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ABSTRACT 

Gas turbines are increasingly deployed throughout the world to provide 

electrical and mechanical power in consumer and industrial sectors. The 

efficiency of these complex multi-domain systems is dependant on the turbine’s 

design, established operating envelope, environmental conditions, and 

maintenance schedule. A real-time health management strategy can enhance 

overall plant reliability through the continual monitoring of transient and steady-

state system operations. The availability of sensory information for control system 

needs often allow diagnostic/prognostic algorithms to be executed in a parallel 

fashion which warn of impending system degradations. Specifically, prognostic 

strategies estimate the future plant behavior which leads to minimized 

maintenance costs through timely repairs, and hence, improved reliability. A 

health management system can incorporate prognostic algorithms to effectively 

interpret and determine the healthy working span of a gas turbine. The research 

project’s objective is to develop real-time monitoring and prediction algorithms 

for simple cycle natural gas turbines to forecast short and long term system 

behavior. 

Two real-time statistical and wavelet prognostic methods have been 

investigated to predict system operation. For the statistical approach, a multi-

dimensional empirical description reveals dominant data trends and estimates 

future behavior. The wavelet approach uses second and fourth-order Daubechies 

wavelet coefficients to generate signal approximations that forecast future plant 
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operation. To complement the empirical models, a real-time analytical, lumped 

parameter mathematical model has been developed that describes normal transient 

and steady-state gas turbine system operation. The model serves as the basis to 

understand a simple cycle gas turbine’s operation, and may be utilized in model-

based diagnostic algorithms. 

To validate the model and the prognostic strategies, extensive data has 

been gathered for a 4.5 MW Solar Mercury 50 and a 85 MW General Electric 

7EA simple cycle gas turbine. For the dynamic gas turbine model, the comparison 

between the field data and simulation results for five Mercury 50 gas turbine 

signals (e.g., shaft speed, power, fuel flow, turbine rotor inlet temperature, and 

compressor delivery pressure) demonstrate a high degree of correspondence. 

Although there are some deviations between the analytical and experimental 

results during the transient phase, the estimated steady state results are within 

2.0% of the actual data. The direct comparison of the two forecasting methods 

revealed that the wavelet method is superior since the forecasting error is 2.4% 

versus 4.0% for the statistical method on the Mercury 50 simple cycle gas turbine 

steady-state signals (e.g., compressor delivery pressure and turbine rotor inlet 

temperature). Similarly, the General Electric 7EA steady-state signal (e.g., turbine 

inlet temperature) offered a forecasting error of 9.23% for the wavelet and 

11.47% for the statistical methods, respectively. The developed approaches 

successfully estimate and predict the system operation and may be used with a 

diagnostic algorithm to monitor gas turbine system health.  
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CHAPTER 1 

INTRODUCTION 

Gas turbines are a vital part of world industry, by providing mechanical 

power for transportation, power generation, and manufacturing plants. The world 

average annual gas turbine market is estimated at 20B Euros of which aviation 

accounts for 68%, electric production 27%, power drives 3%, and marine gas 

turbines 2% (Langston, 2005). The growing need for reliable electricity has 

prompted the design of stationary gas turbines which operate on multiple fuels 

such as diesel, natural gas, synthetic coal gas, and others. The power generating 

gas turbines contribute approximately 15% of the world’s 16,230 trillion watt 

hours of annual electricity production. To better monitor and control these 

complex machines, a complete analysis for prediction of the transient operation is 

required with accompanying mathematical description. 

The reliability, availability, and maintainability technical area of the high 

efficiency engines and turbines program encompasses the design of gas turbine 

health management systems. The introduction of real-time diagnostic and 

prognostic capabilities on gas turbines can provide increased reliability, safety, 

and efficiency. The diagnostic module is responsible for the prompt detection of 

system degradations. Prognostic activities are focused on the prediction of 

anomalous plant behavior such that maintenance measures may be performed to 

permit continued operation. 
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The two primary monitoring approaches for dynamic systems (including 

stationary gas turbines) can be classified as model-based and model-free. For the 

model- based approach, a real-time mathematical model based on laws of 

thermodynamics and physics is required to simulate a system’s operation. 

However a mathematical model’s behavior estimation and predictions often 

deviate from the experimental data. Hence, model-free approaches were adopted 

for system behavior predictions. Methodologies have been developed which use 

statistical and wavelet analysis to find system trends and make valid predictions 

based on observed trends.  

Research Objectives and Goals 

The main objective of this research was to develop a real-time health 

management system for gas turbines to improve turbine reliability and allow 

higher availability levels. The formulation and implementation of real-time 

diagnostic and prognostic strategies, which detect and predict the onset of system 

degradation and maintenance needs, will constantly monitor the overall system 

performance to reduce operation and maintenance costs. A series of four goals 

were identified. 

Analytical Modeling of the Turbine System 

A model-based system health management approach requires the existence 

of a real-time mathematical model that describes the turbine system using 

differential and algebraic equations. The model should depict the "normal" turbine 

system behavior. This research has developed a transient gas turbine model. The 

major components have been modeled as subsystems and linked together to create 
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a simulation tool. The model simulates a Mercury 50 gas turbine located at 

Clemson University.  

Real-Time Turbine Sensor Experimental Data Streaming 

Real-time experimental data has been collected and recorded from the 

Mercury 50 gas turbine located at the Clemson University main campus. The 

performance of the Mercury 50 can be evaluated using this streamed data. The 

benefit of such a data collection connection is that it can be used to formulate a 

database for turbine health management systems. Further, extensive data sets have 

been obtained from a General Electric 7EA gas turbine. The periodic 

experimental data recorded from the Mercury 50 gas turbine runs has been used to 

validate the mathematical model. The diagnostic/prognostic algorithms have been 

validated using data from both of the above mentioned gas turbines. 

Sensor Fusion for Data Analysis 

Initially a set of twenty-eight plant signals was selected to be monitored 

and recorded from the Mercury 50. The total available number of signals is 180. 

This smaller subset of signals is being recorded in real-time and can be fused to 

monitor the system. These signals include key temperature and pressure 

measurements which will be used for model validation and in the 

diagnostic/prognostic module. Similar procedure was adopted for the General 

Electric 7EA gas turbine as well. 

Prognostic Module Design 

Prognostic methods using statistics and wavelet transforms have been 

developed to analyze a given population of experimental data points. The 



 4 

statistical method visually presents the data in multi-dimensional views and 

incorporates regression to predict. Furthermore the method gives a clear visual 

representation of the variability of the data. The second method uses wavelet 

transforms to remove noise from the signal and then a least square fit is performed 

for prediction, this prognostic module has been implemented in real time to 

predict system degradation. 

Thesis Organization 

Chapter 2 presents a literature review which examines the recent 

advancement in system health management and mathematical modeling of 

stationary gas turbines. Chapter 3 establishes the analytical modeling technique to 

formulate a mathematical description of a Mercury 50 stationary gas turbine for 

diagnostic/prognostic methodologies. Chapter 4 presents two real-time prognostic 

strategies, which monitor and predict the behavior of a stationary gas turbine 

system. Chapter 5 gives a description of the experimental setups used to obtain 

field data. Chapter 6 presents the experimental and numerical results. Conclusions 

and reccomendations will be presented in Chapter 7. Appendix A gives the details 

of the real-time mathematical model. Appendix B presents the data acquisition 

algorithm for the Mercury 50 gas turbine. The statistical and prognostic algorithm 

codes have been presented in Appendix C. Appendix D presents the statistical and 

the wavelet coefficients used for forecasting the selected turbine output signals.



CHAPTER 2 

LITERATURE SURVEY 

Prognostics  

To introduce the work in the field of system health management and 

prognostics, a list of references is presented which offers insight into the past and 

current work. Prognostic strategies attempt to diagnose machine/component 

impending failure conditions, and estimate the remaining useful lifetime using 

statistical approach for enhanced equipment availability while minimizing 

maintenance costs (Roemer et al., 2001). Traditional health management systems 

have been mainly concerned with diagnostics, but in the past decade, considerable 

work has taken place on prognostics. It has increasingly been recognized that the 

prognostics module may be integrated with existing diagnostic system 

architectures (Roemer and Kacprzynski, 2000). Efforts to automate plant 

monitoring using a novel approach which integrates neural networks with rule 

extraction has been demonstrated by Brotherton et al. (2000). Jaw (1999) 

presented a methodology using artificial neural networks to capture the time 

varying behavior of complex systems to improve the fidelity of models used for 

real time prognostic algorithms in aircrafts.  

DePold and Gass (1998) proposed a prognostic system for gas turbines 

using statistical analysis to improve data quality, neural networks to detect trends 

to classify system changes, and an expert system to rank maintenance action. Real 

time statistical prognostics, in conjunction with sensor based diagnostics have 
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been used in industry to predict turbine critical component life. An 

implementation of this prognosis approach to predict the remaining useful life of 

gas turbine engine bearings has been examined by Orsag et al. (2004). 

Kacprzynski et al. (2002) investigated the application of stochastic failure models, 

calibrated for current state information, to assess current and future system health. 

Greitzer and Ferryman (2003) developed a generic prognostic and diagnostic 

integrated module for mechanical systems. The technology was explored on 

land/naval gas turbines to decrease the short and long term operating and logistic 

costs. The inherent uncertainties of prognostics have been addressed through 

probabilistic architectures. Compressor fouling, an inevitable deterioration mode 

in gas turbines, occurs at different rates for different turbine systems. Gulen et al. 

(2002) investigated an on-line real time prognostic strategy which can manage 

maintenance (e.g., washing) costs to reduce compressor fouling by as much as 

20%. Similar work has also been carried out for offshore gas turbines by Veer et 

al. (2004).  

Friend (2000) demonstrated the integration of intelligent processing and 

data fusion to obtain valuable information for system diagnostics and prognostics. 

Correlation of data from key sensors is used to derive actual life consumed and 

the remaining useful life. Pawlowski et al. (2002) have made efforts to apply real 

time prognostics to diesel engines using an architecture similar to the gas turbine 

prognostics for M1 Abrams tanks. Finally, prognostics can be applied to most 

mechanical systems for condition based maintenance and prediction of future 

health using wavelets. A generic framework using wavelet neural networks has 
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been developed and validated by Wang and Vachtsevanos (2001). Process 

prognostics is always associated with uncertainties; therefore, confidence bounds 

need to be defined for predictions. A method to estimate confidence bounds and 

reduce uncertainties in real-time has been established by Barlas et al. (2003). An 

opportunity exists to directly compare the estimation performance of prognostic 

strategies on a common problem.  

Gas Turbine Mathematical Models 

Aggarwal and Younis (1982) proposed a mathematical model to simulate 

the startup of gas turbines. The starting characteristics were estimated to asses the 

overall performance of a starting system for an aircraft engine. Rowen (1992) 

modeled a single shaft gas turbine used in variable speed mechanical drives. The 

model was integrated into a complex simulation involving driven equipment and 

controlled processes. Crosa et al. (1996) proposed a simulator for estimating the 

off-design and dynamic behavior of a heavy duty gas turbines used in combined 

cycles, using Simulink/Matlab. Camporeale et al. (1998) introduced a simulation 

model of a multi-shaft regenerative gas turbine. This model was used for the 

synthesis of system controllers and analysis of critical operating conditions for a 

counter-flow regenerator. Transient response of regenerative gas turbines was also 

investigated by Korakiantitis et al. (1993) using instantaneous and transient flow 

component models.  

Vroemen et al. (1998) applied model based predictive control (MPC) to 

laboratory gas turbines, nonlinear extensions were made to linear model 

predictive control. This process uses a model of a gas turbine to predict future 
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system response. Fortunato et al. (2002) investigated a real-time high fidelity 

code for simulating the operation of a double shaft industrial gas turbine. The 

lumped parameter, non-linear model was used for designing and testing control 

systems for gas turbines. Further applications for design and optimization of 

control structures using a dynamic model simulating a wide range of operating 

scenarios for a cogeneration nuclear gas turbine power plant have been introduced 

by Kikstra and Verkooijen (2002).  
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CHAPTER 3 

A REAL-TIME GAS TURBINE DYNAMIC MODEL 

Gas turbines are a vital part of world industry by providing mechanical 

power for transportation, power generation, and manufacturing plants. To ensure 

the dependability of these complex multi-domain systems, a health monitoring 

system can be attached to the controller in a parallel manner. The growing 

demand for reliable electricity has prompted the design of stationary gas turbines 

which operate on multiple fuels such as diesel, natural gas, synthetic coal gas, and 

others.  To better monitor and control these complex machines, a complete 

analysis to predict the transient operation is required with accompanying 

mathematical description. Gas turbines undergo transient operations due to 

startups, changing loads, and sudden shutdowns which may lead to system 

degradation over a period of time. To understand the turbine dynamic behavior, 

these transient conditions have to be analyzed.  

Often it is not possible to perform test bed experiments on turbine systems 

due to safety and cost related issues. Therefore, physical models of these complex 

systems must be developed which simulate the actual turbine system operation 

over a range of different operating scenarios. Many different dynamic models for 

gas turbines have been developed in the past (e.g., Szuch 1978, Bettocchi et al., 

1996, and Crosa et al., 1996). These models capture the dynamics of the turbine 

systems with varying degree of accuracy. Although various models have been 

created for gas turbine system, they are mostly used to simulate the steady state 
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operation, and hence, overlook the fact that cost and safety related issues are 

strongly influenced by a turbine’s transient operation.  

As many concerns arise within the gas turbine industry concerning 

performance and emissions related issues, it is important to develop efficient 

health monitoring solutions for the future to limit degradations in system 

performance and enhance overall plant operations. A nonlinear dynamic model 

has been developed for a gas turbine. The model simulates the transient and 

steady state gas turbine’s nominal operating conditions. The development of the 

model presented in this chapter is a part of a strategy aimed at the introduction of 

on-line diagnostic and prognostic capabilities to the stationary gas turbine 

operations which would provide increased reliability, safety, and efficiency in gas 

turbine operations. Model-based diagnostic methods eliminate the need for 

redundant hardware through the use of analytically estimated plant output for 

comparison. In creating a mathematical model which can successfully detect and 

alert system administrators that a problem exists, the need for plant or system 

maintenance can be reduced.  

 Analytical Gas Turbine Model 

The reliability of a physical system simulation is dependent the model's 

accuracy. The quantitative modeling of a dynamic process requires knowledge of 

the process, and ability to mathematically represent it using differential and 

algebraic equations, and availability of system parameters. A real-time nonlinear 

mathematical model, based on analytical and empirical relations, has been created 

to estimate a "normal" turbine system’s operation. A nonlinear approach was 
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adopted to model the dynamics due to transients during start up, load changes, 

and shutdown. The thermodynamic model presented in this section was developed 

as a sequence of interconnected subsystems (refer to Figure 3.1). 

Figure 3.1 Turbine subsystems diagram which reflects the components with signal 
flow direction 

 
These subsystems model the basic components of a stationary gas turbine. 

Physical and thermodynamic laws (Howell and Buckius, 1987) have been used to 

describe the system dynamics. The dynamic balance of the rotating shaft has also 

been modeled. This mathematical model has been transformed into a computer 

algorithm in the MATLAB/Simulink environment. As the model has a modular 

structure, additional subsystems can be incorporated to model a different system 

configuration (e.g., Rowen, 1992).  

The proposed gas turbine system model takes a transient approach to 

mathematical modeling. Figure 3.1 shows the basic components of a stationary 

gas turbine which have been used for modeling. Each subsystem of the gas 

turbine plant was modeled separately including the starter motor, compressor, 
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combustion chamber, turbine, fuel input, and the electrical power generator. Inlet 

air is compressed in the compressor and is then passed through the recuperator 

where it gains heat energy from the turbine exhaust gases. The combustion 

chamber imparts additional energy to the flow mass, which is utilized in the 

turbine to obtain work. The system load and starter motor are both connected to 

the system shaft. The system receives initial inputs of ambient pressure and 

temperature. Using these system inputs the model simulates the initial cold start 

of the gas turbine system to steady state operation.  

Thermodynamic Analysis 

The model is based on a modified Brayton cycle. A temperature-entropy 

diagram is shown for a Brayton cycle (Sarvanamutto et al., 2001) in Figure 3.2. 

The air mass enters the system at Station 1 (refer to Figure 3.3). The compressor 

performs work on the air mass and increases its pressure and temperature 

adiabatically to the compressor's exit at Station 2. The vertical line 1 to 2 depicts 

ideal isentropic compression. In reality, there is an increase in the entropy of the 

process flow. The compression is not isentropic and the process may be depicted 

by the line 1 to 2A. Heat addition takes place in the recuperator as depicted by 

line 2A to 3. Additional heat is added to the flow at constant pressure in the 

combustion chamber depicted by line 3 to 4. Further isentropic expansion of the 

air mass takes place in the turbine as work is done by the flow (line 4 to 5). Again, 

the process is not ideally isentropic so the process line leans towards the right. 

The area under the T-s curve is proportional to the useful work derived from the 

system. 
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A series of nine assumptions (e.g., Ailer et al., 2001) have been imposed 

to model the gas turbine: 

A.1 Ideal gas behavior of the working medium 

A.2 All the power is absorbed by the rotor. The stator merely transforms the 

kinetic  energy into an increase in static pressure.    

A.3   The mass flow rate inside the compressor is constant. 

A.4   Compression process is adiabatic. 

A.5   Axial velocity of the air mass flow inside the compressor is constant. 

A.6   No air bleed occurs from the compressor. 

A.7   The combustion chamber is modeled as a pure energy accumulator. 

A.8   Expansion process in the turbine is adiabatic. 

A.9   Mean value of specific heats for each subsystem. 

Figure 3.2 Modified temperature versus entropy diagram for the Brayton cycle 
(Sarvanamutto et al., 2001) 
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Figure 3.3 Stationary gas turbine system components with five stations identified 
for analysis 

Model Description 

The various gas turbine subsystems will be modeled and analyzed in this 

section with the explicit presentation of the governing differential and algebraic 

equations. 

Compressor 

The compressor is modeled as a control volume in which mass and energy 

flow are conserved. The compressor subsystem's thermodynamic analysis was 

considered using a control volume with air as the working medium. As shown in 

Figure 3.4, the boundary conditions include the inlet stagnation pressure,01P , inlet 

temperature,01T  compressor exit pressure,02P and compressor exit temperature, 

02T .  
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Figure 3.4 Compressor block diagram with input and output variables 

Compressor Maps 

The compressor mass flow rate has been approximated using variable inlet 

guide vane angles (VIGV) and flow velocity inside the compressor as compressor 

maps (Walsh and Fletcher, 2004) are not available for the Mercury 50. The 

derived mass flow rate is a function of pressure ratio for different rotational 

speeds. The Mercury 50 gas turbine has a ten stage compressor and a two stage 

turbine. The typical sketch of a compressor stage is shown in Figure 3.5. 

A series of eighth additional assumptions are made for the analysis of the 

compressor performance, and hence, to draw the compressor maps: 

A.10  The increase in the stagnation pressure is accomplished wholly within the 
rotor. 
  

A.11  The inlet flow angle( 1α ) is 11o and the outlet blade angle (2β ) is 51o .    

 
A.12  The axial velocity is assumed to be a constant throughout the compressor 

stage. 
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Figure 3.5 Typical cross-sectional view of a compressor stage with the stator and 
rotor blade profile (Saravanamutto et al., 2001) 

A.13  Isentropic process. 

A.14  Fluid friction is neglected. 
  

A.15  There is no loss of stagnation pressure in the stator stage. 
 

A.16  One-dimensional flow. 
 
A.17  Stage compression efficiency is 0.9. 
 

The air approaches the rotor with a velocity C1 at an angle α 1 from the 

axial direction (refer to Figure 3.6). Velocity relative to the blade at an angleβ 1 is 

determined by combining C1 vectorially with U. After passing through the rotor, 

the absolute velocity increases and the air leaves the rotor with a relative velocity 

V2 at an angle β 2 determined by the rotor blade outlet angle. Since Ca is kept 

constant, the value of V2 is obtained from the triangle relationship. The value of 

C2 is determined by combining vectorially V2 and U at an angle α 2. The air 

leaving the rotor at α 2, passes to the stator where it is diffused to a velocity C3 at 

an angle α 3. Sinceα 3=α 1 and C3=C1, based on similar velocity triangles for each 
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stage, and since aaa CCC == 21 , and from geometry of triangles as shown in 

Figure 3.6. 

The power input to the compressor stage and change in angular 

momentum of air passing through the stage are related as  

                          ( )2 1S W WW mU C C= −ɺ                                                       (3.1) 

which may be expressed in terms of the air angles and the axial velocity of flow  

as 

                                      ( )1 2tan tanS AW mUC α α= −ɺ                                      (3.2) 

Using the steady flow energy equation, the stage temperature difference is given 

as  

                                     ( )0 1 2tan tanA
S

pa

UC
T

c
α α∆ = −                                       (3.3) 

Figure 3.6. Velocity triangles for compressor’s single stage (Sarvanamutto et al., 
2001) 
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The pressure ratio for a single stage with a stage isentropic efficiency, sη , may be 

obtained as 

                                               0 0

0 0

1Sout S
S

Sin in

P T

P T
η

 ∆
= + 
 

                                         (3.4) 

The air mass density at the stage outlet is given as 

                                                    Sout
Sout

Sout

P

RT
ρ =                                                  (3.5) 

so that the mass flow rate becomes 

                                                      Sout Am ACρ=ɺ                                               (3.6) 

The overall temperature rise for the compressor subsystem may be 

obtained as 

                                             
2

02 01
pa

n U
T T

c

ψ− =                                             (3.7) 

Where ψ  is the compressor temperature coefficient, and is determined 

empirically. paC  is the specific heat capacity of the incoming air mass. 

The compressor subsystem pressure ratio is given as                                   

                                          
1

02 02 01

01 01

1

a

a

k

k

c

P T T

P T
η

−  −
= +  

  
                                    (3.8) 

Finally, the work input to the compressor subsystem may be given as 

                                               ( )02 01c paW mc T T= −ɺ                                           (3.9)     

The modeled compressor of a Mercury 50 gas turbine is shown in Figure 3.7. A 

small compressor torque value is desired since it represents the work performed to 
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compress the air which reduces the overall efficiency. The compressor torque is 

dependent on the mass flow rate through the gas turbine, the inlet and outlet 

temperatures, and the compressor shaft speed. 

Plenum 

During transient operation of the turbine, the flow rate changes due to 

variations in the fuel flow rate which is a function of the shaft speed and load. The 

mass flow rate inside the combustion chamber may be momentarily different than 

the mass flow rate inside the compressor. To account for this variance, a plenum 

is introduced in the turbine model which acts as a mass capacitor. The plenum 

hypothetically releases (or absorbs) air mass to maintain a steady mass flow rate. 

Hence, the unsteady mass balance is modeled through an adiabatic capacity 

(plenum) with no energy involved. As shown in Figure 3.8, the plenum is 

considered as a control volume. 

Figure 3.7 Mercury 50 gas turbine compressor located at Clemson 
University’s campus facilities plant 
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Figure 3.8 Plenum block diagram with input and output variables 

The plenum is placed upstream of the combustion chamber to 

accommodate the unsteady mass balance within the compressor ducts, 

combustion chamber, and the turbine ducts. The flow velocity is assumed to be 

negligible inside the plenum .The formulation of the plenum is based on the 

conservation of mass from which the time derivative of the compressor outlet 

pressure, AP02 , is given as 

                                              ( )02 02
2 3

A

P

dP KRT
m m

dt V
= −ɺ ɺ                                   (3.10) 

where 
PV  is the volume of the plenum, 3mɺ  is the outlet mass flow rate, and R is 

the gas constant, The pressure differential equation is a function of the mass flow 

rates 2mɺ  and 3mɺ . 
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Recuperator 

Recuperator is the name given to the heat exchanger in a gas turbine, 

where heat exchange takes place between the hot and the cold stream through a 

separating wall. The recuperator was modeled as a control volume, with the 

boundary conditions as shown in Figure 3.9. Here, 05T  is the inlet turbine exhaust 

temperature. The variables 03P  and 03T  are the exit stagnation pressure and 

temperature, respectively. Inside the recuperator, the hot turbine exhaust rejects 

heat and the fresh charge from the compressor absorbs heat. Assuming the mass 

flow to be constant, the heat exchange rate equation is given as 

                           03 06 05 02( ) ( )pa pgc T T c T T− = −                                         (3.11) 

 where 06T  is the temperature of the gases exhausted from the recuperator to the 

atmosphere, and pgC  is the specific heat capacity of the exhaust gases. As a result 

of the heat exchange, the recuperator increases the discharge air temperature 

exiting the compressor. The outlet temperature for the recuperator may be 

expressed as 

                                     ( )03 02 05 02RT T T Tη= + −                                        (3.12) 

where Rη  is the recuperator efficiency or the thermal effectiveness. The thermal 

effectiveness can be increased by increasing the volume of the heat exchanges in 

order to obtain a higher rate of heat transfer. 

There is also a pressure drop, P∆ , in the recuperator and the outlet 

pressure, 03P , is given as 
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Figure 3.9.  Recuperator block diagram with input and output variables 

                                             03 02
02

1
P

P P
P

 ∆= − 
 

                                               (3.13) 

The pressure losses inside the recuperator are unavoidable but can be minimized 

by reducing the flow velocity. 

Fuel System 

The turbine fuel system model varies the fuel flow rate according to the 

shaft speed and load. During load applications, transient conditions occur which 

result in a variation of fuel flow with time, until steady state conditions are 

attained. The fuel map, shown in Figure 3.10, governs the system fuel flow, based 

only on the shaft speed and applied electrical generator load. The actual fuel map 

for the Mercury 50 gas turbine is not readily available. Therefore, this map has 

been generated empirically using experimental data sets recorded at Clemson 

University. The fuel used in the Mercury 50 turbine is natural gas with a lower 

heating value of 61.4 MJ/kg.  
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Figure 3.10. Fuel flow map based on system load and speed 

Combustion Chamber 

The combustion chamber (refer to Figure 3.11) is modeled as a pure 

energy accumulator. The inside pressure and temperature, P04 and T04, have been 

assumed to be homogeneous and equal to the outlet values. The combustion 

chamber model is a control volume with mass and energy transfer occurring 

across the boundaries as shown in Figure 3.12. The energy balance is given as  

                           
( ) ( )3 03 4 04

cc cc
f f cc

d m u
m h m h LHV m h

dt
η= + + −ɺ ɺ ɺ                   (3.14) 

where ccm  and ccu  are the mass and the specific internal energy, respectively, of 

the gases inside the combustion chamber, 4mɺ is the outlet mass flow rate, fmɺ is 

the fuel flow rate, ccη is the combustor efficiency, and fh is the enthalpy of the 

fuel. The acronym LHV denotes the lower heating value of the natural gas and is 

defined as the amount of heat released by combusting a specified quantity of the  
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Figure 3.11. Combustion chamber of a Solar Mercury 50 gas turbine located at 
Clemson University 

natural gas, initially at C�25 and returning the temperature of the combustion 

products to C�150 . 

Assuming negligible variations in the mass and internal energy, equation 

(3.14) may be written as 

                       
( )( )3 03 4 0404

4

f f cc

b
pg

m h m h LHV m hdT

dt m c

η
ξ

+ + −
=
ɺ ɺ ɺ

ɺ
                        (3.15) 

which gives the rate of temperature change inside the combustion chamber. The 

time constant, bξ  ,is given by 
3mk

mcc
b

ɺ
=ξ . Applying the continuity equation, the 

exit mass flow rate becomes fmmm ɺɺɺ += 34 . 

A pressure loss exists in the combustion chamber due to internal 

aerodynamic resistance and momentum changes produced by the combustion 
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reactions. This pressure drop was incorporated into the model and was evaluated 

using the Rayleigh effect, the outlet pressure may be expressed as  

                                           ( )04 03 04 03/P P f T T= +                                          (3.16) 

Generally, Rayleigh analysis indicates that whenever the stagnation pressure, 0T , 

rises in a flow at a given Mach number there must be an associated loss in 

stagnation pressure, 0P , independent of the frictional losses in the flow. The 

pressure loss is in proportion to the heating (i.e., the rise in stagnation 

temperature) and is larger for Mach numbers close to unity.  

Figure 3.12 Combustion chamber block diagram showing input and output 
variables 

Turbine Subsystem 

The Mercury 50 single shaft turbine has two stages with no reheat 

capabilities. The subsystem was modeled as a single control volume with the 

boundary conditions shown in Figure 3.13. Hot gases at pressure 04P and 
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temperature 04T  are supplied to the turbine where the hot gases expand and do 

work on the turbine blades. The power produced by the expanding gases is given 

as 

                                               ( )4 04 05T pgW m c T T= −ɺ                                       (3.17) 

The turbine outlet temperature is given as    

                        

1

05
05 04

04

1 1

g

g

k

k

T

P
T T

P
η

−  
   = − −    
   

  

                                  (3.18) 

The parameter,Tη , is the efficiency of the turbine. The exit pressure 05P  is 

considered atmospheric. Per equation (3.18), a greater difference between the 

turbine inlet and outlet temperatures allows more work to be extracted from the 

expanding gases. However there is a limit to the value of the turbine inlet 

temperature due to material and design constraints. Hence, a low exit temperature 

may be desired. 

 

 

 

 
 

 
 
 
 
 
 
 

Figure 3.13. Turbine subsystem block diagram with inlet and outlet variables 
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Shaft Dynamics 

The shaft dynamics model considers the torque inputs/outputs from the 

turbine, compressor, starter motor, the generator, as well as friction. Applying 

Newton's law to the torque balance offers the equation 

                                     T M C Fric L

Eq

d

dt J

τ τ τ τ τω  + − − −=   
 

                           (3.19)                 

where 
LMTcEq JJJJJ +++=  is the lumped inertia of the compressor, turbine, 

starter motor, and generator. Figure 3.14 shows the various torques acting on the 

stationary gas turbine. These moments of inertia are with respect to the centerline 

of the turbine shaft. 

Starter Motor and Generator Load 

 For the normal gas turbine start up process which brings the turbine shaft 

to a nominal angular velocity, the starter motor model was introduced. The 

induction starter motor provides the start up torque to ramp the speed from zero to 

approximately 67% of the turbine nominal rotational speed (14,800 RPM) at 

which starter dropout occurs. The starter motor is connected directly to the turbine 

system shaft. The starter motor also provides necessary torque to drive the 

compressor during the purge crank phase. This cycle occurs at 27% of the turbine 

nominal rotational speed and helps to drive out any residual fuel from the exhaust 

system. 

The torque generated by the starter motor is given as 
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      Figure 3.14 Torques acting on a stationary gas turbine during its operation 

                                           M t MK Iτ =                                                             (3.20) 

where IM  is the armature current given as 

                                 
1

( )M
A S B

dI
R I V K

dt L
ω= − + −                                    (3.21)        

To determine the usable power that is obtained from the gas turbine engine 

the power generator subsystem of the gas turbine was modeled.  This in effect 

converts the usable torque created by the turbine subsystem, torque not used to 

power the compressor, into electrical energy.  For this model the generator portion 

of the gas turbine is modeled as the load subsystem where the load is applied at 

different times. The generator load is an input to the dynamic model and can be 

adjusted based on power generation needs. In other words the variation of the load 

input allows the model to be adapted to different operating conditions.  
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Symbol Value Units 
A 0.19  m2 
cpa 1005 J/kg-K 
cpa 1148 J/kg-K 
CA 150 m/s 

hf 4.6e03 J/kg 
IM 25 Amp 
JEq 0.4 kg-m2 
ka 1.4  
kg 1.33  
LHV 61e06 J/kg 
mcc 1 kg 
n 10  
 P01 101.3 KPa 

P∆  3 %  
T01 298 K 
R 287.4 J/kg-k 
U 250 m/s 

cη  0.9  
ccη  0.95  
Rη  0.85  
Tη  0.9  
Sη  0.9  
Fricτ  30 N-m 

ψ  0.35  
Table 3.1 Summary of model parameters for the Mercury-50 

A variety of model input/output signals have been considered including 

the generator power, shaft speed, fuel flow, compressor outlet pressure, and 

combustion chamber outlet temperature. A list of model parameters is provided in 

Table 3.1. To validate the mathematical model, comparisons between the 

analytical model and the experimental results from the Mercury 50 gas turbine 

have been studied and are presented in Chapter 6. 
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CHAPTER 4 

REAL-TIME PROGNOSTIC STRATEGIES 

Health monitoring strategies estimate the current and future conditions of 

a system to increase performance, reliability, and reduce maintenance and 

replacement costs. Prognostic is a key component of these strategies and operates 

in parallel with diagnostic modules to monitor and predict plant behavior. The 

analysis of system health and prediction of remaining useful life may be classified 

as prognostics. Prognostics use past and current system operation data, individual 

system histories, and system response characteristics to forecast behavior, hence, 

providing a reliable health monitoring methodology (Greitzer and Ferryman, 

2003). The research project’s objective is to develop real-time monitoring and 

prediction algorithms for stationary gas turbines to forecast short and long term 

system health and readiness using behavior models, sensor fusion, and statistical 

analysis.  

Gas turbines can experience various system faults during their operating 

schedules. These complex multi-domain turbine systems operate under varying 

conditions and locations which demand high reliability so unscheduled “down 

time” must be minimized by reducing susceptibility to degradations and 

breakdowns. A health management system can incorporate prognostic algorithms 

to effectively interpret and determine the healthy working span of a gas turbine. 

Compressor fouling due to the deposition of inlet air particles is a common 

problem encountered in normal operation. Some of the other typical system 
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degradations include fuel nozzle erosion, nozzle choke, and compressor surge 

(Boyce, 2005). System anomalies such as air intake clogging, inlet guide vane 

distortion, and oil blockage are less common but can lead to serious system 

damage and need to be avoided (McAlpin et al., 2003). During the past few years, 

turbine faults including blade failure and recuperator leaks have occurred in the 

Mercury 50 gas turbine located at Clemson University.  

To successfully control a gas turbine, from a maintenance perspective, the 

critical operating scenarios such as compressor surge, excessive turbine inlet 

temperature, flame out, and high rotational shaft speed must be avoided.  A health 

management system is typically a combination of diagnostic and prognostic 

modules which complement the plant controller in a parallel manner (refer to 

Figure 4.1).  

Figure 4.1. Integration of prognostic and diagnostic module with the plant 
controller for predictive calculations 
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The implementation of these real-time modules allows the detection and 

prediction of abnormal system behavior. Diagnostic strategies utilize hardware 

and software to detect, isolate, and identify a deviation from the normal plant 

behavior. Prognostic algorithms focus on the estimation of the current health and 

may predict critical component life. Prognostic strategies predict the future health 

state of a system (or component) from the present operating conditions and 

historical data.  

The application of prognostics to a dynamic system can be based on 

different methods including physical and empirical models. The mathematical 

models can simulate the dynamic system behavior at a future time for a given set 

of inputs. The reliability of a model based prognostic strategy is dependent on the 

model’s accuracy which requires an adequate understanding of the process and its 

mathematical representation. Other approaches may incorporate the formulation 

of rules based on data gathered from practical experience, and the creation of 

statistical models which determine behavioral trends. Developing these rules and 

statistical models often requires extensive data for healthy as well as faulty 

dynamic system operation. One drawback of these approaches is that acquiring a 

vast experimental database is not always feasible. The selection of a specific 

strategy is dependent on factors such as the availability of sensor data, frequency 

of system or component failure, severity of failure, financial constraints, and 

impact of system failures (Byington et al., 2002). 

A statistical and a wavelet approach have been investigated for gas turbine 

health prognostics (refer to Figure 4.2). The real-time statistical strategy uses the 
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logged sensor data to identify trends. Short and long time trends are computed 

using regression analysis. This technique predicts the time to failure, or threshold 

violation, by forecasting system health at any desired future time. The second 

strategy is based on wavelet analysis. Wavelet transforms of real-time data are 

used to compute the wavelet coefficients for a given turbine signal. A regression 

analysis of these coefficients can be performed to forecast these coefficients for 

the desired prediction time. The new set of coefficients obtained can be used to 

reconstruct the signal, and hence, obtain the prediction of the signal values for 

future times. 

Figure 4.2. Statistical and wavelet prognostic strategies with forecasting 

Statistical Prognostic Strategy 

A variety of statistical methods have been applied to predict the useful life 

of plant equipment and general dynamic systems (e.g., Mannapov, 1999, Kim and 

Mead, 1999, Dong and He, 2004). In general, prognostic methods, including 
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statistical techniques, rely on historical data to identify system trends and predict 

future behavior. Several statistical techniques have been investigated to 

characterize the data including moving mean and least-squares methods.  

However, the latter method offers minimum error between the estimated and the 

experimental data. The method weighs large errors more than small errors and 

positive errors equally with negative errors. Typically, the least-squares method 

uses polynomial curves to describe the data. Hence, system characteristics may be 

described using regression analysis methods and extended in time to forecast 

plant behavior. A three step process is recommended for this prognostic method: 

signal selection, regression statistics, and signal forecasting. 

Signal Selection Using A Correlation Method 

Dynamic systems may have a variety of input (e.g., force, heat, voltage) 

and output (e.g., acceleration, vibration, current) signals that can be measured 

using appropriate sensors. Let these system input and output vectors be 

represented by ( ) gU t R∈  and ( ) hY t R∈ , respectively. It is likely that these 

signals may be discontinuous or arise from different operating modes. Hence, 

these signals may need to be filtered, concatenated, and normalized such that the 

input and output vectors become ( ) gU t R∗ ∈  and ( ) hY t R∗ ∈ . A smaller set of 

input and output vectors, ( ) nu t R∈  and ( ) py t R∈ , may be selected to investigate 

the system health based on a correlation analysis. For this study, the correlation 

between the system inputs and outputs is given as                    
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      (4.1)                             

As a general rule, the system outputs with a correlation 0.80jkℜ >  for the given 

inputs are selected. 

Model-Free Regression Description 

A multi-regression empirical model, based on the selected sensor signals, 

may be created to describe the system’s behavior. Although these signals may be 

affected by noise, it has been assumed that the noise may be negligible. However, 

this assumption will be removed for the wavelet prognostic method. For degraded 

plant operation, the system’s steady-state output should change so that time 

dependent trends may be observed while the system’s inputs remain constant 

(Suleiman et al., 2001). Hence, time will be included in the prediction model. The 

derived regression model, jiZ
�

, for the thj signal from the plant output vector y(t) 

and the identified input signals may be expressed as 

                      ( )
0 .5

2

1 0
q k

n r
q

j i j i
k q

Z a t
= =

 
=  
 
∑ ∑

�
          (i=1,2,…,m)       (4.2)               

where the parameters n and r denote the number of selected independent variables 

(input signals) and the regression order. The polynomial coefficients 

0 1
, ,...,j j jk k rk

a a a  correspond to of the thr  regression order.  
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 The sum of squares of the deviations, jD
�

, between m time samples in the 

composite sample data, ( ) [ ( )
kj i j iV t y t=  ( )]T

k iu t ., and the regression curve, jiZ
�

, 

becomes 
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where the equation (3) which may be minimized, 0

qk

j

j

D

a

∂
=

∂

�

 for q = (0,1,…,r),  to 

obtain the regression curve by solving the (r+1) equations numerically as 

 

                         ( ) ( )
[0, ]

20.50.5
22

1 1 1 0

( ) 0
k qk

q r k

m n n r
q

j i j i
i k k qj

V t a t
a

∈
= = = =

   ∂   
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 Signal Forecasting 

The motivation for a prognostic strategy is to predict the turbine’s future 

behavior based on current and historical data. After developing a method to 

analyze current behavior, a need existed to forecast system performance. The 

regression model can predict a variable’s value both inside and outside the 

estimation time interval. The regression coefficients, 
qkja , should describe the 

signal trend so that time extension of the regression curve may estimate the 

system’s future behavior. In general, the meaningful prediction time for the 

regression curve depends on the estimation data. The larger the estimation data 

sample size, the better the forecast since the curve would be termed “well 

trained”. The dependent variable trends represent the long term signal behavior, 

rather than fluctuations caused by plant disturbances and load changes. The 
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forecast curve may be given as  ……………………………………….……                                                                                                 
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where m+f is the final time value. This forecast, jiZ
�

, has an error of 

1
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�
 which can be used for comparison purposes. 

For the Mercury 50 simple cycle gas turbine twenty-eight signals are 

recorded at regular intervals. The signals include observed measurements such as 

vibration amplitudes, temperatures, pressures, and flow rates (refer to Table 1).  

The data is stored into the array y(t) described as   
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As in this case one input and one output are selected the regression curve equation 

becomes 
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The sum of squares of the deviations between m points in the sample data and the 

regression curve, D
�

, is given as 
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which is minimized to get a regression curve as 
0=

∂
∂

kja

D
�

 for k = (0,1,…,r). The 

polynomial coefficients can be obtained by solving the (r+1) equations 

numerically 
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Finally, the prediction for the regression curve is estimated as               
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such that m<L<m+tf where tf is the desired forecast time. 

Health Evaluation  
 

A prognostic strategy can estimate the system’s future behavior to 

facilitate maintenance scheduling and component repair. An adjustable set of 

thresholds may be established for the statistical estimates so that a violation 

results in appropriate action. Small variations in a system’s output signal, without 

a change in the system inputs, may be due to extraneous noise, load fluctuations, 

and/or a slowly occurring degradation. In the proposed evaluation method, 

forecasted signals are acceptable if they lie within established thresholds. For a 

normally distributed steady-state signal, 95% of the data should lie within two 

standard deviations, 
0 .5

2

1

1
( ( ) )

m

j j i j
i

y t y
m

σ
=

 = − 
 

∑ , of the sample mean, jy . 

If the system forecast predicts a threshold violation, remedial action should be 

dependent on the rate and severity of the threshold violation.  
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Data Enclosure 

Often the experimental data points are scattered around the regression line. 

Ideally, a method may be created to visually represent the data and its variability. 

To accomplish this, ellipses have been selected. An ellipse is a closed plane curve 

consisting of all points for which the sum of the distances between a point on the 

curve and two fixed points (i.e., foci) is the same. As shown in Figure 4.3, the 

center of an ellipse is the point halfway between its foci f1 and f2.  The major axis 

(i.e., 2f) is the chord that passes through the foci; the minor axis (i.e., 2h) is the 

chord that passes through the center perpendicular to the major axis. The larger 

axis receives the major designation, while the smaller axis receives the minor 

designation.   

Mathematically, an ellipse can be represented as 
2 2

2 2
1

p q

f h

  + = 
  

where p and 

q are the coordinates of the two independent variables. A circle is also a form of 

an ellipse of eccentricity zero, (i.e., one in which the center and the two foci all 

coincide). An ellipse can have two axes of differing lengths so it is an excellent 

way to depict the variation in two data signals.  One axis can represent the 

variation in one signal (e.g., fuel flow) while the other axis represents the 

variation in the other (e.g., power generated). Using standard deviation, sj, to 

determine the size of each axis, a certain percentage of data can then be 

hypothetically enclosed within an ellipse.  Or in this case, a certain percentage of 

data can be enclosed within a series of ellipses or tuples (set of ordered elements). 
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The equation of the ellipse allows the tuples to be plotted 

as ( )22 qh
h

f
p −= . As mentioned previously, a range that lies two standard 

deviations on either side of the mean of a normally distributed sample encloses 

95% of the points in that sample. The standard deviations of the two signals being 

analyzed were calculated based on the same set of data used to predict the 

regression curve.  The length of the semi-major and semi-minor axis are given as  
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                            (4.11) 

where j and ĵ  denote two different turbine signals and p and q should be 

( ),p f f∈ − and ( ),q h h∈ − . Accordingly, a selection of q can be made and the 

corresponding value of p can be reached with knowledge of f and h as per 

equation (4.11). The center of each ellipse is set on the regression line ( )O Z t 
 

�  so 

that the ellipse signifies two standard deviations of the fuel flow signal and two 

standard deviations of the power signal on either side of the regression line in the 

y- and z-directions, respectively.              

Figure 4.3. An ellipse with its major and minor axis 
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Wavelet Prognostic Strategy 

Wavelet transforms can be applied to time domain plant signals that 

contain noisy, intermittent, and transient behavior (McAlpin et al., 2003). A 

wavelet is a waveform of limited duration with a zero average that converts a time 

domain signal into a magnitude and time function (Aboufadel and Schlicker, 

1999, Addison, 2002). Wavelet transforms can be used for multi-dimensional 

analyses which make them a powerful tool in analyzing and monitoring dynamic 

systems (Sun et al., 2005). For instance, wavelet transforms with neural networks 

can remove signal noise and predict nonlinear system behavior (Feng et al., 

2006). The wavelet transform can also be used to investigate dominant system 

trends and derive the mean time between hard failures (Guo et al., 2003) within 

the context of the diagnostic methods. 

In this study, the wavelet technique will predict dynamic system operation 

again using a three step procedure. First, wavelet transforms of the real-time data 

will compute the wavelet coefficients for a given system signal. Second, a 

regression analysis of these coefficients can forecast the wavelet coefficients for 

the desired prediction time. Third, the new set of wavelet coefficients can 

reconstruct the signal, and hence, obtain a prediction. 

Wavelet Description 

Any waveform function, ( )tψ , can be selected for a wavelet transform if 

it satisfies the condition of finite energy and admissibility. The finite energy 

condition (Daubechies, 1992) states that the energy, ϑ , of the wavelet function, 

( )tψ , should be limited as 
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2

( )t dtϑ ψ
∞

−∞

= < ∞∫                   (ϑ < ∞ )                  (4.12)                     

The admissibility condition states that the wavelet function has a zero mean, 

( ( )) 0E tψ = , and that the Fourier Transform of the wavelet function with 

frequency F cannot be zero, ˆ ( ) 0Fψ ≠ , within the support of the wavelet. The 

admissibility constant for the wavelet function has a finite value 
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In this expression, ( 2 )ˆ ( ) ( ) i F tF t e dtπψ ψ
∞

−
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= ∫ represents the Fourier transform of 

)(tψ . The value of the admissibility constant is dependent on the wavelet 

function. A discrete wavelet transform uses an orthonormal wavelet basis with the 

wavelet function, ( )tψ , to obtain the wavelet function, )(, tηχψ , at a given scale 

and time as  ……………………………………………………………………….            
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The parameters R∈χ  and R∈η  denote the dilation (scale) and translation 

(time) variables, respectively. The symbols 0u  and 0v  are wavelet control 

parameters.  

The term “translation” refers to delaying or hastening the onset of a 

wavelet (i.e., a shift in time). The term “dilation” denotes wavelet scaling (i.e., 

stretching or compressing). Low and high scales are associated with compressed 

and stretched wavelets. The scaling function, ( )tφ , is any waveform function that 
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satisfies the condition ( ) 1t dtφ
∞

−∞

=∫ . The scaling function at a given scale and time 

becomes 
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Wavelet Coefficient Signal Processing 

In some instances, the plant output signals may be affected by 

disturbances, dκ , and noise, nκ . For example, consider ( ) ( )j d ny t s t κ κ= + +  

which is composed of signal characteristics, s(t), and additive components dκ  and 

nκ . A wavelet transform addresses signal noise by computing two sets of wavelet 

coefficients: detail and approximate. Signal details refer to the high frequency 

content of the signal which may be noise and disturbances. Signal approximations 

are the low frequency signal content. If the high frequency components of the 

signal are removed, then the signal still retains some characteristics which can be 

forecasted. However, if the signal approximations are removed, then the signal 

may loose its primary characteristic and the residual would likely be noise.  

The detail and approximation coefficients, ,ˆ
jχ ηγ and 

,
ˆ

jχ ηξ , were generated 

on a dyadic scale (i.e., based on powers of two). The given discrete wavelet 

transform of the learning window may be computed to obtain the detail and the 

approximation coefficients as 

             0 0
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∫ ( )( ),jy t tψ=                      (4.16a) 



 45 

          0 0
,

00

1ˆ ( )j

t v u
y t dt

uu

χ

χ η χχ

ηξ φ
∞

−∞

 −=  
 

∫ ( )( ),jy t tφ=                      (4.16b) 

Note that the detail and approximation coefficients are obtained by the 

convolution of the system signal with the wavelet and scaling functions. The 

similar analysis of the input signal provides the corresponding detail, ,χ ηγ , and 

approximation, ,χ ηξ  , coefficients as 

                          ( ), ( ),ku t tχ ηγ ψ= , ( ), ( ),ku t tχ ηξ φ=                     (4.17)                                    

Form a practical perspective, the signal vectors ( )y t  and ( )u t  may be filtered 

using the complementary filters in equations (4.16) and (4.17) to realize low and 

high frequency coefficients. The next step for the algorithm is a least square fit to 

obtain a regression model of the signal approximation coefficients.  

Forecasting Methodology 

The prognostic eliminates high frequency signal noise, through wavelet 

transforms, to predict the system behavior. The wavelet coefficient regression 

model for the selected variable may be derived from the approximation 

coefficients. This regression model forecast the system’s approximation 

coefficients by performing a one dimensional inverse wavelet transform on the 

coefficients so that 

                                                    , ,( ) ( )A t tχ χ η χ η
η

ξ φ
∞

=−∞
= ∑                                 (4.18) 

The prognostic algorithm uses a fourth-order Daubechies wavelet (Daubechies, 

1992) for both the wavelet and inverse wavelet transforms. The corresponding 

wavelet and scaling function for the fourth-order Daubechies wavelets become 
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where the parameters ed  and e represent the scaling coefficient and the scaling 

coefficient index.  
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CHAPTER 5 

EXPERIMENTAL SETUP 

The real time prognostic strategies presented in this thesis can be applied 

to dynamic systems for which input and output sensory information is available. 

To apply these methodologies, experimental data is required to develop the 

statistical basis, estimate future behavior, and compare against actual response. 

Further, the dynamic stationary gas turbine model required experimental results 

for validation. During this project, extensive efforts were made to obtain physical 

operating data sets so that the developed methodologies could be tested 

rigorously. Hence, operational data was obtained from three different gas 

turbines: a Solar Mercury 50 gas turbine, a General Electric 7EA gas turbine, and 

a General Electric LM2000 co-generation gas turbine. The developed prognostic 

methodologies were applied to various plant signals from these turbines, and the 

numerical results compared.  

Introduction to Gas Turbines 

Gas turbines can be classified as either stationary or aeronautical 

propulsion. The stationary gas turbines are primarily used for power (electrical or 

mechanical) production in domestic and industrial sector, for instance, marine 

engines for large ships and electrical power turbines. Stationary gas turbines can 

also be classified based on criteria such as types of compressors (i.e., rotary or 

axial), turbine cycle (i.e., simple or combined), shaft arrangement (i.e., single or 

multi spool), with or without heat exchanger etc. Small scale turbines with power 
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ratings less than 100 kW are called mircoturbines, these turbines are used as 

supplementary power sources for running heating and cooling systems for 

buildings. 

The aeronautical propulsion gas turbines are used in aviation as jet aircraft 

engines. These aero gas turbines have had a great impact on the aircraft industry 

as they are effective, efficient, and capable of operating for long durations. 

Further the thrust generated by an aeronautical propulsion gas turbine ranges from 

40-450 kN. These gas turbine aircraft engines are of three types turbojet, turbofan 

(where thrust is generated by a nozzle), and turboprop (where the thrust is 

generated by a propeller). Gas turbines are also used as aircraft auxiliary power 

units to provide power supply for the electrical, hydraulic, and compression needs 

while it is stationary.  

The land based stationary gas turbines, typically used in power generation, 

have power range of 2-250 MW. If greater power production is necessary, 

combined cycle gas turbines may be used with 2,000 MW ratings. For such 

systems power production capacity of 2,000 MW maybe achieved. A combined 

cycle uses the energy available in the exhaust of a gas turbine (i.e., energy not 

converted to shaft power). This exhaust produces steam in a waste heat boiler, or 

a heat recovery steam generator, to increase the power output from a steam 

turbine. In a co-generation plant, the exhaust energy may be also used to produce 

hot water or steam to heat buildings or enhance chemical processes. The 

generated steam can also be used to operate an absorption refrigerator in water 
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chilling or air conditioning. Most of the stationary gas turbines used for power 

generation are designed to run for 100,000 hours without major overhauls. 

The Solar Mercury 50 Gas Turbine 

The Mercury 50 gas turbine, shown in Figure 5.1, is used by the Clemson 

University facilities to provide supplemental electrical power to the campus. It is 

a high- efficiency small-size gas turbine with low emissions. The Mercury 50 gas 

turbine is run during peak load conditions at the campus during the morning hours 

in winters and during  afternoon hours in summers. The Mercury 50 has a power 

production capacity of 4.5 MW with a maximum rotational speed of 

approximately 14,800 RPM. It contains a ten stage compressor and a two stage 

turbine. It consists of a single shaft recuperated cycle turbine engine, a generator 

with accessories, and auxiliary systems. The heat rate of a Mercury 50 is 9,359 

kJ/kWh with an electrical efficiency of 38.5%. Unlike most low rating gas 

turbines the Mercury 50 incorporates a heat exchanger and is not an aero-

derivative gas turbine. The inlet of the compressor is at the center of the system 

with the combustion chamber at the end to facilitate maintenance and compressor 

wash. 

The Mercury 50 stationary turbine's operation can be recorded at the 

Clemson University research facility computer workstations to determine the 

status of the gas turbine's operation including system temperatures, pressures, 

vibration levels, and power output. This real time output data is available for 

observation and use with diagnostic and prognostic modules. The control over the  
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Figure 5.1. Mercury 50 gas turbine at Clemson University 

operating scenarios of this gas turbine enabled the research team to specify its run 

duration and operating points so that data could be obtained for various scenarios. 

The Mercury 50 was run for both healthy and faulty operating scenarios; the 

faulty run data is not readily available from the gas turbine manufacturers as it is 

proprietary therefore, the turbine was run with seeded faults such as oil cooler and 

relief valve failure and the data was recorded. 

The experimental data from the Mercury 50 gas turbine is recorded using a 

IPCOS technology OPC for Matlab software. This software connects the Mercury 

50 to the computer workstations in the Energy Systems Laboratory at Clemson 

University through a RSLINX OPC server. At present, twenty eight signals are 

recorded and transmitted to the Matlab software in real time. Figure 5.2 shows the 

flow of data for the experimental setup, different sensors are shown with some of 

the signal recorded from these sensors. This data obtained from the turbine is 

stored in the form of arrays in Matlab which can be analyzed by relevant 
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algorithms. The data transmission from the Allen Bradley PLC is one way so that 

the turbine operation is not affected.  

The data acquisition is started by running the initializing Matlab code 

through the workstation at the Energy System Laboratory which includes 

specifying the signals to be recorded and the time for which the data has to be 

acquired. The present data acquisition rate is one second this data acquisition rate 

can be varied according to the desired rate of  sampling. Once initialized the 

algorithm records and stores the desired data signals. The data is acquired from a 

set of 180 sensors located at the various points in the Mercury 50 gas turbine. In 

Figure 5.3, the main sensor locations are displayed in addition to the signals 

detected at those points. 

The General Electric 7EA Stationary Gas Turbine 

The second experimental power plant turbine is a GE 7EA (refer to Figure 

5.4) mid-size gas turbine located at a Santee Cooper Rainy power generating 

station in Anderson County, SC. The GE 7EA is used for peak load sharing in a 

combined cycle power plant throughout the year. The GE 7EA has a power 

production capacity of 85 MW with a maximum rotational speed of 3,600 RPM. 

The GE 7EA power generation setup consists of a single shaft, recuperated cycle 

turbine engine with a sixteen stage compressor having a compression ratio of 

12.6:1. The heat rate of a GE 7EA is 10,991 kJ/kWh  with an approximate mass 

flow rate of 292 kg/s, the net efficiency is 50%, when used in a combined cycle 

plant. The multiple fuel combustion system enables the GE 7EA to be run on a 

variety of fuels, consequently the GE 7EA can switch from one fuel to another. 
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Figure 5.3. Gas turbine primary sensor location points along with the 
signals recorded 

 

Figure 5.3. Gas turbine primary sensor location points along with the signals 
recorded 

 
 

 

 

 

 

 

 

 
 
Figure 5.4 . GE 7EA 85 MW gas turbine located at the Rainy power generating 

station 
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Real time experimental data can be recorded from this gas turbine at a 

variable rate using an extensive network of installed sensors; the current sampling 

rate is one minute. The run time for the gas turbine is based on the power 

generation and heat needs, the kW of power generated depends on the overall load 

on the Rainy power generating station. Extensive data sets are available for the 

GE 7EA gas turbine from the Rainy power generating station. The recorded data 

represents the operation of this gas turbine over a period of three years. 

The General Electric LM2000 Gas Turbine 

The third gas turbine from which experimental data has been obtained is 

the GE 2000LM (refer to Figure 5.5) located at Louisiana State University (Baton 

Rouge, LA). It fulfills the electricity and waste heat generation requirements of 

LSU cogeneration plant. It is an aero derivative gas turbine with a maximum 

power production capacity of 18 MW with a maximum rotational speed of 5,000 

RPM. It has a sixteen stage compressor with a compression ratio of 20:1 and a six 

stage turbine. It has a heat rate of 9,374 kJ/kWh with an overall thermal efficiency 

of 36.4% and the mass flow rate is 62.72 kg/s. Steady state data for continuous 

turbine operation up to 24 hours at a sampling rate of five seconds is available 

from the Louisiana State University cogeneration plant.  
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Figure 5.5. Various components of a GE LM 2000 gas turbine 
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CHAPTER 6 

EXPERIMENTAL AND NUMERICAL RESULTS 

A variety of signals from the Solar Mercury 50 and the General Electric 

7EA were recorded and analyzed. This chapter presents the experimental and 

numerical results to validate the dynamic turbine model and the proposed 

prognostic methodologies. First, based on the experimental data from a Mercury 

50 the validation results for the mathematical model are presented. Second, the 

two proposed prognostic methodologies are applied to different data sets collected 

from the Mercury 50. Third, the prognostic algorithms along with signal 

conditioning methods are applied to long term data sets from a GE 7EA gas 

turbine. 

Analytical Gas Turbine Model Validation 

The dynamic simulation model consists of the differential and algebraic 

equations presented in Chapter 3. The subsystems have been linked with one 

another in MATLAB/Simulink to create a simulation tool set that uses the ODE 

(Dormand-Prince) variable step solver. A variety of model input/output signals 

have been considered including the generator power, shaft speed, fuel flow, 

compressor outlet pressure, and combustion chamber outlet temperature. To 

validate the mathematical model, comparisons between the analytical model and 

the experimental results from the Mercury 50 gas turbine have been studied. Each 

of the signals (e.g., shaft speed, power, fuel flow, compressor outlet pressure, and 
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turbine rotor inlet temperature) were superimposed on their corresponding 

experimental results graphs.  

The model validation of the turbine shaft speed shaft speed is shown in 

Figure 6.1. Due to fuel flow variations before steady state behavior is obtained, 

there is some deviation of the model results from the experimental shaft speed. 

Apart from this discrepancy between 100<t<650s, the model shows close 

resemblance to the experimentally determined speed for the steady state profile. 

In Figure 6.2, the validation of the estimated power generated is presented. The 

model results show good correlation to the experimental results for the start up, 

the transient and the steady state operation. A good match has been obtained (i.e., 

within 0.5 % of the experimental data). It can be observed that the model 

simulates the start of power generation at t= 400s after the initial start up, and 

sequential loading at 400<t<650s, and the attainment of steady state at 

approximately at t=650s. 

The model validation for fuel flow rate is presented in Figure 6.3. Since no 

fuel control information is available, fuel flow map has been generated 

empirically. The model adequately predicts the actual fuel flow during the loading 

sequence between 200<t< 700s and closely matches the steady state behavior. 

Figure 6.4 displays the estimated and actual compressor outlet pressure (PCD). 

Although there are some deviations between the analytical and experimental 

results during the start up phase, the steady-state results agree closely. Finally, 

Figure 6.5 presents the comparison between experimentally determined and 

analytically estimated turbine rotor inlet temperature.  
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Figure 6.1. Estimated (dashed) and experimental (solid) gas turbine shaft speed 
versus time 

Figure 6.2. Estimated (dashed) and experimental (solid) gas turbine power 
generated versus time 
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Figure 6.3. Estimated (dashed) and experimental (solid) fuel flow rate versus time 

Figure 6.4. Estimated (dashed) and experimental (solid) gas turbine compressor 
outlet pressure versus time 
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Figure 6.5. Estimated (dashed) and experimental (solid) gas turbine rotor inlet 
temperature versus time 
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Prognostic Methods - Application to a Mercury 50 Gas Turbine 

In this initial study, two signals were related to time using the least-

squares method and a second-order polynomial curve fit. The two signals can be 

any of the twenty-eight signals listed in Table 6.1. Fuel flow, F1, and power 

generated, PW, were considered to be suitable for representing some of the 

characteristic behaviors of the Mercury 50 stationary gas turbine. Figure 6.6 

displays a sample of two signals, fuel flow rate (kg/s) and power generated (kW), 

for a healthy turbine operational run. This data represents steady state behavior 

which is obtained 4,000s after the initiation of the turbine run and continues till 

9,000s. After this period the turbine shutdown process is initiated and the turbine 

ceases operation at 10,000s. Once the initial cold start is complete, the turbine 

reaches peak power generation in about 1,000s. The turbine gradually settles into 

steady state behavior but still there are fluctuations in the power generated for 

another 3,000s after which the turbine runs smoothly. Hence, the data window 

from 4,000 to 9,000s is assumed to be a steady state period.  

Figure 6.7 displays the computed multiple regression curve based on 4,000 

steady state data points for fuel flow and power generated (i.e., 4,000<t<8,000s 

after the initial start up). The algorithm computes the second order multiple-

regression curve in real-time. As data is recorded, the regression curve is 

computed based on the logged data points so that this curve is updated 

continuously as more data is recorded. The longer the duration of the data 

recorded, more representative would be the regression curve of the signal trend 

and turbine behavior. The second order polynomial fit has an error of 
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approximately 1.4% for both the fuel flow and power generated which is within 

acceptable limits of 5%± . 

Figure 6.8 displays tuples plotted with major and minor axes sized as two 

standard deviation for power and fuel flow signals, ),1( PWFfs j ∝ , respectively 

for a sample of  4,000s after steady state has been achieved. The tuple centers lie 

on the regression curve shown in Figure 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1. Gas turbine data acquisition signals 

Variable Description of Variable Units 
A1 Compressor inlet acc. gE 
A2 Center frame axial acc. gE 
A3 Compressor diffuser acc. gE 
A4 Generator driven end acc. gE 
A5 Gearbox acc. gE 
B1 Gas producer Brg1 Y-axis mil pp 
B2 Gas producer Brg1 X-axis mil pp 
B3 Gas producer Brg2 Y-axis mil pp 
B4 Gas producer Brg2 X-axis mil pp 
B5 Gas producer Brg3 Y-axis mil pp 
B6 Gas producer Brg3 X-axis mil pp 
C1 Relief valve  position % 
C2 Air diverter valve position % 
F1 Fuel flow rate kg/s 

NGP Turbine shaft  speed % 
P1 Gas fuel supply pressure Pa 
P2 Lube oil  pressure Pa 
P3 Compressor outlet pressure Pa 
PF Power  factor  
PW Generated power kW 
T1 Lube oil  temperature ˚K 
T2 Inlet  air temperature ˚K 
T3 T7.1 average ˚K 
T4 T7.0 average ˚K 
T5 T2.45 average ˚K 
T6 Turbine inlet temperature ˚K 
T7 Enclosure temperature ˚K 
V1 Alt average L-L volts V 
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Figure 6.6. Fuel flow and power generated for a Mercury 50 gas turbine in steady 
state versus time for 4,000<t<9,000s 

Figure 6.7. Regression curve, Z
�

, for the fuel flow and  power generated in a 
Mercury 50 gas turbine versus time for  4,000<t<8,000s    
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As the data is updated in real-time, the tuple radius varies with changing 

standard deviation of the data. These tuples will ideally enclose 95% of the data 

for a healthy turbine run. These tuples allow one to visualize the behavior of the 

turbine. The points outside of the tuples represent points occurring during 

operation that are greater than two standard deviations of the recorded data away 

from the trend line.  

Figure 6.9 shows the forecast between 8,000 and 9,000s for the data in 

Figure 6.6. A learning window encloses 4,000s of prior data. Ellipses with semi-

major and semi-minor axis as two standard deviations for the steady state data for 

fuel flow and power generated. A comparison between the actual experimental 

data and the forecast gives an error of approximately 4% which is again within the 

acceptable limits of 5%± .  

The signals from a Mercury 50 gas turbine were analyzed using second-

order Daubechies wavelets. The initial step computes the discreet wavelet 

transform of the signal to generate the wavelet coefficients (i.e., a set of detail and 

approximation coefficients). The gas turbine signal selected was power, PW. As 

shown in Figure 6.10, the steady state turbine signal (power) for a period of 

5,000s was divided into two windows: learning and validation.  

Figure 6.11 displays the low frequency approximation wavelet coefficients 

for the learning window for 4,000<t<8,000s. The values of the wavelet 

coefficients depend on the wavelet function, being used to analyze the signal. Due 

to “down” sampling the number of wavelet coefficients is exactly half the number 

of data points in the sampled signal. 
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Figure 6.8. Tuples centered on a second order polynomial trend for fuel flow and 
power versus time for 4,000<t<8,000s 

 

Figure 6.9. Forecast of fuel flow and power generated versus time for a Mercury 
50 gas turbine for 8,000<t<9,000s 
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Figure 6.12 shows the first level wavelet approximation reconstructed 

from the approximation coefficient vector for the signal. As can be seen, the 

length of the signal approximation is equal to the sum of the desired forecasted 

signal (i.e., 8,000<t<9,000s) and the learning window (i.e., 4,000<t<8,000s). The 

first 4,000s are the signal approximation and the last 1,000s are the forecast 

approximation.  A comparison of the actual signal  (refer to Figure 6.10) and the 

reconstructed signal approximation (refer to Figure 6.12) for the initial 4,000s 

reveals that the signal approximation does not have the high frequency content of 

the original signal (i.e., is the signal details). Therefore, the signal details were 

extraneous and may be filtered out. 

Figure 6.13 shows the comparison of the forecast for power generated for 

the next 1,000s and the corresponding experimental data in the forecast validation 

window as described earlier. The thick line represents the wavelet forecast which 

has been superimposed on the experimental data. The forecast does not vary as 

much as the original signal but can be assumed to represent the mean value of the 

signal forecast for a given time window. The forecast is within 2.3% of the actual 

experimental data which is within acceptable limits.  

Figure 6.14 shows the wavelet forecast for fuel flow and power generated 

versus time in three dimensions. The power generated was analyzed as a function 

of fuel flow and time using two-dimensional discrete wavelet transform. The 

signal was analyzed for a period of 4,000s to obtain the signal approximation and 

the signal details were filtered out. Then based on this learning window, an 

approximation of the signal forecast was obtained for the next 1,000s. This 
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technique was used for a case study to compare the statistical and the wavelet 

forecast. The comparison between the forecast approximation and the actual 

signal for the next 1,000s gave an error of approximately 2.4%. 

A case study was conducted in which the two prognostic techniques were 

applied to two turbine signals. The selected signals were the turbine rotor inlet 

temperature, TRIT T6, and the compressor outlet pressure, P3. A turbine run 

window of t=17,000s was selected for the learning data. The forecast was 

computed using both the statistical and the wavelet method for the next 4,000s. 

Figure 6.15 shows a comparison between the two techniques along with the 

respective forecast as labeled. The upper and the lower curves within the forecast 

window in the figure represent the statistical and the wavelet forecast, 

respectively.  

A comparison was performed between the two forecast curves and the 

actual experimental data to compute the error, and hence, compare the two 

methods. It was observed that for rapidly fluctuating data, the wavelet analysis 

was more stable. The TRIT error, computed in the max norm, was 49� F and 82�F 

for the wavelet and statistical forecast methods, respectively. The pressure 

forecast error was approximately 21kPa and 34.2kPa for each method. The 

forecasting errors for both TRIT and pressure were within the acceptable limits of 

5%± .  
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Figure 6.10. Power generation versus time for the steady state of a Mercury 50 
gas turbine with learning 4,000<t<8,000s and validation 8,000<t<9,000s windows 

Figure 6.11. Second order approximation coefficients for the learning window 
4,000<t<8000 for power generated 
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Figure 6.12. Signal approximation for 4,000<t<8,000s and forecast approximation 
for 8,000<t<9,000s for the steady state operation of a Mercury 50 gas turbine 

Figure 6.13. Forecast of power generated for a Mercury 50 gas turbine using 
wavelets for 8,000<t<9,000s 
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Figure 6.14. Three dimensional wavelet representation for fuel flow and power 
generated versus time with learning (4,000<t<8,000s) and forecast 

(8,000<t<9,000s) windows      

 

Figure 6.15. Comparison of wavelet and statistical forecast for the steady state 
operation of the Mercury 50 gas turbine for the forecast window for  

17,000<t<21,000s 
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Prognostic Methods - Application to a General Electric 7EA Gas Turbine 

The GE 7EA input signals included power generated (PG), fuel flow rate 

(FF), and inlet guide vane angle (IGVA). The set of output signals selected to 

forecast system health consisted of turbine inlet temperature ( TTT ), compressor 

delivery pressure (PCD), generator temperature (GT ), exhaust temperature (EXT ), 

compressor discharge temperature (CDT ), compressor inlet mass flow (CFT ), 

generator maximum vibration (GVA ), and gas turbine maximum vibration (TVA ). 

The output signals were selected based on their high correlations with the three 

input signals as shown in Table 1. For instance, the turbine inlet temperature has 

correlation values  of 11 0.83R = , 12 0.83R = , and 13 0.88R =  with the PG, FF, 

and IGVA signals, respectively. Hence, the turbine inlet temperature is selected as 

a signal to analyze since 0.80jkR >  for all three input signals. 

Prognostic Methodologies 

A three step process was followed to analyze the turbine inlet temperature, 

TTT . First, the steady-state signal was conditioned to obtain a concatenated and 

filtered signal. Second, the statistical prognostic methodology was applied to 

obtain the signal forecast. Third, the wavelet method was supplied the same signal 

to predict the system behavior. Finally, a comparison of the two methods was 

performed. Note that for real-time applications, the desired system operating 

mode must be present before signal filtering and analysis; signal concatenation 

will not occur. 
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Signal Conditioning 

The turbine inlet temperature profile is shown in Figure 6.16a for a period 

of t∗ = 59,000 minutes. The signal is somewhat oscillatory due to start ups, shut 

downs, and different operating loads. For a meaningful analysis of the turbine 

data, three operating ranges (or modes) were identified for the turbine inlet 

temperature (200-400C� , 400-600C� , and 600-800C� ). These operating ranges 

are user-defined and typically based on turbine operating modes (e.g., light, 

medium, and heavy loads per electrical power generating demands).  

The turbine inlet temperature range of 600 800TTT C< < �  was selected 

since this corresponds to the most common operating mode of maximum turbine 

load. Specifically, the turbine runs for t=32,200 minutes of the total t∗ = 59,000 

minutes in the heavy load mode. In Figure 6.16b, the concatenated data for the 

turbine inlet temperature has been displayed. The next task was to normalize the 

concatenated data using a simple filter ( 1) ( )j j jY Y i Y i∗ = + −  to further reduce 

fluctuations. The filtered turbine inlet temperature with a mean value of zero, 

refer to Figure 6.16c, shows variations about the actual signal mean, jy . The data 

has been divided into the learning (i.e., 0<t<22,200 minutes) and the validation 

(i.e., 22,200<t<32,200 minutes) windows, LW and VW . The prognostic algorithm 

used the learning window,  LW , as the training data for the regression curve to 

detect trends. The estimated system forecast was then compared with the 

experimental data in the validation window, VW , to gauge the prognostic method 

accuracy. 
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Figure 6.16. GE 7EA stationary gas turbine inlet temperature profile: (a) Raw data 
signal for 0<t∗ <59,000 minutes, (b) Restricted operating range of 600-800C�  for 

0<t<32,200 minutes, and (c) Filtered data showing the learning 0<t< 22,200 
minutes and validation windows 22,200<t<32,200 minutes 
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Statistical Forecasting 

The filtered signal, jY ∗ , was analyzed using the statistical methodology to 

predict the system behavior. In Figure 6.17a, the regression curve for the initial 

turbine inlet temperature learning data has been graphed versus time. The derived 

regression curve, jiZ
�

, forecasts the system operation for a period of t=10,000 

minutes (i.e., 22,200<t<32,200 minutes) as  shown in Figure 6.17b. When 

comparing the predicted and actual data in the validation window the forecast 

error is 11.47%. The system operation forecast for turbine inlet temperature 

mapped back into the operating domain along with the forecast error bounds, ε± , 

is shown in Figure 6.17c. Note that the forecasted signal displays a non-

fluctuating behavior which predicts the signal mean rather than the specific 

fluctuations which may be an advantage. 

Wavelet Forecasting 

The wavelet prognostic algorithm computes the fourth-order wavelet 

transform of the filtered data, jiY ∗ ,  in the learning window, LW . This transform 

yields the low frequency (approximation) and the high frequency (detail) wavelet 

coefficients. A least squares fit was performed on the approximation coefficients 

(refer to Figure 6.18a) with the coefficients forecasted for t=10,000 minutes. The 

signal approximation was reconstructed from the coefficients by taking the 

inverse wavelet transform. The length of the reconstructed signal approximation 

was equal to the sum of the desired forecasted signal and the learning window. A 

comparison between the forecast and experimental for the turbine inlet 

temperature for 22,000<t<32,000 minutes is shown in Figure 6.18b. The thick line  
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Figure 6.17. Statistical prognostic strategy: (a) Regression curve for turbine inlet 
temperature during learning window (0<t<22,200 minutes), (b) Statistical signal 

forecast  (22,200<t<32,200 minutes), and (c) Signal and statistical forecast 
mapped back into the operating domain for 0<t<32,200 minutes 
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Figure 6.18. Wavelet prognostic strategy: (a) Approximation coefficients for 

turbine inlet temperature for learning window (0<t<22,200 minutes), (b) Wavelet 
signal forecast (22,200<t<32,200 minutes) with reduced display density, and (c) 

Signal and wavelet forecast mapped back into the operating domain for 
0<t<32,200 minutes 
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represents the wavelet forecast which has been superimposed on the experimental 

data; the forecast error estimation is 9.23%. For a better visual representation, the 

filtered data and the signal forecast are mapped back into the operating domain 

along with the error bounds, ε± , as shown in Figure 6.18c. A three dimensional 

representation of the statistical and the wavelet forecast for turbine inlet 

temperature, TTT , versus the three input signals power generated, inlet guide vane 

angles, and fuel flow during the forecast window (22,200<t<32,200 minutes) is 

presented in Figures 6.20-6.25. As shown the turbine inlet temperature is a 

function of the three input signals. 

Comparison of Results 

A comparison of the two prognostic techniques, based on the forecast 

error values, has been presented in Table 6.2. In addition to the turbine inlet 

temperature, four other plant signals were forecasted and their respective errors 

computed. In each of the five cases, the wavelet method produced a lower 

forecast error and may be ranked as the better prognostic strategy. Overall, the 

forecast errors are acceptable for both the methods, but dependant on steady-state 

plant operation in well defined modes. To implement the wavelet prognostic 

strategy in real-time, the general algorithm is shown in Figure 6.19. A variable 

length user defined window, SW , must be selected to calculate the wavelet 

coefficients and predict future plant behavior. At the appropriate time, new data 

may be obtained and the process continues. Note that in real-time, the forecast 

error will be small as the signal variations within a user defined window would be 

negligible and no concatenation would be required. 
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Correlation, jkℜ    Forecast Error, %ε  Signal No. Signal  
Description 

PG FF IGVA Statistical Wavelet 
1 

TTT  0.83 0.83 0.88 11.47 9.23 

2 
GT  0.83 0.83 0.87 10.40 8.87 

3 
EXT  0.99 0.99 0.98 9.49 5.24 

4 
GVA  0.89 0.89 0.87 10.43 9.69 

5 
TVA  0.82 0.82 0.56 10.89 9.01 

Table 6.2. Comparison of statistical and wavelet prognostic forecast for five GE 
7EA  gas turbine output signals based on the three input signals power generated 
(PG), fuel flow (FF), and inlet guide vane angle (IGVA); over a 10,000 minutes 

validation window 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Real-time application of the wavelet prognostic methodology 
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Figure 6.20. Statistical forecast for turbine inlet temperature versus power and  
             time during the forecast window (22,200<t<32,200 minutes) 

 
 

 
 

 
Figure 6.21 Statistical forecast for turbine inlet temperature versus fuel flow and  
               time during the forecast window (22,200<t<32,200 minutes) 
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Figure 6.22 Statistical forecast for turbine inlet temperature versus inlet guide 
vane angle (IGVA) and time during the forecast window (22,200<t<32,200               
                                                            minutes) 
 
 
 

 
Figure 6.23 Wavelet forecast for turbine inlet temperature versus power and time  
                             during the forecast window (22,200<t<32,200 minutes) 
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Figure 6.24 Wavelet forecast for turbine inlet temperature versus fuel flow and 

time during the forecast window (22,200<t<32,200 minutes) 
 
 

 
 
 

 
Figure 6.25 Wavelet forecast for turbine inlet temperature versus inlet guide vane  
  angle (IGVA) and time during the forecast window (22,200<t<32,200 minutes) 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

The health monitoring of simple cycle gas turbines requires real-time 

prognostics strategies to increase performance and reliability, thereby enabling 

cost savings and increased operator safety. A dynamic mathematical model 

representing a Mercury 50 gas turbine has been developed and numerical results 

have been obtained by simulation. Physical and thermodynamic laws have been 

used to describe the system dynamics. This mathematical model has been 

transformed into a computer algorithm in the MATLAB/Simulink environment. 

The simulation results have been compared with representative experimental data 

gathered for a standard turbine. The estimated turbine behavior compares well 

with the actual data. This model can be used in a Model-based process diagnostic 

strategy and represents a key contribution to the field of real-time simple cycle 

gas turbine health management systems. 

Two model-free real-time prognostic strategies with applications to 

stationary gas turbine have been presented. Representative experimental results 

have been compared to validate the accuracy of the proposed approaches. The 

estimated forecast for different turbine signals compares well with the actual test 

data. It can be concluded that the wavelet transform based method is better, as the 

forecasting error is less for the former for each of the signals studied. This can be 

attributed to the “de-noising” of the actual learning signal, as the high frequency 

content of the signal (i.e., the signal details) is filtered when the wavelet 
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coefficients are computed. This filtering helps to identify the hidden trend of the 

signal and the corresponding forecast follows the trend and hence a good forecast 

is obtained. For the statistical method, no filtering is applied which leads to 

greater forecasting errors. The developed approaches may be used in parallel for a 

diagnostic algorithm to monitor stationary gas turbine system health. 

Recommendations 

The future work for the research team is to extend the developed 

methodologies to other gas turbine configurations such as the combined cycle 

systems. On the basis of the research conducted, a few recommendations have 

been suggested. For the turbine dynamic model, new subsystems need to be 

included to represent a combined cycle gas turbine. System parameters will have 

to be adjusted and model validation performed. For the prognostic strategies, 

different signal combinations may be investigated to forecast system health. In 

addition, higher level wavelet decompositions may be performed to compare the 

forecast results for different transform levels. To predict transient behavior the 

length of the learning data windows may be made small so that short term forecast 

is obtained. Finally, the prognostic strategies may be applied to other dynamic 

systems for which the sensory information is readily available.   

 

 

 



 85 

 

 

 

 

 

 

APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 86 

Appendix A Matlab/Simulink Code For The Analytical Model 

Matlab Code 

 
% Matlab Simulink Model for Mercury 50  
% Matlab file: ModelFile  
% Simulink File: TurbineModel  
  
clear all  
clc  
load turjun14;  
  
%Model Parameters  
  
comp_area=0.19;                % Compressor Area  
specific_air=1005;             % Specific heat air 
specific_gas=1148;             % specific heat gas  
specific_ratioair=1.4;         %k  
specific_ratiogas=1.33;        %k  
lower_heatval=61000000;        %LHV  
hf=4600                        %Enthaphy  
CA=150;                        %Axial velocity  
jeq=0.4;  
m_cchamber=1;  
ns=10;                         % Number of stages  
press_inlet=101.3;             %Inlet Pressure  
press_drop=3;                  %Pressure Drop  
temp_in=298;                   %Inlet Tmperature  
R=287.4;  
U=250; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Various efficiencies 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eff_comp=0.9;                %%% compressor 
eff_cchamber=0.95;           %%% combustion chamber      
eff_recup=0.85;              %%% recuperator  
eff_turbine=0.9;             %%% turbine  
eff_stage=0.9;               %%% stage  
fric_tor=30;                 %%% friction torque  
temp_coeff=0.35              %%% temperature coeffi cient 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%Data conversion 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=double(temp199);  
A=A(807:9402);  
A=A/1500;  
T=[1:8596];  
V1=[T;A]';  
  
 
%Plots for the model and the experimental data  
sim('turbinemodel2');  
figure(1)  
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plot(TM,CompressorMflow)       % plots the mass flo w rate versus 
time  
xlabel('Time(sec)')  
ylabel('Mass Flow(Kg/sec)')  
axis([-.01,8000,0,18])  
grid on  
  
  
figure(2)  % plots the shaft speed versus time  
plot(TM,ShaftSpeed,'--',tt(1:10000)-
338,double(temp_1(1:10000))*1.4862)  
xlabel('Time(sec)')  
ylabel('Shaft Velocity(rad/sec)')  
axis([-.01,8000,0,1700])  
legend('Simulation','Data')  
grid on  
  
figure(3)   %plots the powere generated versus time  
plot(TM,Power,'--',tt(1:10000)-809,double(temp199(1 :10000)))  
xlabel('Time(sec)')  
ylabel('Power(KW)')  
axis([-.01,8000,0,3300])  
legend('Simulation','Data')  
grid on  
  
figure(4) % plots TRIT versus time  
plot(TM,CombustionChamberTemp,'--',tt(1:10000)- 
338,((double(temp295(1:10000))-32)*.5555)+273.15)  
xlabel('Time(sec)')  
ylabel('TRIT(K)')  
axis([-.01,8000,0,1800])  
legend('Simulation','Data')  
grid on  
  
figure(5) % plots PCD versus time  
plot(TM,CompressorOutletPressure,'--',tt(1:10000)-
338,((double(temp74(1:10000))-6240)*.05526)+100)  
xlabel('Time(sec)')  
ylabel('Pressure(kPa)')  
axis([-.01,8000,0,1100])  
legend('Simulation','Data')  
grid on  
  
figure(6) % plots fuel flow versus time  
plot(TM,FuelFlow,'--',tt(1:10000)-338,(double(temp4 6(1:10000))-
6240)/89856)  
xlabel('Time(sec)')  
ylabel('Fuel Flow (Kg/sec)')  
axis([-.01,8000,0,.24])  
legend('Simulation','Data')  
grid on  
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Appendix B Matlab/Simulink Code For Data Acquistion 

Matlab Code  

 
%   DATA ACQUISITION PROGRAM FOR MERCURY 50 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
The code tests the availability of the MXOPC server  and waits for 
an error if no error is detected (i.e., the connect ion has been 
established for the Mercury 50 stationary gas turbi ne)the data 
can be transmitted 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
mxopc ?  
hr=mxopc('open','RSLinx OPC Server','localhost',100 0)  
hr=mxopc('BrowseRoot');  
hr=mxopc('BrowseFolders')  
hr=mxopc('BrowseDown','M50');  
hr=mxopc('BrowseDown','Online');  
hr=mxopc('Browsedown','N11');  
% 
% 
% 
StartTime=clock;  
% 
for n=1:30000 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Data Acquisition is started by specifying the sig nals to be 
recorded to the MXOPC server for the Mercury 50 sta tionary gas 
turbine  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [v1,hr]=mxopc('ReadInt','[M50]N11:1');  
    [v2,hr]=mxopc('ReadInt','[M50]N11:19');  
    [v3,hr]=mxopc('ReadInt','[M50]N11:20');  
    [v4,hr]=mxopc('ReadInt','[M50]N11:22');  
    [v5,hr]=mxopc('ReadInt','[M50]N11:23');  
    [v6,hr]=mxopc('ReadInt','[M50]N11:24');  
    [v7,hr]=mxopc('ReadInt','[M50]N11:25');  
    [v8,hr]=mxopc('ReadInt','[M50]N11:26');  
    [v9,hr]=mxopc('ReadInt','[M50]N11:27');  
    [v10,hr]=mxopc('ReadInt','[M50]N11:28');  
    [v11,hr]=mxopc('ReadInt','[M50]N11:29');  
    [v12,hr]=mxopc('ReadInt','[M50]N11:30');  
    [v13,hr]=mxopc('ReadInt','[M50]N11:31');  
    [v14,hr]=mxopc('ReadInt','[M50]N11:32');  
    [v15,hr]=mxopc('ReadInt','[M50]N11:33');  
    [v16,hr]=mxopc('ReadInt','[M50]N11:34');  
    [v17,hr]=mxopc('ReadInt','[M50]N11:43');  
    [v18,hr]=mxopc('ReadInt','[M50]N11:46');  
    [v19,hr]=mxopc('ReadInt','[M50]N11:51');  
    [v20,hr]=mxopc('ReadInt','[M50]N11:54');  
    [v21,hr]=mxopc('ReadInt','[M50]N11:57');  
    [v22,hr]=mxopc('ReadInt','[M50]N11:60');  
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    [v23,hr]=mxopc('ReadInt','[M50]N11:64');  
    [v24,hr]=mxopc('ReadInt','[M50]N11:65');  
    [v25,hr]=mxopc('ReadInt','[M50]N11:66');  
    [v26,hr]=mxopc('ReadInt','[M50]N11:71');  
    [v27,hr]=mxopc('ReadInt','[M50]N11:73');  
    [v28,hr]=mxopc('ReadInt','[M50]N11:74');  
    [v29,hr]=mxopc('ReadInt','[M50]N11:76');  
    [v30,hr]=mxopc('ReadInt','[M50]N11:79');  
    [v31,hr]=mxopc('ReadInt','[M50]N11:80');  
    [v32,hr]=mxopc('ReadInt','[M50]N11:81');  
    [v33,hr]=mxopc('ReadInt','[M50]N11:82');  
    [v34,hr]=mxopc('ReadInt','[M50]N11:87');  
    [v35,hr]=mxopc('ReadInt','[M50]N11:88');  
    [v36,hr]=mxopc('ReadInt','[M50]N11:89');  
    [v37,hr]=mxopc('ReadInt','[M50]N11:91');  
    [v38,hr]=mxopc('ReadInt','[M50]N11:92');  
    [v39,hr]=mxopc('ReadInt','[M50]N11:103');  
    [v40,hr]=mxopc('ReadInt','[M50]N11:104');  
    [v41,hr]=mxopc('ReadInt','[M50]N11:107');  
    [v42,hr]=mxopc('ReadInt','[M50]N11:189');  
    [v43,hr]=mxopc('ReadInt','[M50]N11:199');  
    [v44,hr]=mxopc('ReadInt','[M50]N11:225');  
    [v45,hr]=mxopc('ReadInt','[M50]N11:291');  
    [v46,hr]=mxopc('ReadInt','[M50]N11:292');  
    [v47,hr]=mxopc('ReadInt','[M50]N11:293');  
    [v48,hr]=mxopc('ReadInt','[M50]N11:295');  
    [v49,hr]=mxopc('ReadInt','[M50]N11:308');  
    [v50,hr]=mxopc('ReadInt','[M50]N11:310');  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Once the data has been recorded the connectio n is closed  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    mxopc('Sleep',1000);  
    Nmissed=mxopc('Sleep')  
    Nmiss(n)=double(Nmissed);  
    n  
end  
 
StpTime=clock;  
tt=1:length(s295);         
figure  
plot(tt,s295)                    %A test signal is plotted             
title('TRIT for the Actual Run')  
grid  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix C Matlab/Simulimk Code For Prognostics 

Mercury 50 Gas Turbine 

%%% The code involves the usage of the Matlab stati stical and 

wavelet toolboxes 

Matlab Code For Statistical Method 
 
 
% Tuple Formation  
  
% Parameter Definition  
  
  
clc  
orient landscape  
  
%load turfeb2                                                                
% Load the Data  
%load turapr5  
%Enter Parameters and their descriptions  
signal_y = ((double(temp46)-6240)/89856);                                
%signal to be plotted on the y-axis  
signal_z = double(temp199);                                                 
%signal to be plotted on the z-axis  
signal_description_y = char('Fuel Flow [lb/hr]');                           
%description of y-axis variable  
signal_description_z = char('Power [kW]');                                  
%description of z-axis variable  
order = 1;                                                                  
%order of regression line  
predict_length = 1000;                                                         
%Length Beyond the data that the program predicts  
point_freq = 1;                                                             
%Sets how often points are plotted  
circ_freq = 50;                                                             
%Sets how often circles are plotted  
window_size = 500;                                                          
%moving meanwindow size  
  
%Plot to check for times  
%plot(1:length(signal_y),signal_y,1:length(signal_z ),signal_z)              
%comment rest of program and uncomment this line to  use  
%figure  
  
%Select Times For Data  
s_up = 2305;                                                                
%turbine ramp up start time (use line 19 to find)  
sstart = 4000;                                                              
%start of steady state time (use line 19 to find)  
sstop = 8000;                                                              
%stop of steady state time  (use line 19 to find)  
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s_down = 10801;                                                             
%end of shut down phase     (use line 19 to find)  
  
%Select Region  
  
%region = input('Enter 1 for Start up, 2 for Steady  State, 3 for 
Shut Down 4 for Manual Entry of Time ')  
region = 4;  
  
if region == 1  
    start = s_up;  
    stop = sstart;  
end  
if region == 2  
    start = sstart;  
    stop = sstop;  
end  
if region == 3  
    start = sstop;  
    stop = s_down;  
end  
if region == 4  
    start = sstart;  
    stop = sstop                              %ssta rt+(sstop-
sstart)/2;  
end  
  
%Statistics  
std_y = std(signal_y(start:stop));  
std_z = std(signal_z(start:stop));  
mean_y = mean(signal_y(start:stop));  
mean_z = mean(signal_z(start:stop));  
ry = std_y*2;  
rz = std_z*2;  
  
 
%plots circles  
hold on  
plot3(start:point_freq:stop,signal_y(start:point_fr eq:stop),signa
l_z(start:point_freq:stop),'.g')  
corry=signal_y;  
corrz=signal_y.*lin;  
for i = start:circ_freq:stop+predict_length  
th = 0:pi/50:2*pi;  
yunit = ry * cos(th) + corry(i);  
zunit = rz * sin(th) + corrz(i);  
plot3(ones(1,length(zunit)).*i,yunit,zunit,'k');  
end  
xlabel('time [s]')  
ylabel([signal_description_y])  
zlabel([signal_description_z])  
legend('Data','Correlation Prediction')  
axis([-inf,inf,1040,1180,2000,2200])  
grid on  
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% MOVING MEAN 
for i = window_size:length(signal_y)  
    temp_data_y = corry(i-window_size+1:i);  
    mean_data_y(i-window_size+1)=mean(temp_data_y);  
    std_y(i)=std(temp_data_y);  
    temp_data_z = corrz(i-window_size+1:i);  
    mean_data_z(i)=mean(temp_data_z);  
    std_z(i)=std(temp_data_z);  
end  
  
figure  
hold on  
plot3(start-window_size:point_freq:stop,signal_y(st art-
window_size:point_freq:stop),...  
    signal_z(start-window_size:point_freq:stop),'g. ',...  
    
start:stop+window_size,mean_data_y(start:stop+windo w_size),mean_d
ata_z(start:stop+window_size),'r--')  
  
%plots circles  
  
for i = start:circ_freq:stop+window_size  
y=mean_data_y(i);                               %y- coordinate of 
center of circle  
z=mean_data_z(i);                               %z- coordinate of 
center of circle  
th = 0:pi/50:2*pi;  
yunit = ry * cos(th) + y;  
zunit = rz * sin(th) + z;  
plot3(ones(1,length(zunit)).*i,yunit,zunit,'k');  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
xlabel('time [s]')  
ylabel([signal_description_y])  
zlabel([signal_description_z])  
legend('Data','Sliding Mean Tuple Center','Tuple')  
axis([-inf,inf,1040,1180,2000,2200])  
grid on  
  
% REGRESSION (MINIMIZED LEAST SQUARES)  
  
%Calculation of Trend Line  
  
t = [start:stop];  
tp = [start:stop+predict_length];  
y = mean_data_y(start:stop);  
z = mean_data_z(start:stop);  
pyy = polyfit(t,y,order);  
pzz = polyfit(t,z,order);  
py = polyval(pyy,t);  
pz = polyval(pzz,t);  
pyp = polyval(pyy,tp);  
pzp = polyval(pzz,tp);  
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% Plot of Data and Trend Line  
figure  
hold on  
plot3(start:point_freq:stop,signal_y(start:point_fr eq:stop),signa
l_z(start:point_freq:stop),'.g')  
plot3(tp,pyp,pzp);  
  
% %plots circles  
 for i = start:circ_freq:stop%+predict_length  
 y=pyp(i-start+1);                                                        
%y-coordinate of center of circle  
 z=pzp(i-start+1);                                                        
%z-coordinate of center of circle  
 th = 0:pi/50:2*pi;  
 yunit = ry * cos(th) + y;  
 zunit = rz * sin(th) + z;  
 %plot3(ones(1,length(zunit)).*i,yunit,zunit,'k');  
 end  
xlabel('time [s]')  
ylabel([signal_description_y])  
zlabel([signal_description_z])  
%legend('Data','Minimized Least Squares Tuple Cente r','Tuple')  
grid on  
 axis([4000,9200,.15,.23,3000,3400]) 
 

Matlab Code For The Wavelet Method 

 %%% Wavelet toolbox has been used  
 
% Forecast of TRIT using Wavelets  
  
clear all  
clc  
 load wavelet1   %%% load turbine inlet temperature  
 S=signal(1:14400);  
 [cA1,cD1] = dwt(S,'db2'); % take the wavelet trans form of the 
signal  
 t=1:length(cA1);                    
 p=polyfit(t,cA1,2);       % perform least square f it  
 y=polyval(p,7201:10999);  
 cA2=[cA1 y];  
%  
 A1 = upcoef('a',cA2,'db2',1); % inverse wavelet ta rnsform  
%  
 tt=1:length(A1);  
 ttt=1:length(signal);  
%  
 figure (1)   % plot signal approximations and the signal  
  
 plot(tt(1:100:length(tt)),A1(1:100:length(tt)),'--
',ttt(1:100:length(ttt)),signal(1:100:length(ttt)))  
 axis([0,25000,2000,2050])  
 xlabel ('Time (sec)')  
 ylabel ('TRIT (K)')  
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%  
 figure (2)   % plot the approximation coefficients  
 plot(1:length(cA1),cA1)  
 axis([0,8000,2840,2900])  
 xlabel ('Time (sec)')  
 ylabel ('Wavelet Coeff')  
  
 figure (3)      % plot the signal approximations  
 plot(1:length(A1),A1)  
 axis([0,25000,2000,2050])  
xlabel ('Time (sec)')  
ylabel ('Approximation (F)')  
%  
 figure (4)   %%% plot the signal  
 plot(1:length(signal),signal)  
 axis([0,25000,2000,2050])  
 xlabel ('Time (sec)')  
 ylabel ('TRIT (K)')  

GE 7EA gas turbine 

Matlab Code for both the statistical method and the wavelet method 

The following code uses the statistical and the wav elet toolboxes 
 
%% load signalconcatenated (i.e load the required s ignal)    
 %%%%%%%%%%%%%%%%%% Filtering 
   for i=1:(length(tst4)-1)  
       tstt1(1,i)=tst4(1,i+1)-tst4(1,i);  
   end  
% %  %%%%%%%% thresholding the filtered signal  
  for i=1:length(tstt1)  
      if tstt1(1,i)<6;  
         tstt2(1,i)=tstt1(1,i);  
          else tstt2(1,i)=0;  
      end  
  end  
  for i=1:length(tstt2)  
      if tstt2(1,i)>(-6);  
          tstt3(1,i)=tstt2(1,i);  
          else tstt3(1,i)=0;  
      end  
  end  
% %    
% % %   %%%%%%%%%%% Forecasting 
% %  %%%%%%%%%%%% wavelet method (use the wavelet t oolbox)  
  tstt4=tstt3(1:22000);  
  %%%%%%%%%%%%%%%% wavelet 
   [cA1,cD1] = dwt(tstt4,'db4');  
   ta=1:length(cA1);  
   p=polyfit(ta,cA1,2);  
   yy=polyval(p,length(cA1)+1:((length(tstt3))/2));  
   cA2=[cA1 yy];  
   A1 = upcoef('a',cA2,'db4',1); 
 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% statistics  
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  tt=1:length(tstt4);  
  p = polyfit(tt,tstt4,3);   
  ttt=1:length(tstt3);  
  yy=polyval(p,ttt);  
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% statistical end  
   
 
% % % % % %  %%%%%% 
plots%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   figure (1)   (plots signal versus time)  
   plot(1:length(pcd),pcd), grid on  
   ylabel('Turbine Inlet Temperature')  
   xlabel('Time (minutes)'),axis([0 60000 0 1000]) 
 
% % % % % %  %%%%%%%%%%%%%%% 
   figure(2)  (plots concatenated signal versus tim e)  
   plot(1:length(tst4),tst4),grid on  
   ylabel('Turbine Inlet Temperature (C)')  
   xlabel('Time (minutes)'),axis([0 32400 0 1000]) 
 
% % % % % %  %%%%%%%%%%%%%%%%%%% 
   figure (3) (plots filtered signal versus time)  
   plot(1:length(tstt3), tstt3),grid on  
   ylabel('Turbine Inlet Temperature (C)')  
   xlabel('Time (minutes)'),axis([0 32400 -10 10]) 
 
% % % % % %  %%%%%%%%%%%%%%% 
   figure (4) (plots coefficients versus time)  
  plot(1:length(cA1),cA1),grid on  
  ylabel('Wavelet coeffecients (Turbine Inlet Tempe rature (C))  
   xlabel('Time (minutes)'), axis([0 16500 -10 10])  
 
% % % %   %%%%%%%%%%%%%%%%%%%%%%%% 
   figure (5) (plots spproximations versus time)  
   plot(1:length(A1),A1),grid on  
   ylabel('Signal approximation for Turbine Inlet T emperature  
   xlabel('Time(minutes)'),axis([0 32400 -10 10]) 
 
% % % %   %%%%%%%%%%%%%%%%%%%%%%%% 
   figure (6) (plots forecast versus time)  
   
plot(ttt,A1,1:100:length(ttt),,tstt3(1:100:length(t stt3))),grid 
on 
   ylabel('Turbine Inlet Temperature (C)')  
   xlabel('Time (minutes)')  
    axis([0 32400 -20 20]),legend('Forecast,Experim ental data')  
% % % % % % %%%%%%%%%%%%%%%%%%%%%%%  
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Appendix D Statistical and Wavelet Method Coefficients 

 
Statistical Coefficients Signal 

No. 
Signal Description 

0j
a  

1j
a  

2j
a  

3j
a  

1  TTT  0.077 3.60e-5  3.40e-9 9.0e-14 

2  GT  0.16 -2.40e-4 1.10e-7 1.30e-9 

3  EXT  -0.078 3.8e-6 2.14e-8 4.14e-12 

4  GVA  -0.36 2.87e-5 4.04e-8 2.20e-12 

5  TVA  0.58 1.86e-4 1.58e-8 -3.19e-12 

Table D.1. Regression coefficients for the statistical method for the five signals 
studied 

 
 

Wavelet Coefficients Signal 
No. 

Signal Description 

0j
a  

1j
a  

2j
a  

1 Turbine inlet temperature (TTT ) 0.043 -2.53e-5  2.38e-8 

2 Generator temperature (GT ) 0.20 -4.48e-4 1.33e-11 

3 Exhaust temperature (EXT ) -0.11 1.92e-5 1.01e-7 

4 Generator maximum vibration (GVA ) -0.14 4.96e-5 3.40e-9 

5 Gas turbine maximum vibration (TVA ) 0.90 -3.50e-4 2.82e-8 

Table D.2. Regression coefficients for the wavelet method for the five signals 
studied 
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