The ecology of a new invasion by Bellamya japonica in the Savannah basin

B. Broome

T. Woollen
J. Logan
L. Frees
R. Helstern

See next page for additional authors

Follow this and additional works at: https://tigerprints.clemson.edu/foci

Recommended Citation

Broome, B.; Woollen, T.; Logan, J.; Frees, L.; Helstern, R.; Fishburne, S.; and Hains, J., "The ecology of a new invasion by Bellamya japonica in the Savannah basin" (2014). Focus on Creative Inquiry. 77.
https://tigerprints.clemson.edu/foci/77

Authors

B. Broome, T. Woollen, J. Logan, L. Frees, R. Helstern, S. Fishburne, and J. Hains

The Ecology of a New Invasion by Bellamya japonica In the Savannah River Basin

Introduction to Aquatic Research BIOSC 494

Brittany Broome, Sarah Fishburne, Lauren Frees, Rebecca Helstern, Joshua Howard, Jessica Logan, Garrett Woollen, and John Hains (mentor)

Definitions:

Fecundity:

Abstract: Since the discovery of Bellamaya japonica a new invasive species to the Savannah River Basin in 2006 , the dispersal and ecological characteristics of this
exotic species have largely been unknown. Aside from impacts to the HVAC systems for Clemson University, the effects of this new invasive species are still under investigation. Our studies have shown negative phototaxis, indeifiference with respect to geotaxis, and now include experiments regarding fecundity, dispersal in a snails, their locations, their individual growth, and individual reproduction over their entire lives. This is the first comprehensive study of its kind for a new invasive
species species in a newly invaded habitat. We will also study the factors influencing their metabolism in laboratory experiments.

Mark-Recapture Method

Introduction: Bellamya japonica, the Japanese

 mystery snail, was first discovered in Lake Hartwell in 2006. Their dispersal has been slow and we have followed their distribution throughout this time. While previous studies focused on behavior,this study focused primarily on population dynamics of B. japonica, opulation size estimates, distribution, and fecundity. A fecundity est was conducted to determine the population estimate of B. aponica as a species, however, fecundity tests do not assist in determining the starting population estimate within the pond; the mark and recapture method was utilized to determine the initial population of B. japonica within the experimental pond.
their corresponding buckets, and placed back into the pond, where the process would then repeat every week.

Figure 1 portrays the amount of offspring produced among all the females within the two weeks, when they were collected and observed. The female in Bucket 21 produced the most offspring in both failed to produce any offspring within the two week period.

The mark and recapture method involved collecting a
he mark and recapture metho

number of snails from the natural population (the then recapturing some of them. In order for this method to e effective, we experimented tagging snails with different nail polishes, and found that fluorescent nail polish, especially pink and orane ere the easiest to identify in e polish, bee tags numbered one to ninety-nine, and in wious colors (blue, yellow,
orange, green, and white) were super glued to the shells of the snails, just under, or above the location of the nail polish. These tags were permanent and impossible to emove from the snail once placed, however; the tags and polish had no negative effects on the snails' lives, and do ot affect their overall health and survival due to the controlled environment of the pond, The pond, being hirty meters long and thirteen meter wide, was aggreg into eightrequ

were collected from a particular section, they were tagged, we

section from which they were extracted. Every time we took a
different section within the pond, we tagged the new ones with
ecaptured snails (already having been tagged) were collected
In order for the mark and recapture method to work succes sidily, three assumptions must be satisfied: first, during the interval between the preliminary markind period and the subsequent no new individuals were born or immigrated into the population and none died or emigrated) secondly, all individuals are equally likely to be caught within each capture period. That is, marke individuals must not become either easier or more difficult to cat th during the second capture period compared to unmarked individuals; lastly, sufficient time must be allowed between the initial marking period and the recapture period for all marked individuals to be randomly dispersed throughout the population (so that assumption 2 above is not violated). However, the time period must not be so long that assumption 1 fails.

The experimental pond satisfied the first assumption in that there was no immigration or emigration, as well as no predation to cause death, but with a mix of males and females together, is a certainty that new individuals were more than likely born. The experimental pond breaks the made it at times impossible to see both tagged and untagged snails. Also, due to the water's urbidity, it is more than likely that snails were unseen and as a result, were not collected. Assumption three was satisfied in regards that snails were collected at least two days apart, which allowed them enough time to disperse to an adjacent section to their own, original section. However, assumption three is ultimately broken because only one to four sections were scanned nd collected from at a time due to the size of the pond, the density of snails present in each Throughout the experiment we collected a total of 365 snails. Of the snails captured and tagged, 47 snails (12.88% of total tagged snails) were recaptured, and only 6 snails (nails recaptured) were recaptured twice. Table 1 depicts all the snail that were recaptured, as well as their original and newly dispersed sections within the pond. Of all the recaptured snails observed, only 100) dispersed into a new location, indicating that we either did not see the others while recapturing, or that we did not allow enough time to lapse for them to disperse adequately.

Metabolic Studies: Experimental chambers were fabricated in order to accommodate the measurement electrodes as well as the snail specimens (Figure 2). Snails were cleaned to remove biologically active material on the surface of their shells and tested to determine cleaning success.
Specimens were collected locally and allowed to acclimate do room conditions prior to measurement. Water was collected from the field and also allowed to achieve room temperatures.
In the future, multiple temperatures will be employed to determine the effect of temperature on metabolic rates. We will also attempt to measure size dependence and the relationships, if any, to other variables such as light, sex, and presence of other organisms or aquatic conditions. Typical results are shown in Figure 3.

