Intelligent Zero Net Energy Construction for Disaster Relief

Benjamin Sternick
Clemson University

Alex Combs
Clemson University

Justin Shook
Clemson University

Rajendra Singh
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/foci

Recommended Citation
Sternick, Benjamin; Combs, Alex; Shook, Justin; and Singh, Rajendra, "Intelligent Zero Net Energy Construction for Disaster Relief" (2015). Focus on Creative Inquiry. 115.
https://tigerprints.clemson.edu/foci/115

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Focus on Creative Inquiry by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
Abstract
The goal of our creative inquiry project is to create a home that can be placed on-site following a disaster without the need for accessing a potentially damaged or stressed utility grid. This home will rely solely on Photovoltaic (PV) solar panels, batteries, and high efficiency ‘smart’ devices. This prototype will embody the concept of Intelligent Zero Net Energy (IZNE) construction.

Materials and Methods
As much as 70% of the energy generated by centralized plants is lost through transmission and distribution [1]. For a small home needing 1000 kilowatt hours a month, more than three times that amount must be generated. By generating energy locally, these wasteful (and expensive) losses can be minimized.

Centralized plants generate AC (Alternating Current) power. Our group took a standard mobile home and redesigned it to take advantage of localized DC (Direct Current) generation. This home could then generate its energy independently. One of the bedrooms was designated as the battery storage location to enable the home to be completely portable. Should several of these homes be linked to form a micro-grid, the storage could be moved to a central location.

Results
Using the datasheet for the SunPower X21-345 panel [3], a simulation was created in MATLAB to model the available solar energy for Clemson, South Carolina. This simulation was created to ensure that the roof of a small mobile home could provide enough space for the panels required to meet its energy needs. An AC comparison house was modeled and compared to the DC design. Both the AC comparison house and the DC design saw significant energy benefits from the implementation of devices such as smart thermostats and low energy LED lights.

Conclusions
When the benefits from local generation are combined with eliminating unnecessary energy transformations, energy savings of more than 50% are possible [2]. These energy savings are a key aspect of our design. Limiting wasted energy will maximize our available generation while lowering our cost. These economic benefits have myriad applications beyond the scope of our project, and it is our hope to demonstrate them through this small scale prototype.

References