In vitro patient-specific study of the Norwood procedure

Tianqi Hang

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

Recommended Citation
Hang, Tianqi, "In vitro patient-specific study of the Norwood procedure" (2013). Graduate Research and Discovery Symposium (GRADS). 84.
https://tigerprints.clemson.edu/grads_symposium/84
Introduction

The Norwood procedure is the first of a sequence of three cardiovascular operations for the surgical treatment of infants born with single ventricle heart defects to covert to the Fontan circulation, a circulation in which the single ventricle supplies blood to both the body and to the lungs. The Norwood is performed within days after birth.

Goal of the surgery: Simulate the surgery, Evaluate its effectiveness, Develop therapies.

Objective:
- Simulate surgery
- Evaluate effectiveness
- Develop therapies

Facts:
- Complicated surgery
- Multiple complications
- Mortality rate of 39% higher mortality rate

Anatomy:
- The anatomy of aorta is reconstructed in 3D from the magnetic resonance (MR) data (Fig. 2) and then manufactured by 3D printing using a layer-by-layer technique.
- Each patient has a unique anatomy and test section.

Methods

Build lumped parameter network model

A mock circulatory system is built around a lumped parameter model to the circulation and the 3D aortic test section with shunt. Figure 3 shows the lumped parameter (LPN) model of the Norwood circulation. This model is reduced to a more practical lab model (Fig. 5) by using Thermovent elements. System shown in Fig. 6 is the physical realization of reduced LPN model.

Set-up, Measurements, and Data Analysis

The system elements are set to patient-specific values. A pediatric ventricular assist device operates as an artificial left ventricle, which pumps blood from the ascending aorta. Pressures and flow rates are measured and recorded in real-time and compared with the predictions of the full LPN model and to clinical measurements for that particular patient.

Conclusion

Acknowledgments

The authors would like to thank Foundation Leducq financial support and the MOCHA Investigators of the Transatlantic Ladue network of Excellence for their collaboration and scientific contribution. The authors would also thank Mr. Jian Zhou, Dr. Timothy Cevik, Dr. Marja Vukicevic, and Dr. RichardFigliola for their help.

References
