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ABSTRACT

Gas turbines are increasingly deployed throughout the world to provide
electrical and mechanical power in consumer and industrial sectors. The
efficiency of these complex multi-domain systems is dependant on the turbine’s
design, established operating envelope, environmental conditions, and
maintenance schedule. A real-time health management strategy can enhance
overall plant reliability through the continual monitoring of transient and steady-
state system operations. The availability of sensory information for control system
needs often allow diagnostic/prognostic algorithms to be executed in a parallel
fashion which warn of impending system degradations. Specifically, prognostic
strategies estimate the future plant behavior which leads to minimized
maintenance costs through timely repairs, and hence, improved reliability. A
health management system can incorporate prognostic algorithms to effectively
interpret and determine the healthy working span of a gas turbine. The research
project’s objective is to develop real-time monitoring and prediction algorithms
for simple cycle natural gas turbines to forecast short and long term system
behavior.

Two real-time statistical and wavelet prognostic methods have been
investigated to predict system operation. For the statistical approach, a multi-
dimensional empirical description reveals dominant data trends and estimates
future behavior. The wavelet approach uses second and fourth-order Daubechies

wavelet coefficients to generate signal approximations that forecast future plant



operation. To complement the empirical models, a real-time analytical, lumped
parameter mathematical model has been developed that describes normal transient
and steady-state gas turbine system operation. The model serves as the basis to
understand a simple cycle gas turbine’s operation, and may be utilized in model-
based diagnostic algorithms.

To validate the model and the prognostic strategies, extensive data has
been gathered for a 4.5 MW Solar Mercury 50 and a 85 MW General Electric
7EA simple cycle gas turbine. For the dynamic gas turbine model, the comparison
between the field data and simulation results for five Mercury 50 gas turbine
signals (e.g., shaft speed, power, fuel flow, turbine rotor inlet temperature, and
compressor delivery pressure) demonstrate a high degree of correspondence.
Although there are some deviations between the analytical and experimental
results during the transient phase, the estimated steady state results are within
2.0% of the actual data. The direct comparison of the two forecasting methods
revealed that the wavelet method is superior since the forecasting error is 2.4%
versus 4.0% for the statistical method on the Mercury 50 simple cycle gas turbine
steady-state signals (e.g., compressor delivery pressure and turbine rotor inlet
temperature). Similarly, the General Electric 7TEA steady-state signal (e.g., turbine
inlet temperature) offered a forecasting error of 9.23% for the wavelet and
11.47% for the statistical methods, respectively. The developed approaches
successfully estimate and predict the system operation and may be used with a

diagnostic algorithm to monitor gas turbine system health.
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CHAPTER 1
INTRODUCTION

Gas turbines are a vital part of world industry, by providingmaeical
power for transportation, power generation, and manufiact plants. The world
average annual gas turbine market is estimated at 20B Eurekiaf aviation
accounts for 68%, electric production 27%, power drives 38, raarine gas
turbines 2% (Langston, 2005). The growing need for reliabletredy has
prompted the design of stationary gas turbines which operataultiple fuels
such as diesel, natural gas, synthetic coal gas, and.offfer power generating
gas turbines contribute approximately 15% of the world’s 16,28@rirwatt
hours of annual electricity productiol.o better monitor and control these
complex machines, a complete analysis for predicticheotransient operation is
required with accompanying mathematical description.

The reliability, availability, and maintainability tecleai area of the high
efficiency engines and turbines program encompasses thenddsigas turbine
health management systems. The introduction of new-tdiagnostic and
prognostic capabilities on gas turbines can provide increaddbility, safety,
and efficiency. The diagnostic module is responsibleterprompt detection of
system degradations. Prognostic activities are focusedhenprediction of
anomalous plant behavior such that maintenance measaedve performed to

permit continued operation.



The two primary monitoring approaches for dynamic systéincluding
stationary gas turbines) can be classified as model-lzaskdnodel-free. For the
model- based approach, a real-time mathematical modeddban laws of
thermodynamics and physics is required to simulate siesys operation.
However a mathematical model's behavior estimatiod predictions often
deviate from the experimental data. Hence, model-freenappes were adopted
for system behavior predictions. Methodologies haven lweeloped which use
statistical and wavelet analysis to find system trearatd make valid predictions
based on observed trends.

Research Objectives and Goals

The main objective of this research was to develop atimal health
management system for gas turbines to improve turbinebifityiaand allow
higher availability levels. The formulation and implentation of real-time
diagnostic and prognostic strategies, which detect armticpthbe onset of system
degradation and maintenance needs, will constantly mothigoverall system
performance to reduce operation and maintenance cossrids of four goals
were identified.

Analytical Modeling of the Turbine System

A model-based system health management approach retig@resistence
of a real-time mathematical model that describes thbirte system using
differential and algebraic equations. The model should td&m@c'normal” turbine
system behavior. This research has developed a tragsienitirbine model. The

major components have been modeled as subsystems ambtbglether to create



a simulation tool. The model simulates a Mercury 50 gabirteirlocated at

Clemson University.

Real-Time Turbine Sensor Experimental Data Streaming

Real-time experimental data has been collected anddetdrom the
Mercury 50 gas turbine located at the Clemson Universityn mampus. The
performance of the Mercury 50 can be evaluated usingstteamed data. The
benefit of such a data collection connection is thaant be used to formulate a
database for turbine health management systems. Fugtbensive data sets have
been obtained from a General Electric 7EA gas turbinee Periodic
experimental data recorded from the Mercury 50 gas turbinehasbeen used to
validate the mathematical model. The diagnostic/pregmalgorithms have been
validated using data from both of the above mentionedugbmes.

Sensor Fusion for Data Analysis

Initially a set of twenty-eight plant signals wadeséed to be monitored
and recorded from the Mercury 50. The total available nurabsignals is 180.
This smaller subset of signals is being recorded inthaa&l and can be fused to
monitor the system. These signals include key temperaance pressure
measurements which will be used for model validation and the
diagnostic/prognostic module. Similar procedure was adofie the General
Electric 7EA gas turbine as well.

Prognostic Module Design
Prognostic methods using statistics and wavelet transfdiave been

developed to analyze a given population of experimenta ¢aints. The



statistical method visually presents the data in muttietisional views and
incorporates regression to predict. Furthermore the majha@s a clear visual

representation of the variability of the data. Theosdcmethod uses wavelet
transforms to remove noise from the signal and theast square fit is performed
for prediction, this prognostic module has been impleetnh real time to

predict system degradation.

Thesis Organization

Chapter 2 presents a literature review which examines ¢oent
advancement in system health management and mathdmatackeling of
stationary gas turbines. Chapter 3 establishes the @mahlytodeling technique to
formulate a mathematical description of a Mercury S@icstary gas turbine for
diagnostic/prognostic methodologies. Chapter 4 presentsdal-time prognostic
strategies, which monitor and predict the behavior ofatiostary gas turbine
system. Chapter 5 gives a description of the experahaetups used to obtain
field data. Chapter 6 presents the experimental and mahersults. Conclusions
and reccomendations will be presented in Chapter 7. Appéngdives the details
of the real-time mathematical model. Appendix B presé#mtsdata acquisition
algorithm for the Mercury 50 gas turbine. The statistioal prognostic algorithm
codes have been presented in Appendix C. Appendix D prakerggatistical and

the wavelet coefficients used for forecasting thecseteturbine output signals.



CHAPTER 2
LITERATURE SURVEY
Prognostics
To introduce the work in the field of system health agement and

prognostics, a list of references is presented whichsoiffisight into the past and
current work. Prognostic strategies attempt to diagnosehine/component
impending failure conditions, and estimate the remainiregfulidifetime using
statistical approach for enhanced equipment availabiltyile minimizing
maintenance costs (Roenwral.,2001). Traditional health management systems
have been mainly concerned with diagnostics, but ip#s¢ decade, considerable
work has taken place on prognostics. It has increashegy recognized that the
prognostics module may be integrated with existing diagnosystem
architectures (Roemer and Kacprzynski, 2000). Efforts tonaatte plant
monitoring using a novel approach which integrates neurtatonks with rule
extraction has been demonstrated by Brothesonal. (2000). Jaw (1999)
presented a methodology using artificial neural networksaoture the time
varying behavior of complex systems to improve the ifigelf models used for

real time prognostic algorithms in aircrafts.

DePold and Gass (1998) proposed a prognostic system fourpases
using statistical analysis to improve data quality, neneavorks to detect trends
to classify system changes, and an expert systeankomaintenance actioReal

time statistical prognostics, in conjunction with senbased diagnostics have



been used in industry to predict turbine critical compondfg. An
implementation of this prognosis approach to predict ¢éheaming useful life of
gas turbine engine bearings has been examined by Qatag. (2004).
Kacprzynskiet al. (2002) investigated the application of stochastic failure tspde
calibrated for current state information, to assessouand future system health.
Greitzer and Ferryman (2003) developed a generic prognostic iagdosdtic
integrated module for mechanical systems. The technolay explored on
land/naval gas turbines to decrease the short and longferating and logistic
costs. The inherent uncertainties of prognostics have beédressed through
probabilistic architectures. Compressor fouling, an inevitdbkerioration mode
in gas turbines, occurs at different rates for diffetarttine systems. Gulegt al.
(2002) investigated an on-line real time prognostic strategghvcan manage
maintenance (e.g., washing) costs to reduce compresdorgfdny as much as
20%. Similar work has also been carried out for offslyare turbines by Veest

al. (2004).

Friend (2000) demonstrated the integration of intelligent ggsiog and
data fusion to obtain valuable information for systeagdostics and prognostics.
Correlation of data from key sensors is used to deiteadlife consumed and
the remaining useful life. Pawlowsét al. (2002) have made efforts to apply real
time prognostics to diesel engines using an architesioréar to the gas turbine
prognostics for M1 Abrams tanks. Finally, prognostice ba applied to most
mechanical systems for condition based maintenancepeettiction of future

health using wavelets. A generic framework using waveletahewatworks has



been developed and validated by Wang and Vachtsevanos (200tes$
prognostics is always associated with uncertaintiesgtare, confidence bounds
need to be defined for predictions. A method to estimatedsode bounds and
reduce uncertainties in real-time has been establish&htgset al. (2003). An
opportunity exists to directly compare the estimatiorfgperance of prognostic

strategies on a common problem.

Gas Turbine Mathematical Models

Aggarwal and Younis (1982) proposed a mathematical model tdatam
the startup of gas turbines. The starting characteristice estimated to asses the
overall performance of a starting system for an airceafjine. Rowen (1992)
modeled a single shaft gas turbine used in variable spegtameal drives. The
model was integrated into a complex simulation involvingetriequipment and
controlled processes. Crostial. (1996) proposed a simulator for estimating the
off-design and dynamic behavior of a heavy duty gas turbirexs inscombined
cycles, using Simulink/Matlab. Camporealkeal. (1998) introduced a simulation
model of a multi-shaft regenerative gas turbine. This mede used for the
synthesis of system controllers and analysis ofcatitbperating conditions for a
counter-flow regenerator. Transient response of regeveigas turbines was also
investigated by Korakiantitist al. (1993) using instantaneous and transient flow

component models.

Vroemenet al. (1998) applied model based predictive control (MPC) to
laboratory gas turbines, nonlinear extensions were maddinéar model

predictive control. This process uses a model of a gameuto predict future



system response. Fortunatd al. (2002) investigated a real-time high fidelity
code for simulating the operation of a double shaft inchlsgyas turbine. The
lumped parameter, non-linear model was used for designingeatidgt control
systems for gas turbines. Further applications for deaigh optimization of
control structures using a dynamic model simulating a wésigie of operating
scenarios for a cogeneration nuclear gas turbine powast [phve been introduced

by Kikstra and Verkooijen (2002).



CHAPTER 3
A REAL-TIME GAS TURBINE DYNAMIC MODEL
Gas turbines are a vital part of world industry by providing haatcal
power for transportation, power generation, and matwfag plants. To ensure
the dependability of these complex multi-domain systeamkealth monitoring
system can be attached to the controller in a paralhner. The growing
demand for reliable electricity has prompted the desigtationary gas turbines
which operate on multiple fuels such as diesel, nagas| synthetic coal gas, and
others. To better monitor and control these complechimes, a complete
analysis to predict the transient operation is requirath veccompanying
mathematical description. Gas turbines undergo transipetatons due to
startups, changing loads, and sudden shutdowns which may leagstem
degradation over a period of time. To understand the tudyinamic behavior,

these transient conditions have to be analyzed.

Often it is not possible to perform test bed experisentturbine systems
due to safety and cost related issues. Therefore, physozidls of these complex
systems must be developed which simulate the actual tusggtem operation
over a range of different operating scenarios. Manifit dynamic models for
gas turbines have been developed in the past (e.g., $2uéh Bettocchet al.,
1996, and Crosat al., 1996). These models capture the dynamics of the turbine
systems with varying degree of accuracy. Although varioudefsohave been

created for gas turbine system, they are mostly usemntdage the steady state
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operation, and hence, overlook the fact that cost afetysrelated issues are

strongly influenced by a turbine’s transient operation

As many concerns arise within the gas turbine industry coimge
performance and emissions related issues, it is imgottaxdevelop efficient
health monitoring solutions for the future to limit degramiadi in system
performance and enhance overall plant operations. A nanlighgnamic model
has been developed for a gas turbine. The model simulaetansient and
steady state gas turbine’s nominal operating conditibims.development of the
model presented in this chapter is a part of a stratieggdaat the introduction of
on-line diagnostic and prognostic capabilities to theiostaty gas turbine
operations which would provide increased reliability, safebg efficiency in gas
turbine operations. Model-based diagnostic methods eliitnlae need for
redundant hardware through the use of analytically estonptant output for
comparisonlin creating a mathematical model which can succegsfgllect and
alert system administrators that a problem exists,ntexl for plant or system
maintenance can be reduced.

Analytical Gas Turbine Model

The reliability of a physical system simulation is degent the model's
accuracy. The quantitative modeling of a dynamic processresgkmowledge of
the process, and ability to mathematically represenisihg differential and
algebraic equations, and availability of system pararsefA real-time nonlinear
mathematical model, based on analytical and empietations, has been created

to estimate a "normal" turbine system’s operation. Alinear approach was
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adopted to model the dynamics due to transients duringwgiatbad changes,
and shutdown. The thermodynamic model presented in thisrs&as developed

as a sequence of interconnected subsystems (refer to Biglre

Starter Generator
Motor

A

Shaft Dynamics

Exhaus - r,
Compressorlyl Plenum Recuperator| | €ombustior | | 1ypine
P > — P ™ Chamber o
K . ) m
Tm  om
Fuel System m

Figure 3.1 Turbine subsystems diagram which reflects thpaoents with signal
flow direction

These subsystems model the basic components of @nstgtgas turbine.
Physical and thermodynamic laws (Howell and Buckius, 188v$ been used to
describe the system dynamics. The dynamic balanceeabthting shaft has also
been modeled. This mathematical model has been traredomto a computer
algorithm in the MATLAB/Simulink environment. As the mod&s a modular
structure, additional subsystems can be incorporated to raadiferent system
configuration (e.g., Rowen, 1992).

The proposed gas turbine system model takes a transierdaappto
mathematical modeling. Figure 3.1 shows the basic compodra stationary
gas turbine which have been used for modeling. Each subsydtehe gas

turbine plant was modeled separately including the startgormcompressor,
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combustion chamber, turbine, fuel input, and the electpioaler generator. Inlet
air is compressed in the compressor and is then passedjlhthe recuperator
where it gains heat energy from the turbine exhaust gdses.combustion

chamber imparts additional energy to the flow mass, lwiscutilized in the

turbine to obtain work. The system load and starter materboth connected to
the system shaft. The system receives initial inputarobient pressure and
temperature. Using these system inputs the model sesulag initial cold start
of the gas turbine system to steady state operation.

Thermodynamic Analysis

The model is based on a modified Brayton cycle. A teatpez-entropy
diagram is shown for a Brayton cycle (Sarvanamattal, 2001) in Figure 3.2.
The air mass enters the system at Station 1 (reféigure 3.3). The compressor
performs work on the air mass and increases its pressuwletemperature
adiabatically to the compressor's exit at Stationt Vertical line 1 to 2 depicts
ideal isentropic compression. In reality, there igremmease in the entropy of the
process flow. The compression is not isentropic angbtbeess may be depicted
by the line 1 to 2A. Heat addition takes place in theipecator as depicted by
line 2A to 3. Additional heat is added to the flow at canstpressure in the
combustion chamber depicted by line 3 to 4. Further ispiatrexpansion of the
air mass takes place in the turbine as work is done Yotli€line 4 to 5). Again,
the process is not ideally isentropic so the processléans towards the right.
The area under the T-s curve is proportional to the bgeftk derived from the

system.
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A series of nine assumptions (e.g., Aigral.,2001) have been imposed

to model the gas turbine:

A.1 Ideal gas behavior of the working medium

A.2 All the power is absorbed by the rotor. The staterely transforms the

A3

A4

A5

A.6

A7

A.8

A.9

kinetic energy into an increase in static pressure.

The mass flow rate inside the compressor is aahst

Compression process is adiabatic.

Axial velocity of the air mass flow inside thengaressor is constant.

No air bleed occurs from the compressor.

The combustion chamber is modeled as a pure eaecgynulator.

Expansion process in the turbine is adiabatic.

Mean value of specific heats for each subsystem.

Temperature (K)

Compressor Delivery

Pressue\u:1e A@lsmn
3
| O 5

\

Ambient Pressure Line

>
Entropy ( KJ/K)

Figure 3.2 Modified temperature versus entropy diagram foBtagton cycle

(Sarvanamuttet al, 2001)
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Figure 3.3 Stationary gas turbine system components weélstations identified
for analysis

Model Description

The various gas turbine subsystems will be modeled angizadain this
section with the explicit presentation of the govermiifferential and algebraic
equations.

Compressor

The compressor is modeled as a control volume in whass and energy
flow are conserved. The compressor subsystem's thgnaodc analysis was
considered using a control volume with air as the workmeglium. As shown in

Figure 3.4, the boundary conditions include the inlet stagnatessureR,,, inlet
temperaturel,,, compressor exit pressufg,and compressor exit temperature,

Ty
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Compressor

'_:> Control Volume |:>

Figure 3.4 Compressor block diagram with input and outputblasa

Compressor Maps

The compressor mass flow rate has been approximatedvasiable inlet
guide vane angles (VIGV) and flow velocity inside tloenpressor as compressor
maps (Walsh and Fletcher, 2004) are not available for theeuvie 50. The
derived mass flow rate is a function of pressure r&giodifferent rotational
speeds. The Mercury 50 gas turbine has a ten stage compardsartwo stage
turbine. The typical sketch of a compressor stage issho Figure 3.5.

A series of eighth additional assumptions are madéhf analysis of the
compressor performance, and hence, to draw the compreaper

A.10 The increase in the stagnation pressure is accongphghelly within the
rotor.

A.11 The inlet flow angleq 1) is 11° and the outlet blade anglg¢) is 51°.
A.12 The axial velocity is assumed to be a constaoutfhout the compressor

stage.
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Figure 3.5 Typical cross-sectional view of a compressmeswith the stator and
rotor blade profile (Saravanamugbal,, 2001)

A.13 Isentropic process.

A.14 Fluid friction is neglected.

A.15 There is no loss of stagnation pressure in therstage.
A.16 One-dimensional flow.

A.17 Stage compression efficiency is 0.9.

The air approaches the rotor with a velocitya€ an anglea 1 from the
axial direction (refer to Figure 3.6). Velocity relatieethe blade at an angt is
determined by combiningGrectorially with U. After passing through the rotor,
the absolute velocity increases and the air leavesotbe with a relative velocity
V, at an angleS, determined by the rotor blade outlet angle. Singes®ept
constant, the value of Ms obtained from the triangle relationship. The vadtie
C, is determined by combining vectorially,\and U at an angler,. The air
leaving the rotor atr ,, passes to the stator where it is diffused to a gl at

an anglea ;. Sincer 3=a 1 and G=C; based on similar velocity triangles for each
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stage, and sinc&a =Ca2=Ca, and from geometry of triangles as shown in
Figure 3.6.
The power input to the compressor stage and change in mngula

momentum of air passing through the stage are related as

We = mU( Gz ~ QM) (3.1)
which may be expressed in terms of the air angles andxial velocity of flow

as
Ws = mUC,(tana, - tarm,) (3.2)

Using the steady flow energy equation, the stage temgperdifference is given

as
AT, = Ve, (tana, - tarm,) (3.3)
C
pa
h \R //%\
Cq
l H Cm
Rotor _— i i

\

‘VZ 52 i I

l>a2\\‘32 \ 1
- Cwe |

Stator

Oa \P\
Ca

Figure 3.6. Velocity triangles for compressor’s sing#ge (Sarvanamuttet al,
2001)
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The pressure ratio for a single stage with a stagéragea efficiency,s,, may be

obtained as

P T,

0Sin Oin

I:%)Sout = |:1+/75 ATO S:| (34)

The air mass density at the stage outlet is given as

— PSout
IOSout R-I-Sout @
so that the mass flow rate becomes
M= 05, AC, (3.6)

The overall temperature rise for the compressor sudrsysnhay be

obtained as

U2
Toz - T01 = nlé/— (3.7)

pa
Where ¢ is the compressor temperature coefficient, and is ruéted
empirically. C . is the specific heat capacity of the incoming air mass.
The compressor subsystem pressure ratio is given as
ke
- k-1
L {1+,7c (—TOZ Tmﬂ (3.8)
I:%)1 TOl

Finally, the work input to the compressor subsystem magivan as
W, = m%a( 15 -51) (3.9)

The modeled compressor of a Mercury 50 gas turbine is showigure 3.7. A

small compressor torque value is desired since it repseentvork performed to



19

compress the air which reduces the overall efficiefit\e compressor torque is
dependent on the mass flow rate through the gas turlhieeinket and outlet
temperatures, and the compressor shaft speed.
Plenum

During transient operation of the turbine, the flow rabanges due to
variations in the fuel flow rate which is a functiohthe shaft speed and load. The
mass flow rate inside the combustion chamber may baantarily different than
the mass flow rate inside the compressor. To accourthis variance, a plenum
is introduced in the turbine model which acts as a mgsacitar. The plenum
hypothetically releases (or absorbs) air mass totaiaia steady mass flow rate.
Hence, the unsteady mass balance is modeled throughli@matc capacity
(plenum) with no energy involved. As shown in Figure 3.& ptenum is

considered as a control volume.

Figure 3.7 Mercury 50 gas turbine compressor located at Clemson
University’s campus facilities plant
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Figure 3.8 Plenum block diagram with input and output variables

The plenum is placed upstream of the combustion chamber
accommodate the unsteady mass balance within the cssopreducts,
combustion chamber, and the turbine ducts. The flow \gliziassumed to be
negligible inside the plenum .The formulation of tHenmpim is based on the
conservation of mass from which the time derivativethef compressor outlet

pressurepR,,,, iS given as

dRza - KRT,
dt v,

(rh, - m) (3.10)

wherev, is the volume of the plenunmy, is the outlet mass flow rate, and R is

the gas constant, The pressure differential equatiarfusction of the mass flow

ratesrn, and m,.
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Recuperator
Recuperator is the name given to the heat exchangerges aurbine,
where heat exchange takes place between the hot aedlthstream through a
separating wall. The recuperator was modeled as a comtoime, with the

boundary conditions as shown in Figure 3.9. H&g s the inlet turbine exhaust
temperature. The variableR, and T,, are the exit stagnation pressure and

temperature, respectively. Inside the recuperator, theunbine exhaust rejects
heat and the fresh charge from the compressor abkedbs Assuming the mass

flow to be constant, the heat exchange rate equatigiven as
Cpa(TOS —Toe) = Cpg( Tos— Tod (3.11)
where T, is the temperature of the gases exhausted from the remrperahe

atmosphere, an@ , is the specific heat capacity of the exhaust gases.résug

of the heat exchange, the recuperator increases theamjschir temperature
exiting the compressor. The outlet temperature for tloeperator may be
expressed as

Tos = T 1% (Tos_ Toz) (3.12)
where 77, is the recuperator efficiency or the thermal effetess. The thermal
effectiveness can be increased by increasing the vadiitiee heat exchanges in

order to obtain a higher rate of heat transfer.

There is also a pressure drofiP, in the recuperator and the outlet

pressureR, is given as
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Control Volume

Figure 3.9. Recuperator block diagram with input and output vasiabl

Ps;= F{)z[l—ﬁJ (3.13)
R
The pressure losses inside the recuperator are unavoiddaldarbbe minimized
by reducing the flow velocity.
Fuel System

The turbine fuel system model varies the fuel flow rateoeding to the
shaft speed and load. During load applications, transiemitamns occur which
result in a variation of fuel flow with time, until stha state conditions are
attained. The fuel map, shown in Figure 3.10, governs themyfste! flow, based
only on the shaft speed and applied electrical gendstdr The actual fuel map
for the Mercury 50 gas turbine is not readily available.r@loge, this map has
been generated empirically using experimental data setsdexl at Clemson

University. The fuel used in the Mercury 50 turbine is naturalwgiéh a lower

heating value of 61.4 MJ/Kkg.
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Figure 3.10. Fuel flow map based on system load and speed

Combustion Chamber
The combustion chamber (refer to Figure 3.11) is modeled psre
energy accumulator. The inside pressure and temperatur@dTs, have been
assumed to be homogeneous and equal to the outlet valuescombustion
chamber model is a control volume with mass and engansfer occurring

across the boundaries as shown in Figure 3.12. The elo@layyce is given as

dimy.) _ . .
%—mshm m( h+n, LH)- mh (3.14)

where m,, andu,, are the mass and the specific internal energy, resplc of
the gases inside the combustion chamiveyis the outlet mass flow ratef; is

the fuel flow rate,;is the combustor efficiency, and; is the enthalpy of the

fuel. The acronym LHV denotes the lower heating valuthefatural gas and is

defined as the amount of heat released by combusting diespregiantity of the
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.
ry 50 gasi¢uldsated at

Figure 3.11. Combustion chamber of a Solar Mer
Clemson University

i
cu

natural gas, initially at25C and returning the temperature of the combustion

products t450 C .
Assuming negligible variations in the mass andrivdkenergy, equation

(3.14) may be written as

T, (mhs+m (h+n, LHY) - mp)

d
&S oo :
" dt M, G

d

(3.15)

which gives the rate of temperature change indidecombustion chamber. The

time constant,$, ,is given by ¢ = Lnfc . Applying the continuity equation, the

3

exit mass flow rate becomag = m, + m; .

A pressure loss exists in the combustion chamber tu internal

aerodynamic resistance and momentum changes pduycehe combustion
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reactions. This pressure drop was incorporated into thelraodevas evaluated

using the Rayleigh effect, the outlet pressure may peeseged as
T f(To4/ Toa) (3.16)

Generally, Rayleigh analysis indicates that whenéwerstagnation pressurg,,
rises in a flow at a given Mach number there must eassociated loss in
stagnation pressurel,, independent of the frictional losses in the flow. The

pressure loss is in proportion to the heating (i.ee tise in stagnation

temperature) and is larger for Mach numbers close to.unity

m, : m ,
Combustion
Chamber Control >
_ Volume
my

coe |
96

Figure 3.12 Combustion chamber block diagram showing input @padito
variables

Turbine Subsystem
The Mercury 50 single shaft turbine has two stages withret@at
capabilities. The subsystem was modeled as a singleotamatiume with the

boundary conditions shown in Figure 3.13. Hot gases at presRyend
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temperaturel,, are supplied to the turbine where the hot gases expahdan

work on the turbine blades. The power produced by the expandieg gagiven

as

W = ﬁl%g(E‘ -Es)

The turbine outlet temperature is given as

T05 = To4 l_,7T 1- [ﬂJ

(3.17)

(3.18)

The parameten, , is the efficiency of the turbine. The exit pressuig is

considered atmospheric. Per equation (3.18), a greateredife between the

turbine inlet and outlet temperatures allows more worket@Xiracted from the

expanding gases. However there is a limit to the valu¢h® turbine inlet

temperature due to material and design constraints. Harow, exit temperature

may be desired.

=

W,
Air flow Turbine Control
— Volume —
m, Ms

Figure 3.13. Turbine subsystem block diagram with inlet andtotariables
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Shaft Dynamics
The shaft dynamics model considers the torque inputs/outmuts the
turbine, compressor, starter motor, the generator, dsawdriction. Applying

Newton's law to the torque balance offers the equation

d_w: Ip ¥ Ty —Tc —Tgi — T, (3.19)
dt I,

where J_ =J +J; +J,, +J_ is the lumped inertia of the compressor, turbine,

starter motor, and generator. Figure 3.14 shows the vanogses acting on the
stationary gas turbine. These moments of inertia afer@spect to the centerline

of the turbine shatft.

Starter Motor and Generator Load

For the normal gas turbine start up process which bringsithmé shaft
to a nominal angular velocity, the starter motor moaak introduced. The
induction starter motor provides the start up torque to ramgpeed from zero to
approximately 67% of the turbine nominal rotational speed (14,99W)Rat
which starter dropout occurs. The starter motor is)eoted directly to the turbine
system shaft. The starter motor also provides necedsamuye to drive the
compressor during the purge crank phase. This cycle occ2v8@of the turbine
nominal rotational speed and helps to drive out any rdsidelfrom the exhaust

system.

The torque generated by the starter motor is given as
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Figure 3.14 Torques acting on a stationary gas turbinegditsioperation
r,, =K/l (3.20)
where ), is the armature current given as

dl,,
dt

:%(—RAI +V; - K ) (3.21)

To determine the usable power that is obtained from théugaise engine
the power generator subsystem of the gas turbine was mod€hesd.in effect
converts the usable torque created by the turbine subsystemue not used to
power the compressor, into electrical energy. Faeriiodel the generator portion
of the gas turbine is modeled as the load subsystem \tedead is applied at
different times. The generator load is an input todjn@gamic model and can be
adjusted based on power generation needs. In other Wingrdariation of the load

input allows the model to be adapted to different operabingitions.



Symbol Value Units
A 0.19 n

Coa 1005 J/kg-K
Cpa 1148 J/kg-K
Ca 150 m/s

h 4.6e03 J/kg
Im 25 Amp
Jeq 0.4 kg-ni
Ka 14

Kq 1.33

LHV 61e06 J/kg
Mec 1 kg

n 10

Po1 101.3 KPa
AP 3 %

To1 298 K

R 287.4 J/kg-k
U 250 m/s

7, 0.9

Nec 0.95

s 0.85

1 0.9

,75 09

Tric 30 N-m
Y 0.35

Table 3.1 Summary of model parameters for the Mercury-50
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A variety of model input/output signals have been consit@reluding

the generator power, shaft speed, fuel flow, compresatetopressure, and

combustion chamber outlet temperature. A list of modempaters is provided in

Table 3.1. To validate the mathematical model, compasisbetween the

analytical model and the experimental results fromNtescury 50 gas turbine

have been studied and are presented in Chapter 6.
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CHAPTER 4
REAL-TIME PROGNOSTIC STRATEGIES

Health monitoring strategies estimate the current andgdutonditions of
a system to increase performance, reliability, and redueitenance and
replacement costs. Prognostic is a key componenisétktrategies and operates
in parallel with diagnostic modules to monitor and pregieint behavior. The
analysis of system health and prediction of remainimjulisife may be classified
as prognostics. Prognostics use past and current sggiemation data, individual
system histories, and system response charactetstiosecast behavior, hence,
providing a reliable health monitoring methodology (Greitaed Ferryman,
2003). The research project’s objective is to develop ma&l-tmonitoring and
prediction algorithms for stationary gas turbines to das¢ short and long term
system health and readiness using behavior models, dasgor, and statistical

analysis.

Gas turbines can experience various system faults dureig dperating
schedules. These complex multi-domain turbine systemsai@pender varying
conditions and locations which demand high reliabilityusscheduled “down
time” must be minimized by reducing susceptibility to degradati@and
breakdowns. A health management system can incorporaeqstc algorithms
to effectively interpret and determine the healthy worlspgn of a gas turbine.
Compressor fouling due to the deposition of inlet air pldiis a common

problem encountered in normal operation. Some of ther dijfpgcal system
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degradations include fuel nozzle erosion, nozzle choke,cantgpressor surge
(Boyce, 2005). System anomalies such as air intake clogmileg,guide vane
distortion, and oil blockage are less common but can teasgerious system
damage and need to be avoided (McAkgtral.,2003). During the past few years,
turbine faults including blade failure and recuperator leake logcurred in the

Mercury 50 gas turbine located at Clemson University.

To successfully control a gas turbine, from a maintenpecgpective, the
critical operating scenarios such as compressor surgesae turbine inlet
temperature, flame out, and high rotational shaft speexd Ineuavoided. A health
management system is typically a combination of diamad prognostic

modules which complement the plant controller in aaler manner (refer to

Figure 4.1).
> Dynamic System

L Inputs Outputs

Actuators | Controller  [% Sensors |«
Prognostic Module Signal Set
Signal Selection
|
+ Prognostic Predict Threshol: Notify User
g Algorithms Violation
»  Detect |—»| Isolate Identify Diagnostc
Module

controller for predictive calculations
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The implementation of these real-time modules allthes detection and
prediction of abnormal system behavior. Diagnostiategies utilize hardware
and software to detect, isolate, and identify a denatrom the normal plant
behavior. Prognostic algorithms focus on the estimatifaihe current health and
may predict critical component life. Prognostic sty&s predict the future health
state of a system (or component) from the presentabpgrconditions and

historical data.

The application of prognostics to a dynamic system lobanbased on
different methods including physical and empirical modé&lke mathematical
models can simulate the dynamic system behavioffiauee time for a given set
of inputs. The reliability of a model based prognostiatstyy is dependent on the
model’'s accuracy which requires an adequate understanfiihg process and its
mathematical representation. Other approaches maypmate the formulation
of rules based on data gathered from practical experiamtethe creation of
statistical models which determine behavioral trendseldging these rules and
statistical models often requires extensive data foittheas well as faulty
dynamic system operation. One drawback of these ap@®ashhat acquiring a
vast experimental database is not always feasible.s€hection of a specific
strategy is dependent on factors such as the availabil#gnsor data, frequency
of system or component failure, severity of failurmafcial constraints, and
impact of system failures (Byingtaat al.,2002).

A statistical and a wavelet approach have been imatet for gas turbine

health prognostics (refer to Figure 4.2). The real-timéissical strategy uses the
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logged sensor data to identify trends. Short and long tiemel$ are computed
using regression analysis. This technique predicts the dirfaldre, or threshold

violation, by forecasting system health at any desitgdré time. The second
strategy is based on wavelet analysis. Wavelet transfofmeal-time data are
used to compute the wavelet coefficients for a givebitersignal. A regression
analysis of these coefficients can be performed tectst these coefficients for
the desired prediction time. The new set of coeffisievbtained can be used to
reconstruct the signal, and hence, obtain the predicif the signal values for

future times.

Input , U(t)

Dynamic Plant » Outputs, Y(t)

\ 4

v v

Signal Conditioning (Concatenation & Filtration)

v U,Y5(
Correlatior of Input/Cutput Signal:

Statistica Wavelq
Analysis | u(t), y(t) Analysis

! — ! Variable i — — !
Model-Free Regression| : Selection || Wavelet Coefficients & Regressior !

!

Signal Forecast

Signal Forecast

—

Figure 4.2. Statistical and wavelet prognostic strategigsforecasting

Statistical Prognostic Strategy

A variety of statistical methods have been applied ¢alipt the useful life
of plant equipment and general dynamic systems (e.qinabev, 1999, Kim and

Mead, 1999, Dong and He, 2004). In general, prognostic methadsding
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statistical techniques, rely on historical data to idgr#yistem trends and predict
future behavior. Several statistical techniques have beeestigated to
characterize the data including moving mean and least-squasthods.
However, the latter method offers minimum error betmvéhe estimated and the
experimental data. The method weighs large errors nmare $mall errors and
positive errors equally with negative errors. Typicatlye least-squares method
uses polynomial curves ttescribe the data. Hence, system characteristichmay
described using regression analysis methods and extended inotifoeecast
plant behavior. A three step process is recommendethifoptognostic method:

signal selection, regression statistics, and sigmatésting.

Signal Selection Using A Correlation Method
Dynamic systems may have a variety of input (e.g., faneat, voltage)
and output (e.g., acceleration, vibration, current) $gytfzat can be measured

using appropriate sensors. Let these system input and ougmibrss be

represented byJ t(JR® and Y(t)O R, respectively. It is likely that these
signals may be discontinuous or arise from differentratpgy modes. Hence,
these signals may need to be filtered, concatenatddy@malized such that the

input and output vectors becon” t [[R® and Y“¢)XJ R'. A smaller set of

input and output vectors) t ()R" and y ¢ )J R?, may be selected to investigate

the system health based on a correlation analysisthits study, the correlation

between the system inputs and outputs IS given as
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As a general rule, the system outputs with a correlafig, | >0.80 for the given

inputs are selected.
Model-Free Regression Description

A multi-regression empirical model, based on tHected sensor signals,
may be created to describe the system'’s behavltrodgh these signals may be
affected by noise, it has been assumed that tise meay be negligible. However,
this assumption will be removed for the waveletgmastic method. For degraded
plant operation, the system’s steady-state outpould change so that time
dependent trends may be observed while the systgmigs remain constant

(Suleimaret al.,2001). Hence, time will be included in the predictmodel. The

derived regression modeZ,, , for the j" signal from the plant output vector y(t)

i

and the identified input signals may be expressed a

|z“ji|: (Z Z (ajqqu)zj | (=1,2,...m) (4.2)

k=1 gq=0

where the parameters n and r denote the numbetexfted independent variables

(input signals) and the regression order. The motyal coefficients

th R
Qi &y, COrrespond to of the™ regression order.
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The sum of squares of the deviatioli‘q,, between m time samples in the

composite sample dat&, (t)=[y;(t) .uk(t )]" ., and the regression curvé

1ji ]
becomes

‘QFZ:',KE(WJU)} ‘Z\] K (v (t))J LZZ(@k,t“)JT (4.3)

k=1 k=1g=0

where the equation (3) which may be minimizé&@, _o forqg=(0,1,...,r), to
oa;

Jak

obtain the regression curve by solving the (r+1) equahangerically as

m

aaL Zl[i(\ﬁk(t))ZJOIS‘[ii(%qktq)zjoT =0 (4.4)

jq:[o,r]k i=1 k=1 k=1g=0

Signal Forecasting
The motivation for a prognostic strategy is to prediet turbine’s future
behavior based on current and historical data. After ldpwvey a method to
analyze current behavior, a need existed to forecastrsyperformance. The
regression model can predict a variable’s value bothldensind outside the

estimation time interval. The regression coefflcsera , should describe the

signal trend so that time extension of the regressimve may estimate the
system’s future behavior. In general, the meaningful ptiedictime for the
regression curve depends on the estimation data. Tier ldre estimation data
sample size, the better the forecast since the cuvgldwbe termed “well
trained”. The dependent variable trends represent theténgsignal behavior,

rather than fluctuations caused by plant disturbances aadl dbanges. The
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forecast curve may be given as
nor ,\05
\Z\{ZZ(& ﬁq)j (=m+1, m+2,...m+f)  (4.5)

where m+f is the final time value. This forecast has an error of

1ji 1

£ :{i

[Zji -y (1)]‘/ m—l} which can be used for comparison purposes.
i=1

For the Mercury 50 simple cycle gas turbine twenty-egjghals are
recorded at regular intervals. The signals include obseneaurements such as

vibration amplitudes, temperatures, pressures, and flow (i&fes to Table 1).

The data is stored into the arngy) described as

yl(tl) yl(tz) yl(tm)
vy =| V2 :(tl) yz(:tz) - Y2 (:tm) (4.6)
yn(tl) yn(tz) yn(tm)

As in this case one input and one output are selecteedhession curve equation

becomes

Z =\/n > (ot ) 4.7)

=1 k=0

The sum of squares of the deviations between m paointeisample data and the

regression curvep , is given as

f>=§f£yj(t)—2)2=iwiyj O —\/iﬂa{ﬁﬂ (4.8)

i=1j=1 j=1k=0
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which is minimized to get a regression curve as _ , for k = (0,1,...,r). The
day

polynomial coefficients can be obtained by solving thel)r+equations

numerically

d fwi(yj@))z—Jjn r(akitik)z}z 0 (49)

aak[][O,r]j i=1 j=1 =1k=0

Finally, the prediction for the regression curve isnested as

Z=133 (a,t.*f (4.10)

j=1 k=0
such that m<L<m+twhere {is the desired forecast time.

Health Evaluation

A prognostic strategy can estimate the system’s fuhekavior to
facilitate maintenance scheduling and component repairadjustable set of
thresholds may be established for the statisticamastis so that a violation
results in appropriate action. Small variations in desy% output signal, without
a change in the system inputs, may be due to extraneous lnadluctuations,
and/or a slowly occurring degradation. In the proposeduatiah method,
forecasted signals are acceptable if they lie withtalkdished thresholds. For a

normally distributed steady-state signal, 95% of the ddwould lie within two

standard deviationsy . = {Li (y . (t)- v, )2} ~, of the sample meary, .
m

i=1
If the system forecast predicts a threshold violatiemedial action should be

dependent on the rate and severity of the thresholdtidal
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Data Enclosure

Often the experimental data points are scattered atbenegression line.
Ideally, a method may be created to visually representiéa and its variability.
To accomplish this, ellipses have been selected. lfaselis a closed plane curve
consisting of all points for which the sum of the amtes between a point on the
curve and two fixed points (i.e., foci) is the same. Asvwn in Figure 4.3, the
center of an ellipse is the point halfway betweerfoits f, and . The major axis
(i.e., 2f) is the chord that passes through the foei;ntimor axis (i.e., 2h) is the
chord that passes through the center perpendicular tmadior axis. The larger
axis receives the major designation, while the smalles receives the minor

designation.

2 2
Mathematically, an ellipse can be represente{i_f%zs» q —1} where p and

o
g are the coordinates of the two independent variablew.ck is also a form of
an ellipse of eccentricity zero, (i.e., one in whibke center and the two foci all
coincide). An ellipse can have two axes of differiagdths so it is an excellent
way to depict the variation in two data signals. Ones aan represent the
variation in one signal (e.g., fuel flow) while the athexis represents the
variation in the other (e.g., power generated). Usimgdstrd deviation,;sto
determine the size of each axis, a certain percentagéataf can then be
hypothetically enclosed within an ellipse. Or in thisecascertain percentage of

data can be enclosed within a series of ellipségpdes(set of ordered elements).
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The equation of the ellipse allows the tuples to be tedot

asp = % /(hz _qZ). As mentioned previously, a range that lies two stahdar

deviations on either side of the mean of a normakyrittuted sample encloses
95% of the points in that sample. The standard deviatibtie dwo signals being
analyzed were calculated based on the same set ofudathto predict the

regression curve. The length of the semi-major and-s@nar axis are given as

Sy, ) -9,
f=zoyit _________  ,h=2
m-1

where j and j denote two different turbine signals apdand g should be

Sy, )- P

i=1

(4.11)
m-1

pd(-f, f)and qO(-h h). Accordingly, a selection off can be made and the

corresponding value ob can be reached with knowledge fofand h as per

equation (4.11). The center of each ellipse is set onretir@ssion Iine[z(t)} SO

that the ellipse signifies two standard deviations offtied¢ flow signal and two
standard deviations of the power signal on either sideeofdgression line in the

y- and z-directions, respectively.

Major Axis ] f,

f1

Minor Axis

Figure 4.3. An ellipse with its major and minor axis
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Wavelet Prognostic Strategy

Wavelet transforms can be applied to time domain plagiats that
contain noisy, intermittent, and transient behaviorcAlgin et al., 2003). A
wavelet is a waveform of limited duration with a zeverage that converts a time
domain signal into a magnitude and time function (Aboufadel &chlicker,
1999, Addison, 2002). Wavelet transforms can be used for-diignsional
analyses which make them a powerful tool in analyzingraoditoring dynamic
systems (Suet al, 2005). For instance, wavelet transforms with neuralowks
can remove signal noise and predict nonlinear systemavimr (Fenget al,
2006). The wavelet transform can also be used to investipatgnant system
trends and derive the mean time between hard failures ¢Gab, 2003) within
the context of the diagnostic methods.

In this study, the wavelet technique will predict dynagsyistem operation
again using a three step procedure. First, wavelet tnamsfof the real-time data
will compute the wavelet coefficients for a given teys signal. Second, a
regression analysis of these coefficients can fotebaswavelet coefficients for
the desired prediction time. Third, the new set of wavelsefficients can
reconstruct the signal, and hence, obtain a prediction.

Wavelet Description

Any waveform functiong/(t) , can be selected for a wavelet transform if
it satisfies the condition of finite energy and assibility. The finite energy
condition (Daubechies, 1992) states that the enefgyof the wavelet function,

(t), should be limited as
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9= j|¢/(t)|2dt<oo f<w) (4.12)

The admissibility condition states that the wavdlatction has a zero mean,
E(w(t) =0, and that the Fourier Transform of the waveletctiom with
frequency F cannot be zerd,(F) # 0, within the support of the wavelet. The

admissibility constant for the wavelet function laafnite value

<‘:J‘:|wf:—|:)| dF (¢ <) (4.13)

In this expressiony (F) = j W (t)e'®™ * dtrepresents the Fourier transform of

—o00

@(t). The value of the admissibility constant is demsmndon the wavelet
function. A discrete wavelet transform uses anartiimal wavelet basis with the

wavelet function,g(t), to obtain the wavelet function , (t), at a given scale

and time a:s

_ 1 t_”Vou)c()

The parametersy 0 R and 5, o0 R denote the dilation (scale) and translation
(time) variables, respectively. The symbals and v, are wavelet control
parameters.

The term “translation” refers to delaying or hastgnthe onset of a
wavelet (i.e., a shift in time). The term “dilatiodenotes wavelet scaling (i.e.,

stretching or compressing). Low and high scalesaaseciated with compressed

and stretched wavelets. The scaling functigt),, is any waveform function that
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satisfies the conditioyﬁ @(t)dt =1. The scaling function at a given scale and time

—00

becomes

1 t—nvou}
P )= Xw( 7 j (4.15)

ug ug
Wavelet Coefficient Signal Processing

In some instances, the plant output signals may Mectatl by

disturbances,x,, and noise,«,. For example, considey,(t) = (1) +«, + &,
which is composed of signal characteristics, s(t), alditise components,, and

K,. A wavelet transform addresses signal noise by comptwiogets of wavelet

coefficients: detail and approximate. Signal detailerréd the high frequency
content of the signal which may be noise and distwdmrSignal approximations
are the low frequency signal content. If the high frequesayponents of the
signal are removed, then the signal still retains sonaeacteristics which can be
forecasted. However, if the signal approximations amneoxed, then the signal

may loose its primary characteristic and the residwaild likely be noise.

The detail and approximation coefficienl;?gwj and émi , were generated

on a dyadic scale (i.e., based on powers of two). Jilien discrete wavelet
transform of the learning window may be computed to oliteendetail and the

approximation coefficients as

7= [ ﬁw[t_ﬂ?’”ﬂdt =(y, 0. (1)) (4.162)
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2 ¢ 1 t —nv,ut

E)m = j Yi (t)\/U7¢( u)(0 ont - <yj(t)’¢(t)> (4.16b)
—00 o 0

Note that the detail and approximation coefficients al#aioed by the

convolution of the system signal with the wavelet acdling functions. The

similar analysis of the input signal provides the corredpgndetaily,, , and

approximation,&, ., coefficients as

Vin = (0.2 (1)), &, = (U (1), 0(1)) (4.17)
Form a practical perspective, the signal vectgfg§ and u(t) may be filtered
using the complementary filters in equations (4.16) and (4dli®alize low and
high frequency coefficients. The next step for the r@lgm is a least square fit to
obtain a regression model of the signal approximatie@fficeents.
Forecasting Methodology
The prognostic eliminates high frequency signal noisgutih wavelet
transforms, to predict the system behavior. The wawefficient regression
model for the selected variable may be derived from the oappation
coefficients. This regression model forecast the aysteapproximation
coefficients by performing a one dimensional inverse elgvtransform on the

coefficients so that

AD=Y &0, (4.18)

n=—o
The prognostic algorithm uses a fourth-order Daht@scwavelet (Daubechies,
1992) for both the wavelet and inverse waveletsiagmms. The corresponding

wavelet and scaling function for the fourth-orderubechies wavelets become
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3

Y =) dd2t-(e-3)]- ) dgd2t-(3- o], @t) =) d.g(2t-¢) (4.18)

e=1,3 e0,2 e=0
where the parameter$, and e represent the scaling coefficient and thénsc

coefficient index.



CHAPTER 5
EXPERIMENTAL SETUP

The real time prognostic strategies presented in th&stioan be applied
to dynamic systems for which input and output sensory infoomad available.
To apply these methodologies, experimental data is rejuoedevelop the
statistical basis, estimate future behavior, and compgaénst actual response.
Further, the dynamic stationary gas turbine model req@rgerimental results
for validation. During this project, extensive effortsrevenade to obtain physical
operating data sets so that the developed methodolagiakl be tested
rigorously. Hence, operational data was obtained froneethdifferent gas
turbines: a Solar Mercury 50 gas turbine, a General EdetHA gas turbine, and
a General Electric LM2000 co-generation gas turbine. Thelajea@ prognostic
methodologies were applied to various plant signals: fleese turbines, and the
numerical results compared.

Introduction to Gas Turbines

Gas turbines can be classified as either stationaryaeypnautical
propulsion. The stationary gas turbines are primarily usegdwer (electrical or
mechanical) production in domestic and industrial sedtorinstance, marine
engines for large ships and electrical power turbinegid®try gas turbines can
also be classified based on criteria such as typesmprassors (i.e., rotary or
axial), turbine cycle (i.e., simple or combined), shafalmgement (i.e., single or

multi spool), with or without heat exchanger etc. $s@ale turbines with power
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ratings less than 100 kW are called mircoturbines, thed®enes are used as
supplementary power sources for running heating and coolingensysfor
buildings.

The aeronautical propulsion gas turbines are used in aviatigh aircraft
engines. These aero gas turbines have had a great impide aincraft industry
as they are effective, efficient, and capable of opegator long durations.
Further the thrust generated by an aeronautical propwa®turbine ranges from
40-450 kN. These gas turbine aircraft engines are of threg tygmjet, turbofan
(where thrust is generated by a nozzle), and turboprop ¢wther thrust is
generated by a propeller). Gas turbines are also usedcesftag@uxiliary power
units to provide power supply for the electrical, hydrawdiml compression needs
while it is stationary.

The land based stationary gas turbines, typically uspdwrer generation,
have power range of 2-250 MW. If greater power productiomesessary,
combined cycle gas turbines may be used with 2,000 MW ratingssuedr
systems power production capacity of 2,000 MW maybe achievexbnfbined
cycle uses the energy available in the exhaust of dugbse (i.e., energy not
converted to shaft power). This exhaust produces steamvaste heat boiler, or
a heat recovery steam generator, to increase the powtput from a steam
turbine. In a co-generation plant, the exhaust energybmalso used to produce
hot water or steam to heat buildings or enhance chenpicadesses. The

generated steam can also be used to operate an absoghtigerator in water
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chilling or air conditioning. Most of the stationary gashines used for power

generation are designed to run for 100,000 hours without roegwhauls.

The Solar Mercury 50 Gas Turbine

The Mercury 50 gas turbine, shown in Figure 5.1, is used by #rasth
University facilities to provide supplemental electripalver to the campus. It is
a high- efficiency small-size gas turbine with low emoiss. The Mercury 50 gas
turbine is run during peak load conditions at the campus duringdh&ng hours
in winters and during afternoon hours in summers. ThecMy 50 has a power
production capacity of 4.5 MW with a maximum rotational spesd
approximately 14,800 RPM. It contains a ten stage compresdoa &wo stage
turbine. It consists of a single shaft recuperated cyclarte engine, a generator
with accessories, and auxiliary systems. The heatafi Mercury 50 is 9,359
kJ/kWh with an electrical efficiency of 38.5%. Unlike mdstv rating gas
turbines the Mercury 50 incorporates a heat exchangerisamot an aero-
derivative gas turbine. The inlet of the compressor thatcenter of the system
with the combustion chamber at the end to facilitatééntenance and compressor
wash.

The Mercury 50 stationary turbine's operation can be decbmat the
Clemson University research facility computer workstatidga determine the
status of the gas turbine's operation including system tamopes, pressures,
vibration levels, and power output. This real time output da available for

observation and use with diagnostic and prognostic madLifescontrol over the
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Figure 5.1. Mercury 50 as turbine at Clemson University
operating scenarios of this gas turbine enabled the réstsm to specify its run
duration and operating points so that data could be obttnedrious scenarios.
The Mercury 50 was run for both healthy and faulty opegatcenarios; the
faulty run data is not readily available from the gab®ihe manufacturers as it is
proprietary therefore, the turbine was run with seedalisf such as oil cooler and
relief valve failure and the data was recorded.

The experimental data from the Mercury 50 gas turbinecsrded using a
IPCOS technology OPC for Matlab software. This safevconnects the Mercury
50 to the computer workstations in the Energy Systems hadygrat Clemson
University through a RSLINX OPC serveékt present, twenty eight signals are
recorded and transmitted to the Matlab software intmeal. Figure 5.2 shows the
flow of data for the experimental setup, different sessre shown with some of
the signal recorded from these sensors. This data ebt&iom the turbine is

stored in the form of arrays in Matlab which can bwlgzed by relevant
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algorithms. The data transmission from the Allen Brgd®LC is one way so that
the turbine operation is not affected.

The data acquisition is started by running the initializingtldlacode
through the workstation at the Energy System Laboyatwhich includes
specifying the signals to be recorded and the time forhwthie data has to be
acquired. The present data acquisition rate is one sebisndata acquisition rate
can be varied according to the desired rate of samplinge Gnhitialized the
algorithm records and stores the desired data signals. Tdnésdecquired from a
set of 180 sensors located at the various points in tlieuxe50 gas turbine. In
Figure 5.3, the main sensor locations are displayed irti@aldio the signals
detected at those points.

The General Electric 7EA Stationary Gas Turbine

The second experimental power plant turbine is a GE T&far(to Figure
5.4) mid-size gas turbine located at a Santee Cooper Raingr pgpemerating
station in Anderson County, SC. The GE 7EA is used for ek sharing in a
combined cycle power plant throughout the year. The GB Fh&s a power
production capacity of 85 MW with a maximum rotational speed,600 RPM.
The GE 7EA power generation setup consists of a singl, secuperated cycle
turbine engine with a sixteen stage compressor having a eesimpn ratio of
12.6:1. The heat rate of a GE 7EA is 10,991 kJ/kWh with an zippsite mass
flow rate of 292 kg/s, the net efficiency is 50%, when used combined cycle
plant. The multiple fuel combustion system enablesGEe7EA to be run on a

variety of fuels, consequently the GE 7EA can switomfone fuel to another.
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Real time experimental data can be recorded from thisugage at a
variable rate using an extensive network of installed sen$ersurrent sampling
rate is one minute. The run time for the gas turbine sedaon the power
generation and heat needs, the kW of power generated depetigsoverall load
on the Rainy power generating station. Extensive dataasetavailable for the
GE 7EA gas turbine from the Rainy power generating staliba recorded data

represents the operation of this gas turbine over adoefithree years.

The General Electric LM2000 Gas Turbine

The third gas turbine from which experimental data has bb&ined is
the GE 2000LM (refer to Figure 5.5) located at Louisiana &tateersity (Baton
Rouge, LA). It fulfills the electricity and waste heggneration requirements of
LSU cogeneration plant. It is an aero derivative gabine with a maximum
power production capacity of 18 MW with a maximum rotatiospeed of 5,000
RPM. It has a sixteen stage compressor with a compressio of 20:1 and a six
stage turbine. It has a heat rate of 9,374 kJ/kWh with arathermal efficiency
of 36.4% and the mass flow rate is 62.72 kg/s. Steady stadatatontinuous
turbine operation up to 24 hours at a sampling rate of eergls is available

from the Louisiana State University cogeneration plant
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CHAPTER 6
EXPERIMENTAL AND NUMERICAL RESULTS

A variety of signals from the Solar Mercury 50 and @eneral Electric
7TEA were recorded and analyzed. This chapter presentsxpeeiraental and
numerical results to validate the dynamic turbine maoaed the proposed
prognostic methodologies. First, based on the experahdata from a Mercury
50 the validation results for the mathematical model@esented. Second, the
two proposed prognostic methodologies are applied taeliffelata sets collected
from the Mercury 50. Third, the prognostic algorithms alonigh wsignal
conditioning methods are applied to long term data seta &a0GE 7EA gas
turbine.

Analvytical Gas Turbine Model Validation

The dynamic simulation model consists of the diffeedrand algebraic
equations presented in Chapter 3. The subsystems have beehJihkeone
another in MATLAB/Simulink to create a simulation ta@t that uses the ODE
(Dormand-Prince) variable step solver. A variety of madplut/output signals
have been considered including the generator power, shadt,speel flow,
compressor outlet pressure, and combustion chamber detigierature. To
validate the mathematical model, comparisons betwaemnalytical model and
the experimental results from the Mercury 50 gas turbine baen studied. Each

of the signals (e.g., shaft speed, power, fuel flow,pressor outlet pressure, and
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turbine rotor inlet temperature) were superimposed on thairesponding

experimental results graphs.

The model validation of the turbine shaft speed shaft speskoisn in
Figure 6.1. Due to fuel flow variations before steadyestehavior is obtained,
there is some deviation of the model results frometkgerimental shaft speed.
Apart from this discrepancy between 100<t<650s, the modelsshdose
resemblance to the experimentally determined speed dostdady state profile.
In Figure 6.2, the validation of the estimated power géeers presented. The
model results show good correlation to the experimeaptallts for the start up,
the transient and the steady state operation. A goochrhats been obtained (i.e.,
within 0.5 % of the experimental data). It can be obsertleat the model
simulates the start of power generation at t= 400s #fee initial start up, and
sequential loading at 400<t<650s, and the attainment of stetate at
approximately at t=650s.

The model validation for fuel flow rate is presenteérigure 6.3. Since no
fuel control information is available, fuel flow map hd®en generated
empirically. The model adequately predicts the actualffoel during the loading
sequence between 200<t< 700s and closely matches the statadypehavior.
Figure 6.4 displays the estimated and actual compressiet ptessure (PCD).
Although there are some deviations between the analyticdl experimental
results during the start up phase, the steady-statdsregyree closely. Finally,
Figure 6.5 presents the comparison between experimerdatgrmined and

analytically estimated turbine rotor inlet temperature.
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Prognostic Methods - Application to a Mercury 50 Gas Terbin

In this initial study, two signals were related to timeing the least-
squares method and a second-order polynomial curve 8tiwh signals can be
any of the twenty-eight signals listed in Table 6.1. Rile, F1, and power
generated, PW, were considered to be suitable for repirggsesome of the
characteristic behaviors of the Mercury 50 stationgag turbine. Figure 6.6
displays a sample of two signals, fuel flow rate (kg/s) power generated (kW),
for a healthy turbine operational run. This data repressiptaly state behavior
which is obtained 4,000s after the initiation of the turbineamna continues till
9,000s. After this period the turbine shutdown process istiediand the turbine
ceases operation at 10,000s. Once the initial cold staxdmplete, the turbine
reaches peak power generation in about 1,000s. The turbine ¢yashités into
steady state behavior but still there are fluctuationghe power generated for
another 3,000s after which the turbine runs smoothly. Heheedata window
from 4,000 to 9,000s is assumed to be a steady state period.

Figure 6.7 displays the computed multiple regression cunedlias4,000
steady state data points for fuel flow and power geeéréte., 4,000<t<8,000s
after the initial start up). The algorithm computes tkeosd order multiple-
regression curve in real-time. As data is recorded, tigeession curve is
computed based on the logged data points so that this csrugdated
continuously as more data is recorded. The longer the ialuraf the data
recorded, more representative would be the regressioe aifirthe signal trend

and turbine behavior. The second order polynomial fit has error of
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approximately 1.4% for both the fuel flow and power gendratbich is within
acceptable limits oft5%.
Figure 6.8 displays tuples plotted with major and minasasized as two

standard deviation for power and fuel flow signalsi f (F1, PW), respectively

for a sample of 4,000s after steady state has beernveghiehe tuple centers lie

on the regression curve shown in Figure 6.7.

Variable| Description of Variable Units
Al Compressor inlet acc. gE
A2 Center frame axial acc. gE
A3 Compressor diffuser acc. gE
A4 Generator driven end acc gE
A5 Gearbox acc. gE
Bl Gas producer Brgl Y-axig mil pp
B2 Gas producer Brgl X-axig mil pp
B3 Gas producer Brg2 Y-axig mil pp
B4 Gas producer Brg2 X-axig mil pp
B5 Gas producer Brg3 Y-axig mil pp
B6 Gas producer Brg3 X-axig mil pp
C1l Relief valve position %
C2 Air diverter valve position %
F1 Fuel flow rate kg/s

NGP Turbine shaft speed %
P1 Gas fuel supply pressure Pa
P2 Lube oil pressure Pa
P3 Compressor outlet pressure Pa
PF Power factor
PW Generated power W
T1 Lube oil temperature °K
T2 Inlet air temperature °K
T3 T7.1 average °K
T4 T7.0 average °K
T5 T2.45 average °K
T6 Turbine inlet temperature °K
T7 Enclosure temperature °K
V1 Alt average L-L volts V

Table 6.1. Gas turbine data acquisition signals
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As the data is updated in real-time, the tuple radius vavith changing
standard deviation of the data. These tuples will idesllylose 95% of the data
for a healthy turbine run. These tuples allow one to lizeighe behavior of the
turbine. The points outside of the tuples represent pawturring during
operation that are greater than two standard deviatibtie secorded data away
from the trend line.

Figure 6.9 shows the forecast between 8,000 and 9,000s for théndat
Figure 6.6. A learning window encloses 4,000s of prior data.sEHipvith semi-
major and semi-minor axis as two standard deviationth@®steady state data for
fuel flow and power generated. A comparison between thealaekperimental
data and the forecast gives an error of approximately Aighws again within the
acceptable limits oft5%.

The signals from a Mercury 50 gas turbine were analyzed)sscond-
order Daubechies wavelets. The initial step computes theregt wavelet
transform of the signal to generate the wavelet meffts (i.e., a set of detail and
approximation coefficients). The gas turbine signal setketas power, PW. As
shown in Figure 6.10, the steady state turbine signal (pofwera period of
5,000s was divided into two windows: learning and validation.

Figure 6.11 displays the low frequency approximation wavelefficients
for the learning window for 4,000<t<8,000s. The values of theseilea
coefficients depend on the wavelet function, being usexhalyze the signal. Due
to “down” sampling the number of wavelet coefficierstgxactly half the number

of data points in the sampled signal.
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Figure 6.12 shows the first level wavelet approximation nsizacted
from the approximation coefficient vector for the signat can be seen, the
length of the signal approximation is equal to the surthefdesired forecasted
signal (i.e., 8,000<t<9,000s) and the learning window (i.e., 4,8@0800s). The
first 4,000s are the signal approximation and the last 1,0@)<har forecast
approximation. A comparison of the actual signal (redefFigure 6.10) and the
reconstructed signal approximation (refer to Figure 6.12)tHer initial 4,000s
reveals that the signal approximation does not have tlmeft@guency content of
the original signal (i.e., is the signal details). idfere, the signal details were
extraneous and may be filtered out.

Figure 6.13 shows the comparison of the forecast for pgemerated for
the next 1,000s and the corresponding experimental ddta forecast validation
window as described earlier. The thick line representsvéhwelet forecast which
has been superimposed on the experimental data. Thedbimes not vary as
much as the original signal but can be assumed to epirét®e mean value of the
signal forecast for a given time window. The foredsstithin 2.3% of the actual
experimental data which is within acceptable limits.

Figure 6.14 shows the wavelet forecast for fuel flow poer generated
versus time in three dimensions. The power generateanedgzed as a function
of fuel flow and time using two-dimensional discrete welvdéransform. The
signal was analyzed for a period of 4,000s to obtain gmakapproximation and
the signal details were filtered out. Then based los karning window, an

approximation of the signal forecast was obtained fer mtlext 1,000s. This
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technique was used for a case study to compare thdicthatend the wavelet
forecast. The comparison between the forecast appatiwimand the actual
signal for the next 1,000s gave an error of approximately .2.4%

A case study was conducted in which the two prognostic tectmigere
applied to two turbine signals. The selected signals wWerdurbine rotor inlet
temperature, TRIT T6, and the compressor outlet presfl@eA turbine run
window of t=17,000s was selected for the learning data. Thecdst was
computed using both the statistical and the wavelet methothé next 4,000s.
Figure 6.15 shows a comparison between the two techniqoeg alith the
respective forecast as labeled. The upper and the lowerscwithin the forecast
window in the figure represent the statistical and thavelet forecast,
respectively.

A comparison was performed between the two forecastesuand the
actual experimental data to compute the error, and hesmapare the two

methods. It was observed that for rapidly fluctuatitaga, the wavelet analysis

was more stable. The TRIT error, computed in the mamnwas49 F and82 F
for the wavelet and statistical forecast methodspeesvely. The pressure
forecast error was approximately 21kPa and 34.2kPa for eatmoadneThe
forecasting errors for both TRIT and pressure wethiwthe acceptable limits of

+5%.
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Prognostic Methods - Application to a General ElecGBA Gas Turbine

The GE 7EA input signals included power generated (PG), fuelrébsy
(FF), and inlet guide vane angle (IGVA). The set ofpatitsignals selected to

forecast system health consisted of turbine inlet tempes (), compressor
delivery pressure (PCD), generator temperatiigg, (exhaust temperaturd, ),
compressor discharge temperatuie,, compressor inlet mass flowT{ ),
generator maximum vibrationA(, ), and gas turbine maximum vibratio’\(, ).

The output signals were selected based on their higlelabons with the three

input signals as shown in Table 1. For instance, the wiihiet temperature has
correlation values ofR,|=0.83, |R,|=0.83, and |R,| =0.88 with the PG, FF,
and IGVA signals, respectively. Hence, the turbine t@etperature is selected as
a signal to analyze sin#Ejk‘ > 0.80 for all three input signals.

Prognostic Methodologies
A three step process was followed to analyze tH@rte inlet temperature,

T, . First, the steady-state signal was conditionedltin a concatenated and

filtered signal. Second, the statistical prognostiethodology was applied to
obtain the signal forecast. Third, the wavelet rodtivas supplied the same signal
to predict the system behavior. Finally, a compmarisf the two methods was
performed. Note that for real-time applicationse ttlesired system operating
mode must be present before signal filtering aralyais; signal concatenation

will not occur.
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Signal Conditioning

The turbine inlet temperature profile is shown in Figure 6fé6a period
of t"=59,000 minutes. The signal is somewhat oscillatory dueatt sps, shut
downs, and different operating loads. For a meaningfalyais of the turbine
data, three operating ranges (or modes) were identibedhie turbine inlet
temperature (200-40GQ, 400-600C, and 600-80QC). These operating ranges
are user-defined and typically based on turbine operatindesnde.g., light,
medium, and heavy loads per electrical power generatingraish

The turbine inlet temperature range 600<T,; < 800C was selected
since this corresponds to the most common operating nfomeomum turbine

load. Specifically, the turbine runs for t=32,200 minutes oftthal t”=59,000
minutes in the heavy load mode. In Figure 6.16b, the conc¢atkdata for the

turbine inlet temperature has been displayed. The nsiktwas to normalize the
concatenated data using a simple filﬁqF:Yj(i+1)—\j((D to further reduce
fluctuations. The filtered turbine inlet temperature wathmean value of zero,
refer to Figure 6.16¢, shows variations about the aciyrgismean,y; . The data
has been divided into the learning (i.e., 0<t<22,200 minuted)tlze validation
(i.e., 22,200<t<32,200 minutes) window&, and W, . The prognostic algorithm
used the learning windowW, , as the training data for the regression curve to

detect trends. The estimated system forecast was ¢bewpared with the

experimental data in the validation windoW, , to gauge the prognostic method

accuracy.
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Statistical Forecasting

The filtered signaI,YjD, was analyzed using the statistical methodology to

predict the system behavior. In Figure 6.17a, the regressiove for the initial

turbine inlet temperature learning data has been graphed viensuJ he derived

regression curveZ. , forecasts the system operation for a period of t=10,000

i
minutes (i.e., 22,200<t<32,200 minutes) as shown in Figure 6.17ken Wh
comparing the predicted and actual data in the validatiowlow the forecast
error is 11.47%. The system operation forecast for turbifet temperature
mapped back into the operating domain along with the farecas boundsit¢,

is shown in Figure 6.17c. Note that the forecasted siglisgdlays a non-
fluctuating behavior which predicts the signal mean rathan the specific
fluctuations which may be an advantage.

Wavelet Forecasting

The wavelet prognostic algorithm computes the fourth-ordavelet

transform of the filtered dat&/,”, in the learning windowy\, . This transform

i
yields the low frequency (approximation) and the high frequéaetail) wavelet
coefficients. A least squares fit was performed on g@aimation coefficients
(refer to Figure 6.18a) with the coefficients forecadted=10,000 minutes. The
signal approximation was reconstructed from the coeffisidoy taking the
inverse wavelet transform. The length of the reconstdusignal approximation
was equal to the sum of the desired forecasted sigdatihe learning window. A
comparison between the forecast and experimental Her turbine inlet

temperature for 22,000<t<32,000 minutes is shown in Figure 6.h@lthick line
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represents the wavelet forecast which has been sypesad on the experimental
data; the forecast error estimation is 9.23%. For &ibettual representation, the
filtered data and the signal forecast are mapped backthe operating domain
along with the error bounds;e, as shown in Figure 6.18c. A three dimensional
representation of the statistical and the waveleecast for turbine inlet

temperatureT,;, versus the three input signals power generated, inlet gaite

angles, and fuel flow during the forecast window (22,200<t<32r2D@ites) is
presented in Figures 6.20-6.25. As shown the turbine inlet tatoperis a
function of the three input signals.

Comparison of Results

A comparison of the two prognostic techniques, based enfdiecast
error values, has been presented in Table 6.2. In adddidhe turbine inlet
temperature, four other plant signals were forecastddtlair respective errors
computed. In each of the five cases, the wavelet mefroduced a lower
forecast error and may be ranked as the better progrsbsaiegy. Overall, the
forecast errors are acceptable for both the methadlsldpendant on steady-state
plant operation in well defined modes. To implement waeelet prognostic
strategy in real-time, the general algorithm is showfigure 6.19. A variable

length user defined windowW,, must be selected to calculate the wavelet

coefficients and predict future plant behavior. At tpprapriate time, new data
may be obtained and the process continues. Noterthaial-time, the forecast
error will be small as the signal variations within arugefined window would be

negligible and no concatenation would be required.
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Signal No. Signal Correlation,‘D _k‘ Forecast Error, %
Description : —

PG FF | IGVA| Statistical| Wavelet
1 T 0.83 | 0.83| 0.88 11.47 9.23
2 T. 0.83 | 0.83| 0.87 10.40 8.87
3 Tex 0.99 | 0.99| 0.98 9.49 5.24
4 A, 0.89 | 0.89| 0.87 10.43 9.69
5 A, 0.82 | 0.82| 0.56 10.89 9.01

Table 6.2. Comparison of statistical and wavelet prognéstecast for five GE
7EA gas turbine output signals based on the three inpuisigmaer generated
(PG), fuel flow (FF), and inlet guide vane angle (IGVAYyer a 10,000 minutes

validation window
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Figure 6.19 Real-time application of the wavelet prognasgthodology
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The health monitoring of simple cycle gas turbines requiead-time
prognostics strategies to increase performance and rgjialiiereby enabling
cost savings and increased operator safety. A dynamic mmatical model
representing a Mercury 50 gas turbine has been developesuaretical results
have been obtained by simulation. Physical and thermadigniaws have been
used to describe the system dynamics. This mathematiodelmhas been
transformed into a computer algorithm in the MATLAB/Simll environment.
The simulation results have been compared with reptabee experimental data
gathered for a standard turbine. The estimated turbine behzompares well
with the actual data. This model can be used in a Mods&ebprocess diagnostic
strategy and represents a key contribution to the fieleta-time simple cycle

gas turbine health management systems.

Two model-free real-time prognostic strategies with i@ppbns to
stationary gas turbine have been presented. Representaperimental results
have been compared to validate the accuracy of the mopmgproaches. The
estimated forecast for different turbine signals congarell with the actual test
data. It can be concluded that the wavelet transforndias¢éhod is better, as the
forecasting error is less for the former for eaclhefsignals studied. This can be
attributed to the “de-noising” of the actual learning sigaalthe high frequency

content of the signal (i.e., the signal details)fillered when the wavelet
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coefficients are computed. This filtering helps to idgntiife hidden trend of the
signal and the corresponding forecast follows the tegritihence a good forecast
is obtained. For the statistical method, no filterisgapplied which leads to
greater forecasting errors. The developed approaches mesgthen parallel for a

diagnostic algorithm to monitor stationary gas turbineesydtealth.

Recommendations

The future work for the research team is to extend theeldeed
methodologies to other gas turbine configurations such asdimbined cycle
systems. On the basis of the research conducted, aefeammmendations have
been suggested. For the turbine dynamic model, new sabsysteed to be
included to represent a combined cycle gas turbine. System paramwdl have
to be adjusted and model validation performed. For the psbgnstrategies,
different signal combinations may be investigated toclse system health. In
addition, higher level wavelet decompositions may beopedd to compare the
forecast results for different transform levels. piedict transient behavior the
length of the learning data windows may be made smalfiagcshort term forecast
is obtained. Finally, the prognostic strategies maapelied to other dynamic

systems for which the sensory information is readiilable.
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Appendix A Matlab/Simulink Code For The Analytical Model

Matlab Code

% Matlab Simulink Model for Mercury 50
% Matlab file: ModelFile
% Simulink File: TurbineModel

clear all
clc
load turjunl4;

%Model Parameters

comp_area=0.19; % Compressor Area
specific_air=1005; % Specific heat air
specific_gas=1148; % specific heat gas
specific_ratioair=1.4; %k

specific_ratiogas=1.33; %k
lower_heatval=61000000; %LHV

hf=4600 %Enthaphy

CA=150; %Axial velocity
jeg=0.4;

m_cchamber=1;

ns=10; % Number of stages
press_inlet=101.3; %lInlet Pressure
press_drop=3; %Pressure Drop
temp_in=298; %Ilnlet Tmperature
R=287.4;

U=250;

96%%0%%% %% %% %0%0%0% % %% %% %% %0%0% %% % %% %% %0%0%0% % %% %% %% %0 %% %% %
%Various efficiencies
96%%0%%% %% %% %0%0%0% % %% %% %% %0 %% %% %% % %% %0%0%0% % %% %% %% %0 %% %% %

eff_comp=0.9; %%% compressor

eff_cchamber=0.95; %%% combustion chamber

eff_recup=0.85; %%% recuperator

eff _turbine=0.9; %%% turbine

eff_stage=0.9; %%% stage

fric_tor=30; %% % friction torque

temp_coeff=0.35 %%% temperature coeffi cient

96%%0%%% %% %% %0%0%0% % %% %% %% %0 %% %% %% % %% %0%0% % %% %% %% %0 %% % %% %% %
%Data conversion

96%0%0%%% %% %% %0%0%0% % %% %% %% %0%0% %% %% %6 %% %0%0%0% % %% % % %% %0 %% %% %% % %
A=double(temp199);

A=A(807:9402);

A=A/1500;

T=[1:8596];

V1=[T;A];

%PIlots for the model and the experimental data
sim(‘turbinemodel2’);
figure(1)



plot(TM,CompressorMflow) % plots the mass flo
time

xlabel('Time(sec)")

ylabel('Mass Flow(Kg/sec)")

axis([-.01,8000,0,18])

grid on

figure(2) % plots the shaft speed versus time
plot(TM,ShaftSpeed,'--',tt(1:10000)-
338,double(temp_1(1:10000))*1.4862)
xlabel('Time(sec)")

ylabel('Shaft Velocity(rad/sec)’)
axis([-.01,8000,0,1700])
legend('Simulation’,'Data’)

grid on

figure(3) %plots the powere generated versus time
plot(TM,Power,'--'tt(1:10000)-809,double(temp199(1
xlabel('Time(sec)")

ylabel('Power(KW)")

axis([-.01,8000,0,3300])

legend('Simulation’,'Data’)

grid on

figure(4) % plots TRIT versus time
plot(TM,CombustionChamberTemp,'--',tt(1:10000)-
338, ((double(temp295(1:10000))-32)*.5555)+273.15)
xlabel('Time(sec)")

ylabel('TRIT(K)")

axis([-.01,8000,0,1800])

legend('Simulation’,'Data’)

grid on

figure(5) % plots PCD versus time
plot(TM,CompressorOutletPressure,’--',tt(1:10000)-
338,((double(temp74(1:10000))-6240)*.05526)+100)
xlabel('Time(sec)")

ylabel('Pressure(kPa)’)

axis([-.01,8000,0,1100])

legend('Simulation’,'Data’)

grid on

figure(6) % plots fuel flow versus time
plot(TM,FuelFlow,'--',tt(1:10000)-338,(double(temp4
6240)/89856)

xlabel('Time(sec)")

ylabel('Fuel Flow (Kg/sec)")

axis([-.01,8000,0,.24])

legend('Simulation’,'Data’)

grid on

W rate versus

:10000)))

6(1:10000))-
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Appendix B Matlab/Simulink Code For Data Acquistion

Matlab Code

% DATA ACQUISITION PROGRAM FOR MERCURY 50

9%0%%%% %% %% %% %%%%6%6%6%6%6%6%6%6%6%6%6%6%6%6%% %% %% TP PP PP
%%%

The code tests the availability of the MXOPC server and waits for
an error if no error is detected (i.e., the connect ion has been
established for the Mercury 50 stationary gas turbi ne)the data

can be transmitted
%%%%%% %% %% %% % %% %% %% % %% %% %% %% % %0 %% %0 %0 R S A s
%%%

mxopc ?

hr=mxopc('open’,’'RSLinx OPC Server','localhost',100 0)

hr=mxopc('BrowseRoot");

hr=mxopc('BrowseFolders')

hr=mxopc('BrowseDown','M50");

hr=mxopc('BrowseDown','Online");

hr=mxopc('Browsedown’,'/N11");

%

%

%

StartTime=clock;

%

for n=1:30000
%%%%%%%%% %% %% %% %% %% % %% %% %% %% %% % %% %

BT AI8/0%0%0% %0 % %% %%

% Data Acquisition is started by specifying the sig nals to be
recorded to the MXOPC server for the Mercury 50 sta tionary gas
turbine

%%%%%%%%%%6%% %% %% %% %%%% %% %% %0 % %% %% %Yo RIS
[v1,hrl=mxopc('ReadInt’, [M50]N11:1";
[v2,hrl=mxopc('ReadInt’,[M50]N11:19";
[v3,hrl=mxopc('ReadInt’,[M50]N11:20";
[v4,hrl=mxopc('ReadInt’,[M50]N11:22");
[v5,hrl=mxopc('ReadInt’,[M50]N11:23");
[v6,hrl=mxopc('ReadInt’,[M50]N11:24");
[v7,hrl=mxopc('ReadInt’,[M50]N11:25");
[v8,hrl=mxopc('ReadInt’,[M50]N11:26");
[v9,hrl=mxopc('ReadInt’,[M50]N11:27");
[v10,hr[=mxopc('ReadInt’,[M50]N11:28";
[v11,hrl=mxopc('ReadInt’,[M50]N11:29";
[v12,hrl=mxopc('ReadInt’,[M50]N11:30";
[v13,hrl=mxopc('ReadInt’,[M50]N11:31";
[v14,hrl=mxopc('ReadInt’,[M50]N11:32";
[v15,hrl=mxopc('ReadInt’,[M50]N11:33";
[v16,hrl=mxopc('ReadInt’,[M50]N11:34");
[v17,hrl=mxopc('ReadInt’,[M50]N11:43");
[v18,hrl=mxopc('ReadInt’,[M50]N11:46");
[v19,hr[=mxopc('ReadInt’,[M50]N11:51";
[v20,hr[=mxopc('ReadInt’,[M50]N11:54";
[v21,hrl=mxopc('ReadInt’,[M50]N11:57");
[v22,hrl=mxopc('ReadInt’,[M50]N11:60";

10% %% %% %%
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[v23,hrl=mxopc('ReadInt’,[M50]N11:64";
[v24,hrl=mxopc('ReadInt’,[M50]N11:65");
[v25,hrl=mxopc('ReadInt’,[M50]N11:66");
[v26,hr[=mxopc('ReadInt’,[M50]N11:71");
[v27,hrl=mxopc('ReadInt’,[M50]N11:73");
[v28,hrl=mxopc('ReadInt’,[M50]N11:74");
[v29,hr[=mxopc('ReadInt’,[M50]N11:76");
[v30,hrl=mxopc('ReadInt’,[M50]N11:79";
[v31,hrl=mxopc('ReadInt’,[M50]N11:80";
[v32,hrl=mxopc('ReadInt’,[M50]N11:81";
[v33,hrl=mxopc('ReadInt’,[M50]N11:82";
[v34,hrl=mxopc('ReadInt’,[M50]N11:87");
[v35,hrl=mxopc('ReadInt’,[M50]N11:88");
[v36,hrl=mxopc('ReadInt’,[M50]N11:89";
[v37,hrl=mxopc('ReadInt’,[M50]N11:91";
[v38,hrl=mxopc('ReadInt’,[M50]N11:92";
[v39,hr]l=mxopc('ReadInt’,[M50]N11:103");
[v40,hr]l=mxopc('ReadInt’,[M50]N11:104";
[v41,hrl=mxopc('ReadInt’,[M50]N11:107");
[v42,hr]l=mxopc('ReadInt’,[M50]N11:189";
[v43,hr]l=mxopc('ReadInt’,[M50]N11:199";
[v44,hr]l=mxopc('ReadInt’,[M50]N11:225";
[v45,hr]l=mxopc('ReadInt’,[M50]N11:291";
[v46,hr][=mxopc('ReadInt’,[M50]N11:292";
[v47,hrl=mxopc('ReadInt’,[M50]N11:293";
[v48,hr]l=mxopc('ReadInt’,[M50]N11:295";
[v49,hr]l=mxopc('ReadInt’,[M50]N11:308";
[v50,hr]l=mxopc('ReadInt’,[M50]N11:310";
%%%%%%%%%%6%%%% %% %% %% %% %% %% %% % %% %% %% %0 %0 %0 %% % %% %% %%
% Once the data has been recorded the connectio nis closed
%%%%%%%%%%6%%% %% %% % %% %% %% %% %% %% %% %% %% % %% % %% %% %%
mxopc(‘'Sleep’,1000);
Nmissed=mxopc('Sleep’)
Nmiss(n)=double(Nmissed);
n

end

StpTime=clock;
tt=1:length(s295);

figure

plot(tt,s295) %A test signal is plotted
title(TRIT for the Actual Run’)

grid

%0%%%%% %% % %% % %% %% %% %% %% %% %% %% %% %% %% %%
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Appendix C Matlab/Simulimk Code For Prognostics

Mercury 50 Gas Turbine

%%% The code involves the usage of the Matlab stati stical and

wavelet toolboxes

Matlab Code For Statistical Method

% Tuple Formation

% Parameter Definition

clc
orient landscape

%load turfeb2

% Load the Data

%load turapr5

%Enter Parameters and their descriptions
signal_y = ((double(temp46)-6240)/89856);
%signal to be plotted on the y-axis
signal_z = double(temp199);

%signal to be plotted on the z-axis
signal_description_y = char('Fuel Flow [Ib/hr]’);
%description of y-axis variable
signal_description_z = char(‘Power [kKW]");
%description of z-axis variable

order =1,

%order of regression line

predict_length = 1000;

%Length Beyond the data that the program predicts
point_freq = 1;

%Sets how often points are plotted
circ_freq = 50;

%Sets how often circles are plotted
window_size = 500;

%moving meanwindow size

%0Plot to check for times

%plot(1:length(signal_y),signal_y,1:length(signal_z ),signal_z)
%comment rest of program and uncomment this line to use
%figure

%Select Times For Data

S_up = 2305;

%turbine ramp up start time (use line 19 to find)
sstart = 4000;

%start of steady state time (use line 19 to find)

sstop = 8000;

%stop of steady state time (use line 19 to find)



s_down =10801;
%end of shut down phase (use line 19 to find)

%Select Region

%region = input('Enter 1 for Start up, 2 for Steady

Shut Down 4 for Manual Entry of Time ")
region = 4;

if region ==
start = s_up;
stop = sstart;
end
if region ==
start = sstart;
stop = sstop;
end
if region ==
start = sstop;
stop =s_down;
end
if region ==
start = sstart;
stop = sstop %ssta
sstart)/2;
end

%Statistics

std_y = std(signal_y(start:stop));
std_z = std(signal_z(start:stop));
mean_y = mean(signal_y(start:stop));
mean_z = mean(signal_z(start:stop));
ry = std_y*2;

rz =std_z*2;

%plots circles

hold on
plot3(start:point_freq:stop,signal_y(start:point_fr
|_z(start:point_freq:stop),'.g")
corry=signal_y;

corrz=signal_y.*lin;

for i = start:circ_freq:stop+predict_length

th = 0:pi/50:2*pi;

yunit = ry * cos(th) + corry(i);

zunit = rz * sin(th) + corrz(i);
plot3(ones(1,length(zunit)).*i,yunit,zunit,'k’);
end

xlabel('time [s]’)
ylabel([signal_description_y])
zlabel([signal_description_z])
legend('Data’,'Correlation Prediction")
axis([-inf,inf,1040,1180,2000,2200])

grid on

State, 3 for

rt+(sstop-

eq:stop),signa



% MOVING MEAN

for i = window_size:length(signal_y)
temp_data_y = corry(i-window_size+1:i);
mean_data_y(i-window_size+1)=mean(temp_data_y);
std_y(i)=std(temp_data_y);
temp_data_z = corrz(i-window_size+1:i);
mean_data_z(i)=mean(temp_data_z);
std_z(i)=std(temp_data_z);

end

figure

hold on

plot3(start-window_size:point_freq:stop,signal_y(st art-

window_size:point_freq:stop),...
signal_z(start-window_size:point_freq:stop),'g. .

start:stop+window_size,mean_data_y(start:stop+windo w_size),mean_d
ata_z(start:stop+window_size),'r--")

%plots circles

for i = start:circ_freq:stop+window_size

y=mean_data_y(i); %y- coordinate of
center of circle
z=mean_data_z(i); %z- coordinate of

center of circle

th = 0:pi/50:2*pi;

yunit = ry * cos(th) +v;

zunit = rz * sin(th) + z;
plot3(ones(1,length(zunit)).*i,yunit,zunit,'k’);
end

%%%%%%%%%6%6%% %% % %% %% %% %% %% %% % %% % %% %% %% %% %% %%
xlabel('time [s]’)

ylabel([signal_description_y])

zlabel([signal_description_z])

legend('Data’,'Sliding Mean Tuple Center','Tuple")

axis([-inf,inf,1040,1180,2000,2200])

grid on

% REGRESSION (MINIMIZED LEAST SQUARES)
%Calculation of Trend Line

t = [start:stop];

tp = [start:stop+predict_length];
y = mean_data_y(start:stop);

z = mean_data_z(start:stop);
pyy = polyfit(t,y,order);

pzz = polyfit(t,z,order);

py = polyval(pyy.t);

pz = polyval(pzz,t);

pyp = polyval(pyytp);

pzp = polyval(pzz,tp);

93
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% Plot of Data and Trend Line

figure

hold on

plot3(start:point_freq:stop,signal_y(start:point_fr eq:stop),signa
|_z(start:point_freq:stop),'.g")

plot3(tp,pyp.pzp);

% %plots circles

for i = start:circ_freq:stop%-+predict_length
y=pyp(i-start+1);

%y-coordinate of center of circle
z=pzp(i-start+1);

%z-coordinate of center of circle

th = 0:pi/50:2*pi;

yunit = ry * cos(th) +v;

zunit = rz * sin(th) + z;
%plot3(ones(1,length(zunit)).*i,yunit,zunit,'k’);
end

xlabel('time [s]’)

ylabel([signal_description_y])
zlabel([signal_description_z])
%legend('Data’,'Minimized Least Squares Tuple Cente r', Tuple’)
grid on

axis([4000,9200,.15,.23,3000,3400])

Matlab Code For The Wavelet Method

%%% Wavelet toolbox has been used
% Forecast of TRIT using Wavelets

clear all

clc

load waveletl %%% load turbine inlet temperature
S=signal(1:14400);

[cAl,cD1] = dwt(S,'db2"); % take the wavelet trans form of the
signal

t=1:length(cAl);

p=polyfit(t,cAl,2); % perform least square f it
y=polyval(p,7201:10999);

cA2=[cAlY];

%

Al = upcoef('a’,cA2,'db2',1); % inverse wavelet ta rnsform

%

tt=1:length(Al);

ttt=1:length(signal);

%

figure (1) % plot signal approximations and the signal

plot(tt(1:100:length(tt)),A1(1:100:length(tt)),'--
", ttt(1:100:length(ttt)),signal(1:100:length(ttt)))
axis([0,25000,2000,2050])

xlabel (‘'Time (sec)’)

ylabel (TRIT (K)")
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%

figure (2) % plot the approximation coefficients
plot(1:length(cAl),cAl)
axis([0,8000,2840,2900])

xlabel (‘'Time (sec)’)

ylabel (‘Wavelet Coeff)

figure (3) % plot the signal approximations
plot(1:length(Al1),A1)
axis([0,25000,2000,2050])
xlabel (‘'Time (sec)’)

ylabel (‘Approximation (F)")

%

figure (4) %%% plot the signal
plot(1:length(signal),signal)
axis([0,25000,2000,2050])
xlabel (‘'Time (sec)’)

ylabel (TRIT (K)")

GE 7EA qgas turbine

Matlab Code for both the statistical method and theslednmethod

The following code uses the statistical and the wav elet toolboxes

%% load signalconcatenated (i.e load the required s ignal)
%%%%%% %% %% %% %% %% %% Filtering
for i=1:(length(tst4)-1)
tstt1(1,i)=tst4(1,i+1)-tst4(1,i);
end
% % %%%%%%%% thresholding the filtered signal
for i=1:length(tstt1)
if tstt1(1,i)<6;
tstt2(1,i)=tstt1(1,i);
else tstt2(1,i)=0;
end
end
for i=1:length(tstt2)
if tstt2(1,i)>(-6);
tstt3(1,i)=tstt2(1,i);
else tstt3(1,1)=0;
end
end
% %
% % % %% %%%%%%%%% Forecasting
% % %%%%%%%%%%%% wavelet method (use the wavelet t oolbox)
tstt4=tstt3(1:22000);
%%%%%%%%%%%% %% %% wavelet
[cAl,cD1] = dwt(tstt4,'db4");
ta=1:length(cAl);
p=polyfit(ta,cAl,2);
yy=polyval(p,length(cA1)+1:((length(tstt3))/2));
CcA2=[cAl yy];
Al = upcoef('a’,cA2,'db4"1);

%%9%%%%%%% %% %% %% %% %% % %% %% %% % %% % % %% %686%% %% %% Statist
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tt=1:length(tstt4);
p = polyfit(tt,tstt4,3);
ttt=1:length(tstt3);
yy=polyval(p,ttt);
% % %%%%%%%0%%%%%%%%% %% %% %% %% %% %% %% statistical end

% % % % % % %%%%%%
plots%%%% %% %% %6%6%% %% %% %% %% %% %% %% %% % %6%6%% %% %% %% %% %% %%
figure (1) (plots signal versus time)
plot(1:length(pcd),pcd), grid on
ylabel('Turbine Inlet Temperature’)
xlabel('Time (minutes)'),axis([0 60000 0 1000])

% % % % % % %%%%%%%%%%%%% %%
figure(2) (plots concatenated signal versus tim e)
plot(1:length(tst4),tst4),grid on
ylabel('Turbine Inlet Temperature (C)")
xlabel('Time (minutes)'),axis([0 32400 0 1000])

% % % % % % %%%%%%%%%%%% %% % %% %%
figure (3) (plots filtered signal versus time)
plot(1:length(tstt3), tstt3),grid on
ylabel('Turbine Inlet Temperature (C)")
xlabel('Time (minutes)'),axis([0 32400 -10 10])

% % % % % % %%%%%%%%%%%%% %%
figure (4) (plots coefficients versus time)
plot(1:length(cAl),cAl),grid on
ylabel("Wavelet coeffecients (Turbine Inlet Tempe rature (C))
xlabel('Time (minutes)"), axis([0 16500 -10 10])

% % % % %%%%%%%%%%%%% %% % %% %% %% %%
figure (5) (plots spproximations versus time)
plot(1:length(Al),A1),grid on
ylabel('Signal approximation for Turbine Inlet T emperature
xlabel('Time(minutes)'),axis([0 32400 -10 10])

% % % % %%%%%%%%%%%% %% %% %% %% %% %%
figure (6) (plots forecast versus time)

plot(ttt,A1,1:100:length(ttt),,tstt3(1:100:length(t stt3))),grid
on

ylabel('Turbine Inlet Temperature (C)")

xlabel('Time (minutes)’)

axis([0 32400 -20 20]),legend('Forecast,Experim ental data’)
% % % % % % %%%%%%%%%%% %% %% %% %% %% %%
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Appendix D Statistical and Wavelet Method Coefficients

Signal | Signal Description Statistical Coefficients
No. & a;, a;, 8,
1 T 0.077 | 3.60e-5 3.40e-9 9.0e-14
2 Te 0.16 -2.40e-4| 1.10e-7 1.30e-9
3 Tey -0.078 | 3.8e-6 2.14e-8 4.14e-12
4 Ay -0.36 | 2.87e-5| 4.04e-8 2.20e-12
5 A, 0.58 1.86e-4| 1.58e-8 -3.19e-12
Table D.1. Regression coefficients for the statisticethod for the five signals
studied
Signal Signal Description Wavelet Coefficients
No. a, a;, a;,
1 | Turbine inlet temperaturel(; ) 0.043 | -2.53e-5 2.38e-8
2 Generator temperaturd () 0.20 | -4.48e-4| 1.33e-11
3 | Exhaust temperaturd, ) -0.11 | 1.92e-5| 1.0le-7
4 | Generator maximum vibrationA,,) |-0-14 | 4.96e-5| 3.40e-9
5 | Gas turbine maximum vibration’, ) | 0.90 | -3.50e-4| 2.82e-8

Table D.2. Regression coefficients for the wavelethoetfor the five signals
studied
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