t - T_{rt}) \] \tag{2.2}

\[C_{re} \dot{T}_{re} = -Q_a + c_{pc} \dot{m}_c (T_e - T_{re}) + c_{po} \dot{m}_{ot} (T_t - T_{rt}) - \varepsilon_r c_{pa} \dot{m}_{ar} (T_e - T_o). \] \tag{2.3}

The variables \(Q_e(t), Q_t(t), \) and \(Q_a(t) \) represent the heat produced by the combustion process, the transmission heat generated, and the radiator heat loss due to uncontrollable ram air flow. An adjustable multiple output double pass steam–based heat exchanger delivered the virtual combustion and transmission heat at a maximum of 56kW and 4kW, respectively. In an actual vehicle, the heat generated by the engine combustion process is transferred to the coolant through the block’s coolant jacket, while the heat generated by the transmission is transferred to the oil by the transmission gears.

For a three way servo–driven thermostat valve, the radiator coolant mass flow rate (in the engine loop), \(\dot{m}_{cr}(t) \), is based on the coolant pump flow rate and normalized valve position so that \(\dot{m}_{cr} = H \dot{m}_{ce} \) where \(0 \leq H \leq 1 \). Note that \(H(t) = 1(0) \) corresponds to a fully closed (open) valve position and coolant flow through the radiator (bypass) loop. The two–node lumped parameter thermal model that describes the charge–air–cooler dynamic behavior may be expressed as

\[C_a \dot{T}_{ao} = c_{pa} \dot{m}_a (T_{ai} - T_{ao}) - \varepsilon_{cac} c_{pc} \dot{m}_{csr} (T_{co} - T_{cl}) \] \tag{2.4}
The variable $Q_{sr} = Q_a + Q_{rf}$ represents the heat loss in the secondary radiator due to the ram air flow, $Q_a(t)$, and the air blown by the primary radiator fan, $Q_{rf}(t)$. Since the heat generated in the charge–air–cooler air–side, $c_{pa} \dot{m}_a (T_{ao} - T_{ai})$, is not totally transferred to the charge–air–cooler coolant–side loop, it is multiplied by the effectiveness of the charge–air–cooler heat exchanger, ε_{cac}, as shown in equation (2.5). The heat loss in the secondary radiator, $Q_{sr}(t)$, can be computed from $Q_{sr} = A_{sr} h_{sr} (T_{co} - T_{ei})$ where $h_{sr}(\cdot)$ is a function of the air mass flow rate, $\dot{m}_{asr}(t)$, through the secondary radiator.

Control System Design for Multiple Thermal Loops

A Lyapunov–based nonlinear control algorithm will be developed to maintain a desired engine block temperature, $T_{ed}(t)$, and a desired transmission temperature, $T_{td}(t)$, subject to variable uncertainties in the described multi–loop cooling system model. The controller’s main objective is to track the engine and transmission temperature prescribed set points while compensating for the variable system uncertainties (i.e., combustion process input heat, $Q_e(t)$, heat generated in the transmission, $Q_t(t)$, and radiator heat loss, $Q_a(t)$) by harmoniously controlling the system’s electro–mechanical actuators. Although other linear and nonlinear control algorithms may be formulated (Ap and Tarquis, 2005), Lyapunov–based nonlinear control strategies demonstrate outstanding
disturbance rejection qualities (Salah et al., 2008). The system servo–actuators are a three–way smart valve, two coolant pumps, an oil pump, and a radiator fan as shown in Figure 2.1. An important objective is to reduce the electric power consumed by these actuators, $P_{sys}(t)$.

To facilitate the controller design process, three assumptions are imposed.

Assumption 2.1: The signals $Q_e(t), Q_t(t)$, and $Q_a(t)$ always remain positive in equations (2.1–2.3) (i.e., $Q_e(t), Q_t(t), Q_a(t) \geq 0$). Further, the signals $Q_e(t)$ and $Q_t(t)$ with their first two time derivatives remain bounded at all time, such that $Q_e(t), Q_t(t), \dot{Q}_e(t), \ddot{Q}_e(t), \dot{Q}_t(t), \ddot{Q}_t(t) \in L_{\infty}$, as well as $Q_a(t)$ to be bounded, such that $Q_a(t) \in L_{\infty}$.

Assumption 2.2: The surrounding ambient temperature $T_{\infty}(t)$ is uniform and satisfies the condition $T_e(t) - T_{\infty}(t) \geq \epsilon_1$ at all time where $\epsilon_1 \in \mathbb{R}^+$ is a constant.

Assumption 2.3: The coolant temperatures at the engine block and radiator outlets satisfy the condition $T_e(t) - T_{re}(t) \geq \epsilon_2$ at all time where $\epsilon_2 \in \mathbb{R}^+$ is a constant. Further, $T_e(0) \geq T_{re}(0)$ to facilitate the boundedness of signal argument.

Assumption 2.3 allows the engine and radiator outlets’ coolant to have the same initial temperature (e.g., cold start). The unlikely case of $T_e(0) < T_{re}(0)$ is not considered. It is important to point out that in equations (2.1–2.3), the signals $T_e(t), T_{re}(t), T_t(t), T_{re}(t)$, and $T_e(t)$ can be measured by either thermocouples or thermistors, and the system parameters $C_e, C_t, C_r, c_{pc}, c_{po}, c_{pa}$, and ϵ_r are assumed to be constant and fully known.
Control Objective for Multi–Loop Thermal System

The control objective is to ensure that the actual temperatures of the engine, \(T_e(t) \), and transmission, \(T_t(t) \), track the desired trajectories \(T_{ed}(t) \) and \(T_{td}(t) \), respectively, such that

\[
T_e(t) \rightarrow T_{ed}(t), \quad T_t(t) \rightarrow T_{td}(t) \quad \text{as} \quad t \rightarrow \infty
\]

(2.7)

while compensating for the system variable uncertainties \(Q_e(t), Q_t(t), \) and \(Q_a(t) \).

Another assumption has been imposed to facilitate the boundedness of signal arguments.

Assumption 2.4: The engine, and transmission temperature profiles are always bounded and chosen such that their first three time derivatives remain bounded at all times (i.e., \(T_{ed}(t), T_{td}(t), T_{ed}^\dot{}(t), T_{td}^\dot{}(t), T_{ed}^{\ddot{}}(t), T_{td}^{\ddot{}}(t) \in L_\infty \)). Further, \(T_{ed}(t) >> T_\infty(t) \) and \(T_{td}(t) >> T_\infty(t) \) at all times.

To facilitate the controller’s development and quantify the temperature tracking control objective, the auxiliary signals \(s_e(t) \), and \(s_t(t) \) are defined as

\[
s_e \triangleq \hat{\eta}_e + \alpha_e \eta_e, \quad s_t \triangleq \hat{\eta}_t + \alpha_t \eta_t
\]

(2.8)

where \(\alpha_e \) and \(\alpha_t \) are real positive constants, and the tracking error signals \(\eta_e(t) \), and \(\eta_t(t) \) are defined as \(\eta_e \triangleq T_{ed} - T_e \) and \(\eta_t \triangleq T_{td} - T_t \).

Remark 2.1: Standard arguments (Dawson et al., 1998) can be applied to show that (i) if \(s_e(t), s_t(t) \in L_\infty \), then \(\eta_e(t), \eta_t(t), \hat{\eta}_e(t), \hat{\eta}_t(t) \in L_\infty \), and (ii) if the signals \(s_e(t) \) and \(s_t(t) \) are asymptotically regulated, then the signals \(\eta_e(t), \eta_t(t), \hat{\eta}_e(t), \hat{\eta}_t(t) \) are asymptotically regulated.

Controller Formulation and Development

The multi–loop system, described by equations (2.1–2.3), can be written as

\[
C_e \dot{T}_e = Q_e - u_e, \quad C_t \dot{T}_t = Q_t - u_t, \quad C_r \dot{T}_{rt} = -Q_a + u_r
\]

(2.9)
where the control laws \(u_e(t), u_t(t), \) and \(u_r(t) \) are defined as \(u_e = c_{pe} \dot{m}_e (T_e - T_{re}) \), \(u_t = c_{po} \dot{m}_o (T_t - T_{rt}) \), and \(u_r = u_e + u_t - \varepsilon_r c_{pa} \dot{m}_{ar} (T_e - T_{\infty}) \). To analyze the error system dynamics, the time derivatives of the first two expressions in equation (2.9) are computed and then both sides of the resulting equations are multiplied by \(C_e \) and \(C_t \) for the engine and transmission dynamics, respectively. Thus, the first two thermal dynamics in equation (2.9) can be substituted and then reformatted to realize

\[
C_e \dot{s}_e = N_e + u_e - \eta_e, \quad C_t \dot{s}_t = N_t + u_t - \eta_t \tag{2.10}
\]

where the auxiliary functions \(N_e \) and \(N_t \) are defined as

\[
N_e = C_e \dot{T}_{ed} - \dot{Q}_e + C_e \alpha_e \dot{T}_t + \eta_e, \quad N_t = C_t \dot{T}_{id} - \dot{Q}_t + C_t \alpha_t \dot{T}_t + \eta_t \tag{2.11}
\]

The radiator may operate normally as a heat exchanger if the control law \(u_r(t) \) is set to zero (Salah et al., 2008). The expression \(u_e + u_t = \varepsilon_r c_{pa} \dot{m}_{ar} (T_e - T_{\infty}) \) can be obtained by setting the control law \(u_r(t) \) to zero.

Remark 2.2: The control inputs \(\dot{m}_{cr}(t), \dot{m}_o(t), \) and \(\dot{m}_{ar}(t) \) are uni-polar. Hence, commutation strategies are designed to implement the bi-polar control laws \(u_e(t) \) and \(u_r(t) \) as

\[
\dot{m}_{cr} = \frac{[1 + \text{sgn}(u_e)] u_e}{2c_{pc} (T_e - T_{re})}, \quad \dot{m}_o = \frac{[1 + \text{sgn}(u_t)] u_t}{2c_{po} (T_t - T_{rt}) + \varepsilon} + \dot{m}_{ot_{\min}}, \quad \dot{m}_{ar} = \frac{[1 + \text{sgn}(F)] F}{2\varepsilon_r c_{pa} (T_e - T_{\infty})} \tag{2.12}
\]

where \(F \equiv u_e + u_t \), and \(\varepsilon \in \mathbb{R}^+ \) is a constant that is selected arbitrary small to prevent any singularity condition. During the system warm-up, some heat is transferred to the transmission via the radiator since the engine heats up faster than the transmission. Thus, the condition \(T_t(t) < T_{rt}(t) \) may occur. The control input, \(\dot{m}_{ar}(t) \) is obtained from the control laws \(u_e(t) \) and \(u_t(t) \). It is clear from
the expressions in equation (2.12) that by setting the control law \(u_\varepsilon = 0 \), the fan effort, denoted by \(c_r c_p \dot{m}_{\text{ar}} (T_e - T_x) \), is set to equal the summation of the coolant pump effort in the engine loop, denoted by \(c_p \dot{m}_{\text{cr}} (T_e - T_{re}) \), and the oil pump effort in the transmission loop, denoted by \(c_p \dot{m}_{\text{oil}} (T_t - T_{rt}) \). Further, if \(u_\varepsilon(t), u_t(t) \in L_\infty \) at all time, then \(\dot{m}_{\text{cr}}(t), \dot{m}_{\text{oil}}(t), \dot{m}_{\text{ar}}(t) \in L_\infty \) at all time.

Remark 2.3: The commutation strategy of the uni–polar control input \(\dot{m}_{\text{cr}}(t) \), introduced in equation (2.12), is implemented utilizing the smart thermostat valve such that

\[
\dot{m}_{\text{cr}} \triangleq H \dot{m}_{\text{ce}}, \quad H \triangleq \begin{cases} 0, & T_e < T_{ed} - \Delta T \\ 1, & T_e \geq T_{ed} - \Delta T \end{cases}, \quad \dot{m}_{\text{ce}} \triangleq \dot{m}_{\text{cemin}} \quad \text{(if } H = 0) \tag{2.13}
\]

where \(\Delta T \) is the boundary layer about the desired engine temperature, \(T_{ed}(t) \). The boundary layer was introduced to reduce valve dithering. The proposed three–way valve operation ensures minimizing the warm–up and heating time during any operating condition (Mitchell et al., 2007).

Based on equations (2.10) and (2.11), the control objective described in equation (2.7) can be accomplished by designing the control laws \(u_\varepsilon(t) \) and \(u_t(t) \) introduced in equation (2.9) as

\[
u_\varepsilon = -(k_e + \alpha_e)\left[\eta_e - \eta_{eo}\right] - \left[\int_{t_o}^{t} \left[\alpha_e (k_e + \alpha_e) \eta_e(\tau) + \rho_e \text{sgn}(\eta_e(\tau))\right] \, d\tau\right] \tag{2.14}
\]

\[
u_t = -(k_t + \alpha_t)\left[\eta_t - \eta_{to}\right] - \left[\int_{t_o}^{t} \left[\alpha_t (k_t + \alpha_t) \eta_t(\tau) + \rho_t \text{sgn}(\eta_t(\tau))\right] \, d\tau\right] \tag{2.15}
\]

where \(k_e \) and \(k_t \) are real positive control gains, and the signals \(\eta_{eo} \) and \(\eta_{to} \) are the signals \(\eta_e(t) \) and \(\eta_t(t) \) evaluated at the initial time \(t_o \). The last terms, \(\rho_e \text{sgn}(\eta_e) \) and \(\rho_t \text{sgn}(\eta_t) \), in equations (2.14) and (2.15) compensate for the variable unmeasurable quantities, \(Q_e(t) \), and \(Q_t(t) \). Refer to Setlur et al. (2005) for more details on this robust control design method and Lyapunov–based stability analysis. Knowledge of \(u_\varepsilon(t) \) and
$u_i(t)$, based on equations (2.14) and (2.15), allows the commutation relationships of equation (2.12) to be calculated which provides $\dot{m}_{cr}(t), \dot{m}_{o}(t)$, and $\dot{m}_{ar}(t)$. Finally, the voltage signals for the pumps and fan are prescribed using $\dot{m}_{cr}(t), \dot{m}_{o}(t), \dot{m}_{a}(t)$ and a priori empirical relationships.

Multi–Loop Thermal Test Bench and Test Profiles

An experimental test bench was created to investigate advanced vehicle thermal management systems for multiple cooling loops. The test environment offers a safe and repeatable method to study the engine and transmission cooling loops. To rapidly heat fluids in the engine and transmission, a two–pass shell multiple output steam–based heat exchanger was utilized as shown in Figure 2.2. High pressure steam from Clemson University facilities has been integrated into the bench. For the engine loop, heated coolant is routed through a 6.0L International V–8 diesel engine block to emulate combustion. The engine block acts as a thermal capacitance similar to actual operation. From the engine block, the coolant flows to a three–way smart valve and then through the bypass and/or radiator before closing the loop with the coolant pump. In the transmission loop, steam is routed directly to the automatic transmission pan. The transmission fluid in the pan is rapidly heated and then circulated via an electric pump through the radiator’s transmission cooling tank.
Figure 2.2 Experimental thermal test bench (schematic and actual) that features a 6.0L diesel engine block, transmission, three–way smart valve, electric coolant pump, electric fluid pump, electric radiator fan, radiator, and multiple output steam–based heat exchanger
The heat applied to the engine block and transmission housing may be independently adjusted by two steam control valves. Due to steam routing, a direct correlation exists between the heat introduced in the main engine loop and secondary heat transferred to the transmission \(i.e.,\) the transmission connects to the heat exchanger). To calculate the rate of system heat transfer, \(Q_{in} = Q_c + Q_t\), condensed steam was collected and weighed from both the transmission and main steam line. It has been assumed that the amount of condenser condensate is proportional to the amount of heat transferred to the circulating coolant (Incropera and DeWitt, 2002). Overall, heat transfer rates exceeding 60kW can be achieved with the current steam heat exchanger and transmission circuit.

The system sensors include three J–type thermocouples \(T_e = \) engine coolant outlet, \(T_t = \) transmission fluid outlet, \(T_\infty = \) ambient air), two K–type thermocouples \(T_{re} = \) radiator coolant outlet, \(T_{ri} = \) radiator fluid inlet), and main coolant mass flow meter, \(\dot{m}_c\). The transmission fluid and radiator air mass flow rates are determined using empirical models. Data acquisition was performed by a Servo–to–Go board which utilizes eight analog–to–digital inputs and eight digital–to–analog outputs. This board provides control signals for the smart valve, engine and transmission variable speed electric pumps, and variable speed radiator fan. Due to equipment limitation, the charged–air–cooler has not been experimentally studied.

Five tests have been implemented to investigate the multi–loop system dynamics and controller’s performance on the experimental test bench as shown in Table 2.1. The
first test applies a constant input heat, $Q_{in} = 35\text{kW}$, and ram air disturbance, to emulate a vehicle traveling at $V_{ram} = 75\text{km/h}$, with an ambient temperature of 294°K (69.5°F or 20.9°C). The desired engine and transmission temperatures were $T_{ed} = 362^\circ\text{K}$ and $T_{td} = 358^\circ\text{K}$. For the second test, an elevated temperature of 325°K (125.3°F or 51.9°C) was applied while maintaining the same input heat and ram air disturbance as test one. The elevated temperature testing allowed significant thermal loading which may be found in desert climates around the world. In the third test, the desired engine and transmission temperatures were $T_{ed} = 363 + \text{sgn}\left[\sin\left(0.002\pi t - \frac{\pi}{2}\right)\right]$ and $T_{td} = 356^\circ\text{K}$. A constant input heat, $Q_{in} = 39\text{kW}$, and ram air disturbance, to emulate a vehicle traveling again at 75km/h, were applied with an ambient temperature of 292°K. The fourth test varies both the total input heat, $Q_{in} = Q_e + Q_t$, and the ram air disturbance, V_{ram}, as shown in Figure 2.3 with an ambient temperature of 300°K. The desired engine and transmission temperatures were set as $T_{ed} = 364^\circ\text{K}$ and $T_{td} = 362^\circ\text{K}$. Finally, a fifth test was conducted to evaluate two alternative controllers that were designed for their overall performance when compared to the nonlinear robust controller.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Description</th>
<th>T_{∞} [ºK]</th>
<th>T_{ed} [ºK]</th>
<th>T_{td} [ºK]</th>
<th>Q_{in} [kW]</th>
<th>V_{ram} [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steady heat and ram air disturbance</td>
<td>294</td>
<td>362</td>
<td>358</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Square wave set point temperature</td>
<td>292</td>
<td>364</td>
<td>356</td>
<td>39</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Variable heat and ram air disturbance</td>
<td>300</td>
<td>364</td>
<td>362</td>
<td>20–50</td>
<td>0–100</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of controllers design</td>
<td>294</td>
<td>362</td>
<td>356</td>
<td>45</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 2.1 Test profiles for the multi-loop thermal system
Experimental Results

In this section, representative experimental results will be presented to investigate the proficiency of the real–time control algorithm and servo–motor driven actuators in regulating set point temperatures and minimizing power consumption in multi–loop automotive cooling systems. A set of five experimental tests (refer to Table 2.1) have been conducted on the steam–based multi–loop thermal test bench which features the engine and transmission cooling loops. The thermal model parameter values are $\varepsilon_r=0.6$, $c_{pa}=1.012 \text{kJ/kg.ºK}$, $c_{pc}=4.181 \text{kJ/kg.ºK}$, and $c_{po}=c_{pc}$. Note that coolant has been substituted for the transmission oil. The thermostat valve operated $\Delta T=3ºK$ below the set point temperature, $T_{ed}(t)$, (Mitchell et al., 2007). The controller gains and parameters were $k_c=15$, $\alpha_c=0.001$, $\rho_c=5$, $k_i=3$, $\alpha_i=0.0001$, $\rho_i=0.001$, $\varepsilon=0.01$, $m_{cem_{\text{min}}}=0.6 \text{kg/sec}$ (through the radiator branch only), and $m_{ot_{\text{min}}}=0.05 \text{kg/sec}$ for all the test profiles presented in Table 2.1.

Figure 2.3 Experimental (a) input heat profile, $Q_{in}(t)$, and (b) ram air disturbance, $V_{ram}(t)$, to emulate different vehicle speeds for the fourth test
Robust Controller Applied to Four Operating Scenarios

In the first test, vehicle highway operation was emulated using a constant heat of \(Q_{in} = 35\text{kW} \), ram air of \(V_{ram} = 75\text{km/h} \), and a normal ambient temperature of 294ºK. As shown in Figures 2.4a and 2.4b, the engine and transmission are somewhat overcooled since their two fluid temperatures slowly approach their set point values. The fluid flow through the engine and transmission remain a minimum per Figures 2.4c and 2.4d. The radiator fan was shut off for the entire test period (refer to Figure 2.4e) while the thermostat valve effort (refer to Figure 2.4f) was initially oscillatory and then settled to full radiator flow (remember that thermostat valve operation per Remark 2.3 is either fully open or fully closed).

In the second test, an elevated temperature of 325ºK (125.3ºF or 51.9ºC) was achieved using a 165kBtu/h portable kerosene forced–air heater as shown in Figure 2.5. The temperature tracking errors for the engine and transmission were 3ºK and 5ºK, respectively, as shown in Figures 2.6a and 2.6b. The system actuators (i.e., pumps and fan) were saturated (refer to Figures 2.6c, 2.6d, and 2.6e) and not able to readily reject the system heat. The fan effort increases with the elevated temperature. This is clear from the fan commutation strategy introduced in equation (2.12) where \(\dot{m}_{ar}(t) \) is affected by the difference \(T_e(t) - T_{\infty}(t) \). The thermostat valve in Figure 6f was wide open after \(t = 185\text{sec} \).

The elevated temperature demonstrated the need for a larger radiator size based on the thermal loads. This test clearly illustrates the requirement for cooling system sizing to meet environmental demands.
Figure 2.4 First experimental test scenario for the robust controller with emulated vehicle speed of 75km/h, $Q_{in} = 35$ kW, and normal ambient temperature of $T_{\infty} = 294^\circ$K; (a) Engine and radiator temperatures with a desired engine temperature of $T_{ed} = 362^\circ$K; (b) Transmission and radiator side tank temperatures with a desired transmission temperature of $T_{td} = 358^\circ$K; (c) Coolant mass flow rate through the engine pump; (d) Coolant mass flow rate through the transmission pump; (e) Air mass flow rate through the radiator fan; and (f) Normalized thermostat valve position
Figure 2.5 Portable kerosene forced–air heater exhaust stream used to elevate the ambient air temperature entering the cooling system for test two which challenged the cooling system’s heat rejection capabilities

Remark 2.4: It was observed that allowing the coolant flow in the engine loop to exceed selected thresholds would violate Assumption 2.3 since the radiator temperature would be greater than the engine temperature. This condition arises due to the lack of heat rejection at the radiator. The violated assumption (and based on the commutation strategy described in equation (2.12)) required the pump speed to oscillate continuously. To improve the thermal response under this condition, the maximum engine pump coolant mass flow rate was limited to 1.25kg/sec so the coolant through the radiator is given more time to cool down.

The third test emulated a vehicle operating at a variable engine set point temperature to illustrate different combustion temperature cooling demands (e.g., perhaps
due to different fuel types). The engine and transmission temperatures response is shown in Figures 2.7a and 2.7b. The engine’s coolant pump behavior (refer to Figure 2.7c) is affected by the radiator temperature since it depends on the difference between the engine and radiator temperatures as stated in Remark 2.2. The transmission pump operates at its maximum capacity in Figure 2.7c since the transmission temperature remains above the set point, $T_{tdT}=356^\circ$K. In Figure 2.7e, the fan’s response is impacted by the engine temperature tracking error. Finally, temperature tracking errors of 0.1$^\circ$K and 0.8$^\circ$K were realized for the engine and transmission as shown in Figure 2.7f. The spikes in the engine temperature tracking error are due to the instant change in the desired engine temperature set point. Each time the engine temperature set point changes its magnitude, a spike occurs which is also evident in the fan response of Figure 2.7e.

Finally, a “driving” cycle was introduced in test four (refer to Figure 2.3) which features variable heat and ram air inputs. Although this test does not correspond to an established drive cycle, it attempts to demonstrate the cooling system’s response to variable heat and ram air loads for mixed-mode vehicle operation. In Figure 2.8, the complete experimental results are displayed for a normal ambient temperature of $T_\infty=300^\circ$K. The proposed controller and operation strategies satisfactorily regulate the temperatures per Figures 2.8a and 2.8b as evident by the maximum engine and transmission temperature tracking errors of 1.8$^\circ$K and 2.0$^\circ$K for a 50kW load and 100km/h vehicle speed (refer to Figure 8c). Finally, Figures 8d–f show the transient response of the transmission pump, engine coolant pump, and radiator fan which are well behaved.
Figure 2.6 Second experimental test scenario for the robust controller with emulated vehicle speed of 75km/h, $Q_{in} = 35\text{kW}$, and elevated ambient temperature of $T_\infty = 325^\circ\text{K}$; (a) Engine and radiator temperatures with a desired engine temperature of $T_{ed} = 362^\circ\text{K}$; (b) Transmission and radiator side tank temperatures with a desired transmission temperature of $T_{td} = 358^\circ\text{K}$; (c) Coolant mass flow rate through the engine pump; (d) Coolant mass flow rate through the transmission pump; (e) Air mass flow rate through the radiator fan; and (f) Normalized thermostat valve position
Figure 2.7 Third experimental test scenario for the robust controller with emulated vehicle speed of 75km/h, $Q_{in} = 39kW$, and normal ambient temperature of $T_\infty = 292^\circ K$; (a) Engine and radiator temperatures with a square wave desired engine temperature; (b) Transmission and radiator side tank temperatures with a desired transmission temperature of $T_{td} = 356^\circ K$; (c) Coolant mass flow rate through the engine pump; (d) Coolant mass flow rate through the transmission pump; (e) Air mass flow rate through the radiator fan; and (f) Engine and transmission temperature error
Figure 2.8 Fourth experimental test scenario for the robust controller where the input heat and ram air disturbance vary with time and the ambient temperature $T_\infty = 295^\circ$K; (a) Engine and radiator temperatures with a desired engine temperature of $T_{ed} = 364^\circ$K; (b) Transmission outlet and inlet temperatures with a desired transmission temperature of $T_{td} = 362^\circ$K; (c) Engine and transmission temperature tracking errors; (d) Fluid mass flow rate through the transmission pump; (e) Coolant mass flow rate through the engine pump; and (f) Air mass flow rate through the radiator fan.
Comparison of Three Controllers for Steady Heating and Ram Air Disturbance

For completeness, a comparison of three different control strategies was investigated for test five. The ambient temperature, $T_\infty = 294^{\circ}\text{K}$, and system initial conditions were maintained for each controller study. A constant input heat, $Q_{in} = 45\text{kW}$, and a ram air disturbance, $V_{ram} = 75\text{km/h}$, were uniformly applied. The desired engine and transmission temperatures were $T_{e_d} = 362^{\circ}\text{K}$ and $T_{td} = 356^{\circ}\text{K}$. In Table 2.2, the proposed robust controller is compared with a traditional factory thermostat valve operation and proportional integral (PI) control strategy. The traditional factory operation strategy (Mitchell et al., 2007) describes the wax–based thermostat valve dynamics (with mixing opportunities) as

$$H = \begin{cases}
0, & T_e < T_L \quad \text{(bypass only)} \\
\frac{T_e - T_L}{T_H - T_L}, & T_L \leq T_e \leq T_H \quad \text{(mixing)} \\
1, & T_e > T_H \quad \text{(radiator only)}
\end{cases}$$

(2.16)

For the second operation strategy, two PI controllers were implemented (i.e., engine loop and transmission loop) such that the control efforts (voltages) for the coolant pump, radiator fan, and fluid pump becomes

$$V_{ep} = 0.7\left(K_p e_t \eta_e + K_i e \int \eta_e(\tau) d\tau\right),$$

$$V_{rf} = 0.3\left(K_p r \eta_r + K_i r \int \eta_r(\tau) d\tau\right),$$

and

$$V_{pt} = K_p t \eta_t + K_i t \int \eta_t(\tau) d\tau.$$

The performance of the three control methods has been evaluated in terms of temperature tracking error and power consumption. The system power, $p_{sys}(m_{ce}, m_{ot}, m_{ar})$, measures the average power consumed by the system actuators over the time period $T = 25\text{min}$. The power measure was performed for the duration of the
experimental test using empirical relationships for the flow rate measurements and electrical input power. The power consumed by the smart valve is considered to be quite small so it is neglected in the calculation. Overall, the proposed robust control strategy was ranked first among the controllers (and operation strategies). The robust controller achieved a steady–state absolute value engine and transmission temperature tracking error of $\eta_{ess}=0.13^\circ$K and $\eta_{tss}=0.65^\circ$K, respectively, with a system power consumption of $P_{sys}=19.82$W per Table 2.2. In this operation strategy, the controller was designed for the coupled engine and transmission loops to harmoniously operate the cooling system actuators in an efficient manner to obtain desired thermal condition.

On the contrary, the PI controller regulated the engine coolant and transmission fluid temperatures separately. The radiator fan was operated to only dissipate and reject the heat generated by the engine coolant regardless of the heat generated in the transmission housing. This approach offers steady–state absolute temperature tracking errors of $\eta_{ess}=0.12^\circ$K and $\eta_{tss}=2.35^\circ$K with a system power consumption of $P_{sys}=48.14$W. The traditional factory operation strategy relies on the wax–based thermostat valve to regulate only the engine coolant temperature, $T_e(t)$, regardless of the transmission temperature, $T_t(t)$. During the test, large oscillations were observed in the coolant temperature magnitude due to the repeatable opening and closing of the wax–based thermostat valve. As shown in Table 2, the reported steady–state absolute engine temperature tracking error was $\eta_{ess}=2.00^\circ$K. The transmission temperature is not actively controlled in most factory configurations. Further, the system power consumption was
the maximum compared to the other control methods due to the operating speeds of the engine coolant pump and radiator fan.

| Operation Strategies Description | $|\eta_{ess}|$ [$^\circ$K] | $|\eta_{tss}|$ [$^\circ$K] | P_{sys} [W] | Rank |
|----------------------------------|------------------|------------------|-------------|------|
| Robust Controller | 0.13 | 0.65 | 19.82 | 1 |
| PI Controller | 0.12 | 2.35 | 48.14 | 2 |
| Traditional Factory Control Method | 2.00 | N/A | 257.28 | 3 |

Table 2.2 Experimental summary of three cooling system control strategies for an engine and a transmission configuration with steady heat and ram air disturbance (Test 5). For the traditional factory operation strategy, the temperature bounds are $T_L=359^\circ$K and $T_H=365^\circ$K. For the second operation strategy, two PI controllers were implemented (i.e., one for the engine loop and the other for the transmission loop). The controller’s gains for the engine loop were set as $K_{Pe}=0.5$ and $K_{Ie}=0.01$ with 70% and 30% control effort for the engine pump and radiator fan, respectively. The controller’s gains for the transmission loop were set as $K_{Pt}=3$ and $K_{It}=0.001$

Concluded Remarks

An advanced automotive thermal management systems can positively influence the coolant temperature regulation and associated power consumption. In this paper, a multiple loop servo–motor based smart cooling system has been experimentally assembled and controlled utilizing a Lyapunov–based nonlinear controller. The proposed control strategy successfully maintained the engine coolant and transmission fluid temperatures to user–defined setpoint values with small error percentages. Further, the power consumed by the cooling system actuators was reduced through the synchronous control of the pumps and fan motors. The occurrence of elevated ambient temperatures required the cooling components to operate at maximum speeds for heat dissipation which increased power consumption. Overall, the research findings demonstrated that setpoint temperatures can often be maintained while minimizing power consumption which should assist in the quest for greater vehicle fuel economy.
CHAPTER 3
HYDRAULIC ACTUATED AUTOMOTIVE COOLING SYSTEMS – NONLINEAR CONTROL AND TEST

Introduction

Traditionally, automotive cooling systems have relied on a mechanically-driven coolant pump and radiator fan (i.e., the coolant pump is a simple centrifugal pump driven by a belt connected to the crankshaft of the engine, and the fan is attached either directly to the engines crankshaft or is coupled to the crankshaft through a belt and pulley). However, having the coolant pump and radiator fan dependent on the engine speed causes the engine system to overheat and/or overcooled, thus, wasting power, decreasing fuel efficiency, and increasing pollution (Wambsganss, 1999).

Recently, the attention has been oriented towards using computer controlled electric servo–motors to drive the cooling system components to overcome the existing problems in the traditional cooling systems, and they have proven their capability to improve the internal combustion engines thermal conditions (Allen and Lasecki, 2001). Nowadays, researchers have been investigating the possibilities of utilizing hydraulic–driven motors to power the variable speed cooling components (e.g., coolant pump and radiator fan) due to their additional advantages over the electric counterparts. For larger engine sizes (e.g., buses and heavy duty trucks), the power requirements for the coolant pump and radiator fan increase. For the electric motors to meet these requirements, they are required to be quite large and heavy. In addition, the electric–driven components produce more heat in comparison with the hydraulic motors, which produce large
amounts of power in a small and compact package. Thus, hydraulic–driven pumps and fans are more practical and efficient for increased cooling demands (Dostal, 1994).

For an efficient automotive hydraulic–based thermal management system, the thermal cooling loop along with the hydraulic–driven components have to be modeled in order to develop an effective control algorithm. Henry et al. (2001) developed and validated an automotive powertrain cooling system simulation model against test results, which featured basic system components, for a pick up truck applications. Vaughan and Gamble (1996) developed a nonlinear dynamic simulation model for a high speed direct acting solenoid valve. The model accurately predicted both the dynamic and steady–state response of the valve to voltage inputs. Finally, Frick et al. (2006) presented a series of mathematical models to describe the dynamic behavior of a hydraulic system. They showed in simulation that these models are capable of predicting transient responses of a hydraulic valve and motor.

Different control architectures and operating strategies have been developed to control the thermal management system components (such as Setler et al., 2005), and to operate hydraulic–driven actuators (such as Chiang et al., 2005). Hamamoto et al. (1990) developed electronically controlled hydraulic cooling fan system to generate high airflow and get the optimum fan speed at all engine running conditions. Chen et al. (2002) developed a nonlinear backstepping exponential tracking controller for a hydraulic cylinder and proportional directional control valve to precisely positioning a mechanical load and accommodate inherent system nonlinearities. Kaddissi et al. (2007) proposed a nonlinear backstepping approach for the position control of an electrohydraulic servo
system. They compared the experimental results to those obtained with a real time proportional–integral–derivative (PID) controller and proved the effectiveness of the developed control algorithm in position tracking.

In this chapter, a nonlinear backstepping robust controller is developed and formulated to control and regulate the temperature of a thermal system that features hydraulic–driven actuators. The proposed control strategy was selected due to the nonlinear mathematical formulation of the hydraulic thermal system and to accommodate disturbances and uncertainties. Further, this robust controller has been verified by simulation techniques and validated by experimental testing. In Section 3.2, mathematical models are presented to describe the dynamic behavior of the automotive hydraulic–based thermal management system and hydraulic cooling components. A nonlinear backstepping robust tracking control strategy is introduced in Section 3.3. Section 3.4 presents the experimental hydraulic–based thermal test bench, while Sections 3.5 and 3.6 introduce numerical and experimental results, respectively. The concluded remarks are contained in Section 3.7.

Mathematical Models

A suite of mathematical models describes the transient response of the hydraulic–based advance thermal management system and the hydraulic–driven actuators. The system components include six immersion electrical heaters to heat the coolant, a variable speed hydraulically–driven coolant pump, a radiator with a variable speed hydraulically–driven fan, and two servo–solenoid hydraulic control valves to operate the pump and fan motors.
Automotive Engine and Radiator Thermal Dynamics

The cooling system’s dynamic behavior may be represented by a reduced order two-node lumped parameter thermal model (refer to Figure 3.1) to minimize the computational burden for in-vehicle implementation. The engine and radiator temperature dynamic behaviors (Salah et al., 2008) may be expressed as

\[C_e \frac{dT_e}{dt} = Q_{in} - c_{pe} m_e (T_e - T_r) \] \hspace{1cm} (3.1)

\[C_r \frac{dT_r}{dt} = -Q_o + c_{pe} m_e (T_e - T_r) - \varepsilon c_{pa} m_a (T_e - T_\infty) \] \hspace{1cm} (3.2)

The variables \(Q_{in}(t) \) and \(Q_o(t) \) represent the input heat generated during the combustion process and the radiator heat loss due to uncontrollable air flow, respectively.

![Figure 3.1 An automotive hydraulic actuated advanced cooling system featuring a variable speed hydraulic-driven coolant pump, radiator with a variable speed hydraulic-driven radiator fan, control valves, and sensors (temperature, flow rate, and pressure)](image)

Hydraulic–Driven Coolant Pump and Radiator Fan Dynamics

Two servo–solenoid hydraulic valves (refer to Figure 3.2) operate the coolant pump and radiator fan gear motors. The control voltage, \(V(t) \), applied to the solenoid...
coil generates a mechanical force which displaces the internal spool to allow fluid flow. For this study, the solenoid current, \(i(t)\), and force, \(F_s(t)\), are governed by (Vaughan and Gamble, 1996)

\[
\frac{di}{dt} = \frac{1}{L}(V - iR), \quad F_s = \left(\frac{N_i}{a\mu}\right)i^2. \tag{3.3}
\]

The magnitude of the transient and steady state forces on the valve spool can be described as

\[
F_{ts}^{1,2} = \left[2C_w \rho \cos(\theta)(P_{SB} - P_{AT})\right] \dot{x}, \quad F_{ss}^{1,2} = \left[2C_w \rho \cos(\theta)(P_{SB} - P_{AT})\right]x \tag{3.4}
\]

where \(P_{SB}\) is either the supply pressure, \(P_S\), or the hydraulic motor return pressure, \(P_B\), and \(P_{AT}\) is either the hydraulic motor supply pressure, \(P_A\), or the tank pressure, \(P_T\), as shown in Figure 3.2. Newton’s law may be applied to the spool valve to determine the spool displacement so that

\[
\ddot{x} = \frac{1}{m_s} \left[F_s + (F_{ss2} - F_{ss1}) + (F_{ts2} - F_{ts1}) - k_{val}x - b_{val}\dot{x} \right]. \tag{3.5}
\]

Figure 3.2 A servo–solenoid hydraulic control valve schematic showing two inlets and two outlets with corresponding acting forces
The valve’s position, \(x(t) \), determines the load flow, \(Q_L(t) \), applied to the hydraulic motor and the corresponding load pressure, \(P_L(t) \), (Merritt, 1967) such that

\[
Q_L = D_m \omega + C_{im} P_L + \frac{V_t}{2\beta} \dot{P}_L = \left(C_d w \sqrt{\frac{(P_S - P_L)}{\rho}} \right) x \quad (3.6)
\]

\[
\dot{P}_L = \left(\frac{2\beta C_{d} w}{V_t} \sqrt{\frac{(P_S - P_L)}{\rho}} \right) x - \frac{2\beta C_{im}}{V_t} P_L - \frac{2\beta D_m}{V_t} \omega . \quad (3.7)
\]

Applying Newton’s second law with the assumption of ideal hydraulic motor power transformation, the hydraulic motor shaft acceleration, \(\dot{\omega}(t) \), is computed as

\[
\dot{\omega} = \frac{1}{J} \left(T_g - B_m \omega - T_{Load} \right) \quad (3.8)
\]

where \(T_g \triangleq D_m P_L, \ T_{Load} \triangleq f_L(\dot{m}) \), and \(\dot{m}(t) \) is the mass flow rate of liquid or air. To facilitate the control design for the internal spool displacement, \(x(t) \), an expression for \(\dot{\omega}(t) \) can be obtained from equation (3.7) and then substituted into equation (3.8) to realize

\[
\dot{\omega} = \left(\frac{D_m^2 + B_m C_{im}}{J D_m} \right) P_L + \left(\frac{B_m V_t}{2J D_m \beta} \right) \dot{P}_L - \left(\frac{B_m}{J D_m C_d w} \sqrt{\frac{P_S - P_L}{\rho}} \right) x - \frac{T_{Load}}{J} . \quad (3.9)
\]

Hydraulic Controller Design

A Lyapunov–based nonlinear control algorithm is developed to regulate the coolant temperature and maintain the system in a desirable thermal condition. The controller’s main objective is to precisely track the temperature set point, \(T_{ed}(t) \), while compensating for system uncertainties (i.e., combustion process input heat, \(Q_{in}(t) \),
radiator heat loss, $Q_o(t)$, pump hydraulic motor load, $T_{lp}(t)$, fan hydraulic motor load, $T_{lf}(t)$, hydraulic pump load pressure variations, $P_{lp}(t)$, and hydraulic fan load pressure variations, $P_{lf}(t)$) by harmoniously controlling the system hydraulic–driven actuators.

Referring to Figure 1, the system servo–actuators are two servo–solenoid control valves, a hydraulic–driven coolant pump, and radiator fan. For equations (3.1), (3.2), and (3.9), the signals $T_e(t)$, $T_p(t)$ and $T_{\infty}(t)$ can be measured by either thermocouples or thermistors, the signal $\omega(t)$ can be measured by optical encoders, and the system parameters C_e, C_r, c_{pe}, c_{pa}, ε, J, B_m, D_m, C_{im}, V_t, C_d, v, β and ρ are assumed to be constant and fully known.

To facilitate the controller design process, four assumptions are imposed:

Assumption 3.1: The signals $Q_{in}(t)$ and $Q_o(t)$ always remain positive in equations (3.1) and (3.2) (i.e., $Q_{in}(t), Q_o(t) \geq 0$). Further, the signals $Q_{in}(t)$ and $Q_o(t)$ remain bounded at all time, such that $Q_{in}(t), Q_o(t) \in L_{\infty}$.

Assumption 3.2: The surrounding ambient temperature $T_{\infty}(t)$ is uniform and satisfies $T_e(t) - T_{\infty}(t) \geq \varepsilon_1, \forall t \geq 0$ where $\varepsilon_1 \in \mathbb{R}^+$ is a constant.

Assumption 3.3: The heated coolant and radiator temperatures satisfy the condition $T_e(t) - T_r(t) \geq \varepsilon_2, \forall t \geq 0$ where $\varepsilon_2 \in \mathbb{R}^+$ is a constant. Further, $T_e(0) \geq T_r(0)$ to facilitate the boundedness of signal argument.

Assumption 3.4: The signals $T_L(t)$, $P_L(t)$, and $P_S(t)$ always remain positive in equation (9) (i.e., $T_L(t), P_L(t), P_S(t) \geq 0$ at all time) and $P_S(t) > P_L(t)$. Further, the signals $T_L(t)$, $P_L(t)$, and its first time derivative, $\dot{P}_L(t)$, remain bounded at all time, such that $T_L(t), P_L(t), \dot{P}_L(t) \in L_{\infty}$.

57
Assumption 3.3 allows the heated coolant and radiator to initially be the same temperature (e.g., cold start). The unlikely case of $T_e(0) < T_r(0)$ is not considered.

Backstepping Robust Control Objective

The control objective is to ensure that the actual temperatures of the engine coolant, $T_e(t)$, and the radiator, $T_r(t)$, track the desired trajectories $T_{ed}(t)$ and $T_{vr}(t)$, respectively, as well as the actual pump speed, $\omega_p(t)$, and fan speed, $\omega_f(t)$, to track the desired trajectories $\omega_{pd}(t)$ and $\omega_{fd}(t)$, respectively, in the following sense

$$\left| T_{ed}(t) - T_e(t) \right| \leq \varepsilon_e, \quad \left| T_r(t) - T_{vr}(t) \right| \leq \varepsilon_r, \quad \left| \omega_{pd}(t) - \omega_p(t) \right| \leq \varepsilon_p, \quad \left| \omega_{fd}(t) - \omega_f(t) \right| \leq \varepsilon_f$$

as $t \to \infty$ \hspace{1cm} (3.10)

while compensating for the system variable uncertainties $Q_{in}(t)$, $Q_o(t)$, $\dot{P}_{lp}(t)$, $\dot{P}_{lf}(t)$, $T_{lp}(t)$, and $T_{lf}(t)$ where ε_e, ε_r, ε_p, $\varepsilon_f \in \mathbb{R}^+$ are small constants. Again, to facilitate the controller design process, two more assumptions are imposed:

Assumption 3.5: The engine temperature profiles are always bounded and chosen such that its first time derivative remains bounded at all times (i.e., $T_{ed}(t)$, $\dot{T}_{ed}(t) \in L_{\infty}$). Further, $T_{ed}(t) >> T_{\infty}(t)$ at all times.

Assumption 3.6: The engine temperature profiles and radiator temperature satisfy the condition $T_{ed}(t) - T_r(t) \geq \varepsilon_3, \forall t \geq 0$ where $\varepsilon_3 \in \mathbb{R}^+$ is a constant. This assumption is needed to facilitate the boundedness argument in the control development.

Remark 3.1: Although it is unlikely that the desired radiator temperature setpoint, $T_{vr}(t)$, hydraulic coolant pump speed, $\omega_{pd}(t)$, and hydraulic radiator fan speed, $\omega_{fd}(t)$, are required (or known) by the automotive engineer, it will be shown that the radiator setpoint, pump speed, and fan speed can be indirectly designed based on the engine’s thermal conditions and commutation strategy (refer to Remark 3.2).
To facilitate the controller’s development and quantify the temperature tracking control objective, the tracking error signals \(\eta_e(t) \), \(\eta_r(t) \), \(\eta_p(t) \), and \(\eta_f(t) \) are defined as

\[
\eta_e = T_{ed} - T_e, \quad \eta_r = T_r - T_{vr}, \quad \eta_p = \omega_{pd} - \omega_p, \quad \eta_f = \omega_{jd} - \omega_f.
\] (3.11)

By adding and subtracting \(MT_{vr}(t) \) to equation (3.1), and expanding the variables

\[
\dot{m}_c \triangleq \rho c_c \omega_p, \quad \dot{m}_a \triangleq \rho_a c_a \omega_f, \quad M \triangleq M_1 \omega_{po}, \quad M_1 \triangleq c_p c_a, \quad M_2 \triangleq \varepsilon c_p \rho_a c_a, \quad \text{and} \quad \omega_{pd} \triangleq \bar{\omega}_{pd} + \omega_{po},
\]

the engine and radiator dynamics can be rewritten as

\[
C_e \ddot{T}_e = Q_{in} - M_1 \left(\bar{\omega}_{pd} - \eta_p \right) (T_e - T_r) - M \left(T_e - T_{vr} \right) + M \eta_r
\] (3.12)

\[
C_r \ddot{T}_r = -Q_o + M_1 \left(\omega_{pd} - \eta_p \right) (T_e - T_r) - M_2 \left(\omega_{jd} - \eta_f \right) (T_e - T_x)
\] (3.13)

where \(\eta_e(t) \), \(\eta_r(t) \), and \(\eta_f(t) \) were introduced in equation (3.11), \(\omega_{po} \) is a positive design constant that represent the minimum coolant pump speed, and \(c_c, c_a, \rho_c \) and \(\rho_a \) are real positive constants and fully known. The dynamics of the coolant pump and radiator fan hydraulic motors can be rewritten using equation (3.9) as

\[
\frac{J_p}{x_{mp}} \dot{\omega}_p = f_p - M_p X_p, \quad \frac{J_f}{x_{mf}} \dot{\omega}_f = f_f - M_f X_f
\] (3.14)

where

\[
f_p \triangleq \left(\frac{D_{mp}^2 + B_{mp} C_{imp}}{D_{mp} x_{mp}} \right) P_{lp} + \left(\frac{B_{mp} V_{lp}}{2D_{mp} \beta_p x_{mp}} \right) \dot{P}_{lp} - \frac{T_{lp}}{x_{mp}}, \quad M_p \triangleq \frac{B_{mp}}{D_{mp}} C_{dp} W_p \sqrt{\frac{P_{Sp} - P_{lp}}{\rho_p}}
\]

\[
f_f \triangleq \left(\frac{D_{mf}^2 + B_{mf} C_{imf}}{D_{mf} x_{mf}} \right) P_{lf} + \left(\frac{B_{mf} V_{lf}}{2D_{mf} \beta_f x_{mf}} \right) \dot{P}_{lf} - \frac{T_{lf}}{x_{mf}}, \quad X_f \triangleq \frac{x_f}{x_{mf}}, \quad \text{and}
\]

\[
M_f \triangleq \frac{B_{mf}}{D_{mf}} C_{df} W_f \sqrt{\frac{P_{Sf} - P_{lf}}{\rho_f}}.
\]
Closed–Loop Error System Development and Controller Formulation

The open–loop error system can be analyzed by taking the first time derivative of all the expressions in equation (3.11) and then multiplying both sides of the resulting equations by C_e, C_r, J_p, and J_f for the engine, radiator, hydraulic coolant pump, and hydraulic radiator fan dynamics, respectively. The system dynamics in equations (3.12–3.14) can be substituted and then reformatted to realize

$$C_e \dot{\eta}_e = C_e \dot{T}_{ed} - Q_m + M(T_e - T_{vro}) - M \eta_r - M_1(T_e - T_r) \eta_p - u_e$$
(3.15)

$$C_r \dot{\eta}_r = -Q_o + M(T_e - T_r) - M_1(T_e - T_r) \eta_p + M_2(T_e - T_\infty) \eta_f - C_r \dot{T}_{vr} + u_r$$
(3.16)

$$\frac{J_p}{x_{mp}} \dot{\eta}_p = \frac{J_p}{x_{mp}} \dot{\omega}_p - f_p + u_p, \quad \frac{J_f}{x_{mf}} \dot{\eta}_f = \frac{J_f}{x_{mf}} \dot{\omega}_f - f_f + u_f.$$
(3.17)

In these expressions, equation (3.9) was utilized plus $T_{vr} \triangleq \bar{T}_{vr} + T_{vro}$,

$$u_e \triangleq M \bar{T}_{vr} - M_1(T_e - T_r) \bar{\omega}_p, \quad u_r \triangleq M_1(T_e - T_r) \bar{\omega}_p - M_2(T_e - T_\infty) \omega_f, \quad u_p \triangleq M_p X_p,$$

and $u_f \triangleq M_f X_f$. The parameter T_{vro} is a positive design constant.

Remark 3.2: The control inputs $\bar{T}_{vr}(t)$, $\bar{\omega}_p(t)$, $\omega_f(t)$, $X_p(t)$, and $X_f(t)$ are uni–polar. Hence, commutation strategies are designed utilizing the bi–polar control laws $u_e(t)$, $u_r(t)$, $u_p(t)$ and $u_f(t)$ as

$$\bar{\omega}_p \triangleq \frac{\text{sgn}(u_e) - 1}{2M_1(T_e - T_r)} u_e, \quad \bar{T}_{vr} \triangleq \frac{1 + \text{sgn}(u_e)}{2M} u_e, \quad \omega_f \triangleq \frac{1 + \text{sgn}(F)}{2M_2(T_e - T_\infty)} F$$
(3.18)

$$X_p \triangleq \frac{1 + \text{sgn}(u_p)}{2M_p} u_p, \quad X_f \triangleq \frac{1 + \text{sgn}(u_f)}{2M_f} u_f$$
(3.19)

where M_1, M_2, M_p and M_f were introduced in equations (3.12–3.14), and $F \triangleq M_1(T_e - T_r) \bar{\omega}_p - u_r$. The control input, $\omega_f(t)$ is obtained from equation (18) after $\bar{\omega}_p(t)$ is computed. From these definitions, it is clear that if $u_e(t)$,
\(u_e(t), u_r(t), u_p(t), u_f(t) \in L_{\infty} \) at all time, then \(\bar{\omega}_{pd}(t), \bar{T}_{vr}(t), \dot{\omega}_f(t), X_p(t), X_f(t) \in L_{\infty} \) at all time.

To facilitate the subsequent analysis, the expressions in equations (3.12–3.15) are rewritten as

\[
C_e \dot{e}_e = - N_e - M \eta_r - M_1 \left(T_e - T_r\right) \eta_p - u_e \tag{3.20}
\]

\[
C_r \dot{r}_r = N_r - M_1 \left(T_e - T_r\right) \eta_p + M_2 \left(T_e - T_\infty\right) \eta_f - C_f \dot{\omega}_{pd} + u_r \tag{3.21}
\]

\[
\frac{J_p}{x_{mp}} \dot{p}_p = N_p + \frac{J_p}{x_{mp}} \dot{\omega}_{pd} + u_p, \quad \frac{J_f}{x_{mf}} \dot{f}_f = N_f + \frac{J_f}{x_{mf}} \dot{\omega}_{fd} + u_f \tag{3.22}
\]

where the functions \(N_e(T_e, t), N_r(T_e, T_r, t), N_p(P_{lp}, \dot{P}_{lp}, T_{lp}, t), \) and \(N_f(P_{lf}, \dot{P}_{lf}, T_{lf}, t) \) are defined as

\[
N_e \triangleq C_e \dot{T}_{\nu r} - Q_{in} + M \left(T_e - T_{\nu r o}\right), \quad N_r \triangleq M \left(T_e - T_r\right) - Q_o, \quad N_p \triangleq -f_p, \quad N_f \triangleq -f_f \tag{3.23}
\]

and can be upper bounded as \(N_e \leq \varepsilon_{ee}, \quad N_r \leq \varepsilon_{rr}, \quad N_p \leq \varepsilon_{pp}, \) and \(N_f \leq \varepsilon_{ff}, \) respectively, based on Assumptions 3.1, 3.3–3.5, and 3.7, where \(\varepsilon_{ee}, \varepsilon_{rr}, \varepsilon_{pp}, \varepsilon_{ff} \in \mathbb{R}^+ \) are constants. By utilizing a Lyapunov stability analysis, the control laws \(u_e(t), u_r(t), u_p(t) \) and \(u_f(t) \), introduced in equations (3.15–3.17), are designed as shown in Table 3.1 where \(F(t) \) was introduced in equation (3.18), \(k_e \) is a positive control gain, and the variables \(B_1(\bullet) \) through \(B_{49}(\bullet) \) are defined in Appendix C. Knowledge of \(u_e(t), u_r(t), u_p(t) \) and \(u_f(t) \), based on Table 1, allows the commutation relationships of equations (3.18) and (3.19) to be calculated which provides \(\bar{T}_{vr}(t), \bar{\omega}_{pd}(t), \dot{\omega}_{fd}(t), X_p(t), \) and
$X_f(t)$. Finally, the voltage signals for the pump and fan servo–solenoid valve are prescribed using $X_p(t)$ and $X_f(t)$ with a priori linear empirical relationships.

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>u_e</th>
<th>u_r</th>
<th>u_p</th>
<th>u_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$u_e > 0, F \leq 0$</td>
<td>$B_1 \eta_e + B_2 \eta_r$</td>
<td>$B_3 \eta_e + B_4 \eta_r$</td>
<td>$B_5 \eta_e + B_6 \eta_r$</td>
<td>$B_7 \eta_e + B_8 \eta_r$</td>
</tr>
<tr>
<td>II</td>
<td>$u_e \leq 0, F \leq 0$</td>
<td>$B_9 \eta_e + B_{10} \eta_r + B_{11} \eta_p$</td>
<td>$B_{12} \eta_e + B_{13} \eta_r + B_{14} \eta_p + B_{15} \eta_e \eta_r + B_{16} \eta_e \eta_p + B_{17} \eta_e^2$</td>
<td>$B_{18} \eta_e + B_{19} \eta_r + B_{20} \eta_p$</td>
<td>$B_{21} \eta_e + B_{22} \eta_r + B_{23} \eta_p + B_{24} \eta_e \eta_r + B_{25} \eta_e \eta_p + B_{26} \eta_e^2$</td>
</tr>
<tr>
<td>III</td>
<td>$u_e > 0, F > 0$</td>
<td>$B_{27} \eta_e + B_{28} \eta_f$</td>
<td>$B_{29} \eta_e + B_{30} \eta_f + B_{31} \eta_e \eta_p$</td>
<td>$B_{32} \eta_e + B_{33} \eta_r + B_{34} \eta_p + B_{35} \eta_f + B_{36} \eta_e \eta_r + B_{37} \eta_e \eta_p + B_{38} \eta_e \eta_f + B_{39} \eta_e + B_{40} \eta_r + B_{41} \eta_e \eta_r + B_{42} \eta_e \eta_f + B_{43} \eta_e \eta_f + B_{44} \eta_r + B_{45} \eta_e \eta_r + B_{46} \eta_r \eta_p + B_{47} \eta_r \eta_f + B_{48} \eta_r + B_{49} \eta_e \eta_r^2 + B_{50} \eta_r \eta_f^2$</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>$u_e \leq 0, F > 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1 The control laws $u_e(t)$, $u_r(t)$, $u_p(t)$, and $u_f(t)$ for the hydraulic control

Stability Analysis

A Lyapunov stability analysis guarantees that the advanced thermal management system will be stable when applying the control laws introduced in Table 3.1.

Theorem 3.1: The controller given in Table 1 ensures that: (i) all closed–loop signals stay bounded for all time; and (ii) tracking is uniformly ultimately bounded (UUB) in the sense that $|\eta_e(t)| \leq \varepsilon_e$, $|\eta_r(t)| \leq \varepsilon_r$, $|\eta_p(t)| \leq \varepsilon_p$ and $|\eta_f(t)| \leq \varepsilon_f$ as $t \to \infty$ where $\varepsilon_e, \varepsilon_r, \varepsilon_p, \varepsilon_f \in \mathbb{R}^+$ are small constants.

Proof: See Appendix D for the complete Lyapunov stability analysis.
Experimental Test Bench

An experimental test bench (refer to Figure 3.3) has been assembled to demonstrate the advanced thermal management system controller design. The assembled system offers a flexible, rapid, repeatable, and safe testing environment. The test bench features a hydraulic–driven radiator fan and coolant pump, two hydraulic servo control valves and six immersion heaters. In addition, numerous sensors have been integrated to monitor the fluid temperatures, flow rates, pressures, and rotational shaft velocities.

The radiator inlet (engine) and radiator outlet temperatures are measured using two K–type thermocouples, while the ambient temperature is measured by a single J–type thermocouple. All thermocouple signals are isolated, amplified, and linearized via signal conditioners. In addition, two Monarch Instruments optical sensors are responsible for measuring the actuators’ rotational speed, while a turbine flow meter records the coolant flow rate. Finally, Honeywell (Sensotec) A–5 pressure transducers are employed to measure the hydraulic supply and return pressures.

Data acquisition and control is accomplished using a dSPACE model 1104 controller board. Analog to Digital Conversion (ADC) is achieved through either a single 16–bit channel which accommodates four multiplexed input signals, or one of four 12–bit channels which accommodate one input signal each. Additionally, there are eight parallel channels available for Digital to Analog Converter (DAC) as well as twenty digital inputs/outputs. The controller board interfaces with Matlab’s Simulink allowing for real–time execution of control strategies. The coding in Simulink is flexible allowing for implementation of C code, Matlab M–files, and Simulink block diagrams. In addition,
dSPACE’s “Control Desk” software is used to set up and monitor experiments while also capturing experimental results.

Figure 3.3 Experimental hydraulic–based thermal test bench; (a) Hydraulic system that features an electric motor, hydro–pneumatic accumulator, two directional valves, two servo–solenoid proportional control valves, solenoid valve drive units, and pressure transducers; and (b) Thermal system that features six immersion heating coils, hydraulic–driven coolant pump, radiator with a hydraulic–driven fan, and various (e.g., temperature, flow rate, and motor speed) sensors
The experimental setup utilizes a series of six Temco 110VAC immersion heater coils to heat water circulating within the system. This heat transfer process simulates the internal combustion engine and its associated coolant. This configuration can provide up to 12kW of energy (2kW/heater) and is setup such that individual heaters may be switched on/off to provide fluctuations in the input heat. Once heated, the water is circulated via a hydraulically driven coolant pump through a radiator (6.8L capacity) where forced convection is provided by a hydraulically driven fan. Both the coolant pump and radiator fan are driven by hydraulic gear type motors. The centrifugal pedestal mount coolant pump is capable of delivering up to 58GPM of coolant. It is driven by a Haldex hydraulic motor with a displacement of 6.36cm³/rev, while the radiator fan utilizes a Haldex motor with a displacement of 11.65cm³/rev. Hydraulic flow to the motors is controlled using either two servo–solenoid proportional control valves (BOSCH NG 6) or four solenoid operated cartridge/poppet valves (Parker B09–2–6P). The servo solenoid valves are driven by Bosch PL 6 amplifier cards which feature built in PID position control. This allows for spool displacements which are proportional to a 0–10VDC input signal. Supply pressure for the hydraulic components is provided through a hydraulic power unit. The unit consists of a 7.5hp Baldor industrial electric motor spinning a Bosch Hydraulic pump with a displacement of 16.39cm³/rev. A Bosch hydro–pneumatic accumulator is used for energy storage and two Bosch directional control valves allow separate pressure supplies to the two actuators.
Numerical and Experimental Results

In this section, numerical and experimental results are presented to verify and validate the mathematical models and control design. First, a Matlab/Simulink™ simulation has been created and executed to evaluate the robustness of the proposed backstepping nonlinear control algorithm. Second, two scenarios (e.g., steady heat and variable heat with ram air disturbance) of experimental tests have been conducted on the hydraulic–based thermal test bench to investigate and evaluate the control design performance. The proposed thermal model parameter values and control gains and constants used in the simulation and experimental testing are presented in Table 3.2.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{mp}</td>
<td>0.95</td>
<td>N.s/cm</td>
<td>J_f</td>
<td>1.13</td>
<td>kg.cm2</td>
<td>w_p</td>
<td>3.62</td>
<td>cm2/cm</td>
</tr>
<tr>
<td>B_{mf}</td>
<td>5.31</td>
<td>N.s/cm</td>
<td>k_e</td>
<td>1500</td>
<td>–</td>
<td>w_f</td>
<td>3.62</td>
<td>cm2/cm</td>
</tr>
<tr>
<td>c_{pa}</td>
<td>1.005</td>
<td>kJ/kg.ºK</td>
<td>k_f</td>
<td>2500</td>
<td>–</td>
<td>x_{mp}</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>c_{pc}</td>
<td>4.18</td>
<td>kJ/kg.ºK</td>
<td>k_p</td>
<td>2000</td>
<td>–</td>
<td>x_{mf}</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>C_{dp}</td>
<td>0.63</td>
<td>–</td>
<td>k_r</td>
<td>1500</td>
<td>–</td>
<td>β_p</td>
<td>689.48</td>
<td>MPa</td>
</tr>
<tr>
<td>C_{df}</td>
<td>0.63</td>
<td>–</td>
<td>P_{Sp}</td>
<td>3447</td>
<td>kPa</td>
<td>β_f</td>
<td>689.48</td>
<td>MPa</td>
</tr>
<tr>
<td>C_e</td>
<td>0.33</td>
<td>kJ/ºK</td>
<td>P_{Sf}</td>
<td>6895</td>
<td>kPa</td>
<td>ϵ</td>
<td>0.63</td>
<td>–</td>
</tr>
<tr>
<td>C_{imp}</td>
<td>0.0025</td>
<td>cm3/N.sec</td>
<td>T_{lp}</td>
<td>0</td>
<td>N.cm</td>
<td>ρ_a</td>
<td>1.184</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>C_{imf}</td>
<td>0.0025</td>
<td>cm3/N.sec</td>
<td>T_{lf}</td>
<td>0</td>
<td>N.cm</td>
<td>ρ_c</td>
<td>997.05</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>C_r</td>
<td>0.25</td>
<td>kJ/ºK</td>
<td>T_{vro}</td>
<td>316.5</td>
<td>ºK</td>
<td>ρ_p</td>
<td>900</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>D_{mp}</td>
<td>1.01</td>
<td>cm3/rad</td>
<td>T_e</td>
<td>300</td>
<td>ºK</td>
<td>ρ_f</td>
<td>900</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>D_{mf}</td>
<td>1.85</td>
<td>cm3/rad</td>
<td>V_{tp}</td>
<td>119626</td>
<td>cm3</td>
<td>ω_{po-SIM}</td>
<td>35</td>
<td>rad/s</td>
</tr>
<tr>
<td>J_p</td>
<td>0.904</td>
<td>kg.cm2</td>
<td>V_{tf}</td>
<td>36871</td>
<td>cm3</td>
<td>ω_{po-EXP}</td>
<td>40</td>
<td>rad/s</td>
</tr>
</tbody>
</table>

Table 3.2 Numerical simulation parameter values. Some of these parameter values are used to implement the experimental backstepping robust control strategy.
Numerical Simulation

A numerical simulation of the backstepping robust control strategy, introduced in Section 3.3, has been performed on the system dynamics equations (3.12–3.14) to demonstrate the performance of the proposed controller in Table 3.1. For added reality, band–limited white noise was added to the sensors’ measurement (e.g., noise power =0.00001 and sampling time =0.005sec). A “load” cycle and external ram air disturbance were applied as shown in Figure 3.4a and 3.4b. The desired engine temperature was $T_{ed}=322^\circ K$. The initial simulation conditions were $T_e(0)=313.7^\circ K$ and $T_r(0)=310.9^\circ K$.

Figures 3.4c and 3.4d show the engine and radiator temperatures response and the engine temperature tracking error, respectively, for the variable input heat and ram air disturbance introduced in Figures 3.4a and 3.4b. Figure 3.4d clearly shows that the steady state absolute tracking error is always below $0.5^\circ K$ during the test period $T=2000$sec. In Figures 3.4e and 3.4f, the hydraulic coolant pump and radiator fan are presented. It was observed that when the input heat changes critically from a high to a lower magnitude at $T=1000$sec and 1700sec, the hydraulic fan speed goes maximum instantaneously per Figure 3.4f to cool down the radiator temperature that increases per heat change as shown in Figure 3.4a. In addition, whenever the pump effort increases, the fan effort decreases which is ideal for power minimization. Actually, the coolant pump behaves to assist the engine temperature tracking while the radiator pump behaves to assist the radiator temperature tracking for the virtual reference, T_{vr}. Table 3.3 summarizes the results obtained in the simulation.
Figure 3.4 Numerical response for variable engine thermal loads and ram air disturbance; (a) input heat profile, $Q_{in}(t)$; (b) ram air disturbance, $Q_o(t)$, to emulate different vehicle speeds; (c) Simulated engine and radiator temperatures response for a desired engine temperature of $T_{ed}=322^\circ$K; (d) Simulated engine commanded temperature tracking error; (e) Simulated coolant mass flow rate through the pump; and (f) Simulated air mass flow rate through the radiator fan.
Table 3.3 Numerical simulation response summary for the applied heat and disturbance per Figures 3.4a and 3.4b

<table>
<thead>
<tr>
<th>Time [sec]</th>
<th>Q\textsubscript{in} [kW]</th>
<th>Q\textsubscript{o} [kW]</th>
<th>ω\textsubscript{pss} [rad/sec]</th>
<th>ω\textsubscript{fss} [rad/sec]</th>
<th>η\textsubscript{ess} [ºK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–300</td>
<td>10</td>
<td>0</td>
<td>77</td>
<td>51</td>
<td>0.15</td>
</tr>
<tr>
<td>300–500</td>
<td>24</td>
<td>15</td>
<td>149</td>
<td>46</td>
<td>0.46</td>
</tr>
<tr>
<td>500–800</td>
<td>–t/50 + 34</td>
<td>–t/30 + 31.67</td>
<td>–7t/75 + 195.67</td>
<td>t/15 + 12.67</td>
<td>–7t/15000 + 0.69</td>
</tr>
<tr>
<td>800–1000</td>
<td>18</td>
<td>5</td>
<td>121</td>
<td>66</td>
<td>0.32</td>
</tr>
<tr>
<td>1000–1200</td>
<td>12</td>
<td>0</td>
<td>89</td>
<td>61</td>
<td>0.18</td>
</tr>
<tr>
<td>1200–1500</td>
<td>2t/75 – 20</td>
<td>t/30 – 40</td>
<td>41t/300 + 75</td>
<td>–t/30 + 101</td>
<td>19t/30000 – 0.58</td>
</tr>
<tr>
<td>1500–1700</td>
<td>20</td>
<td>10</td>
<td>130</td>
<td>51</td>
<td>0.37</td>
</tr>
<tr>
<td>1700–2000</td>
<td>10</td>
<td>0</td>
<td>77</td>
<td>51</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Experimental Testing

Two experimental tests have been conducted on the hydraulic–based thermal test bench to investigate the robust control design performance. The first case applies a fixed input heat of $Q_{\text{in}} = 12\text{kW}$ (i.e., six heaters are used) and no ram air disturbance (i.e., to emulate the vehicle is idle). In Figure 3.5a, the engine and radiator temperatures response is presented. From Figure 3.5b, the controller can achieve a steady state absolute value temperature tracking error of 0.7°K. In Figures 3.5c and 3.5d, the hydraulic coolant pump and radiator fan response is presented. Based on the response per Figures 3.5c and 3.5d, the power consumption were $P_{\text{sys}} = 165.23\text{kW}$.

Table 3.4 presents an experimental summary to compare different control strategies for the first experimental test. The controller gains, initial conditions, and temperature set points were maintained for all experimental tests. In Table 3.3, the backstepping robust controller achieved the least absolute steady state engine temperature tracking error when compared to the Proportional–Integral–Derivative (PID) and Pulse–Width–Modulation (PWM) control methods. Note that the PWM control method applied to only poppet valves. Although the hydraulic–driven system components consume more
power (i.e., 4.76W) when using the robust controller compared to the PID control method, it achieves 42% improvement in the engine temperature tracking error. Overall, the backstepping robust control shows better results in terms of engine temperature tracking error and power consumption when compared to the other control methods.

Figure 3.5 First experimental test with an input heat of $Q_{in} = 12kW$ and no ram air disturbance; (a) Experimental engine and radiator temperatures with a desired engine temperature profile $T_{dev} = 322 + 2\sin(\frac{\pi}{150})$°K; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan.
Table 3.4 Experimental summary for three cooling system control strategies with steady heat and no ram air disturbance (first test). For the second operation strategy, the PID controller’s gains were set as $K_P = 0.26$, $K_I = 0.01$ and $K_D = 0.44$. For the third operation strategy, the coolant pump speed was set as 62.82 rad/sec where the radiator fan was controlled by a PWM control method. The PWM frequency was set as 1 Hz while the duty cycle was controlled ($i.e.$, $[0–100\%]$) via a PID controller. The PID controller’s gain were set as $K_P = 0.02$, $K_I = 7.6 \times 10^{-4}$, and $K_D = 0.04$.

Remark 3.3: The power measure $P_{sys} = \frac{1}{T} \left[\int_{t_i}^{t_f} P_{lp}(\tau)Q_{lp}(\tau) + P_{lf}(\tau)Q_{lf}(\tau) \right] d\tau$ calculates the average power consumed by the system actuators for the duration of the experimental test $T=50$ min.

The second scenario varies both the input heat and disturbance. Specifically $Q_{in}(t)$ changes from 8 kW to 12 kW at $t=1500$ sec while $Q_o(t)$ remains zero at $t=1500$ sec but varies at $t=3000$ sec from zero to emulate a vehicle traveling at 35 km/h (refer to Figure 3.6). Due to system heating limitation, excessive input heat and ram air disturbance variations were not tested. In Figure 3.6a, the engine and radiator temperature response is presented. From Figure 3.6b, it is clear that the proposed control strategy can handle the input heat and ram air variations satisfactorily since the maximum engine temperature absolute value steady state tracking error is below 0.9°K. Figures 3.6c and 3.6d show the hydraulic coolant pump and radiator fan response.
Figure 3.6 Second experimental test with a variable input heat and ram air disturbance; (a) Experimental engine and radiator temperatures with a desired engine temperature profile $T_{ed} = 322 + 2\sin(\frac{\pi t}{150})^\circ\text{K}$; (b) Experimental engine temperature tracking error; (c) Experimental coolant mass flow rate through the pump; and (d) Experimental air mass flow rate through the radiator fan

Concluded Remarks

Advanced automotive thermal management system can have a positive impact on gasoline and diesel engine cooling systems. In this chapter, a suit of hydraulic motors based–cooling system components have been assembled and controlled using a Lyapunov–based nonlinear control technique. The control algorithm has been investigated using both simulation and experimental tests. A comprehensive detailed and supplemental controller was applied to regulate the coolant temperature. The controller
successfully maintained the coolant temperature to setpoint temperature with a small error percentage. It has also been shown that the power consumed by the system hydraulic actuators can be reduced. Overall, the findings demonstrated that setpoint temperatures can be maintained satisfactory while minimizing power consumption which ultimately impacts fuel economy.
CHAPTER 4
CONCLUSIONS

An advanced automotive thermal management system can positively influence the coolant temperature regulation and associated cooling component power consumption. In this PhD dissertation, a suite of servo–motor based–cooling system components have been experimentally assembled and controlled utilizing Lyapunov–based nonlinear control techniques. These control algorithms have been extensively investigated using both simulation and laboratory experimental tests.

For the first experimental test bench, introduced in Chapter 1, two detailed controllers were applied to regulate the engine coolant temperature. Both controllers successfully maintained the engine block to setpoint temperatures with small error percentages. It has also been shown that the temperature tracking error and power consumed by the system actuators can be reduced by 35% and 14%, respectively, when compared to other control methods. In the second multi–loop experimental test bench, introduced in Chapter 2, the proposed control strategy successfully maintained the engine coolant and transmission fluid temperatures to user–defined setpoint values with 0.13°K and 0.65°K temperature tracking error. Further, the power consumed by the cooling system actuators was reduced by 92%, when compared to the traditional factory control method, through the synchronous control of the coolant pumps and radiator fan motors. The occurrence of elevated ambient temperatures required the cooling components to operate at maximum speeds for heat dissipation which increased power consumption. Finally, in the hydraulic actuators–based experimental test bench, introduced in Chapter 3, a comprehensive controller was applied to regulate the coolant temperature. The
controller successfully maintained the coolant temperature to its setpoint with a 42% improvement in the tracking error. It has also been shown that the power consumed by the system hydraulic actuators can be reduced satisfactory.

Overall, the findings demonstrated that setpoint temperatures can be maintained satisfactory while minimizing power consumption which should assist in the quest for less tailpipe emissions and parasitic losses as well as greater vehicle fuel economy.
APPENDICES
Appendix A

Proof of Theorem 1.1

Let $V(z,t) \in \mathbb{R}$ denote the non-negative function

$$V \triangleq \frac{1}{2} C e \varepsilon^2 + \frac{1}{2} C \eta^2$$ \hspace{1cm} (A.1)

where $z(t) \in \mathbb{R}^2$ is defined as

$$z \triangleq [e \quad \eta]^T.$$ \hspace{1cm} (A.2)

Note that (A.1) is bounded as (refer to Theorem 2.14 of Qu (1998))

$$\lambda_1 \|z(t)\|^2 \leq V(z,t) \leq \lambda_2 \|z(t)\|^2$$ \hspace{1cm} (A.3)

where λ_1, and λ_2 are positive constants. After taking the time derivative of (A.1), then

$$\dot{V} = e N_{ed} + e \tilde{N}_e - e u_e - e M \eta + \eta N_{rd} + \eta \tilde{N}_r + \eta u_r - \eta C_r \dot{T}_{vr}$$ \hspace{1cm} (A.4)

where (1.16) was utilized. From Appendix B, an expression for $\eta(t) C_r \dot{T}_{vr}(t)$ becomes

$$\eta C_r \dot{T}_{vr} = \frac{1}{2} [1 + \text{sgn}(u_e)] x, \quad x = \eta C_r (\beta_1 N_e - \beta_2 e - \beta_3 \eta)$$ \hspace{1cm} (A.5)

where β_1, β_2, and β_3 are defined in (B.3). From (A.5), it is clear that $\eta(t) C_r \dot{T}_{vr}(t)$, introduced in (A.4), changes with respect to the sign of the control input $u_e(t)$. Consequently, two cases are realized.

Case I: $\eta C_r \dot{T}_{vr} = 0$ when $u_e \in (-\infty, 0)$

The expression of $\dot{V}(t)$, introduced in (A.4), can be rewritten as

$$\dot{V} = e N_{ed} + e \tilde{N}_e - K_e e^2 + \eta N_{rd} + \eta \tilde{N}_r - K_r \eta^2 + e M \eta$$ \hspace{1cm} (A.6)
where (1.20) and (1.21) were utilized. To facilitate the subsequent analysis, the auxiliary
signals \(\tilde{N}_e(T_e,t) \) and \(\tilde{N}_r(T_e,T_r,t) \), introduced in (1.17) can be computed as

\[
\tilde{N}_e = -Me \quad \text{(A.7)}
\]

\[
\tilde{N}_r = -Me - M\eta \quad \text{(A.8)}
\]

where (1.18) and (1.19) were used as well as \(M \) introduced in (1.11). Application of
(A.7), (A.8), and the triangle inequality allows \(\dot{V}(t) \) to be upper bounded as

\[
\dot{V} \leq -K_e|e|^2 - K_r|\eta|^2 + |e||N_{ed}| - M|e|^2 + |\eta||N_{rd}| - M|\eta|^2. \quad \text{(A.9)}
\]

By using (A.2) and completing the squares for the last four terms on the right–
hand side of (A.9), the following inequality can be obtained (Qu, 1998) as

\[
\dot{V} \leq -\lambda_3\|z\|^2 + \epsilon_o \quad \text{(A.10)}
\]

where \(\lambda_3 = \min\{K_e, K_r\} \) and \(\epsilon_o \triangleq \frac{|N_{ed}|^2}{4M} + \frac{|N_{rd}|^2}{4M} \). From (A.1), (A.3), and (A.10), then

\(V(z,t) \in L_{\infty} \); hence, \(e(t), \eta(t), z(t) \in L_{\infty} \). From (1.10) and Assumption 4, \(T_e(t) \in L_{\infty} \) since
\(e(t), \eta(t) \in L_{\infty} \) and \(u_e(t), u_r(t) \in L_{\infty} \) based on (1.20) and (1.21). Thus, \(T_{vr}(t) \in L_{\infty} \) can be
realized using (1.15) in Remark 1.2 and the relation \(T_{vr} = T_{vro} + \tilde{T}_{vr} \). From the previous
bounding statements, \(T_r(t), \dot{m}_r(t), H(t), \dot{m}_r(t), \dot{m}_r(t) \in L_{\infty} \) since \(\dot{m}_r = m_o + \bar{m} = H \dot{m}_c + \bar{H} \dot{m}_c \) and
the information in (1.10), (1.15), and (1.16).

Case II: \(\eta C_r \dot{T}_{vr} \neq 0 \) when \(u_e \in [0, \infty) \)

The expression of \(\dot{V}(t) \), introduced in (A.4), can be rewritten as
\[\dot{V} = eN_{ed} + e\tilde{N}_e - K_e e^2 + \eta N_r - K_e \eta^2 - \eta C_e \beta_1 N_e + eM\eta - K_e \frac{C_r}{C_e} e\eta \] \hspace{1cm} (A.11)

where (1.17), (1.20), (1.21), and (A.5) were applied. For convenience, the expression in (A.11) may be rewritten as

\[\dot{V} = -K_e e^2 - K_e \eta^2 + e\tilde{N}_e + eN_{ed} + \eta \tilde{N} + \eta N_d + eM\eta - K_e \frac{C_r}{C_e} e\eta \] \hspace{1cm} (A.12)

where the auxiliary signal \(\tilde{N}(T_e, T_r, t) \) becomes

\[\tilde{N} \triangleq N - N_d. \] \hspace{1cm} (A.13)

The variables \(N(T_e, T_r, t) \) and \(N_d(t) \) are defined as

\[N \triangleq N_e - C_e \beta_1 N_e, \quad N_d \triangleq N \big|_{T_e = T_e, T_r = T_r} = N_{rd} - C_e \beta_1 N_{ed} \] \hspace{1cm} (A.14)

where \(N_e(t), N_r(t), N_{ed}(t) \) and \(N_{rd}(t) \) were introduced in (1.18), (1.19), and \(\beta_1 \) was introduced in (B.3). The auxiliary signal \(\tilde{N}(T_e, T_r, t) \), introduced in (A.13), can be computed as

\[\tilde{N} = -\left(M - K_e \frac{C_r}{C_e} \right) e - M\eta \] \hspace{1cm} (A.15)

based on (1.17), (1.18), (1.19), and (B.3). By utilizing (A.7), (A.16), and the triangle inequality, \(\dot{V}(t) \) in (A.12) can be upper bounded as

\[\dot{V} \leq -K_e \left| e \right|^2 - K_e \left| \eta \right|^2 + \left| e \right| \left| N_{ed} \right| - M \left| e \right|^2 + \left| \eta \right| \left| N_d \right| - M \left| \eta \right|^2. \] \hspace{1cm} (A.16)

The final step of the proof follows the same argument presented in Case I to demonstrate that \(\dot{V} \leq -\lambda_3 \left\| e \right\|^2 + \varepsilon_o \) and all signals are bounded where \(\varepsilon_o \triangleq \frac{\left| N_{ed} \right|^2}{4M} + \frac{\left| N_d \right|^2}{4M} \).
Appendix B
Finding the Expression $C_r\dot{T}_{vr}$

The expression for $C_rT_{vr}(t)$ can be written as

$$C_rT_{vr} = \begin{cases}
C_rT_{vro}, & \forall u_e \in (-\infty, 0) \\
C_rT_{vro} + \frac{C_ru_e}{M}, & \forall u_e \in [0, \infty)
\end{cases} \quad (B.1)$$

where (1.15) and the relation $T_{vr} = T_{vro} + \bar{T}_{vr}$ were utilized. The parameter M was introduced in (1.11). After taking the first time derivative of (B.1), the following expression can be obtained

$$C_r\dot{T}_{vr} = \begin{cases}
0, & \forall u_e \in (-\infty, 0) \\
C_r(\beta_1N_e - \beta_2e - \beta_3\eta), & \forall u_e \in [0, \infty)
\end{cases} \quad (B.2)$$

where (1.16), (1.17), and (1.20) were applied. The coefficients β_1, β_2 and β_3 are defined as

$$\beta_1 \triangleq \frac{K_e}{MC_e}, \quad \beta_2 \triangleq \frac{K_e^2}{MC_e}, \quad \beta_3 \triangleq \frac{K_e}{C_e}. \quad (B.3)$$
Appendix C

Parameter Definitions for the Controller in Table 3.1

The control parameters in Table 3.1 are bounded from Assumptions 3.2, 3.3, and 3.6.

3.6. \(B_1 \triangleq M - \frac{k_e^2 C_r}{MC_e} \), \(B_2 \triangleq -\frac{k_e C_r}{C_e} - k_r \), \(B_3 \triangleq M \), \(B_4 \triangleq -k_r \), \(B_5 \triangleq M - \frac{k^2_e C_r}{MC_e} \),

\(B_6 \triangleq -\frac{k_e C_r}{C_e} - k_r \), \(B_7 \triangleq M \), \(B_8 \triangleq -k_r \), \(B_9 \triangleq M_1 (T_e - T_r) \), \(B_{10} \triangleq M_1 (T_e - T_r) \left[1 - \frac{k_e C_r}{MC_e} \right] \),

\(B_{11} \triangleq -k_p \), \(B_{12} \triangleq M_1 (T_e - T_r) + \frac{J_p k_e M}{M_1 C_r x_{mp} (T_e - T_r)} + \frac{J_p k_e^2 (T_e - T_{ed})}{M_1 C_r x_{mp} (T_e - T_r)^2} \),

\(B_{13} \triangleq M_1 (T_e - T_r) \), \(B_{14} \triangleq \frac{J_p k_e (T_e - T_{ed})}{C_r x_{mp} (T_e - T_r)} - k_p \),

\(B_{15} \triangleq -\frac{J_p k_e k_r}{M_1 C_r x_{mp} (T_e - T_r)^2} \), \(B_{16} \triangleq -\frac{J_p k_e}{C_r x_{mp} (T_e - T_r)} \), \(B_{17} \triangleq \frac{J_p k_e M}{M_1 C_r x_{mp} (T_e - T_r)^2} \),

\(B_{18} \triangleq M_1 (T_e - T_r) \), \(B_{19} \triangleq M_1 (T_e - T_r) \left[1 - \frac{k_e C_r}{MC_e} \right] \), \(B_{20} \triangleq -k_p \),

\(B_{21} \triangleq M_1 (T_e - T_r) + \frac{J_p k_e M}{M_1 C_r x_{mp} (T_e - T_r)} + \frac{J_p k_e^2 (T_e - T_{ed})}{M_1 C_r x_{mp} (T_e - T_r)^2} \), \(B_{22} \triangleq M_1 (T_e - T_r) + \frac{J_p k_e (T_e - T_{ed})}{M_1 C_r x_{mp} (T_e - T_r)^2} \),

\(B_{23} \triangleq -k_p \), \(B_{24} \triangleq -\frac{J_p k_e k_r}{M_1 C_r x_{mp} (T_e - T_r)^2} \),

\(B_{25} \triangleq -\frac{J_p k_e}{C_r x_{mp} (T_e - T_r)} \), \(B_{26} \triangleq \frac{J_p k_e M}{M_1 C_r x_{mp} (T_e - T_r)^2} \), \(B_{27} \triangleq -M_2 (T_e - T_\infty) \), \(B_{28} \triangleq -k_f \),

\(B_{29} \triangleq -M_2 (T_e - T_\infty) \), \(B_{30} \triangleq -k_f \), \(B_{31} \triangleq \frac{J_p k_e M_2 (T_e - T_\infty)}{M_1 C_r x_{mp} (T_e - T_r)^2} \), \(B_{32} \triangleq \frac{-2 J_f k_e M}{M_2 C_r x_{mf} (T_e - T_\infty)} + \frac{J_p k_e M_2 (T_e - T_\infty)}{M_1 C_r x_{mp} (T_e - T_r)^2} \).
\[
\frac{J_f k^3 C_r}{M_2 M^2 C_e x_{mf} (T_e - T_x)} = \frac{J_f k e M}{M_2 C_e x_{mf} (T_e - T_x)} + \frac{J_f M^2 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} - \frac{J_f k^2 C_r (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
B_{33} \triangleq \frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)} + \frac{J_f k e M}{M_2 C_e x_{mf} (T_e - T_x)} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)} - \frac{J_f M (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} - \frac{J_f M^2}{M_2 C_e x_{mf} (T_e - T_x)^2} \quad B_{34} \triangleq \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)} - \frac{J_f M (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
-k_f, \quad B_{35} \triangleq -\frac{J_f M^2}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{2 J_f k^2 C_e}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
\frac{J_f M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} \quad B_{37} \triangleq -\frac{J_f M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
B_{38} \triangleq \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} - \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
B_{39} \triangleq -\frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
B_{40} \triangleq \frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e C_r}{M_2 C_e x_{mf} (T_e - T_x)^2}, \quad B_{41} \triangleq -\frac{J_f k e M_1 (T_e - T_{vrf}) (T_r - T_{x})}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
\frac{J_f M^2 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} - \frac{J_f M^2 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f M^2 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
-k_f, \quad B_{42} \triangleq -\frac{J_f k e M_1 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} - \frac{J_f k e M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

\[
B_{43} \triangleq -\frac{J_f k e M_1 (T_e - T_{vrf})}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2} + \frac{J_f M_1 (T_e - T_x)}{M_2 C_e x_{mf} (T_e - T_x)^2},
\]

82
\[B_{44} \triangleq - \frac{J_f k_r}{C_r x_{mf}} - k_f, \quad B_{45} \triangleq \frac{J_f k_e k_r}{M_2 C_r x_{mf}} \left(\frac{T_e - T_{\infty}}{T_e - T_r} \right)^2 + \frac{J_f k_e M (T_r - T_{\infty})}{M_2 C_r x_{mf}} \left(T_e - T_r \right) \left(T_e - T_{\infty} \right)^2 \]

\[= \frac{J_f M^2}{M_2 C_r x_{mf}} \left(T_e - T_{\infty} \right)^2, \quad B_{46} \triangleq \frac{J_f M_1}{M_2 C_r x_{mf}} \left(k_e \left(T_r - T_{\infty} \right) - M \left(T_e - T_r \right) \right) \]

\[+ \frac{J_f k_e M_2 \left(T_e - T_{\infty} \right)}{M_1 C_r x_{mp} \left(T_e - T_r \right)^2}, \quad B_{47} \triangleq \frac{J_f k_e M_1 \left(T_e - T_r \right)}{M_2 C_r x_{mf} \left(T_e - T_{\infty} \right)^2}, \quad B_{48} \triangleq \frac{J_f k_e^2 \left(T_r - T_{\infty} \right)}{M_2 C_r x_{mf} \left(T_e - T_r \right) \left(T_e - T_{\infty} \right)^2} \]

\[- \frac{J_f k_e M \left(T_e - T_{\infty} \right)}{M_2 C_r x_{mf} \left(T_e - T_{\infty} \right)^2}, \quad \text{and} \quad B_{49} \triangleq \frac{J_f k_e M \left(T_e - T_{\infty} \right)}{M_2 C_r x_{mf} \left(T_e - T_{\infty} \right)^2}. \]
Appendix D
Proof of Theorem 3.1

Let $V(z,t) \in \mathbb{R}$ denote the non-negative function

$$V \triangleq \frac{1}{2} C_e \eta_e^2 + \frac{1}{2} C_r \eta_r^2 + \frac{J_p}{2x_{mp}} \eta_p^2 + \frac{J_f}{2x_{mf}} \eta_f^2$$

(D.1)

where $z \triangleq \left[\eta_e \quad \eta_r \quad \eta_p \quad \eta_f \right]^T$. The parameters $\eta_e(t)$, $\eta_r(t)$, $\eta_p(t)$, and $\eta_f(t)$ are defined in equation (3.10). Note that equation (D.1) is bounded as (refer to Theorem 2.14 of Qu (1998)) $\lambda_1 \|z(t)\|^2 \leq V(z,t) \leq \lambda_2 \|z(t)\|^2$ where λ_1, and λ_2 are positive constants.

After taking the time derivative of equation (D.1), then

$$\dot{V} = \eta_e N_e + \eta_r N_r + \eta_p N_p + \eta_f N_f - \eta_e \dot{u}_e + \eta_r \dot{u}_r + \eta_p \dot{u}_p + \eta_f \dot{u}_f - M \eta_e \eta_r$$

$$- M_1 (T_e - T_r) \eta_e \eta_p - M_1 (T_e - T_r) \eta_f \eta_p + M_2 (T_e - T_f) \eta_f \eta_f - C_r \dot{T}_v \eta_r$$

$$+ \frac{J_p}{x_{mp}} \dot{\omega}_{pd} \eta_p + \frac{J_f}{x_{mf}} \dot{\omega}_{fd} \eta_f$$

(D.2)

where equations (3.20–3.22) were utilized. The expressions for $C_r \dot{T}_v(t) \eta_r(t)$, $\frac{J_p}{x_{mp}} \dot{\omega}_{pd}(t) \eta_p(t)$, and $\frac{J_f}{x_{mf}} \dot{\omega}_{fd}(t) \eta_f(t)$ can be obtained as

$$C_r \dot{T}_v \eta_r \triangleq \frac{1 + \text{sgn}(u_e)}{2} F_r$$

$$\frac{J_p}{x_{mp}} \dot{\omega}_{pd} \eta_p \triangleq \frac{\text{sgn}(u_e) - 1}{2} F_p$$

$$\frac{J_f}{x_{mf}} \dot{\omega}_{fd} \eta_f \triangleq \frac{1 + \text{sgn}(F)}{2} F_f$$

(D.3)

where $F(t)$ and $u_e(t)$ were introduced in equation (3.18) and Table 3.1, respectively.

The parameters $F_e(t)$, $F_p(t)$, and $F_f(t)$ are defined as
where the first time derivative of the expressions in equation (3.18) were utilized. The control input, \(\bar{\omega}_{pd}(t) \), and control law, \(u_e(t) \), are defined in equation (3.18) and Table 3.1, respectively.

The control input derivative is defined as \(\dot{\omega}_{pd} = \frac{x_{mp}}{2J_p \eta_p} \left[\text{sgn}(u_e) - 1 \right] F_p \). The derivative, \(\dot{u}_r(t) \), is computed based on the control conditions in Table 3.1. From
equation (D.3), \(C_r \dot{\theta}_{vr}(t) \eta_r(t)\) and \(\frac{J_p}{x_{mp}} \dot{\omega}_{pd}(t) \eta_p(t)\) change with respect to the sign of the control law \(u_e(t)\), defined in Table 1. Further \(\frac{J_f}{x_{mf}} \dot{\omega}_{jd}(t) \eta_f(t)\) changes with respect to the sign of the signal \(F(t)\) introduced in equation (3.18). Consequently, four cases may be realized as shown in Table D.1.

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(u_e > 0, F \leq 0)</td>
<td>(C_r \dot{\theta}{vr}(t) \eta_r(t) \neq 0,) (\frac{J_p}{x{mp}} \dot{\omega}{pd}(t) \eta_p(t) = 0,) (\frac{J_f}{x{mf}} \dot{\omega}_{jd}(t) \eta_f(t) = 0)</td>
</tr>
<tr>
<td>II</td>
<td>(u_e \leq 0, F \leq 0)</td>
<td>(C_r \dot{\theta}{vr}(t) \eta_r(t) = 0,) (\frac{J_p}{x{mp}} \dot{\omega}{pd}(t) \eta_p(t) \neq 0,) (\frac{J_f}{x{mf}} \dot{\omega}_{jd}(t) \eta_f(t) = 0)</td>
</tr>
<tr>
<td>III</td>
<td>(u_e > 0, F > 0)</td>
<td>(C_r \dot{\theta}{vr}(t) \eta_r(t) \neq 0,) (\frac{J_p}{x{mp}} \dot{\omega}{pd}(t) \eta_p(t) = 0,) (\frac{J_f}{x{mf}} \dot{\omega}_{jd}(t) \eta_f(t) \neq 0)</td>
</tr>
<tr>
<td>IV</td>
<td>(u_e \leq 0, F > 0)</td>
<td>(C_r \dot{\theta}{vr}(t) \eta_r(t) = 0,) (\frac{J_p}{x{mp}} \dot{\omega}{pd}(t) \eta_p(t) \neq 0,) (\frac{J_f}{x{mf}} \dot{\omega}_{jd}(t) \eta_f(t) \neq 0)</td>
</tr>
</tbody>
</table>

Table D.1 Four cases realized in the Lyapunov stability analysis

In Case I, the \(\dot{V}(t)\) expression, introduced in equation (D.2), can be rewritten as

\[
\dot{V} = \eta_e N_e + \eta_r N_r + \eta_f N_f - \eta_e u_e + \eta_r u_r + \eta_f u_f - M \eta_e \eta_r - M_1 (T_e - T_r) \eta_e \eta_p - M_2 (T_e - T_{ro}) \eta_r \eta_f - C_r \dot{\theta}_{vr} \eta_r
\]

(D.7)

where \(N_1 = \frac{-k_e C_r}{M} \left[\hat{T}_{ed} - \frac{Q_{in}}{C_e} + \frac{M}{C_e} (T_e - T_{vro}) \right] + N_r\). The variable \(N_r(\bullet)\) is defined in equation (3.23). Utilizing the boundedness inequality for \(N_r(\bullet)\) and Assumptions 3.1, 3.5, and 3.7, \(N_1(\bullet)\) can be upper bounded as \(N_1 \leq \varepsilon_1\) where \(\varepsilon_1\) is a real positive constant.

Application of the previous bounding inequality, bounding inequalities in equation (3.24), and Table 3.1, allows \(\dot{V}(t)\) expression in equation (D.7) to be upper bounded as...
\[
\dot{V} \leq -\gamma \|z\|^2 + e_{ee} |\eta_e| - k_{e2} |\eta_e|^2 + e_2 |\eta_r| - k_{r2} |\eta_r|^2 + e_{pp} |\eta_p| - k_{p2} |\eta_p|^2 + e_{ff} |\eta_f|^2
\]
\[\quad - k_{f2} |\eta_f|^2 \]
(D.8)

In this expression, \(z(t) \) was utilized, as well as \(\gamma \triangleq \min\{k_{e1}, k_{r1}, k_{p1}, k_{f1}\} \), \(k_{e} \triangleq k_{e1} + k_{e2} \), \(k_{r} \triangleq k_{r1} + k_{r2} \), \(k_{p} \triangleq k_{p1} + k_{p2} \), and \(k_{f} \triangleq k_{f1} + k_{f2} \). By completing the squares for the last eight terms on the right-hand side of equation (D.8), the following inequality can be obtained (Qu, 1998)

\[
\dot{V} \leq -\gamma \|z\|^2 + e_a
\]
(D.9)

where \(e_a \triangleq \frac{e_{ee}^2}{4k_{e2}} + \frac{e_2^2}{4k_{r2}} + \frac{e_{pp}^2}{4k_{p2}} + \frac{e_{ff}^2}{4k_{f2}} \). From equations (D.1, D.9) and inequality \(\lambda_1 \|z(t)\|^2 \leq V(z,t) \leq \lambda_2 \|z(t)\|^2 \), it is clear that \(V(z,t) \in L_{\infty} \); hence, \(\eta_e(t), \eta_r(t), \eta_p(t), \eta_f(t), \quad z(t) \in L_{\infty} \) and then \(u_e(t), u_r(t), u_p(t), u_f(t) \in L_{\infty} \) from Table 3.1 based on Assumptions 3.2 and 3.3. Since \(u_e(t), u_r(t), u_p(t), u_f(t) \in L_{\infty} \), thus, \(\omega_{pd}(t), \quad T_{vr}(t), \quad \omega_{fd}(t), \quad X_p(t), \quad X_f(t) \in L_{\infty} \) can be realized using equations (3.19) and (3.20) in Remark 3.2 and the relations \(T_{vr} = T_{vro} + \bar{T}_{vr} \) and \(\omega_{pd} \triangleq \bar{\omega}_{pd} + \omega_{po} \). From the previous bounding statements, it is clear that \(T_e(t), T_r(t), \omega_p(t), \omega_f(t), \dot{m}_e(t), \dot{m}_f(t) \in L_{\infty} \). In cases II, III, and IV, similar stability analysis can be performed to conclude a similar inequality to the inequality in equation (D.9). For the second case, the expression of \(\dot{V}(t) \), introduced in equation D.2), can be rewritten as
\[
\dot{V} = \eta_e N_e + \eta_r N_r + \eta_p N_p + \eta_f N_f - \eta_e u_e + \eta_r u_r + \eta_p u_p + \eta_f u_f - M \eta_e \eta_r
\]
\[-M_1(T_e - T_r) \eta_e \eta_p - M_1(T_e - T_r) \eta_r \eta_p + M_2(T_e - T_{\infty}) \eta_r \eta_f + \frac{J_p}{x_{mp}} \dot{\omega}_{pd} \eta_p \tag{D.10}
\]

Where for the third case, it may be written as
\[
\dot{V} = \eta_e N_e + \eta_r N_r + \eta_p N_p + \eta_f N_4 - \eta_e u_e + \eta_r u_r + \eta_p u_p + \eta_f u_f - M \eta_e \eta_r
\]
\[-M_1(T_e - T_r) \eta_e \eta_p - M_1(T_e - T_r) \eta_r \eta_p + M_2(T_e - T_{\infty}) \eta_r \eta_f + \frac{J_p}{x_{mf}} \dot{\omega}_{rd} \eta_f \tag{D.11}
\]

The \(\dot{V}(t) \) expression, introduced in equation (D.2), can be rewritten for the fourth case as
\[
\dot{V} = \eta_e N_e + \eta_r N_r + \eta_p N_5 + \eta_f N_6 - \eta_e u_e + \eta_r u_r + \eta_p u_p + \eta_f u_f - M \eta_e \eta_r
\]
\[-M_1(T_e - T_r) \eta_e \eta_p - M_1(T_e - T_r) \eta_r \eta_p + M_2(T_e - T_{\infty}) \eta_r \eta_f + \frac{J_p}{x_{mf}} \dot{\omega}_{pd} \eta_p \tag{D.12}
\]

where \(N_2 \triangleq N_{21} + N_{22} \), \(N_{21} \triangleq \left(\frac{J_p k_e Q_{in}}{M_4 C_r x_{mp} (T_e - T_r)^2} \right) \eta_e \), \(N_{22} \triangleq \frac{J_p k_e}{M_1 x_{mp} (T_e - T_r)^2} \dot{T}_{ed} \)
\[-\frac{Q_{in} (T_r - T_{ed})}{C_e (T_e - T_r)} + \frac{M (T_e - T_{ed}) (T_e - T_{vro})}{C_e (T_e - T_r)} \right] + N_p \), \(N_3 \triangleq K_e C_r \left[\frac{Q_{in}}{M C_e} - \frac{\dot{T}_{ed}}{M} - \frac{(T_e - T_{vro})}{C_e} \right] \)
\[+ N_r \), \(N_4 \triangleq N_{41} + N_{42} \), \(N_{41} \triangleq \frac{J_f k_e C_r}{C_e C_r x_{mf}} \left[M (T_e - T_r) - Q_o \right] + \frac{J_f k_r}{C_r x_{mf}} \left[M (T_e - T_r) - Q_o \right] \)
\[-\frac{J_f k_e k_r \dot{T}_{ed}}{M Chen_{mf}} + \frac{J_f M_1 \dot{T}_{ed}}{MC_e x_{mf}} + \frac{J_f \left[M_1 Q_{in} - (M M_4 + k_e k_r) (T_e - T_{vro}) \right]}{C_e x_{mf}} + N_f \), \(N_{42} \triangleq \left(\frac{J_f}{M_2 M C_e x_{mf} (T_e - T_{\infty})^2} \right) \eta_e \), \(N_5 \triangleq N_{51} + N_{52} \),
\[N_{51} \triangleq \frac{J_p k_e}{M_t x_{mp} (T_e - T_r)} \left[\frac{M (T_r - T_{ed}) (T_e - T_{vro})}{C_e (T_e - T_r)} - \frac{Q_{in} (T_e - T_{ed})}{C_e (T_e - T_r)} - \dot{T}_{ed} \right] + N_p, \]

\[N_{52} \triangleq \left(\frac{J_p K_e Q_o}{M_1 C_r x_{mp} (T_e - T_r)^2} \right) \eta_e, \quad N_6 \triangleq N_{61} + N_{62}, \quad N_{61} \triangleq \frac{J_f}{M_2 x_{mf} (T_e - T_w)} \left[\frac{M Q_{in}}{C_e} - \frac{K_e Q_o}{C_r} \right] \eta_e \]

\[-k_e (T_e - T_r) \left[M \ddot{T}_{ed} + \frac{Q_{in} (T_r - T_{ed})}{C_e (T_e - T_r)} - \frac{M (T_r - T_{ed}) (T_e - T_{vro})}{C_e (T_e - T_r)} \right] - \frac{M^2 (T_e - T_{vro})}{C_e} - M \dot{T}_{ed} \]

\[-k_e M (T_e - T_r) \left[M \ddot{T}_{ed} + \frac{Q_{in} (T_r - T_{ed})}{C_e (T_e - T_r)} - \frac{M (T_r - T_{ed}) (T_e - T_{vro})}{C_e (T_e - T_r)} \right] - \frac{M^2 (T_e - T_{vro})}{C_e} - M \dot{T}_{ed} \]

\[-k_e M (T_e - T_r) \left[M \ddot{T}_{ed} + \frac{Q_{in} (T_r - T_{ed})}{C_e (T_e - T_r)} - \frac{M (T_r - T_{ed}) (T_e - T_{vro})}{C_e (T_e - T_r)} \right] - \frac{M^2 (T_e - T_{vro})}{C_e} - M \dot{T}_{ed} \]

Utilizing the boundedness inequalities for \(N_r(\bullet), N_p(\bullet), \) and \(N_f(\bullet) \) in equation (3.23) and Assumptions 3.1–3.3, 3.5, and 3.6, \(N_{21}(\bullet), N_{22}(\bullet), N_3(\bullet), \)

\(N_{41}(\bullet), N_{42}(\bullet), N_{51}(\bullet), N_{52}(\bullet), N_{61}(\bullet), \) and \(N_{62}(\bullet) \) can be upper bounded as

\[N_{21} \leq \varepsilon_{21} |\eta_e|, \quad N_{22} \leq \varepsilon_{22}, \quad N_3 \leq \varepsilon_3, \quad N_{41} \leq \varepsilon_{41}, \quad N_{42} \leq \varepsilon_{42a} |\eta_e| + \varepsilon_{42b} |\eta_r|, \quad N_{51} \leq \varepsilon_{51}, \]

\[N_{52} \leq \varepsilon_{52} |\eta_e|, \quad N_{61} \leq \varepsilon_{61}, \quad N_{62} \leq \varepsilon_{62a} |\eta_e| + \varepsilon_{62b} |\eta_r|, \] respectively, where \(\varepsilon_{21}, \varepsilon_{22}, \varepsilon_3, \varepsilon_{41}, \varepsilon_{42a}, \varepsilon_{42b}, \varepsilon_{51}, \varepsilon_{52}, \varepsilon_{61}, \varepsilon_{62a}, \) and \(\varepsilon_{62b} \) are real positive constants. Application of the previous bounding inequalities, bounding inequalities in equation (3.23), and Table 3.1 allows the expression for \(\dot{V}(t) \) to be upper bounded as shown in Table D.2. The inequalities

\[\varepsilon_{21} |\eta_e| |\eta_p| \leq \frac{\varepsilon_{21}}{\delta} |\eta_e|^2 + \delta |\eta_p|^2, \quad \varepsilon_{42a} |\eta_e| |\eta_f| \leq \frac{\varepsilon_{42a}}{\delta_2} |\eta_e|^2 + \delta_2 |\eta_f|^2, \]

\[\varepsilon_{42b} |\eta_r| |\eta_f| \leq \frac{\varepsilon_{42b}}{\delta_3} |\eta_r|^2 + \delta_3 |\eta_f|^2, \quad \varepsilon_{52} |\eta_e| |\eta_p| \leq \frac{\varepsilon_{52}}{\delta_4} |\eta_e|^2 + \delta_4 |\eta_p|^2, \quad \varepsilon_{62a} |\eta_e| |\eta_f| \leq \frac{\varepsilon_{62a}}{\delta_5} |\eta_e|^2 + \delta_5 |\eta_f|^2 \]
and $\varepsilon_{62b} \frac{|\eta_r|}{|\eta_f|} \leq \frac{|\eta_r|^2}{\delta_6} + \delta_6 |\eta_f|^2$ were utilized as well as the definitions of k_e, k_r, k_p, and k_f in Case I to show the results of Table D.2. For Case II, $k_{e_1} \geq \frac{1}{\delta_1}$ and $k_{p_1} \geq \delta_1$. In Case III, $k_{e_1} \geq \frac{1}{\delta_2}$, $k_{r_1} \geq \frac{1}{\delta_3}$, and $k_{f_1} \geq \delta_2 + \delta_3$ while in Case IV, $k_{e_1} \geq \frac{1}{\delta_4} + \frac{1}{\delta_5}$, $k_{r_1} \geq \frac{1}{\delta_6}$, $K_{p_1} \geq \delta_4$, and $k_{f_1} \geq \delta_5 + \delta_6$. For all cases, δ_1, δ_2, δ_3, δ_4, δ_5, and δ_6 are real positive constants. Finally, similar argument as in Case I can be made to show that all signals are bounded.

<table>
<thead>
<tr>
<th>Case</th>
<th>Lyapunov Function $V(z,t)$</th>
<th>Definition of γ and ε_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\dot{V} \leq -\gamma |z|^2 + \varepsilon_a$,</td>
<td>$\gamma \equiv \min {</td>
</tr>
<tr>
<td>II</td>
<td>$\dot{V} \leq -\gamma |z|^2 + \varepsilon_b$,</td>
<td>$\gamma \equiv \min {(k_{e_1} - \frac{1}{\delta_1}), (k_{r_1} - \frac{1}{\delta_2}), (k_{f_1} - \frac{1}{\delta_3})}$, $\varepsilon_b \equiv \frac{\varepsilon_{62}}{4k_{e_2}} + \frac{\varepsilon_{62}^2}{4k_{r_2}} + \frac{\varepsilon_{62}^2}{4k_{p_2}} + \frac{\varepsilon_{62}^2}{4k_{f_2}}$</td>
</tr>
<tr>
<td>III</td>
<td>$\dot{V} \leq -\gamma |z|^2 + \varepsilon_c$,</td>
<td>$\gamma \equiv \min {(k_{e_1} - \frac{1}{\delta_1} - \frac{1}{\delta_2}), (k_{r_1} - \frac{1}{\delta_2} - \frac{1}{\delta_3}), (k_{f_1} - \delta_2 - \delta_3)}$, $\varepsilon_c \equiv \frac{\varepsilon_{62}}{4k_{e_2}} + \frac{\varepsilon_{62}^2}{4k_{r_2}} + \frac{\varepsilon_{62}^2}{4k_{p_2}} + \frac{\varepsilon_{62}^2}{4K_{f_2}}$</td>
</tr>
<tr>
<td>IV</td>
<td>$\dot{V} \leq -\gamma |z|^2 + \varepsilon_d$,</td>
<td>$\gamma \equiv \min {(k_{e_1} - \frac{1}{\delta_1} - \frac{1}{\delta_2} - \frac{1}{\delta_3}), (k_{r_1} - \frac{1}{\delta_2} - \frac{1}{\delta_3} - \frac{1}{\delta_4}), (k_{f_1} - \delta_2 - \delta_3 - \delta_4)}$, $\varepsilon_d \equiv \frac{\varepsilon_{62}}{4k_{e_2}} + \frac{\varepsilon_{62}^2}{4k_{r_2}} + \frac{\varepsilon_{62}^2}{4k_{p_2}} + \frac{\varepsilon_{62}^2}{4K_{f_2}}$</td>
</tr>
</tbody>
</table>

Table D.2 Four cases for final Lyapunov inequalities

