Medical training simulation for central venous catheterization

R. Thomas
A. Barrett
S. Foister
J. Jett
K. Hicks

See next page for additional authors

Follow this and additional works at: https://tigerprints.clemson.edu/foci

Recommended Citation

https://tigerprints.clemson.edu/foci/56

This Article is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Focus on Creative Inquiry by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
Authors
R. Thomas, A. Barrett, S. Foister, J. Jett, K. Hicks, J. Nagatomi, and D. Dean

This article is available at TigerPrints: https://tigerprints.clemson.edu/foci/56
Approximately 1 in 6 of the 800,000 CVC procedures performed in the US, will result in complications that could cost patients, hospitals, insurance providers, and the government as much as $2.17 billion2 this year.

Central Venous Catheterization Procedure
- Used to deliver drugs to the heart in trauma cases
- Catheter inserted into the subclavian or jugular vein (Figure 1)
- Risky due to the proximity to major veins and arteries
- Students often practice on patients since current training simulators are inaccurate and expensive

Features of our simulator to overcome current simulator inadequacies
- Accurate anatomical landmarks
- Patent pending ultrasonic mimetic cross-linked hydrogel
- Portable manikin and platform

The 2010 Affordable Care Act set many financial incentives for increasing quality of care as well as major disincentives for medical errors. Medicare has also eliminated hospital reimbursement for hospital-acquired conditions. Our goal is to create a safe, affordable, effective Central Venous Catheterization training simulator in order to improve care and reduce medical errors.

VASCULATURE
- Allows for ultrasound guided catheter insertion (Figure 2)
- Resistance to leakage
- Elastic arteries that simulate pulsatile flow created via hand pump and veins that expand to simulate Valsalva (Figure 3)

TISSUE ANALOG
- Mechanical Properties
 - Mechanical properties at a wide range of temperatures
 - Extended shelf life
 - Opacity hides internal anatomy for realistic training (Figure 5)
 - Can be punctured multiple times with minimal damage and does not clog needle (Figure 6)
 - Skin analog prevents dehydration and extends shelf life

Ultrasoundability
- Realistic echo texture (Figure 7)
- Shows pulsatile flow in arteries with Doppler ultrasound
- Visualization of expansion of veins during Valsalva (Figure 8)

PLATFORM & MANIKIN
- Platform
 - Inclination of 15 degrees to mock the Trendelenburg position (Figures 9 & 10)
 - Eliminates need for hospital beds and allows for easy clean-up

- Manikin
 - Represents upper torso
 - Mimics natural rotation of human head

BONES
- Inclusion of all bony landmarks
 - Inclusion of two clavicles, the first and second rib, and the sternum (Figure 4)
 - Realistic use of palpable landmarks to locate for insertion

- Cost effective bone production method
 - Simple and easy fabrication process
 - Method provides a notch and ledge assembly ensuring correct anatomical orientation
 - Replaceable silicone molds

REFERENCES