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ABSTRACT:  
Artificial Neural Networks (ANNs) are a valid approach to analyze structural response. For example, they can be used 
to avoid experimental evaluation of wind loads during preliminary design of a structure. This document discusses 
recent applications of ANN-based surrogate models to predict wind-induced vertical displacements of cable net 
supporting hyperbolic paraboloid roofs and the flutter velocity of (pedestrian) suspension bridges. The ANN-based 
model, trained using wind tunnel data and numerical structural analyses, can predict the structural response with an 
error no larger than 10%.  
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1. INTRODUCTION 
Since the late 1990s, Artificial Neural Networks (ANNs) have been used as an effective approach 
to solve many problems in the field of civil engineering because of their ability to approximately 
model the structural response and simultaneously taking into account the uncertainty from several 
sources (Chen et al., 2008). Predictions via ANN have been used for: structural safety and decision-
making, estimation of cable tension from vibrations, dynamic response of buildings under seismic 
excitation and estimation of seismic-induced structural damage through fragility curves. In the 
field of wind engineering ANN approaches have been explored to: control vortex shedding of 
circular cylinders (Fujisawa, 2002), investigate aeroelastic instability of long-span bridges (Rizzo 
and Caracoglia, 2020) and investigate aerodynamic wind loads due to interference of adjacent 
buildings. In addition, the ANN approach has been employed to interpolate experimental, wind-
induced pressure time series of a low-rise building (Chen et al., 2002) and predict mean and 
fluctuating pressure coefficients (Dongmei et al., 2017). This study describes two recent 
application examples of ANNs in the field of wind engineering, i.e. the study of a cable net 
supporting a large roof and a suspension bridge. In the case of the cable net, the ANN estimates 
wind-induced vertical displacements and, for the bridge the ANN evaluates the critical flutter 
velocity. 
 
2. METODOLOGY 
The ANN neurons are organized in one input layer, one hidden layer and one output layer. The 
variables of the input layer are user-defined, e.g. geometric properties, structural properties and 
other physical quantities. The neurons in the hidden layer are selected by trial and error; they 
contain the result of intermediate calculations from the input layer. Finally, the output layer is the 
result of the final calculations. In an ANN, each node in each layer is connected to each node in 
the adjacent layer. An ANN-based surrogate model can be used for predictions only after a training 
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process, which is carried out using an existing set of input–output data. The training of an ANN is 
commonly performed through a back-propagation, learning algorithm. This algorithm involves a 
minimization process that feed-forwards the input data to generate the output data. 
 
 
3. ANN TRAINING USING WIND TUNNEL DATA 
Wind tunnel results are used to train the ANN-based models. Pressure coefficients for several 
geometries of large-span hyperbolic paraboloid roofs (Rizzo et al, 2021) and a set of flutter 
derivatives measured for a closed-box section model of a pedestrian suspension bridge (Rizzo and 
Caracoglia, 2020) are employed and initially expanded through suitable polynomial representation 
of relevant parameters. In the case of the large-span roof, a new set of geometries is defined 
through polynomial representation by varying cable sags and roof spans. For the bridge section 
model, flutter derivatives extracted through repetition of wind tunnel tests are randomized through 
Monte-Carlo simulation. Figure 1 illustrates the workflow of the entire process from the wind 
tunnel tests to the randomization of wind tunnel data, their polynomial representation, and 
structural analysis results. 
 
The ANN is trained using structural responses. For the case of cable net roofs, wind-induced 
vertical displacements are estimated by static, nonlinear FEM analysis. For the bridge case, the 
critical flutter velocity is found by generalized, two-mode (degree of freedom) model (Scanlan and 
Tomko, 1971). The logistic sigmoid function is employed as the transfer function between adjacent 
neurons. The ANN overfitting is examined by varying the number neurons from 5 to 50 and 
examining the errors between physical model predictions and ANN-based approximations. 
 
 
4. DISCUSSION AND CONCLUSIONS 
Satisfactory approximation of physical model results has been achieved, using 70% of 
experimental data for training, 15% for validation and 15% for testing. The coefficient of 
determination R is consistently larger than 0.9. In the case of the large-span roof, relative errors 
between FEM predictions and ANN approximations are less than 10% for 80% of the 15840 
combinations of numerical calculations. For the bridge case, the relative error is less than 5% for 
90% of the results. 
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Figure 1. Workflow of the ANN-based surrogate modeling 

92




