Clemson Graduate School Catalog, 1984-1985

Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grad_anncmnt

Materials in this collection may be protected by copyright law (Title 17, U.S. code). Use of these materials beyond the exceptions provided for in the Fair Use and Educational Use clauses of the U.S. Copyright Law may violate federal law.

For additional rights information, please contact Kirstin O'Keefe (kokeefe [at] clemson [dot] edu)

For additional information about the collections, please contact the Special Collections and Archives by phone at 864.656.3031 or via email at cuscl [at] clemson [dot] edu

Recommended Citation

University, Clemson, "Clemson Graduate School Catalog, 1984-1985" (1984). Clemson Graduate Announcements. 52.
https://tigerprints.clemson.edu/grad_anncmnt/52

This Book is brought to you for free and open access by the Graduate Studies at TigerPrints. It has been accepted for inclusion in Clemson Graduate Announcements by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
PURPOSE OF CATALOG

The purpose of this catalog is to provide prospective students with a general description of Clemson University and give detailed information regarding the various colleges and departments within the University and curricula offered by the University. Inasmuch as the educational process necessitates change, the information and educational requirements in this catalog represent a flexible program which may be altered where such alterations are thought to be in the mutual interest of the University and its students.

The provisions of this catalog do not constitute any offer for a contract which may be accepted by students through registration and enrollment in the University. The University reserves the right to change without notice any fee, provision, offering or requirement in this catalog and to determine whether a student has satisfactorily met its requirements for admission or graduation. The University further reserves the right to require a student to withdraw from the University for cause at any time.

Each curriculum (GS Form 2) shall be governed by the requirements in effect on the date of enrollment. If a student withdraws from the University and subsequently returns or does not remain continuously enrolled (summers excluded), the requirements in effect at the time of return will govern.

STUDENT RESPONSIBILITY

All colleges and departments establish certain academic requirements that must be met before a degree is granted. Advisers, department heads and deans are available to help the student understand and arrange to meet these requirements, but the student is responsible for fulfilling them. If, at the end of a student's course of study the requirements for graduation have not been satisfied, the degree will not be granted. For this reason, it is important for each student to acquaint himself or herself with all academic requirements throughout his or her college career and to be responsible for completing all such requirements within prescribed deadlines and time limits.

Except as they apply to undergraduate students only, graduate students are subject to the usual procedures and regulations of the University as listed in the general catalog, Clemson University Announcements, and in particular to those dealing with academic dishonesty.

EQUAL OPPORTUNITY IN PROGRAMS AND ACTIVITIES

Federal laws prohibit discrimination under programs and activities receiving Federal financial assistance. The statutes listed below are applicable to Clemson University and provide in part:

Title VI of the Civil Rights Act of 1964

"No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance."

Title IX of the Education Amendments of 1972

"No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving Federal financial assistance."

Section 504 of the Rehabilitation Act of 1973

"No otherwise qualified handicapped individual in the United States shall, solely by reason of his handicap, be excluded from the participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance."

Clemson University conducts its programs and activities involving admission and treatment of students, employment, teaching, research and public service in a nondiscriminatory manner as prescribed by Federal law and regulation.

Inquiries concerning the above may be addressed to:

President
Clemson University
Clemson, South Carolina 29631

Director
Office for Civil Rights
Department of Education
Washington, D.C. 20201
DEADLINE DATES
For those who expect to receive a graduate degree on:

<table>
<thead>
<tr>
<th>Last day for:</th>
<th>August 4, 1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Filing Form GS2, Graduate Degree Curriculum</td>
<td>June 8, 1984</td>
</tr>
<tr>
<td>†Filing Form GS4, Admission to Candidacy and Diploma Order</td>
<td>June 8, 1984</td>
</tr>
<tr>
<td>Oral and/or written examination</td>
<td>July 13, 1984</td>
</tr>
<tr>
<td>Preliminary review by the Graduate School, of completed (signed) theses and dissertations, prior to duplication</td>
<td>July 20, 1984</td>
</tr>
<tr>
<td>Final submission of theses and dissertations to the Graduate School Office</td>
<td>July 27, 1984</td>
</tr>
</tbody>
</table>

CHECKLIST ON GRADUATE SCHOOL PROCEDURES
The graduate student should carefully note this checklist as well as the above deadline dates.

1. Select (in consultation with the appropriate department head) a major adviser and advisory committee. (See page 37.)
2. Submit Graduate Degree Curriculum (GS Form 2). (See page 37.)
3. Satisfy any prescribed language requirement and comprehensive examination prerequisite to admission to candidacy. (See pages 46 and 49.)
4. Apply for admission to candidacy for a degree and order diploma (GS Form 4) after completing at least half the prescribed course work. (See page 38.)
5. Submit completed thesis (if required) or dissertation to research adviser and arrange for final examination by the advisory committee. (See pages 43, 46 and 51.)
6. Arrange for preliminary review of thesis or dissertation, with the Graduate School, prior to duplication. (See page 43.)
7. Pay binding fee to the bursar and submit approved copies of thesis or dissertation to the Graduate School. Doctoral candidates pay for abstract publication in Dissertation Abstracts and microfilming of dissertation. (See page 43.)

The final responsibility for following Graduate School procedures rests with the graduate student. Special problems should be referred to the graduate dean.

*Although Form GS2 will be accepted up through the deadline dates listed, students are encouraged to submit this form within the time frame suggested under "Filing of a Graduate Degree Curriculum" on page 37. The filing dates are deadlines for signed forms to be in the Graduate School Office and include any revisions (content and/or committee members) to an earlier approved Form GS2.

†These deadline dates refer to filing, with the Graduate School, of forms carrying all required signatures. A $25.00 late fee will be assessed a student whose form is submitted after the deadline.
<table>
<thead>
<tr>
<th>Number 20, 1984</th>
<th>May 15, 1985</th>
<th>August 6, 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number 7, 1984</td>
<td>January 29, 1985</td>
<td>June 7, 1985</td>
</tr>
<tr>
<td>Number 7, 1984</td>
<td>January 29, 1985</td>
<td>June 7, 1985</td>
</tr>
<tr>
<td>Number 29, 1984</td>
<td>April 24, 1985</td>
<td>July 16, 1985</td>
</tr>
<tr>
<td>Number 6, 1984</td>
<td>May 1, 1985</td>
<td>July 23, 1985</td>
</tr>
<tr>
<td>Number 13, 1984</td>
<td>May 8, 1985</td>
<td>July 30, 1985</td>
</tr>
</tbody>
</table>

Explanation of Course Listings

Courses are listed alphabetically within the college that offers them. In certain departments offering more than one course sequence, the secondary courses (not leading to a major or a minor) are listed immediately after those normally associated in the degree program or departmental name. The list of courses offered under each program includes for each course the catalog number, title of course, credit in semester hours, class/laboratory hours per week, and, for courses numbered 700 or above, the description of the course. Where courses are offered on a schedule, there is a designation F, S or SS following the class/laboratory hours, indicating whether the course is customarily offered in the fall, spring or summer school. Graduate credit can be earned only for courses numbered 600 or above. Courses listed in this catalog in the 600-699 series are taught concurrently in the same classroom setting as the corresponding 300/400 series undergraduate courses. These are described in the general catalog, *Announcements 1984-85*, which may be obtained from the director of undergraduate admissions.

Courses numbered in the 300 and 400 sequence are primarily for advanced undergraduates but are also offered for graduate credit when they carry the corresponding 600-level number. Students who receive graduate credit in such courses must be required to do extra work of an appropriate nature as determined by the department and be graded according to graduate standards. Some course listings under certain programs may contain 700-, 800- and 900-level courses with a number, title, credits and hours, but no description. These courses are administered by a department other than the one under which they are listed. A note above the listing of the courses will explain where the descriptions are located.

A secondary listing of a course in parentheses implies that this course is cross-listed with the parent course. The course description appears with the parent course only. The 700-level courses are designed primarily for the degrees which emphasize professional practice rather than research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEADLINE DATES</td>
<td>2</td>
</tr>
<tr>
<td>CHECKLIST ON GRADUATE SCHOOL PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>EXPLANATION OF COURSE LISTINGS</td>
<td>5</td>
</tr>
<tr>
<td>GRADUATE PROGRAMS AND COURSE OFFERINGS</td>
<td>7</td>
</tr>
<tr>
<td>UNIVERSITY CALENDAR</td>
<td>10</td>
</tr>
<tr>
<td>THE UNIVERSITY</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>University Government and Administration</td>
<td>10</td>
</tr>
<tr>
<td>Commission on Graduate Studies and Research</td>
<td>12</td>
</tr>
<tr>
<td>Graduate School</td>
<td>12</td>
</tr>
<tr>
<td>Clemson University Libraries</td>
<td>15</td>
</tr>
<tr>
<td>Computer Center</td>
<td>17</td>
</tr>
<tr>
<td>Other Research Facilities</td>
<td>17</td>
</tr>
<tr>
<td>STUDENT SERVICES</td>
<td>18</td>
</tr>
<tr>
<td>Housing</td>
<td>18</td>
</tr>
<tr>
<td>Food Service</td>
<td>20</td>
</tr>
<tr>
<td>Health Service</td>
<td>20</td>
</tr>
<tr>
<td>International Students and Visiting Scholars</td>
<td>21</td>
</tr>
<tr>
<td>GRADUATE EXPENSES</td>
<td>22</td>
</tr>
<tr>
<td>Expenses, 1984-85</td>
<td>22</td>
</tr>
<tr>
<td>STUDENT EMPLOYMENT AND FINANCIAL ASSISTANCE</td>
<td>26</td>
</tr>
<tr>
<td>Graduate Appointments</td>
<td>26</td>
</tr>
<tr>
<td>Hourly Employment</td>
<td>29</td>
</tr>
<tr>
<td>Other Funds</td>
<td>29</td>
</tr>
<tr>
<td>Cooperative Education Program</td>
<td>29</td>
</tr>
<tr>
<td>ADMISSION PROCEDURES AND REQUIREMENTS</td>
<td>30</td>
</tr>
<tr>
<td>Procedures</td>
<td>30</td>
</tr>
<tr>
<td>Academic Requirements</td>
<td>30</td>
</tr>
<tr>
<td>Medical Requirements</td>
<td>30</td>
</tr>
<tr>
<td>Admission Classifications</td>
<td>33</td>
</tr>
<tr>
<td>Enrollment in Graduate Courses</td>
<td>35</td>
</tr>
<tr>
<td>GENERAL GRADUATE SCHOOL REGULATIONS</td>
<td>36</td>
</tr>
<tr>
<td>Procedures to Follow in Pursuing a Degree</td>
<td>37</td>
</tr>
<tr>
<td>Academic Regulations</td>
<td>39</td>
</tr>
<tr>
<td>DEGREE REQUIREMENTS</td>
<td>45</td>
</tr>
<tr>
<td>Master’s Degree</td>
<td>45</td>
</tr>
<tr>
<td>Specialist in Education Degree</td>
<td>47</td>
</tr>
<tr>
<td>Doctor of Philosophy Degree</td>
<td>47</td>
</tr>
<tr>
<td>Doctor of Education Degree</td>
<td>51</td>
</tr>
<tr>
<td>DESCRIPTION OF GRADUATE PROGRAMS AND COURSE OFFERINGS</td>
<td>54</td>
</tr>
<tr>
<td>College of Agricultural Sciences</td>
<td>54</td>
</tr>
<tr>
<td>College of Architecture</td>
<td>90</td>
</tr>
<tr>
<td>College of Commerce and Industry</td>
<td>104</td>
</tr>
<tr>
<td>College of Education</td>
<td>126</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>146</td>
</tr>
<tr>
<td>College of Forest and Recreation Resources</td>
<td>190</td>
</tr>
<tr>
<td>College of Liberal Arts</td>
<td>198</td>
</tr>
</tbody>
</table>
GRADUATE PROGRAMS AND COURSE OFFERINGS

College of Nursing ... 208
College of Sciences ... 214

GRADUATE PROGRAMS AND COURSE OFFERINGS

College of Agricultural Sciences 54
Agricultural Economics M.Ag., M.S. 54
Community and Rural Development (no major or minor) . 58
Rural Sociology (no major or minor) 58
Agricultural Education M.Ag.Ed. 58
Agricultural Mechanization M.Ag. 61
Agronomy .. M.Ag., M.S., Ph.D. 62
Animal and Food Industries M.S. 65
Animal Physiology ... Ph.D. 65
Animal Science .. M.Ag. 68
Applied Economics .. Ph.D. 69
Dairy Science .. M.Ag. 69
Entomology .. M.Ag., M.S., Ph.D. 70
Environmental Science Minor 72
Experimental Statistics Minor 73
Food Science .. Minor 74
Genetics ... Minor 75
Horticulture .. M.Ag., M.S. 76
Nutrition .. M.N.S., M.S., Ph.D. 79
Plant Pathology .. M.Ag., M.S., Ph.D. 82
Plant Physiology ... Ph.D. 84
Poultry Science ... M.Ag. 85
Wildlife Biology ... M.S. 86

College of Architecture 90
Architecture .. M.Arch. 91
Building Science (no major or minor) 93
City and Regional Planning M.C.R.P. 94
Visual Studies ... M.F.A. 98
Art and Architectural History (no major or minor) 100

College of Commerce and Industry 104
Accounting .. M.P.Acc. 104
Business Administration M.B.A.* 106
Economics .. M.A. 109
Finance (no major or minor) M.S., Ph.D. 112
Industrial Management M.S., Ph.D. 113
Management (no major or minor) M.S., Ph.D. 113
Hospital Administration (no major or minor) 117

The Master of Business Administration (MBA) is offered by Clemson University, and courses in
the program are taught on the Furman University campus, Greenville, S.C., by the faculty of
both universities. Requests for information concerning this program should be addressed to the
executor, Clemson-Furman MBA program, Furman University, Greenville, S.C. 29613.
<table>
<thead>
<tr>
<th>Graduate Programs and Course Offerings</th>
<th>Degree Level</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Science</td>
<td>Ph.D.</td>
<td>11</td>
</tr>
<tr>
<td>Marketing (no major or minor)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Textile and Polymer Science</td>
<td>Ph.D.</td>
<td>12</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>M.S.</td>
<td>12</td>
</tr>
<tr>
<td>Textile Science</td>
<td>M.S.</td>
<td>12</td>
</tr>
<tr>
<td>College of Education</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Administration and Supervision</td>
<td>M.Ed., Ed.S.</td>
<td>12</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>M.Ed.</td>
<td>12</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>M.Ed.</td>
<td>13</td>
</tr>
<tr>
<td>Graphic Communications (no major or minor)</td>
<td>M.Ed.</td>
<td>14</td>
</tr>
<tr>
<td>Personnel Services</td>
<td>M.Ed.</td>
<td>12</td>
</tr>
<tr>
<td>Reading</td>
<td>M.Ed.</td>
<td>12</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>M.Ed.</td>
<td>12</td>
</tr>
<tr>
<td>Special Education</td>
<td>M.Ed.</td>
<td>12</td>
</tr>
<tr>
<td>Vocational/Technical Education</td>
<td>Ed.D.</td>
<td>14</td>
</tr>
<tr>
<td>College of Engineering</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>14</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>M.S., Ph.D.</td>
<td>14</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>M.Engr., M.S.</td>
<td>15</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>15</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>15</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>M.S.</td>
<td>16</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>16</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>M.S., Ph.D.</td>
<td>17</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>17</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>M.S., Ph.D.</td>
<td>17</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>18</td>
</tr>
<tr>
<td>Materials Engineering (no major or minor)</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>College of Forest and Recreation Resources</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Forestry</td>
<td>M.For., M.S., Ph.D.</td>
<td>19</td>
</tr>
<tr>
<td>Recreation and Park Administration</td>
<td>M.R.P.A., M.S.</td>
<td>19</td>
</tr>
<tr>
<td>College of Liberal Arts</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>English</td>
<td>M.A.</td>
<td>19</td>
</tr>
<tr>
<td>History</td>
<td>M.A.</td>
<td>20</td>
</tr>
<tr>
<td>Political Science (no major or minor)</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Psychology (no major or minor)</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Sociology</td>
<td>Minor</td>
<td>20</td>
</tr>
<tr>
<td>College of Nursing</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Family Health Nursing</td>
<td>M.S.</td>
<td>20</td>
</tr>
<tr>
<td>College of Sciences</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>M.S., Ph.D.</td>
<td>21</td>
</tr>
<tr>
<td>Biology (no major or minor)</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Botany</td>
<td>M.S.</td>
<td>21</td>
</tr>
<tr>
<td>Chemistry</td>
<td>M.S., Ph.D.</td>
<td>22</td>
</tr>
<tr>
<td>Computer Science</td>
<td>M.S., Ph.D.</td>
<td>22</td>
</tr>
<tr>
<td>Geology</td>
<td>Minor</td>
<td>23</td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td>M.S., Ph.D.</td>
<td>23</td>
</tr>
<tr>
<td>Microbiology</td>
<td>M.S., Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>Physics</td>
<td>M.S., Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>Astronomy (no major or minor)</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Zoology</td>
<td>M.S., Ph.D.</td>
<td>25</td>
</tr>
</tbody>
</table>
CLEMSON UNIVERSITY CALENDAR
SUMMER 1984—SUMMER 1985 (Six-week Sessions Only)

FIRST SUMMER SESSION 1984
- **May 16, W**: Orientation
- **May 17, Th**: Registration
- **May 18, F**: Classes begin; late registration fee applies
- **May 21, M**: Last day to register; last day to add a subject
- **May 28, M**: Last day to drop a subject without record of withdrawal
- **June 8, F**: Last day to order diploma for August graduation
- **June 11, M**: Last day to drop a subject or withdraw from the University without receiving final grades
- **June 21, Th**: Last class day
- **June 22, F**: Examinations

SECOND SUMMER SESSION 1984
- **June 25, M**: Orientation
- **June 26, Tu**: Registration
- **June 27, W**: Classes begin; late registration fee applies
- **June 28, Th**: Last day to register; last day to add a subject
- **July 4, W**: Independence Day holiday
- **July 6, F**: Last day to drop a subject without record of withdrawal
- **July 7, Sat**: Classes meet
- **July 19, Th**: Last day to drop a subject or withdraw from the University without receiving final grades
- **July 31, Tu**: Last class day
- **August 1, W**: Examinations
- **August 4, Sat**: Graduation

FALL SEMESTER 1984
- **August 15, W**: Orientation
- **August 16, Th**: Registration
- **August 17, F**: Late registration
- **August 20, M**: Classes begin; late registration fee applies
- **August 24, F**: Last day to register; last day to add a subject
- **September 7, F**: Last day to order diploma for December graduation
- **September 14, F**: Last day to drop a subject without record of withdrawal
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 15, Tu</td>
<td>Preliminary grade reports due</td>
</tr>
<tr>
<td>October 26, F</td>
<td>Last day to drop a subject or withdraw from the University without receiving final grades based on full semester requirements</td>
</tr>
<tr>
<td>November 1-2, 7-9; Th-F, W-F</td>
<td>Pre-registration for spring term</td>
</tr>
<tr>
<td>November 5-6, M-Tu</td>
<td>Fall break</td>
</tr>
<tr>
<td>November 21, W</td>
<td>Thanksgiving holidays begin after last class</td>
</tr>
<tr>
<td>November 26, M</td>
<td>Classes resume</td>
</tr>
<tr>
<td>December 7, F</td>
<td>Last class day</td>
</tr>
<tr>
<td>December 10-15, M-S</td>
<td>Examinations</td>
</tr>
<tr>
<td>December 20, Th</td>
<td>Graduation</td>
</tr>
</tbody>
</table>

SPRING SEMESTER 1985

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 7, M</td>
<td>Orientation, new students</td>
</tr>
<tr>
<td>January 7-8, M-Tu</td>
<td>Registration, all students</td>
</tr>
<tr>
<td>January 9, W</td>
<td>Late registration; classes begin</td>
</tr>
<tr>
<td>January 15, Tu</td>
<td>Last day to register; last day to add a subject</td>
</tr>
<tr>
<td>January 30, Tu</td>
<td>Last day to order diploma for May commencement</td>
</tr>
<tr>
<td>February 5, Tu</td>
<td>Last day to drop a subject without record of withdrawal</td>
</tr>
<tr>
<td>March 4, M</td>
<td>Preliminary grade reports due</td>
</tr>
<tr>
<td>March 11-15, M-F</td>
<td>Spring break</td>
</tr>
<tr>
<td>March 26, Tu</td>
<td>Last day to drop a subject or withdraw from the University without receiving final grades based on full semester requirements</td>
</tr>
<tr>
<td>April 1-6, M-S</td>
<td>Honors and Awards Week</td>
</tr>
<tr>
<td>April 8-12, M-F</td>
<td>Pre-registration</td>
</tr>
<tr>
<td>April 30, Tu</td>
<td>Last class day</td>
</tr>
<tr>
<td>May 2-4, 6-8; Th-S, M-W</td>
<td>Examinations</td>
</tr>
<tr>
<td>May 15, W</td>
<td>Commencement</td>
</tr>
</tbody>
</table>

FIRST SUMMER SESSION 1985

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 21, Tu</td>
<td>Registration</td>
</tr>
<tr>
<td>May 22, W</td>
<td>Classes begin; late registration fee applies</td>
</tr>
<tr>
<td>May 23, Th</td>
<td>Last day to register; last day to add a subject</td>
</tr>
<tr>
<td>May 25, S</td>
<td>Classes meet</td>
</tr>
<tr>
<td>May 29, W</td>
<td>Last day to drop a subject without record of withdrawal</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>June 7, F</td>
<td>Last day to order diploma for August</td>
</tr>
<tr>
<td>June 13, Th</td>
<td>graduation</td>
</tr>
<tr>
<td>June 15, S</td>
<td>Last day to drop a subject or withdraw</td>
</tr>
<tr>
<td>June 21, F</td>
<td>from the University without receiving</td>
</tr>
<tr>
<td>June 24-25, M-Tu</td>
<td>final grades</td>
</tr>
<tr>
<td></td>
<td>Classes meet</td>
</tr>
<tr>
<td></td>
<td>Last class day</td>
</tr>
<tr>
<td></td>
<td>Examinations</td>
</tr>
</tbody>
</table>

SECOND SUMMER SESSION 1985

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 27, Th</td>
<td>Orientation</td>
</tr>
<tr>
<td>June 28, F</td>
<td>Registration</td>
</tr>
<tr>
<td>July 1, M</td>
<td>Classes begin; late registration fee applies</td>
</tr>
<tr>
<td>July 2, Tu</td>
<td>Last day to register; last day to add a</td>
</tr>
<tr>
<td></td>
<td>subject</td>
</tr>
<tr>
<td>July 4, Th</td>
<td>Independence Day holiday</td>
</tr>
<tr>
<td>July 6, S</td>
<td>Classes meet</td>
</tr>
<tr>
<td>July 9, Tu</td>
<td>Last day to drop a subject without record</td>
</tr>
<tr>
<td></td>
<td>of withdrawal</td>
</tr>
<tr>
<td>July 20, S</td>
<td>Classes meet</td>
</tr>
<tr>
<td>July 23, Tu</td>
<td>Last day to drop subject or withdraw from</td>
</tr>
<tr>
<td></td>
<td>the University without receiving final</td>
</tr>
<tr>
<td></td>
<td>grades</td>
</tr>
<tr>
<td>August 1, Th</td>
<td>Last class day</td>
</tr>
<tr>
<td>August 2-3, F-S</td>
<td>Examinations</td>
</tr>
<tr>
<td>August 6, Tu</td>
<td>Graduation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Clemson University is a coeducational, land-grant university offering 64 fields of undergraduate study and 58 areas of graduate study in nine colleges. The academic units are the colleges of Agricultural Science, Architecture, Commerce and Industry, Education, Engineering, Forest and Recreation Resources, Liberal Arts, Nursing, and Sciences. Fully accredited by the Southern Association of Colleges and Schools, the graduate curricula form a background of education for the hundreds of occupations which Clemson graduates enter.

Present on-campus enrollment totals about 11,800 students, which includes approximately 1,600 graduate students. The 1,400-acre main campus is located on the shores of Lake Hartwell in the northwestern part of South Carolina, approximately two and one-half hours' driving time from both Atlanta, Georgia, and Charlotte, North Carolina.

UNIVERSITY GOVERNMENT AND ADMINISTRATION

The University is governed by a board of thirteen members, including six elected by the state legislature and seven self-perpetuating life members in accord with the will of Thomas G. Clemson. The Board of Trustees is primarily responsible for setting policy and approving budgets and expenditures. The University's day-to-day operations are administered by its president; vice presidents for academic affairs, business and finance, institutional advancement, and student affairs; and the president's executive staff. The president of the University is the chief executive and administrative officer.

Academic deans are responsible for programs and personnel in their individual colleges and report directly to the provost. At the direction of the provost, the academic deans coordinate graduate programs and research with the dean of the Graduate School.

The dean of the Graduate School and vice provost coordinates all graduate programs and advises the provost on policies and regulations pertaining to graduate study and research. Matters concerning graduate admissions policies, graduate student programs, and the granting of graduate degrees are coordinated through this office. The dean chairs the Graduate Curriculum Committee and the Commission on Graduate Studies and Research.
Board of Trustees

James M. Waddell, Jr., Chairman of the Board Beaufort, S.C.
Louis P. Batson, Jr., Vice-Chairman .. Greenville, S.C.
T L. Amick .. Batesburg, S.C.
James E. Bostic, Jr. .. Aiken, S.C.
John J. Britton .. Sumter, S.C.
Robert Coker ... Hartsville, S.C.
Ketcher C. Derrick, Jr. ... Charleston, S.C.
William Green DesChamps, Jr. .. Bishopville, S.C.
William N. Geiger, Jr. .. Columbia, S.C.
Paul W. McAlister .. Laurens, S.C.
Thomas B. McTeer, Jr. .. Columbia, S.C.
Jack Mickel .. Greenville, S.C.
James C. Self ... Greenwood, S.C.

Executive Officers and Deans

II Lee Atchley, Ph.D .. President
David Maxwell, Ph.D ... Provost and Vice President for Academic Affairs
Elvin E. Barnette, M.S ... Vice President for Business and Finance
Walter T. Cox, B.S ... Vice President for Student Affairs
Donald Elam, D.Min ... Vice President for Institutional Advancement
Benjamin W. Anderson, J.D ... University Legal Counsel
Edward F. Byars, Ph.D .. Executive Assistant, President's Office
Ross Cornwell, M.A .. Executive Assistant to the President
Buck Mauldin, M.Ed .. Assistant to the President and Director,
Office of Human Resources
Joseph B. McDevitt, J.D ... Executive Officer, Secretary to the Board of Trustees
Jerome V. Reel, Ph.D ... Undergraduate Studies and Vice Provost
Mold E. Schwartz, Ph.D ... Dean of the Graduate School and Vice Provost

Pother P. Anderson, Ph.D ... Dean, College of Agricultural Sciences
David Pearson, Ph.D ... Dean, College of Architecture
yan C. Amacher, Ph.D ... Dean, College of Commerce and Industry
ames E. Matthews, Ed.D ... Dean, College of Education
Charles Jennett, Ph.D ... Dean, College of Engineering
enton H. Box, D.For ... Dean, College of Forest and Recreation
obert A. Waller, Ph.D ... Dean, College of Liberal Arts
Mary Lohr, Ed.D ... Dean, College of Nursing
enry E. Vogel, Ph.D .. Dean, College of Sciences
COMMISSION ON GRADUATE STUDIES AND RESEARCH

The Commission on Graduate Studies and Research exists to study, formulate and recommend to the President's Council general policies and procedures pertaining to graduate studies, graduate student academic affairs, research, and resources and services that affect graduate studies and research. Areas of specific concern include:

- Admission standards and procedures; student research; financial assistance and awards through scholarships, fellowships and assistantships; library resources; housing; and other matters relating to the academic environment of graduate students.
- University faculty research and the immediate and long-range goals of the University in research and graduate studies.
- Continuing education, extension and other public educational programs related to graduate credit.

The Commission is composed of 10 members: the dean of the Graduate School (chairperson), one administrative representative from each of two colleges appointed by the president of the University upon the recommendation of the provost, one faculty representative from each college elected by the college faculty, the chairperson of the Faculty Senate Research Committee, a representative from the library as selected by the provost, faculty senator elected by the Senate, the director of the Office of University Research, and three graduate student representatives elected by the Graduate Student Association.

GRADUATE SCHOOL

The Graduate School exists to formulate policies and standards and to unify administrative procedures concerning all graduate work at Clemson.

The aims of the graduate programs at Clemson are to provide comprehensive training in special fields, to offer instruction in the methods of independent investigation and to foster the spirit of research scholarship. Graduate study is much more than a continuation of undergraduate work. Its true spirit is one of inquiry and the desire to add to human knowledge. Graduate study should therefore be contemplated only by students who have already demonstrated in their undergraduate programs unusual intellectual attainments and the power of independent thought and investigation.

Graduate Curriculum Committee

The Graduate Curriculum Committee shall be advisory to the provost and shall be comprised of a vice provost or other member of the provost's staff designated by him or her as (non-voting) chairperson, plus the respective chairpersons of the graduate school curriculum committees of the academic colleges.

This committee shall process all requests for graduate curricular changes emanating from the colleges after favorable action by the faculties thereon and make recommendations concerning them to the provost. In doing so, the committee will be guided by all applicable University rules and regula
ons and by the policies established by the President's Council upon the commendation of the appropriate commission(s) thereof.

The provost and vice president for academic affairs will take the recommendations of the Graduate Curriculum Committee to the Council of Academic Deans for its scrutiny and advice. The provost and vice president for academic affairs will then transmit his or her recommendations to the president for final approval and will inform the President's Council, in summary form, of those curricular changes the president has approved.

Graduate students and faculty who are not members of the Curriculum committee are free to attend its meetings.

Graduate Student Association

The Graduate Student Association (GSA) provides a voice for all graduate students by investigating problems or issues that concern graduate students and making recommendations to the proper authorities.

The GSA elects representatives to various University councils which may solicit graduate student opinions. It also seeks to support and promote an academic and cultural atmosphere in the University community and establish better interdepartmental communications among graduate students.

The GSA is composed of a Steering Committee with elected officers including at least one graduate student from each department on campus.

Appeals Provisions

Appeals regarding admission, degree requirements or other policy decisions affecting the welfare of graduate students are referred to the Commission on Graduate Studies and Research. The appeal must be presented in writing to the dean of the Graduate School or to members of the commission.

Graduate Student Academic Grievances

The Graduate Student Academic Grievance Committee hears all grievances involving the following: (a) graduate student academic dishonesty; (b) allegations by graduate students against faculty or staff of discrimination in academics on the basis of race, color, national origin, sex, age, handicap or veterans' rights (except in those cases where the grievance involves graduate student employment, in which case the grievance falls under the jurisdiction of the Student Nonacademic Grievance Committee); and (c) grievances of a personal or professional nature involving an individual student and a faculty member. In all unresolved cases, the committee makes its recommendations to the president through the provost. All proceedings of the committee are confidential.

If there is a question as to whether the Graduate Student Academic Grievance Committee or the Student Nonacademic Grievance Committee has jurisdiction over a particular grievance, the provost and the vice president for student affairs decide which, if either, committee has jurisdiction, and the student is so notified. If the provost and vice president for student affairs cannot agree, the matter will be referred to the president of the university for final determination of which committee has jurisdiction. The
committee is comprised of five members as follows: (a) two members of the faculty appointed for two-year staggered terms by the respective college dean in collegiate rotation; (b) two graduate students, representing two colleges other than those represented by the faculty, nominated and approved by the Graduate Student Association and appointed by the provost for one-year terms; and (c) the dean or associate dean of the Graduate School. The chairperson is the faculty member in the senior year of service on the committee. Rules and procedures for the filing and hearing of grievances are as follows:

1. Any complaint should first be taken to the faculty or staff member involved for resolution. If no resolution is reached, the graduate student should consult with the department head and the dean or the immediate superior of the staff member to hear the grievance and act as a referee. The student, dean, department head and faculty or staff member should make every effort to reach a solution.

2. If the grievance remains unresolved, the student may bring it before the Graduate Student Academic Grievance Committee by a written statement detailing the grievance. The statement must be delivered in a sealed envelope to the Office of the Dean of the Graduate School within 60 calendar days of the date the graduate student alleges to have been aggrieved except as provided in rule three below. The dean will forward this letter to the chairperson of the Graduate Student Academic Grievance Committee. Failure of the student to file a grievance within the 60-day time period will result in forfeiture of the right to file a grievance under this procedure.

3. In cases involving academic dishonesty, the Policy on Academic Dishonesty shall be applied, and the grievance shall be filed within seven days from the date a written charge is made by the professor. A copy of the charge is to be given to the department head or dean.

4. The committee will attempt to gather all pertinent information in separate meetings with all individuals able to give information concerning the grievance.

5. The Graduate Student Academic Grievance Committee will, if at all possible, handle each case as a confidential matter.

6. The committee will formulate its findings in writing and seek to obtain signed approval for the recommended solution from all parties involved.

7. If the committee cannot obtain a solution that is acceptable to all involved parties, the committee will provide an opportunity for a hearing on the grievance at a time convenient to all involved parties. Either party to the grievance may petition for a hearing on the grievance.

8. The hearing on the grievance will be informal and closed to the public. The chairperson of the committee shall take whatever action is necessary to ensure an equitable, orderly and expeditious hearing. Minutes of the meeting will be taken, and all parties to the grievance will be given an opportunity to be heard. Each party is responsible for having present at the hearing all witnesses that will speak on his or her behalf. In addition, the chairperson may request the presence at the hearing of any other person who has pertinent information on the grievance.
Witnesses shall not be present during the hearing proceedings except when called upon to speak before the committee. The parties will be permitted to question all individuals present at the hearing and heard by the committee. If any witness is unable to be present at the hearing, the chairperson may, at his or her discretion, accept a written statement from that witness to be presented at the hearing. The parties shall be accorded right to assistance of counsel of their own choice; however, the role of counsel shall be solely to assist the party, and counsel shall not be permitted to participate actively in the proceedings.

1. Upon conclusion of the hearing, the committee, meeting in executive session, shall reach, by a majority vote of those committee members present, a solution to the grievance. If the chairperson can persuade all parties to the grievance to accept the committee’s solution, the matter of the grievance will be considered closed when the solution is effected.

2. If after the conclusion of the hearing, the chairperson cannot obtain approval of the committee’s recommended solution from all involved parties, the grievance will be referred to the president of the University via the provost with the committee’s solution as the recommended solution to the grievance. When grievances are referred in this manner, the president shall make the final decision on behalf of the University.

3. The chairperson shall keep in confidence all records pertinent to each grievance and pass these records to the Office of the Provost for filing. Records shall be available to succeeding chairpersons of the Graduate Academic Grievance Committee.

4. A majority of committee members shall constitute a quorum for transacting committee business; at least one appointed faculty member and one appointed graduate student must be present.

5. The Graduate Student Academic Grievance Committee shall meet often as necessary to dispense expeditiously with grievances brought before the committee.

6. These rules and procedures can be amended by the Commission on Graduate Studies. Such rule changes will not affect any case under consideration at the time of the change. Notification of any amendments to these rules and procedures should be given to the president of the University via the President’s Council.

CLERMSON UNIVERSITY LIBRARIES

Current resources and facilities of Clemson’s libraries make them some of the most important research institutions in the Southeast. Today, the libraries have a collection of more than 13,000 serial titles and 950,000 volumes. Outstanding collections of journals, books and primary research materials have been developed in many areas, especially agriculture, natural and physical sciences, economics and technology. In the social sciences, particularly strong manuscript collections have been developed around the papers of Vice President John C. Calhoun, S.C. Gov. James F. Byrnes and Sen. Edgar A. Brown. These and other resources are drawn on
by scholars from all over the United States, Japan and Europe. The library recently acquired the papers of S.C. Sen. Strom Thurmond; these will so be made available for research.

Extensive use of the collection is made by borrowers from many parts of the Southeast through modern, efficient techniques. The Robert Muldrow Cooper Library is linked by computer terminals to more than 3,000 other libraries through OCLC Inc. for cataloging and interlibrary loan services. Online bibliographic retrieval is available through the powerful database searching capabilities of Lockheed and SDC search services. A remote center with terminals accessing the Clemson mainframe computer is available in the Cooper Library.

The libraries are primarily used by students, staff and faculty of Clemson University who are engaged in the instructional, research and service efforts of the institution. The resources are available to, and frequently used by, other citizens of the state under liberal use policies. Other individuals have access to the libraries under special arrangements through the public service staff of the Cooper Library.

The main library (Cooper) consists of six approximately equal floors that occupy a total of 145,000 usable square feet of floor space. Almost 70,000 linear feet of shelving provide space for 1.25 to 1.5 million volumes. Seating space accommodates 1,365 readers.

In addition to the Cooper Library, a major branch is operated at the College of Architecture in Lee Hall. This branch has more than 2,000 square feet of space, 25,097 volumes, 260 serial subscriptions and seating for 60 users. A second branch, operated at the College of Commerce and Industry in Sirrine Hall, specializes in textile-related publications. There are also organized departmental libraries in the departments of Chemistry and Geology (Brackett Hall), Physics (Kinard Hall), Horticulture (P&AS) and Chemical Engineering (Earle Hall).

Except for adjustments in scheduling during holiday periods, the Cooper Library is open Monday-Thursday, 7:45 a.m.-1 a.m.; Friday, 7:45 a.m.-1 p.m.; Saturday, 8 a.m.-6 p.m.; Sunday, 1 p.m.-1 a.m.

Library policy governing undergraduate students also applies to graduate students. All students must present validated I.D. cards to check out library materials. However, a graduate student may be granted the privilege of extended loan for one semester subject to recall. The following regulations apply to extended loans:

1. The privilege is not given automatically but must be requested for each book. Otherwise a two-week due date will be stamped in the book. The privilege applies only to those books in which the borrower's major research is concentrated and should be used with discretion.

2. Graduate students must have a graduate validation sticker attached to their I.D. cards if they wish to have the privilege of extended loans and other graduate privileges.

3. The date stamped in the book indicates the date the book is due. After that date, overdue fines apply. Since overdue notices are sent as a courtesy to the borrower, failure to receive such a notice does not excuse the
borrower from the payment of fines. Circumstances may prevent the library from sending overdue notices.

4. If a book is recalled, regulations apply the same as for undergraduate students. The due date is changed and higher fines are assessed when the books are not returned by that date.

COMPUTER CENTER

The Clemson University Computer Center supports graduate student course work and research through a network consisting of an IBM 3081-K, three DEC VAX minicomputers and a microcomputer laboratory. The center supports all major programming languages, as well as a number of simulation and special-purpose languages. A large library of statistical and mathematical routines is available to users. Graduate students can also use SAS, a research tool and University of Waterloo SCRIPT as an aid in the preparation of documents.

The Computer Center provides graduate students with free short courses to teach them to use the Clemson system. The center maintains a Help Desk to assist users with their computer-related questions and problems. Computer Center handout material can be obtained free of charge at the Help Desk, and manuals can be purchased from the University Bookstore at low cost.

In addition to batch facilities, the University has more than 150 public access time-sharing terminals on campus. Interactive computational facilities are available for faculty and student use on both a private line and a dial-up basis.

The administrative offices of the Computer Center, as well as the Help Desk, are located in the basement of Poole Agricultural Center. Except for adjustments in scheduling during holiday periods, the main center is open Monday-Friday, 7:45 a.m.-12 midnight; Saturday, 8 a.m.-6 p.m.; and Sunday, 2-11:30 p.m. Public access terminals are maintained at remote facilities in Riggs, Sirrine, Martin, and Brackett halls and in the library. Hours for Riggs, Sirrine and Martin are similar to those for the main center. Hours for Brackett are Monday-Friday, 8 a.m.-5 p.m. Library terminals are available whenever the library is open.

OTHER RESEARCH FACILITIES

Electron Microscope Facility

The Electron Microscope Facility houses a Philips 300 transmission electron microscope with routine resolution of five angstroms. Also available is an ETEC-Autoscan scanning electron microscope capable of 150 angstrom resolution. In addition, there is a JAMP-10S Auger Microprobe with SIMS attachment. Secondary equipment includes microtomes, critical point dryers and a freeze-drying apparatus. A histology laboratory is located adjacent to the main laboratory providing light microscopy facilities as well.
The facility includes darkrooms for preparation of negatives and separate areas for printing. The staff includes an administrative director, a certified electron microscopist and several student assistants.

Experimental Statistics Unit

The Experimental Statistics Unit is staffed and equipped to provide users with both consultation and assistance concerning the design, analysis and interpretation of experiments, including the presentation of the interpretation. Other services include data reduction, construction of data decks and preparation of parameter cards for computer analysis.

The unit is effectively interfaced with the University Computer Center for the development, acquisition, updating and analysis compatibility of computer programs and to assist users in selection and use of standard program packages.

Electronic and Photographic Services

The Department of Electronic and Photographic Services produces videotapes, audiotapes, and still and motion picture photography. Videotapes are produced in all standard formats from one-half inch to one inch. Audiotapes may be produced in either reel-to-reel or cassette formats. Photographic capabilities include full-color and monochrome slides, 16mm motion pictures, and black and white or color still photographs.

The department also produces overhead transparencies and loans audio-visual equipment.

STUDENT SERVICES

HOUSING

Single Students

Residence halls and apartments are located on the main campus and provide excellent accommodations at economical rates for graduate and undergraduate students. All University housing is air conditioned and equipped with clothes lockers, study desks, chairs and single convertible bunk beds with inner spring mattresses. Two students are assigned to a room. Apartments have two bedrooms, a living room and a kitchen. Four students are assigned to each unit.

Graduate students interested in single student accommodations should write directly to the Housing Office, Mell Hall, Clemson University, Clemson, South Carolina 29631, to obtain information regarding assignments. This should be accomplished promptly because there is a critical shortage of on-campus housing. To request a space, applicants should contact the Housing Office at least three to six months prior to the date scheduled for
A $75 advance payment is required to reserve a room in University housing. This payment is made to the Housing Office in accordance with room reservation instructions provided by that office. Prospective students should understand that during periods between semesters all residence halls are closed.

Rental rates per semester are as follows:

Residence Halls
- Johnstone Hall: Sections A,B,C,D,E,F $465.00
- Annexes A,F .. $500.00
- Donaldson, Bowen, Wannamaker, Bradley and Norris $500.00
- Benet, Young, Cope, Geer and Sanders $500.00
- Mauldin, Barnett, Smith, Manning, Lever and Byrnes $500.00
- Clemson House $560.00

Apartments
- Calhoun Courts (4 occupants) $700.00
- Thornhill Village (4 occupants) $615.00
- Clemson House (3 or 4 occupants) $585.00
- Village Greens (4 occupants) $650.00

Married Student Housing

The University provides comfortable and economical housing for its married students with 150 apartments conveniently located near the campus. Applications and booklets describing these facilities are available upon request from the University's Housing Office. Monthly rental fees range from $90 to $220.

Students who have received graduate assistantships or fellowships are given priority in assignments to married student housing. To qualify for this priority, students must submit applications to the Housing Office before May 1 for first semester housing, before November 1 for second semester housing and before March 1 for summer housing.

Off-Campus Housing

Commercial housing in the surrounding community accommodates the majority of graduate students, both married and single. A complimentary listing of real estate companies and other contacts is available upon request from the Housing Office.

International Students and Visiting Scholars

The International Services Office assists international students or visiting scholars in finding housing in the local community as well as on campus. Requests for on-campus housing should be made well in advance of arrival at Clemson since space is severely limited.
STUDENT SERVICES

FOOD SERVICE
The University offers three economical board plans and also provides meals on a cash basis in two student dining halls with unlimited seconds on all items with exception of some entree selections.

The meal plans are as follows:
1. Five-Day Board Plan—15 meals, Monday through Friday, excluding holidays, $450 per semester.
2. Seven-Day Board Plan—21 meals, Monday through Sunday, excluding holidays, $525 per semester.
3. Lunch Only—Monday through Friday, excluding holidays, $230 per semester.

Summer school fees for meal plans are on a prorated basis.

Meal plans begin immediately after the student obtains a meal card at the beginning of a semester or session and end after the evening meal on the day of graduation. The dining halls remain open between the two regular summer sessions. The meal card is personal and may not be loaned, transferred or sold to another person.

Graduate students have the option at the time of their enrollment of selecting one of the three board plans (five-day, seven-day or lunch only) or a semester or session basis or paying cash for individual meals at the prevailing prices.

Board plans for graduate students are selected on a semester or session basis and may not be discontinued as long as the student remains enrolled except in the case of marriage or circumstances which are determined by the University to be beyond the student's control. Refunds, when authorized, will be made on a prorated basis. Students may change from the five-to the seven-day board plan at any time during the semester or session by paying the added cost.

HEALTH SERVICE
All graduate students living in University residence halls, all graduate students enrolled in 12 or more semester hours and who pay the full-time rate irrespective of their residence, and all international graduate students are required to subscribe to the University health plan. The University health service is not available to students enrolled in the M.B.A. program. The health plan offers a variety of services including infirmary care, outpatient treatment for illnesses and injury, mental health counseling, dermatology and gynecological care.

The $55 per semester medical fee (summer session fees are on a prorated basis) covers the services of the University physicians and health service staff for most illnesses and injuries. It also includes complete X-ray services and laboratory work done in the health service lab.

Items not covered by the health service fee include pharmaceuticals, physical examinations for employment or transfer to another school, outside physicians called in for consultation, lab tests that must be sent to a reference laboratory, ambulance service not supplied by the University, and medical or surgical services performed away from campus. Dental care is
S\text{tudent Services}

not offered by the health service but can be obtained locally at your expense.

The University offers an inexpensive plan of accident and sickness insurance designed to cover major medical expenses not covered by the health plan. Each year prior to the beginning of fall semester, complete information on this insurance plan is sent to all prospective full-time students.

The health service is housed in Redfern Health Center and is complete with an outpatient department and a 24-bed hospital. The outpatient clinic is open 8:30 a.m.-11:30 a.m. and 2-4:30 p.m. weekdays. Saturday’s office hours are 9-11 a.m. only. On Sunday, physicians’ rounds are the only service provided other than emergency treatment. Intercom boxes are stationed at each entrance for emergency use after hours.

The student health service has the basic function of providing medical care for the ill and injured; however, it attempts to put strong emphasis on health rather than illness. This emphasis begins with the entrance medical questionnaire designed to obtain information regarding medical history so as to better equip the staff in protecting the student from illness and to serve as a guide for the care of pre-existing medical problems.

\text{International Students and Visiting Scholars}

\text{Students}

The International Services Office assists foreign students in academic, social, financial and personal matters. It serves as a liaison between Clemson University and the U.S. Immigration Service. All foreign students should report immediately to this office upon arrival at Clemson.

International students coming from abroad or transferring from another school are required to meet academic, language and financial qualifications as determined by Clemson University. The Graduate Record Examination, Graduate Management Aptitude Test, Test of English as a Foreign Language (TOEFL) and transcripts of previous academic studies are some of the determinants used for appraising academic and language ability. Advanced payment of tuition and fees for one academic year is one of the determinants of financial ability. Students receiving an assistantship must deposit $1,000, and students without an assistantship must deposit $3,000. These deposits must be made prior to the issuing of a certificate of eligibility for entering the United States. Should the student not enroll at Clemson, the deposit will be refunded. Special deposits are required of those enrolling in the M.B.A. degree program.

International students must at all times have the type of visa which is required by their sponsor. If the sponsor has no such requirement and no such guidelines are otherwise available, then the student may choose his or her own visa type. Once the choice is made, the International Services Office will not be involved with status changes inasmuch as this is a United States Consulate responsibility. Failure to maintain legal status with the Immigration Service will result in international students forfeiting continued enrollment at Clemson University.
An international student sponsored by his or her home country government or by an agency promoting international education cannot change degree objectives without the written consent of the sponsor.

Health and accident insurance is required of all international students and may be obtained through the International Services Office.

Visiting Scholars

The visiting international scholar (hereafter referred to simply as a visitor) is a foreign national associated with an academic department of the University for purposes other than employment or the attainment of a degree or academic credits. Typically, the association is for a period of three to 24 months and may begin at any time during the year. The visitor status is formalized by admission to the University via an application secured from and approved by the International Services Office (ISO). Confirmation of English ability and academic degrees by ISO is required prior to admission.

Enrollment in academic credits is not permitted of visitors. Thus no transcript will be available reflecting this particular type of association with the University. The established University health fees and accident insurance are also required and will not be waived.

Visitors who subsequently desire to enroll in courses must be admitted to the University in a student status and must be present and register during the normal registration periods. Payment of the health service fees and insurance premiums will continue as requirements.

GRADUATE EXPENSES

EXPENSES, 1984-1985

Tuition and Fees

Semester charges for graduate students are determined by the credit load, with no distinction between graduate and undergraduate credits.

Graduate students enrolled in 12 or more semester hours during a semester will pay the following fees:

- Tuition ... $ 25.00*
- University Fee 741.00*
- Matriculation Fee (nonrefundable) 5.00
- Medical Fee 55.00
- Semester Total (excluding room and board) $826.00*

Payment of the above fees entitles the student to use Fike Recreation Center, attend University concerts and obtain tickets to athletic events with the same privileges and restrictions as apply to undergraduates.

*Subject to change.
Graduate students enrolled in less than 12 credit hours during a semester will pay the following fees:

- Tuition (per semester hour): $2.00*
- University Fee (per semester hour): 58.00*
- Matriculation Fee (nonrefundable): 5.00
- Medical Fee (optional for non-dormitory domestic students): 55.00*
- Fike Recreation Center Fee (optional): 15.00

These fees do not provide for admission to athletic events, concert series presentations or other such activities. Students electing not to pay the medical fee are responsible for arranging their own medical care. Students enrolled in the M.B.A. program will pay $125.00 per credit hour and are eligible for medical or athletic privileges previously described.

Auditing

Charges for auditing are made each semester according to the following schedule:

- Tuition (per semester hour): $1.00*
- University Fee (per semester hour): 29.00*

Graduate Assistants, Permanent University Staff and Faculty

Graduate assistants, permanent University staff members and faculty will pay the following fees:

- Tuition (per semester hour): $1.00*
- University Fee (per semester hour): 29.00*
- Matriculation Fee (nonrefundable): 5.00

Use of Fike Recreation Center facilities by graduate assistants during the fall and spring semester is at no additional cost while the summer fee is $1.00 per session for all students. Graduate assistants using the student health service must pay the medical fee of $55.00* per semester. Season athletic tickets may be purchased at the faculty-employee rate.

A graduate assistant is defined as a student with at least a bachelor's degree who is enrolled in a degree program and devotes a minimum of 10 and a maximum of 30 hours of service per week to the University. For the graduate assistant to receive reduced fees, the assistantship appointment must be in effect on or before the last day of regular registration and must remain in effect through the last day of the academic semester or session or through the time of completion of all degree requirements within that semester or session. Otherwise the student is liable for full fees applicable to graduate students.

A permanent employee (as defined by the Clemson University Office of Business and Finance) is a person employed full time (37 1/2-40 hours per week; 9 or 12 months per year) in a regular position, subject to the full control and responsibility of the University and receiving full remuneration or his or her services in the regular University budget.

*subject to change.
Faculty should be aware of the policy restricting pursuit of advance degrees as found under "University Employees" on page 35.

Athletic Contests and University Concerts

Departmental graduate assistants and graduate resident assistants (see pages 27 and 28) will be eligible to purchase two season tickets at the faculty-employee rates. Applications must be completed at the Jervey Athletic Center ticket office.

Graduate students enrolled in 12 or more semester hours are full-time students and are eligible for tickets with the same restrictions and privileges as apply to undergraduate students. (See Undergraduate Catalog.)

Graduate students enrolled in less than 12 semester hours are considered part-time students and are not eligible for reduced price tickets. They may purchase tickets at the regular full prices. Part-time graduate students may elect to pay a full fee schedule of $826 entitling them to the same restrictions and privileges of undergraduate students.

Graduate students enrolled for less than 12 hours may attend University concerts upon purchase of season tickets. The privileges just described do not apply to students enrolled in the M.B.A. program.

Graduation Fees

The following graduation fees are in addition to the above charges:

- Diploma: $1.90*
- Diploma with Case: 4.60*
- Apparel for Graduation (attendance optional)
 - Master's or Education Specialist Degree Candidates: 23.76*
 - Doctoral Degree Candidates: 33.07*
- Binding Fees for Thesis or Dissertation
 (if applicable): 18.75*
- Publication of Dissertation Abstract
 (if applicable): 35.00*

Costs for preparation and duplication of the thesis, dissertation or departmental project report as well as binding fees for personal copies are extra charges to be borne by the student.

Settlement of University Fees

The entire amount of the expense for each semester or summer session is due and payable at the beginning of each semester or summer session, and no student is officially enrolled until all expenses are satisfied. In special cases the University will accept, at the beginning of a semester, a non-interest bearing promissory note for a portion of the semester residence hall and board fee. In such cases, the note for the first semester charges will be due October 1, and the note for the second semester charges will be due March 1. International graduate students are not eligible for this promissory note.

*Subject to change.
Upon certification by the dean of the Graduate School and upon authorization by the student of a payroll deduction for payment, deferred payment of academic fees may be granted to a student employed as a graduate assistant. The total amount deferred shall not exceed 50 percent of the sum of the student’s assistantship for the first five consecutive pay periods for the semester. Payment of the amount deferred is to be made in equal installments through payroll deductions beginning with the first pay period of the semester. Should an assistantship be terminated, any paid balance of funds deferred is payable immediately as well as any additional fees due. No deferred payments are permitted for summer sessions for any graduate student.

All other transactions relating to payment should be conducted with the Financial Management Division. All checks and money orders should be payable to Clemson University. A personal check given in payment of University expenses which is returned by the bank unpaid immediately creates an indebtedness to the University.

fund of Fees

Regular Semesters. No refunds will be made on a semester’s academic and medical fees after four weeks from the last day to register. In the case of withdrawal from school, the refund will be based on the effective date of withdrawal as shown on the official University withdrawal form. Refunds for part-time students who drop to part time and part-time students who drop credit hours will be based on the date the Schedule Change Form is returned to the Registrar’s Office. To be eligible for a refund, the request must be received by the Office of Financial Management prior to the beginning of the next fall or spring semester. Beginning with the day following the last day to register, refunds for periods of four weeks or less during a semester shall be made on the following basis:

<table>
<thead>
<tr>
<th>Period of Enrollment After</th>
<th>Percent Refunded</th>
</tr>
</thead>
<tbody>
<tr>
<td>a week or less</td>
<td>80%</td>
</tr>
<tr>
<td>re than 1 but not more than 2 weeks</td>
<td>60%</td>
</tr>
<tr>
<td>re than 2 but not more than 3 weeks</td>
<td>40%</td>
</tr>
<tr>
<td>re than 3 but not more than 4 weeks</td>
<td>20%</td>
</tr>
<tr>
<td>re than 4 weeks</td>
<td>0%</td>
</tr>
</tbody>
</table>

Summer Sessions. No refunds of academic and medical fees will be made after three weeks from the last day to register. In the case of withdrawal from school, the refund will be based on the effective date of withdrawal as shown on the official University withdrawal form. Refunds for students who drop credit hours will be based on the date the Schedule Change Form is returned to the Registrar’s Office. To be eligible for a refund, the request must be received by the Office of Financial Management prior to the beginning of the fall semester. Beginning with the day following the last day to register, refunds for summer school sessions shall be made on the following basis:
GRADUATE EXPENSES

<table>
<thead>
<tr>
<th>Period of Enrollment After Last Day to Register</th>
<th>Percent Refunded by Length of Summer Session</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 3 wks.</td>
</tr>
<tr>
<td>One week or less</td>
<td>0%</td>
</tr>
<tr>
<td>More than 1 but not more than 2 weeks</td>
<td>0%</td>
</tr>
<tr>
<td>More than 2 but not more than 3 weeks</td>
<td>0%</td>
</tr>
<tr>
<td>More than 3 weeks</td>
<td>0%</td>
</tr>
</tbody>
</table>

Past Due Student Accounts

Any indebtedness to the University that becomes past due immediately jeopardizes the student's enrollment, and no such student will be permitted to graduate or register for a subsequent semester or summer school term. Further, any student who fails to pay all indebtedness to the University may not be issued an honorable discharge, transcript or diploma.

Establishment of University Fees

The annual State Appropriation Act imposes the general requirement that student fees be fixed by the University Board of Trustees. The act imposes two specific requirements on the board: (1) in fixing fees applicable to academic and general maintenance and operation costs, the board must maintain a minimum student fee not less than the fee charged the previous year; (2) in fixing fees applicable to dormitory rental, dining halls, infirmary and all other personal subsistence expenses, the Board must charge students an amount sufficient to fully cover the cost of providing such facilities and services.

STUDENT EMPLOYMENT AND FINANCIAL ASSISTANCE

GRADUATE APPOINTMENTS

More than 700 graduate students hold Clemson University appointments. These are of two kinds: (1) graduate assistantships requiring, for the most part, half-time employment and (2) fellowships or traineeships which require no service to the University.

Clemson University, as a member of the Council of Graduate Schools in the United States, subscribes to the following policy inherent in the resolution adopted by the Council regarding graduate appointments. In every case in which an appointment for the next academic year is offered to an actual or prospective student, the student, if acceptance is indicated before April 15, will have complete freedom through April 15 to submit in writing a resignation of the appointment in order to accept one elsewhere. However, an acceptance given or left in force after April 15 commits the student not to accept another appointment (at Clemson or elsewhere) without first obtaining a formal release from the first party to whom a commitment has been made. Similarly, an offer made after April 15 is
Additional on presentation by the student of the written release from any
previously accepted offer.
To be eligible for any graduate appointment, a graduate student must
satisfy the appropriate minimum enrollment requirement as described in
each section below. The University reserves the right to withdraw the
appointment at any time because of failure to meet this requirement.

Departmental Graduate Assistantships
Assistantships are available in instruction, research or extension. Such
appointments may be made on an annual basis or a nine-month basis with
work periods and duties assigned by the department. Application forms
must be obtained from the Graduate School or from department heads and
should be completed and filed early in the academic year before the stu­
dent enrolls. Selection of assistantship recipients as well as notification of
the appointment, its duration and the stipend are the responsibilities of the
academic departments. All graduate assistants are granted partial remis­
ion of tuition and fees and enjoy certain other benefits provided for Univer­
sity staff personnel.

1. Eligibility. To qualify for one of the various departmental graduate
assistantship appointments, a student must be enrolled in a degree pro­
gram and must devote at least 10 but no more than 30 hours of service per
week to the University for the entire semester or session. The normal
assistantship is on a half-time basis requiring an average of 20 hours of
service per week although the appointment may be for any number of hours
from 10 (quarter-time assistantship) through 30 (three-quarter-time as­
stantship). Multiple employment of graduate students by the University
(graduate appointment and/or hourly employment) is permitted. It is the
responsibility of the secondary employer to receive permission of the pri­
mary employer and the Graduate School prior to assignment of any addi­
tional work and to ensure that the maximum work load of 30 hours per week
not exceeded. Upper limits on academic loads as related to hours of
service per week are found in the section entitled “Credit Loads” on page
1.

2. Minimum Enrollment. A minimum enrollment is required for appoint­
ment as a departmental graduate assistant. During the academic year,
students in a master’s program or predoctoral students must enroll for at
least nine credit hours per semester. A predoctoral student is defined as
who is working directly toward a doctoral degree without possession of
master’s degree in a related discipline (as determined by the department)
and who has completed less than 30 hours of graduate credit toward the
doctoral degree. Doctoral students who hold a related master’s degree or
who have completed 30 credit hours of graduate credit in their doctoral
programs must enroll for at least six credit hours per semester. Minimum
enrollment in the summer sessions is one semester hour per session irre­
pective of the degree objective. Undergraduate credits may be included in
the minimum provided they are relevant to the student’s degree program
and required by the advisory committee. Credits in GS 799 may be included in the minimum in unusual circumstances.

Graduate students should understand that the assistantship may be withdrawn at any time for failure to maintain satisfactory academic status as described under “Academic Standards” on page 39.

Graduate Resident Assistantships

Part-time employment on the program staff of the residence halls available to qualified graduate students. In general, 20 hours of service per week is required, and compensation for such employment amounts to room or apartment, partial remission on tuition and fees, and approximately $1,000 per semester. Graduate resident assistants are subject to the credit load limitation found on page 41, and the required minimum enrollment is coincident with that of departmental graduate assistants. Interested applicants should apply directly to the Housing Office. A personal interview is required prior to final selection.

Fellowships and Traineeships

Approximately 60 outstanding graduate students hold fellowships or traineeships at Clemson University. These awards, received from a wide variety of alumni, foundation, governmental, individual or industrial sources require no services and are considered tax-free by the IRS.

Graduate Alumni Fellowships and R. C. Edwards Research Fellowships are University-wide awards administered by the Graduate School. These awards, of $5,000 each for the academic year, are made on a competitive basis to nominees selected by the departments, with scholarly potential and academic excellence being the sole criteria for the awards.

Most fellowships and traineeships are administered by the individual colleges and departments. Some awards, such as the Industrial Graduate Residency Fellowships, may limit the student’s research to areas of interest to the donor and require a period of residency at the industrial site. Detailed information is available in the colleges or departments.

South Carolina Graduate Incentive Fellowships of $5,000 annually are available to minority graduate students. These renewable awards are restricted to citizens of South Carolina. Preference is given to new applicants and those who express a commitment to remain and be employed in the state for a period of two years. These fellowships are administered by the Graduate School.

Unless stipulated otherwise by the grantor and/or donor, holders of fellowships or traineeships are required to enroll in the same minimum credit load as is applicable to departmental graduate assistants. Continued receipt of any fellowship or traineeship is contingent on the student’s maintaining a satisfactory academic status. A student cannot hold concurrently two or more full fellowships or traineeships (or the equivalents thereof) administered by the University.
Fellowships and traineeships are usually offered in early March. Inquiries on available funds may be made to the department of the student’s major interest or to the Graduate School.

DAILY EMPLOYMENT

Employment on an hourly basis for a portion of a semester or session is possible in some departments. The maximum credit load is the same as that for graduate assistants found under "Credit Loads" on page 42. Enrolled graduate students (exclusive of full-time University employees) may not be employed by the University for more than 30 hours per week (graduate appointments and hourly employment combined), and no portion of the hourly employment shall be utilized to qualify students for benefits afforded on graduate assistantship appointments.

OTHER FUNDS

The Office of Student Financial Aid coordinates and/or administers loan assistance available to graduate students. The National Direct Student Loan Program is available to eligible students who establish financial need with the submission of the Financial Aid Form to College Scholarship Service; the deadline to apply is April 1. Graduate students who are seeking loan assistance are encouraged to apply for assistance through the Guaranteed Student Loan Program. The deadline to apply varies with each state program, but we recommend applying by May 1, prior to the academic year for which aid is requested. The Guaranteed Student Loan Program is recommended over the National Direct Student Loan Program in that employment constraints are imposed on students borrowing through the National Direct Student Loan Program. Other miscellaneous loan programs are available to accommodate the particular needs of students. In addition to other forms of graduate student employment, graduate students who establish financial need are eligible to participate in the College Work-Study Program as salaried or hourly employees.

Information and the appropriate forms are available in the Office of Student Financial Aid, G01 Sikes Hall.

COOPERATIVE EDUCATION PROGRAM

The Cooperative Education Program is a planned program in which graduate students at the University combine periods of academic study and periods of related work with a participating business, industry, agency or organization. A minimum of two work periods is required, and the work periods normally take place after the student’s first semester on campus.

All graduate students desiring to enter the program are requested to schedule an interview with the Office of Cooperative Education, 806 University Union, where application forms and additional information are available.
ADMISSION PROCEDURES AND REQUIREMENTS

PROCEDURES

Application Deadlines

Applications for admissions should be submitted at least four weeks prior to the first date for matriculation listed on pages 2 and 3. International students and other applicants to programs requiring standardized test scores should complete these examinations at least three months prior to matriculation and make arrangements for the results to reach the Graduate School at least four weeks prior to the first date for matriculation.

Application Fee and Time Limit

For applicants wishing to enroll in the Graduate School for the first time, a nonrefundable fee of $15 payable to Clemson University via a money order or a check drawn on a U.S. bank must accompany the application before it will be processed. The application is valid for a period of one year beyond the date desired for enrollment. Applicants who enroll within this time period pay the fee only once regardless of the number or date of future enrollments. Applicants who do not enroll within this time period and who subsequently wish to be admitted must reapply and repay the fee (nonrefundable) and may be required to resubmit all supporting materials.

ACADEMIC REQUIREMENTS

New Applicants

As a minimum and general requirement for admission to any of the University's graduate programs, a prospective student must hold at least a four-year bachelor's degree from an institution whose scholastic rating is satisfactory to the University and must have the approval of the department head or program coordinator in which the major work is planned. Although the quality of an applicant's previous academic record always plays an integral role in any admission decision, a general division in requirements, based on the degree objective, exists as follows:

1. Master of Arts, Master of Science or Doctor of Philosophy Degrees. Criteria for admission to these University-wide degrees include satisfactory scores on the general portion of the Graduate Record Examination (GRE).* Applicants to the M.S. degree program in industrial management must submit satisfactory scores on the Graduate Management Aptitude Test (GMAT)* in lieu of GRE scores.

*GRE or GMAT scores more than five years old relative to date of initial enrollment will not be accepted.
The Professional Degrees. Admission criteria, recommended by the individual colleges awarding the degree, may include professional experience and/or credentials as well as GRE general scores.* Specifically, the professional programs in accounting and business administration require satisfactory scores on the GMAT* in lieu of the GRE.

International students, in addition to meeting the minimum and general requirement stated previously, must submit satisfactory scores on the general portion of the Graduate Record Examination* regardless of the degree active. (However, see items 1 and 2 above for the master's programs in industrial management, accounting and business administration). A satisfactory score on the Test of English as a Foreign Language** (TOEFL) is required of international students whose native tongue is not English, this requirement may be waived by the Graduate School if the applicant has a demonstrated command of the English language.

Admission in all programs is restricted to those students whose academic records clearly indicate they are prepared to benefit from graduate study. The Graduate School reserves the right to require additional quantitative and aptitude examinations as well as personal interviews and/or oral examinations prior to reaching an admission decision. Neither an academic record exceeding minimum requirements, satisfactory scores on standardized tests, nor professional expertise alone will assure a student's admission. Rather, the total record must indicate the likelihood of successful graduate study.

Conditional Acceptance

Notice of conditional acceptance may be given to highly qualified applicants prior to receipt of the degree they are presently pursuing; however, all requirements for this degree must be completed prior to enrolling in the proposed graduate program at Clemson University. Likewise, conditional acceptance may be given prior to receipt of satisfactory GRE or GMAT scores, if required, but such scores must be received prior to or during the fall semester of enrollment.

Clemson University seniors lacking less than a full semester of work to complete the requirements for their bachelor's degrees may apply to a graduate program and, if granted conditional acceptance, be allowed to enroll in courses for graduate credit. Refer to "Clemson University Seniors" page 35.

Applicants Presently Enrolled in Graduate School

Students enrolled in a master's degree program at Clemson University who wish to continue their studies in another master's program, a specialist program or in a doctoral program after completing their initial degree objectives may apply by submitting the normal application color coded green. This application must be supported by the student's advisory committee for the GRE or GMAT scores more than five years old relative to date of initial enrollment will not be accepted.

TOEFL scores more than two years old relative to date of initial enrollment will not be accepted.
master's degree or other faculty designated by the graduate dean who associated with the applicant's present or proposed program.

Students holding both the bachelor's and master's degrees from Clemson University are encouraged to pursue doctoral programs at other institutions.

Change of Degree Program

Students who have enrolled in a given degree program within the past two calendar years may request a change of major and/or degree without submitting a new application. Instead, the student must submit to the Graduate School a written request endorsed by the department head(s) of the affected degree program(s). All program and Graduate School requirements must be met before final approval will be granted.

Readmission

A former graduate student who has not maintained continuous enrollment (summers excluded) but who is academically eligible to continue the graduate degree program where he or she was most recently enrolled may be permitted to return. The procedures are dictated by the period of absence from enrollment as follows:

1. *Less Than Two Years.* The student simply notifies the Graduate School and the program coordinator of his or her plans to return.
2. *Two to Six Years.* A new application must be submitted and endorsed by the program coordinator and the Graduate School. This application must show any intervening graduate work and appropriate official transcripts of the work may be required by the Graduate School.
3. *Six or More Years.* A new application and all supporting materials will be required, that is, such persons are considered to be new applicants. The only exceptions are those doctoral students who have an eight-year time limit for completion of the degree. (See "Time Limit on page 49.)

Former graduate students described above who wish to return to Clemson University to pursue an undergraduate degree and/or course work with no immediate plans for graduate work should contact the Registrar's Office for procedures.

Duplication of Higher Degrees

The duplication of higher degrees is discouraged on the same basis as the duplication of the bachelor's degree. Thus, a student holding a master's degree may not as a rule become a candidate for another master's degree of the same designation, regardless of the field of study. Nor may the holder of a master's degree in a given field, received at another institution, become a candidate for an additional master's degree in the same field at Clemson.
EDUCATIONAL REQUIREMENTS
Submission of a medical history is required of all students who subscribe to the health service and in particular of all full-time graduate students entering Clemson University for the first time. Prior to or during the registration period, the student will receive a medical questionnaire to be completed and returned to the director of student health services. The medical questionnaire, once submitted, is valid for the duration of the student’s continuous enrollment. A formerly enrolled student who has not registered for a period of three years or who has withdrawn due to health reasons will be required to submit a new questionnaire. The University further requires that all new students receive a current tetanus toxoid series or have had a toxoid series or booster within 10 years.

ADMISSION CLASSIFICATIONS

Admission to a Degree Program
This is the classification of qualified students who become candidates for an advanced degree from Clemson University. Conditional acceptance (age 31) does not constitute admission to a degree program because certain required materials are pending. Admission to a degree program is possible only after all required application materials are present and will be one of the following categories:

1. Full Status. The applicant’s credentials equal or exceed every minimum admission criterion prescribed for the particular degree.
2. Provisional Status. At least one admission criterion prescribed for the particular degree is marginal. Such applicants will be required to remove the provisional status with a satisfactory academic performance during their first semester.* Doctoral degree applicants will not be admitted provisionally.

In addition to meeting the minimum requirements for degree programs stated under “Degree Requirements” (page 45), the student must be recommended for admission by the program chairperson or department head and must meet any special departmental requirements.

Admission as a Non-Degree Student
Admission in this category is restricted primarily to those persons who may benefit professionally from additional study at the graduate level, for example, public school teachers who are required to complete graduate courses for recertification. In general, the only supportive material required for such admission is a valid transcript showing an appropriate background and confirming the awarding of a bachelor’s degree or higher.

* An academic semester is defined as a minimum of nine credit hours of course work. An academic year is defined as the total of two academic semesters.
Non-degree students are ineligible to become candidates for advanced degrees or to receive a graduate appointment for financial assistance. Should the student subsequently be admitted to a degree program, the non-degree student must receive permission from the head of the department before enrolling in graduate courses. This classification is not open to international students.

Admission as a Post-Baccalaureate Student

A student may be accepted by the Graduate School as a post-baccalaureate student if he or she applies to a specific graduate degree program but does not have the appropriate academic background. Such a student must be recommended by the appropriate department or program chairperson and must fully meet all other requirements for admission to the particular degree program with respect to grade point ratio and standardized test scores. A student in this category who is denied admission because of failure to meet the minimum requirements has access to the same appeal procedures as does any other student applying to the Graduate School.

Applicants will be classified as post-baccalaureate students if they are not qualified to take at least one graduate course per semester which can be included in the minimum hours required for the graduate degree. Additionally, any student required to complete more than 18 semester hours of undergraduate credits will be classified as post-baccalaureate. Until such time that the required number of undergraduate credit hours is less than or equal to 18 and the student is qualified to take, each semester, a graduate course which can be included in the minimum hours required for the graduate degree, he or she will remain classified as post-baccalaureate. A department or a student may request post-baccalaureate status even though the above criteria are satisfied.

At the time a post-baccalaureate student becomes eligible for classification as a graduate student, the decision as to eventual admission status (full-time status or provisional) will be made according to criteria used by the department and the Graduate School for all other applicants to the particular degree program. The post-baccalaureate student is expected to maintain a B average and receive no grade lower than a C to qualify for admission to a graduate program.

Post-baccalaureate students may enroll in the same number of credits per semester as any undergraduate student but cannot enroll in graduate courses (600-level or above) or receive a graduate assistantship. No degree or certificate shall be awarded to students in the post-baccalaureate status, and such students who subsequently desire to obtain an additional baccalaureate degree must apply through the Office of Admissions and Registration. The applicability of credits earned toward the undergraduate degree will be determined by the policy pertaining to transfer students. Tuition and fees for post-baccalaureate students shall be those applicable...
undergraduates with the exception of the admissions deposit.
A student possessing an undergraduate or graduate degree who wishes to enroll in specific undergraduate courses for reasons other than future admission to the Graduate School shall not be classified as post-baccalaureate and shall be governed by policies established by the Office of Admissions and Registration.

ROLLMENT IN GRADUATE COURSES

Clemson University Seniors
Enrollment in any graduate course is subject to approval by the department offering the course and the graduate dean. This approval is required for registration and may be obtained by completing and returning the appropriate form (GS Form 6) available at the Graduate School. The total course work load for the semester must not exceed 18 hours, and the cumulative graduate credit earned by seniors may not exceed 12 semester hours.
Seniors with a cumulative grade point ratio of 3.0 or higher may enroll in 700- and/or 800-level courses and may choose to use these courses to meet requirements for the bachelor’s degree. However, courses used for this purpose may not be counted later toward an advanced degree. Alternatively, students who take graduate courses (any level) in excess of the requirements for their undergraduate degrees may request that these courses be included as a part of their graduate program if they are subsequently admitted to the Graduate School at Clemson.
A Clemson senior with a cumulative grade point ratio less than 3.0 may apply to the Graduate School for conditional acceptance as described on page 31. If accepted, the student may enroll in graduate courses subject to approval of GS Form 6.

Transient Graduate Students
A student who has been admitted to a degree program at another institution and who wishes to take courses for transfer to that institution may be permitted to enroll as a non-degree student in graduate courses on receipt of the Certificate of Transient Graduate Admission (GS Form 8), which may be obtained from the Graduate School at Clemson University. This form and completed application to the Graduate School must be presented three weeks prior to registration. A student may earn no more than 12 total semester hours while in transient status.

University Employees
With the approval of the appropriate dean or director, a qualified employee of Clemson University may pursue graduate work for credit. However, no member of the faculty or staff who has a rank higher than instructor
ADMISSION PROCEDURES AND REQUIREMENTS

or its equivalent may be considered as a candidate for an advanced degree at this institution.

Limitations on the number of hours taken per semester are explained under “Credit Loads” on page 41.

Teacher Certification or Recertification

Initial certification (endorsement) at the graduate level is available only in educational administration, reading and personnel services (elementary and secondary counseling). Students seeking admission to these programs should hold an appropriate teacher’s certificate.

Those who possess a bachelor’s degree or higher and who desire initial certification in a teaching area must complete the undergraduate courses needed for certification in a post-graduate status administered by the Office of Admissions and Registration and may not enroll in graduate courses until their eligibility for certification has been established by their major department.

Prospective students should understand that the material in this catalog applies only to requirements for graduate degrees and has no direct relation to certification or recertification for public school teachers. The Graduate School gives no assurance that a program for a graduate degree and program for a certificate, or recertification thereof, will coincide. Students interested in professional certificates should, prior to beginning any work, confer with the dean of the College of Education or the appropriate department head in that college.

Restrictions

Enrollment in any graduate course is subject to approval by the department offering the course and requires permission of the instructor, whether or not such is specifically stated in the course description. To enroll in, or receive credit for, any courses of the 600 series or above, the student (with the exception of certain Clemson University seniors) must have been officially admitted by the Graduate School either to a degree program (page 33) or as a non-degree student (page 33), or must have been granted conditional acceptance as described on page 31.

Students may not enroll in 600-level courses for which undergraduate credit has been awarded, nor can graduate credit be awarded retroactively for undergraduate courses already completed.

GENERAL GRADUATE SCHOOL REGULATIONS

Except as they apply to undergraduate students only, graduate students are subject to the usual procedures and regulations of the University and in particular to those dealing with academic dishonesty.
Immediately upon enrollment, a student should become acquainted with degree requirements and the regulations of the Graduate School published in this catalog, particularly the deadline dates on pages 2 and 3. Each thesis and student should by all means have a current copy of the graduate catalog.

PROCEDURES TO FOLLOW IN PURSUING A DEGREE
This is not a step-by-step outline of all procedures to be followed while pursuing a graduate degree, but is an explanation of primary factors to be countered during the process.

The Major Adviser
Before registering, a student must, with the aid and approval of the department head, select a major adviser. In departments with large faculties, new graduate students may be assigned to one professor until each student decides upon a particular interest. This adviser recommends and approves courses to be taken during the student’s first semester. The course work selected should be of a fundamental or "core" nature so the advisory committee will have maximum flexibility to formulate the remainder of the student’s program of study.

The Advisory Committee
An advisory committee will approve the student’s graduate degree curriculum, supervise the graduate program, administer the preliminary and/or comprehensive examination, and initiate the recommendation for the conferring of the degree. One member of the committee will be designated chairman or major adviser and normally will direct the student’s dissertation or thesis, if required. This committee is selected by the student and approved by the department head. Concurrently with submission of the graduate degree curriculum, the department head will forward recommendations to the dean of the college, who will, if he or she approves, transmit the recommendations to the graduate dean.

A minimum of three faculty members shall be selected for a student seeking a master’s or specialist’s degree, and a minimum of four faculty members shall be selected for a student seeking a doctoral degree. Only Emson University faculty who hold full-time faculty positions which carry responsibility for tenure can serve as major advisers or comprise the minimum membership of the committee. Part-time, visiting and adjunct faculty may serve as additional members of the committee and as research advisers. The student and committee members are notified of the appointments by the graduate dean.

Filing of a Graduate Degree Curriculum
A graduate degree curriculum (GS Form 2) must be filed with the Graduate School by those students who are in degree programs. Since fixed
curricula normally do not exist for graduate degrees, this planned program represents the formulation of an individual student's curriculum as recommended by the advisory committee. It must adhere to departmental as well as Graduate School policies. Courses taken in excess of those required by the advisory committee for the degree should not be listed on the curriculum. Graduate credit is received only for courses numbered 600 or above and no student shall receive both undergraduate and graduate credit for the same course. The Graduate School discourages inclusion of 600-level courses in the minimum hours required for graduate degrees if the courses are clearly equivalents of undergraduate courses required for undergraduate degree in the same major at Clemson University. Transfer credit appearing in the curriculum must adhere to the stipulation described under "Acceptance of Transfer Credit" on page 42.

Candidates for master's or specialist's degrees should submit the curriculum by the middle of their second semester* and doctoral candidates later than the beginning of their second year* of study. Before a curriculum is approved, it must be reviewed and signed by the advisory committee. It is then submitted to department head(s) and college dean(s) for approval and is forwarded to the graduate dean for approval and appropriate distribution of copies.

Admission to Candidacy for a Degree

Admission to the Graduate School does not qualify a student as a candidate for an advanced degree. Such candidacy depends upon the acceptance by the graduate dean of a written request for admission to candidacy. This request (GS Form 4) may be filed by the student as follows: for the master's degree, after completion of 15 hours of course work; for the Ph.D. degree, after completion of a major share of course work and successful completion of the comprehensive examination (page 50).

All students desiring admission to candidacy must have received full status admission to the Graduate School, have a satisfactory academic standing, and have on file an approved graduate degree curriculum (GS Form 2).

Application for a Diploma

A formal application for a diploma is placed by the student simultaneously when he or she applies for admission to candidacy (GS Form 4). This order is submitted to the graduate dean and must be re-submitted should the student not graduate on the anticipated date. A $25.00 late fee will be assessed a student whose GS Form 4 is submitted after the deadlines shown on pages 2 and 3.

*An academic semester is defined as a minimum of nine credit hours of course work taken during a given semester. An academic year is defined as the total of two academic semesters.
GENERAL GRADUATE SCHOOL REGULATIONS

ADEMIC REGULATIONS

Permanent Academic Records
The student's permanent academic record is a historical record of the student's academic progress. It is maintained in the Registrar's Office and contains personal identifying information, grades and credits. Where appropriate, statements of a corrective nature, withdrawals, suspension for failure to meet academic standards, suspension for disciplinary reasons, and graduation data are added.

Academic Standards
Graduate courses are graded on an A-B-C-F scale. Thesis and dissertation research and several other graduate courses are graded on a pass/fail basis. These courses are not included in the academic average; however, the grade is placed on the student's permanent record. Only credit hours for which a grade of pass is achieved apply toward the number of credit hours required for the degree. The accumulation of grades of pass for thesis or dissertation research does not imply completion of the research, but indicates satisfactory progress only.

A minimum grade of C must be made on all course work to obtain graduate credit. The graduate student must maintain a cumulative B average in all graduate-level courses (600-level or above). In addition, the graduate student must maintain a cumulative B average in all courses including undergraduate courses but excluding those taken on a "pass/fail" basis. For "Enrollment on a Pass/Fail Basis," page 42. Students who fail to meet these requirements become ineligible for graduation and are placed on academic probation. Those who remain on probation for two consecutive semesters will not be permitted to continue a graduate program without the written approval of the graduate dean.

The cumulative B average requirements described above apply independently to graduate degrees sought at Clemson University, that is, the grade point ratio computation begins anew after the student has completed the degree. The only exceptions are those instances in which a doctorate degree is pursued after completion of a master's degree in the same major. A grade lower than the specified minimum can be raised to count toward an advanced degree only by repetition of the course. Re-examination is not permitted.

A graduate student must understand that he or she can be dropped from the Graduate School at any time for failure to maintain an adequate academic status.

Complete Graduate Course Work
Except for courses graded on a pass/fail basis, the grade of "incomplete" (I) may be given for incomplete work for any graduate course in which work remains undone and the student is unable to fulfill all requirements because of circumstances beyond his or her control. This grade is
not given in lieu of unsatisfactory or failing grades received for complete
courses for the opportunity of improving the grade later.

It is the student's responsibility to contact the instructor regarding
work required to complete the course. Upon request by the student, the
instructor shall provide a written statement of the work to be complete.

The grade of I will be valid in normal lecture or laboratory courses for 30
days after the beginning of the next scheduled session, excluding summers and irrespective of the student's enrollment status. Within this period the student must either complete his or her work, or request approval from the graduate dean for an extension of time by means of a petition endorsed by the instructor and head of the department responsible for the course, stating the reason for the request and the length of time needed. Normally only one request for an extension of time for each grade of I will be consi
ered by the graduate dean.

Students receiving a grade of I in courses such as special problems other unstructured, independent study courses as designated by the Gra
uate School must, in general, complete all work and receive a final grade within one calendar year. The only exceptions apply to students receiving the grade of I prior to completing enrollment in all other courses (exclusi
of thesis or dissertation research) listed on their approved graduate degree curriculum, if one is on file, and who maintain continuous enrollment, exclud
ing summer sessions, in pursuit of these courses. In such cases, the
one calendar year deadline begins at the end of the term of enrollment of the final course(s) listed on the curriculum, excluding thesis or dissertation research. At the prerogative of the instructor, the deadline for removal of these incomplete grades may be less than those just described.

A graduate student will not be permitted to repeat any portion or re
register for any course (except GS 799) for which the grade of I has be
en given, or register in any other course for the purpose of removing the grade of I. Should any work remain incomplete at the expiration of the appropriate deadlines described in the previous paragraphs, a grade of F will be re
corded on the student's permanent record. Although the Graduate School will attempt to bring the deadlines to the attention of the student and the department head, it is the sole responsibility of the graduate student to comply with these regulations.

Students who receive a grade of I while enrolled in the Graduate School at Clemson University remain ineligible for graduation until the incomplet
work has been made up and a letter grade submitted to the Office of Admissions and Registration.

Withdrawal from Courses

Withdrawal from graduate course work beyond the first few weeks of class is strongly discouraged, particularly from those courses listed on a student's GS Form 2. Withdrawals after the first few weeks of class should only be made for unusual academic reasons or for pressing medical or personal reasons. Students who officially withdraw within the first four weeks of classes will have no grades recorded while those who officially
Withdraw after the first four weeks and prior to the last five weeks will have a code of W (withdrew) entered on the official records. Students may not withdraw within the last five weeks of classes. Permission to withdraw should be obtained from the faculty adviser on a Schedule Change Form available from the Office of Admissions and Registration. If the adviser does not grant permission to withdraw, the student may appeal to the department head. A refusal by the department head may be appealed to the dean of the Graduate School. The date on which the approval form is filed with the registrar is the official date of withdrawal.

The withdrawal dates described above apply to the regular semesters only. Reference should be made to page 7 for the appropriate dates for the summer sessions.

Failure to attend classes or verbal notification to instructors does not institute withdrawal. Students who drop out of a course without officially withdrawing as previously described will be credited with a failure.

Continuous Enrollment
Although continuous enrollment is not a formal requirement for an advanced degree, graduate students are expected to pursue their degrees with a minimum of interruption. Students who do not remain continuously enrolled (summers excluded) are subject to the requirements in effect at the time of return. Only students who are enrolled are eligible to use University facilities and man resources and/or receive any form of financial aid. Students who have completed all required work and who find it necessary to be enrolled during a given semester so as to use facilities or human resources may roll in GS 799 for a minimum of one credit.

Credit Loads
University upper limits on graduate student loads per semester refer to graduate and undergraduate credits combined and should be attempted by the most qualified students.

<table>
<thead>
<tr>
<th>Ident Category</th>
<th>Maximum Credit Hours For:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Weeks</td>
</tr>
<tr>
<td></td>
<td>Semester</td>
</tr>
<tr>
<td>II-Time Student</td>
<td>18</td>
</tr>
<tr>
<td>Graduate Assistants (1/4 time)</td>
<td>15</td>
</tr>
<tr>
<td>Graduate Assistants (1/2 time)</td>
<td>12</td>
</tr>
<tr>
<td>Graduate Assistants (3/4 time)</td>
<td>9</td>
</tr>
<tr>
<td>Persons Employed Full Time</td>
<td>6</td>
</tr>
</tbody>
</table>

Quarter-time, half-time and three-quarter-time graduate assistants are defined as those who contribute an average of 10, 20 and 30 clock hours per week, respectively, of service to the University for the entire semester. A person employed full time is defined as anyone employed five full working hours. Should the six weeks and three weeks sessions run concurrently, the total credits will not be permitted to exceed the upper limit for the six weeks session.
days per week regardless of the employer(s). Graduate students pa solely on an hourly basis are not classified as graduate assistants but a subject to the same limitation in credit loads described above.

For students whose hours of service per week fall between those defi ing each student category, the maximum credit load during a regular s mester is found by linear interpolation. Any exceptions to the maximu credit loads must be requested by the department and approved in a vance by the Graduate School.

Enrollment on a Pass/Fail Basis

The only graduate courses that may be taken on a "pass/fail" basis at thesis and dissertation research and a small number of unstructure courses in which the "pass/fail" grading scheme appears directly in th course description.

Graduate students shall not enroll on a "pass/fail" basis or audit an course required by the department or program as an undergraduate def ciency. All other undergraduate courses may be taken on a "pass/fail" basis. This decision must be made by the last day to add a class and i implemented by the student's major adviser or department head forward ing a request to the Graduate School.

Auditing by Graduate Students

Audited courses do not carry credit, and the fact that a course has been audited is not noted on the graduate student's official record. Graduat auditors are not required to stand tests or examinations. However, th instructor, at his or her own discretion, may demand or deny the auditor participation in class to whatever extent deemed desirable.

A graduate student may not satisfy by audit a stated prerequisite for a graduate course. Additionally, a graduate student may not establish credi through examination in any course for which he or she was previously registered as an auditor.

Acceptance of Transfer Credit

A maximum of 12 semester credit hours of work may be transferred from an accredited institution* for the purpose of meeting the requirements for a master's degree. Credits earned in a non-degree status are considered a transfer because they were earned prior to admission to a degree program at Clemson University. For the doctoral degree as many as 48 semeste credit hours of work may be transferred.

In all cases, the use of transfer credits must be recommended by the student's advisory committee and approved by the department. Under no circumstances will transfer credit be awarded for research or for courses in which a grade lower than B, or its equivalent, has been received. Quality points for courses taken at institutions other than Clemson University will not be included in the student's academic average.

*Refers to accreditation by one of the six regional Association of Colleges and Schools.
Credits may be transferred for work completed at off-campus centers of credited institutions provided such courses are acceptable, without reservation, in degree programs at those institutions. No credit will be given for continuing education units, correspondence, extension or in-service courses, or for concentrated courses and workshops that award credits at a rate exceeding one credit per week.

All transfer credits must be verified by an official transcript from the institution at which the work was completed. Course work completed outside the six-year time limit may not be transferred to Clemson University or credited for graduate credit. Valid transfer credits will appear on the student’s transcript as credits earned.

It is the student's responsibility to request a transcript of transfer credits be sent directly to the Graduate School. The degree will not be conferred at the close of the term during which the student has been registered elsewhere for the purpose of transferring credits.

Theses and Dissertations
Candidates for advanced degrees receive academic credit for conducting research and preparing a thesis (master's candidates) or a dissertation (doctor's candidates) under the direction of the research adviser. In those master of Arts or Master of Science degree curricula requiring a thesis, six credits of research (891) are required. The thesis option curricula in the master of Architecture, Master of City and Regional Planning, and Master of the Arts degree programs require 12, 6 and 15 credits of research, respectively. A dissertation, mandatory for all candidates for the Ph.D. or Ed.D. degrees, requires 18 credits of doctoral research (991) exclusive of any research credits earned at the master's level.

The accumulation of grades of pass in thesis or dissertation research does not imply completion of the research, but indicates satisfactory progress only.

1. Student Responsibility. The student, in consultation with his or her major adviser, shall provide each remaining advisory committee member with a copy of the manuscript for initial review. This action should take place well in advance of, and not less than three weeks prior to, the final examination and defense of the thesis or dissertation. Students must prepare the manuscript in a style acceptable to the Graduate School; a guide for the preparation of theses and dissertations at Clemson University may be obtained from that office. Following approval of the manuscript by the advisory committee and any ex officio members, the thesis or dissertation is presented to the Graduate School for final review and approval prior to application.

Three copies of the thesis or dissertation, required for hard binding, must be submitted to the Graduate School by the deadline date appropriate for the anticipated graduation date (see pages 2 and 3). A binding fee of $18.75 must be paid to the bursar and the bursar's receipt submitted to the Graduate School at the time the duplicated thesis or dissertation is submitted. If the student desires, additional copies may be bound at a cost of $2.25 per copy.
For doctoral candidates, a fourth copy of the dissertation is required for microfilming and is placed by the Graduate School with University Microfilms International of Ann Arbor, Michigan. An additional copy of the title page and abstract must also be submitted, with the latter not exceeding 2,450 typewriter characters, including spaces. Occasionally, this will necessitate revision of the longer original abstract, which is retained in all copies. The abstract should be written and edited in a form suitable for publication and database retrieval. The total microfilming fee is $35.00 and must be paid to the bursar simultaneously with the binding fees. An additional fee of $20.00 is necessary if copyright is desired.

2. Faculty Responsibility. The research adviser will determine when the manuscript is suitable for initial review by the remaining committee members. Guidelines for the review process and a thesis/dissertation review form are available in the departments and the Graduate School. These guidelines are designed to produce a timely review by each committee member and to provide a measure of protection for all affected parties against problems resulting from lack of communication and/or attention. If the student requests, the research adviser is obligated to initiate the thesis/dissertation review form and forward it to the remaining committee members along with the manuscript. The research adviser must be cognizant also of departmental practices regarding the quality of the manuscript at the various review stages and of the wishes of the department head, as an ex officio committee member, to exercise the option of approving the thesis or dissertation in its final form.

Committee members should normally complete the initial review in three weeks or less. Provisions of the guidelines, however, allow for additional time if necessary. Failure of a committee member to complete the initial review within six weeks may result in his or her replacement, provided the student has requested use of the thesis/dissertation review form. A second review after revisions should be completed in one week, with provision being available for additional time.

It should be understood that a vote to pass a student on his or her performance at the final examination (Form GS-7) does not imply final approval of the thesis or dissertation since an independent approval page exists.

Restriction on Use of Theses and Dissertations

Unpublished theses and dissertations submitted to the Graduate School in partial fulfillment of the requirements for graduate degrees and deposited in the University library are, as a rule, open to the public for reference purposes. However, extended quotations or summaries may be published only with the permission of the author and the graduate dean.
DEGREE REQUIREMENTS

Courses are offered leading to the research degrees of Master of Arts, Master of Science and Doctor of Philosophy.

In addition, courses are offered leading to the professional degrees of Doctor of Education, Specialist in Education, Master of Agriculture, Master of Agricultural Education, Master of Architecture, Master of Business Administration, Master of City and Regional Planning, Master of Education, Master of Engineering, Master of Fine Arts, Master of Forestry, Master of Industrial Education, Master of Nutritional Sciences, Master of Professional Accounting, and Master of Recreation and Park Administration.

MASTER'S DEGREE

Residence Requirements

To receive the Master of Science or Master of Arts degree, the student must complete at least nine semester hours of graduate credit on the Emson University campus during one academic semester or two consecutive summer sessions of the program.

Alternatively, the student may complete at least 15 semester hours of graduate credit including up to six credit hours of research (891) on the Emson University campus during a continuous 12-month period. The residence requirements for professional master's degrees are determined by the colleges offering the degree.

Time Limit

All course work which is to be credited toward any of the master's degrees must have been enrolled in and completed within six calendar years prior to the date on which the degree is to be awarded. When commended by the student's advisory committee and approved by the graduate dean, as many as six semester hours of course work completed outside the six-year limit may be validated by written examination. Such examinations will be under the direction of the department regularly offering the course or courses for which the student seeks validation. Course work completed outside the six-year time limit at an institution other than Emson University may not be transferred to Emson or validated for graduate credit.

Course Work Required

In addition to such supplementary or supporting courses as may be required, the degree program will consist of a minimum of 30 semester hours of graduate credit subject to the following conditions:

1. For Master of Science or Master of Arts Degrees. The Master of Science or Master of Arts degree program will include a minimum of 24
semester hours of course work, at least half of which must be selected from courses numbered 800 or above. Six semester hours of thesis research (891) is required if the thesis option is elected. Research credits (891 or 991) cannot be part of the 30 hours if the non-thesis option is elected.

2. For Professional Degrees. For the professional degrees at least half of the required hours must be selected from courses numbered 700 or above. Except for programs in the College of Architecture which require a thesis, research credits (891 or 991) cannot be used to fulfill the minimum requirements for the professional degrees. Additional requirements for these degrees are described under the colleges which offer the degrees.

Each master's degree program shall contain a minimum of 12 semester hours, exclusive of research, in the student's major field. A minor, if selected, shall consist of at least six semester hours in that area.

Language Requirement

A reading knowledge of one approved foreign language is a departmental requirement for certain Master of Arts and Master of Science degrees. The required reading knowledge is equivalent to that provided by two years of study of the language at the college level. The procedures for satisfying this language requirement are identical to those for the Ph.D. degree as listed on page 49.

Study in Absentia

Although thesis research is normally performed at Clemson University, it is recognized that Clemson University may not have on its campus certain specialized equipment or facilities which would be desirable for advanced training at the master's level. Thus, for those cases in which thesis or other advanced study is required and the facilities to pursue such study are not available on the Clemson campus, permission may be granted for study in absentia. The requirements to be satisfied in such cases are identical to those listed under "Doctor of Philosophy Degree — Off-Campus Research," with the exception that the off-campus research supervisor need not hold the Ph.D. degree; provided he or she is qualified and certified for the supervisory position by the department and college involved and by the graduate dean.

Final Examination

Each candidate for the master's degree, after completion of the thesis, if required, and at least three weeks before the degree is to be awarded, must pass a final examination administered by the student's advisory committee. The examination, which may be oral and/or written, will ascertain the general knowledge of the candidate with particular reference to the major and minor subjects and the thesis or departmental research report. The Graduate School will be notified of the time and place of the examination at least 10 days prior to the time scheduled. Members of the faculty are invited to attend the examination as well as members of the Graduate Curriculum Committee and the dean of the Graduate School. Within three days after
examination, the examining committee, through the appropriate form (Form 7), will notify the graduate dean of the results of the examination. A student who fails a final examination may be allowed a second opportunity only with the recommendation of the advisory committee. Failure of a second examination will result in dismissal from the Graduate School.

SPECIALIST IN EDUCATION

The foregoing degree requirements pertaining to residency, time limits, and final examination for professional master's degrees also apply to the Specialist in Education degree. Course work required includes 30 semester hours beyond the master's degree to be selected from five areas pre-prescribed by the Department of Elementary and Secondary Education.

CTOR OF PHILOSOPHY DEGREE

Work leading to the Doctor of Philosophy degree is planned in such a way as to give the student a comprehensive knowledge of his or her field of specialization and a mastery of the methods of research. The degree is not awarded solely on the basis of course work completed, residence or other time requirements. The final basis of granting the degree will be the student's grasp of the subject matter of a broad field of study, competency in plan and conduct research, and ability to express himself or herself qualitatively and professionally in oral and written language.

The advisory committee will aid the student in developing a graduate degree program, which will include the selection of specific courses and a sequence. Although no minimum course work requirements exist for doctoral degree, committees are encouraged to require courses other than those which directly support the dissertation research. Work in the student's field or fields, if required, normally should comprise from 12 to 24 hours in courses carrying graduate credit. A minimum of 18 hours of doctoral research is required. Should the direction of study or research interest change, the student may request the appointment of a new adviser.

Residency Requirements

Residency is a necessary concept in graduate education, particularly in preparation of the dissertation. The purpose of residency is to require the student to spend a specified minimum amount of time as follows:

1. In direct personal association with members of the faculty of the university.
2. Under direct tutelage and advisement of a research adviser and advisory committee in the department or program of the major.
3. Participating in other normal activities pertinent to graduate education such as seminars and close association with other student researchers.

To receive the Doctor of Philosophy degree, the student must complete at least 15 semester hours of graduate credit including research credit...
hours (991) on the Clemson University campus in a continuous 12-mo period.

For students employed substantially more than half time, a statement specifying the manner in which the residence requirement is to be satisfied shall be formulated by the advisory committee and be included in the graduate degree curriculum. Also, upon completion of the final examination the student's committee will forward to the Graduate School a statement approved by the department head and college dean certifying that residence requirements have been met.

Off-Campus Research

Under special circumstances, it may appear desirable that doctoral research be conducted away from the Clemson University campus. If such research is to be performed under the immediate direction of a Clemson University faculty member acting as dissertation adviser and supervisor, then in order to accommodate the student as well as to exercise proper control over this most important phase of doctoral study, the following additional requirements will be made:

1. **Written Consent and Research Plan.** The student must have the written consent of his or her dissertation adviser, full advisory committee, department head, college dean and the graduate dean. Prior to departure from campus, the student must submit a written plan for his or her research effort to the advisory committee for approval. The plan should include a discussion of the problem and intended scope of the investigation, and should be structured in terms of a specific time frame.

2. **Statement from Organization Where Research Will Be Conducted.** The advisory committee may require a statement from an appropriate officer of the organization at which the student will be located agreeing to one or all of the following: the student's plan to complete dissertation research using the organization's equipment and facilities; the apportioning of at least 2 percent or other appropriate amount of the student's employment hours for dissertation research; and the organization's release of patent rights and copyrights arising from discoveries or concepts that evolve during the course of the student's doctoral research.

3. **Travel.** The student may be required to travel to Clemson University not at the expense of Clemson University, to meet with the dissertation adviser and advisory committee as often as is deemed necessary by the committee. Further, the student may, at the discretion of the dissertation adviser and advisory committee, be required to return to the Clemson campus subsequent to the performance of the mechanics of the research for the purpose of comprehensive review and analysis of the research.

4. **Continuous Enrollment.** The student must maintain continuous enrollment at Clemson University each semester while the research is in progress. It will be the student's responsibility to make suitable arrangements with the department to maintain this continuous registration. Normally the student will not be required to register for summer sessions; however, he or she must be registered for the term which involves the review of the completed dissertation and/or the final examination.
If doctoral research is to be conducted away from the Clemson campus, it under the immediate direction of a dissertation supervisor who is an employee of an organization other than Clemson University, then in order to accommodate the student, as well as to exercise proper and necessary control over this most important phase of doctoral study, the following requirements (additional to those previously stated) will be made:

5. Research Supervisor. An employee, having an earned Ph.D. and engaged in the general subject area of the student's research, must be designated by an officer of the organization to supervise the student's search work and must be recommended for appointment as an adjunct professor of Clemson University. A résumé of the research supervisor must be submitted to the student's full advisory committee for its review and commendation to the graduate dean.

6. Interim Reports and Final Statement. The research supervisor will be required to submit a final statement regarding the dissertation research, as well as interim reports if the committee deems such as being necessary. It to be emphasized that the off-campus research supervisor cannot serve the student's major adviser.

Time Limit
All requirements for a Doctor of Philosophy degree must be completed within eight years from the date of enrollment in the degree program. If a student possesses a master's degree in the same or in a closely allied area of study, all requirements for the Doctor of Philosophy degree must be completed within six years from the date of enrollment in the degree program. Special limitations, applying to the result of the comprehensive examination, are found in the section describing this examination (page 50).

Language Requirement
Certain doctoral programs include a language requirement. Languages accepted by all departments are French and German; under certain conditions Spanish, Russian or the classical languages may be accepted. A combination of two Romance languages is not normally acceptable. Upon recommendation of the head of the Department of Languages, use of other languages may be approved provided: adequate justification can be presented; the language is not native to the student; and a proper testing procedure can be established. Any expense incurred in obtaining assistance in testing must be paid by the student.

The language requirement may be a basic reading knowledge equivalent to that provided by two years of study at the college level of one or two languages or a command in depth of one language equivalent to that provided by three years of study at the college level.

Basic reading knowledge of each language is determined by one of the following options:

1. Twelve Semester Hours of Study with B Average. Upon recommendation of the head of the Department of Languages, students who have completed, within the last five years, the equivalent of 12 semester hours of
DEGREE REQUIREMENTS

study of a language with average grades of B at an accredited institution will be exempted from examination in that language.

2. French or German 151 or 152. The student may elect to enroll on pass/fail basis in French 151 or 152 or German 151 or 152. This sequence is designed to prepare graduate students to read technical material in the particular academic disciplines. To receive a grade of pass (P), the student must present a satisfactory score as determined by the Language Department from either the College Entrance Examinations Board test (CEEB) or locally prepared translation exam; otherwise, a grade of incomplete (I) will be reported. A passing score achieved at the end of 152 will automatically eradicate an incomplete in 151, but University procedures, appropriate for undergraduate courses, must be followed to change the incomplete to pass.

A student may repeat each course only once but may audit an unlimited number of times. An auditor does not qualify to take the CEEB. The student may, however, take the translation exam.

A grade of pass in 151 or 152 merely indicates that a student has attained a proficiency equivalent to the basic reading knowledge requirement; it does not indicate the student has fulfilled the Graduate School requirement. The Graduate School, based on information provided by the Department of Languages, will notify the student when the requirement is completed.

Command in depth may be demonstrated by students who have completed at an accredited institution a sequence of the equivalent of 18 semester hours of study in a language with average grades of B, at least half of it within the previous five years. Approval of this mechanism requires recommendation from the head of the Department of Languages. Command in depth may also be evidenced by superior performance in the 151-152 sequence offered by the Language Department. The locally prepared translation exam, however, may not be used for this purpose.

All language requirements must be satisfied prior to the student’s preliminary or qualifying examination and prior to admission to candidacy for the degree.

Comprehensive Examinations Before Admission to Candidacy

Satisfactory completion of the comprehensive examination, i.e., a written or a written and oral examination taken after completion of most required course work, must occur no less than six months and no more than five years prior to the date of graduation. The function of the examination is to obtain objective evidence of an adequate intellectual mastery of the areas of the major and minor specializations.

The chairperson of the advisory committee will inform the Graduate School of the result, via Form GS5, within three weeks following the examination. The student’s performance on this examination will determine whether he or she will be recommended for admission to candidacy for the degree.
Should the student fail to pass the comprehensive examination, he or she may be given a second opportunity if so recommended by the advisory committee. A second failure shall result in the student being declared ineligible to receive the Doctor of Philosophy degree at Clemson University. Some doctoral programs require preliminary or qualifying examinations or to the comprehensive examination. Information about these examinations may be obtained from the individual departments.

Final Doctoral Oral Examination
The candidate for the Doctor of Philosophy degree must pass a final oral examination (dissertation defense) at least three weeks prior to the time of commencement at which he or she plans to obtain the degree. The examination will be conducted by the student's advisory committee, and all faculty members are invited to participate. The Graduate School will be notified of the time and place of the examination at least 10 days prior to the scheduled date.

This final examination demands a broad and penetrating interpretation of the student's research project and conclusions. It may include examination of the student in the major and minor fields of specialization. A student who fails a final oral examination may be allowed a second opportunity only with the recommendation of the advisory committee. Failure of the second examination will result in dismissal from the Graduate School.

Doctor of Education Degree
Degree requirements pertaining to residency, time limit, comprehensive and final examinations are the same as those for the Doctor of Philosophy degree. In addition, the candidate for the Doctor of Education degree must arrange with his or her advisory committee to engage in an internship appropriate to his or her field of professional service.
COLLEGE OF AGRICULTURAL SCIENCES

AGRICULTURAL ECONOMICS
AGRICULTURAL EDUCATION
AGRICULTURAL MECHANIZATION
AGRONOMY
ANIMAL AND FOOD INDUSTRIES
ANIMAL PHYSIOLOGY
ANIMAL SCIENCE
APPLIED ECONOMICS
DAIRY SCIENCE
ENTOMOLOGY
ENVIRONMENTAL SCIENCE
EXPERIMENTAL STATISTICS
FOOD SCIENCE
GENETICS
HORTICULTURE
NUTRITION
PLANT PATHOLOGY
PLANT PHYSIOLOGY
POULTRY SCIENCE
WILDLIFE BIOLOGY
The College of Agricultural Sciences offers advanced degrees in the following areas of study:

- Agricultural Economics
- Agricultural Education
- Agricultural Engineering
- Agricultural Mechanization
- Agronomy
- Animal and Food Industries
- Animal Physiology
- Animal Science
- Applied Economics
- Dairy Sciences
- Entomology
- Horticulture
- Nutrition
- Plant Pathology
- Plant Physiology
- Poultry Science
- Wildlife Biology

In addition to the M.S. and Ph.D. degrees, the College of Agricultural Sciences offers three professional degrees: Master of Agriculture, Master of Agricultural Education, and Master of Nutritional Sciences. These post-baccalaureate degree programs are designed primarily to meet the continuing education needs of individuals whose interests lie outside a research-oriented profession.

A minimum of 30 semester hours is required for the professional degree. At least one-half of the credit hours in the student’s program must come from courses numbered 700 or above. The student’s program of study must be approved by his/her advisory committee.

All candidates for the degree of Master of Agriculture, Master of Agricultural Education, or Master of Nutritional Sciences will be required to take a course in applied statistics if such a course has not been a part of the student’s undergraduate degree program. In addition, a knowledge of research methods will be required and may be acquired through a research methods or a special problems course.

AGRICULTURAL ECONOMICS

B.H. Robinson, Head, Department of Agricultural Economics and Rural Sociology

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>M.Ag., M.S.</td>
</tr>
<tr>
<td>Applied Economics</td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

Graduate work in agricultural economics is of increasing importance since it enables the student to attain a higher degree of specialized professional competence and to secure a greater mastery of techniques for applying quantitative economic analysis to agricultural firm and industry problems. Industry, government and universities offer challenging opportunities in research, development, education, management and other related areas for persons with advanced training.

*Jointly administered by the College of Agricultural Sciences and the College of Engineering. The M.S. and Ph.D. degrees are awarded by the College of Engineering.

**Jointly administered by the College of Agricultural Sciences and the College of Commerce and Industry. The Ph.D. degree is awarded by the College of Agricultural Sciences.*
In addition to applicants with baccalaureate degrees in agricultural economics and related programs, the department encourages applications from students who have a sound background in general economics. In many cases, such students may be admitted to full graduate status without prerequisites other than those required of all graduate students.

Special emphasis in the graduate program is placed on the economics of agricultural production and marketing, economic development, analysis of programs and policies affecting agriculture, and statistical techniques used in solving economic problems of the agricultural industry.

EC 602 PRODUCTION ECONOMICS
3 cr. (3 and 0) F

EC 603 LAND ECONOMICS
3 cr. (3 and 0) S

EC 609 COMMODITY FUTURES MARKETS
3 cr. (3 and 0) F

EC 613 RURAL PROPERTY APPRAISAL
3 cr. (3 and 0) S

EC 652 AGRICULTURAL POLICY
3 cr. (3 and 0) F

EC 656 PRICES
3 cr. (3 and 0) S

EC 660 AGRICULTURAL FINANCE
3 cr. (3 and 0) F

EC 719 PROFESSIONAL PROBLEMS IN AGIBUSINESS MANAGEMENT
3 cr. (3 and 0) F

EC 791 SELECTED TOPICS IN AGRICULTURAL ECONOMICS
1-3 cr. (1-3 and 0) F, S

EC 802 ADVANCED PRODUCTION ECONOMICS
3 cr. (3 and 0) S

EC 806 INPUT-OUTPUT ANALYSIS AND REGIONAL STRUCTURE
2 cr. (2 and 0) F
AG EC 807 MARKET STRUCTURE IN AGRICULTURAL INDUSTRIES
3 cr. (3 and 0) S
Market structure and other approaches related to agricultural marketing. Individual assignments in the student's field of interest required. Prerequisite: Permission of instructor.

AG EC 808 APPLIED QUANTIFICATIONS IN AGRICULTURAL ECONOMICS
3 cr. (3 and 0) F
Mathematical tools needed for concise description of agricultural economic principles; microeconomic theory under assumptions of perfect competition; relation among agricultural demand, supply, cost, revenue and productivity. Prerequisite: Permission of instructor.

AG EC 809 ADVANCED NATURAL RESOURCE ECONOMICS
3 cr. (3 and 0) S
Applications of economic theory to problems of natural resource management; epistemological considerations; rent theory; public and private investment criteria; benefit-cost analysis and general equilibrium management models. Prerequisite: AG EC 802 or permission of instructor.

AG EC 810 WATER AND MARINE RESOURCES MANAGEMENT AND POLICY
3 cr. (3 and 0)
Economic, institutional and legal aspects of control and management of natural resources; concepts of economic science applied to public policy questions related to land and water resources. Specialized background in economics not necessary. Prerequisite: Permission of instructor.

AG EC 812 INTERREGIONAL COMPETITION ANALYSIS
2 cr. (2 and 0) S
Basic spatial dimensions of pricing and allocation examined within context of competitive equilibrium, emphasizing resource and commodity markets of the U.S. economy. Prerequisite: CRD 412/612 or permission of instructor.

AG EC 814 CONTEMPORARY PUBLIC POLICY
3 cr. (3 and 0) F
Contemporary public policy, including price and resource policy, affecting rural areas; public policy, or the lack thereof, related to programs designed to implement public policy.

AG EC 827 ADVANCED AGRICULTURAL CONSUMPTION AND DEMAND
3 cr. (3 and 0) F
Advanced analysis of individual and aggregate consumption decisions concerning agricultural products, emphasizing agricultural marketing applications; market interdependencies; policy applications of empirical work. Prerequisite: EX ST 820 or its equivalent.

AG EC 851 SEMINAR IN RESEARCH METHODOLOGY
1 cr. (1 and 0) F
Logic and the scientific method; formulation, initiation and carrying out of research problems in economics and business; methods and problems of obtaining and analyzing economic data; role of electronic computers and data processing systems; group discussions of proposed thesis problems of individual students. Required of all graduate students who have not already had a comparable course.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 852</td>
<td>RESEARCH METHODS FOR AGRICULTURAL ECONOMISTS I</td>
<td>2 cr.</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Linear models and their application to problems related to the economics of agriculture. Topics include the simplex method, developing farm planning LP models, solving LP problems using the MPSX computer program, parametric analysis techniques and other LP applications related to rural problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 853</td>
<td>RESEARCH METHODS FOR AGRICULTURAL ECONOMISTS II</td>
<td>2 cr.</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Application of econometric techniques and stochastic models to problems related to the economics of agriculture. Topics include distribution theory, simple and multiple regression modeling, hypothesis testing and other issues in regression analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 871</td>
<td>WORKSHOP IN QUANTITATIVE METHODS IN AGRICULTURAL ECONOMICS</td>
<td>1 cr.</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Application of quantitative methods in agricultural economics research; linear and nonlinear techniques. Prerequisites: AG EC 808, 852 and 853.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 872</td>
<td>TECHNIQUES OF SURVEY ANALYSIS IN SOCIAL SCIENCES</td>
<td>1 cr.</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Techniques and procedures used by social scientists to collect primary data with survey techniques. Topics include sample selection, questionnaire construction and personal interview techniques. Prerequisite: Permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 881</td>
<td>INTERNSHIP IN COMMUNITY AND RESOURCE DEVELOPMENT</td>
<td>1-6 cr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervised employment in an agency dealing with socioeconomic aspects, community development and/or natural resource management. Monthly reports covering student's experience required. Prerequisite: 18 semester hours graduate credit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 891</td>
<td>MASTER'S THESIS RESEARCH</td>
<td>Credit to be arranged.</td>
<td></td>
</tr>
<tr>
<td>EC 902</td>
<td>PRODUCTION ECONOMICS PROBLEMS</td>
<td>2 cr.</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Application of production economic theory and quantitative techniques to current problems. Extensions of theory and new techniques may be introduced when examining problem areas. Prerequisite: AG EC 802.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 904</td>
<td>SEMINAR IN RESOURCE ECONOMICS</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Special problems and recent periodical literature relating to the control, management, development and use of land and water resources in the United States and in other parts of the world. Prerequisite: AG EC 403/603.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 906</td>
<td>SEMINAR IN AREA ECONOMIC DEVELOPMENT</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Recent research developments in economic development; review of research publications, journal articles and other literature; objectives, analytical techniques and procedures used in area or regional development efforts. Prerequisite: AG EC 6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGRICULTURAL ECONOMICS

AG EC 907 AGRICULTURAL MARKETING PROBLEMS
2 cr. (2 and 0) F
Theory and research related to consumer behavior; economic consequences
individuals' and firms' decisions upon supply and demand; general interdepen-
dency among economic variables. Prerequisite: AG EC 807.

AG EC 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

CRD 611 REGIONAL IMPACT ANALYSIS
2 cr. (2 and 0) F

CRD 612 SPATIAL COMPETITION AND RURAL DEVELOPMENT
2 cr. (2 and 0) S

RS 601 HUMAN ECOLOGY
3 cr. (3 and 0) S

RS 603 METHODS OF SOCIAL RESEARCH II
(SOC 603) 3 cr. (3 and 0)

RS 659 THE COMMUNITY
3 cr. (3 and 0) F

RS 671 DEMOGRAPHY
3 cr. (3 and 0) S

RS 881 SPECIAL PROBLEMS IN RURAL SOCIAL RESEARCH
1-3 cr. (0 and 2-6)
Recent research problems and literature emphasizing research design, analysis,
theoretical generalizations and application programs. May be repeated for a max-
imum of six credits. Prerequisite: Six semester hours of 600-level sociology, rur-
sociology courses or permission of instructor.

AGRICULTURAL EDUCATION
J.H. Rodgers, Head, Department of Agricultural Education

Major Degree
Agricultural Education M.Ag.Ed.

The Master of Agricultural Education degree is designed for people who
wish to increase their competence in providing professional educational
services in agriculture and vocational education. The flexible program per-
mits specialization in interest areas. Degree recipients often return to posi-
tions as agriculture teachers in high schools, vocational schools, technical
education centers and community colleges. They are also in demand for
administrative, supervisory and specialized positions in these institutions.
Agricultural extension workers and many others who have educational re-
sponsibilities in the agribusiness complex find this program to be a valuable
step in their professional development.

Candidates for the degree are required to complete:
1. A minimum of 12 semester hours in the student's major field.
AGRICULTURAL EDUCATION

2. At least three semester hours in statistics and three semester hours in research methods.

3. A minimum of six semester hours in an area of concentration outside the major field.

4. At least six semester hours of relevant courses approved by the candidate's advisory committee.

ED 601 METHODS IN AGRICULTURAL EDUCATION
3 cr. (2 and 3) S

ED 623 CURRICULUM
2 cr. (2 and 0) S

ED 625 TEACHING AGRICULTURAL MECHANICS
2 cr. (1 and 3) S

ED 628 SPECIAL STUDIES IN AGRICULTURAL EDUCATION
1-3 cr. (1-3 and 0)

ED 630 FUNDAMENTALS OF EXTENSION EDUCATION
2 cr. (2 and 0)

ED 631 METHODS IN ENVIRONMENTAL EDUCATION
3 cr. (3 and 0) SS

ED 632 VISUAL MEDIA FOR AGribusiness
3 cr. (2 and 3)

ED 650 MODERN TOPICS AND ISSUES
3 cr. (3 and 0)

ED 665 PROGRAM AND CURRICULUM DEVELOPMENT
3 cr. (3 and 0) F (even numbered years)

ED 667 ADULT EDUCATION IN AGRICULTURE
3 cr. (2 and 3) S (odd numbered years)

ED 726 AGRICULTURAL MECHANIZATION FOR IN-SERVICE TEACHERS
3 cr. (3 and 0)

Development of teaching materials, course construction and curriculum design in agricultural mechanics; procedures and processes for implementing a new course in agricultural mechanics at high school level.

ED 727 AGRICULTURAL EDUCATION SHOP MANAGEMENT
3 cr. (1 and 6)

Basic processes and tools used in repair, maintenance and construction of farm equipment; shop management and methods of teaching technical skills; application of shop principles to design and construction of projects in agricultural mechanics.

ED 736 INTERNSHIP: TEACHING
3 cr. (1 and 6) S

Professional competency and program development through classroom and practical experiences in planning, conducting and evaluating educational programs.
AG ED 737 INTERNSHIP IN AGRIBUSINESS FIRMS
 3 cr. (1 and 6)
 Classroom and practical experiences in selected agricultural businesses and
 industries. Students identify and practice entry-level competencies required in
 selected agribusiness and natural resource management enterprises.

AG ED 750 SPECIAL INSTITUTE COURSE: SELECTED TOPICS
 IN AGRICULTURAL EDUCATION
 1-3 cr. (1-3 and 0)
 Subject areas organized according to institute needs. Topics vary from course
 course. May be repeated for a maximum of nine credits. Prerequisite: Permission
 instructor.

AG ED 803 EVALUATION OF INSTRUCTIONAL PROGRAMS
 3 cr. (2 and 3) F (odd numbered years)
 Measurement and evaluation in general and as applied to agricultural and voca-
 tional education; selection and/or development and use of instruments for apprai-
 ing educational outcomes of student achievement and total program
 Prerequisite: Permission of instructor.

AG ED 804 SPECIAL PROBLEMS
 3 cr. (2 and 3) F, S, SS
 Planning, conducting and reporting a special problem in agricultural and voca-
 tional education appropriate to students' needs.

AG ED 805 ADMINISTRATION AND SUPERVISION IN AGRICULTURAL
 EDUCATION
 3 cr. (3 and 0) S (even numbered years)
 Developing a philosophy of education including application of administrativ
 concepts in supervising agricultural education programs. Prerequisite: Experience
 in agricultural education.

AG ED 815 TEACHING AGRICULTURAL AND POWER MECHANICS
 3 cr. (2 and 3) SS (odd numbered years)
 Methods of determining course content, organizing teaching modules in logic,
 sequence, equipping shop, teaching agricultural and power mechanics to farm and
 agribusiness clientele, providing individualized instruction, developing off-farm ex-
 perience programs.

AG ED 820 TEACHING YOUNG FARMERS
 3 cr. (3 and 0) F (even numbered years)
 Principles and practices of problem solving in developing and conducting instruc-
 tional programs for young farmers.

AG ED 821 THEORIES AND PRACTICES OF ADULT EDUCATION
 3 cr. (3 and 0)
 Analysis of recent research on adult learnings; a comparison of the assumptions
 supporting pedagogy and andragogy. Emphasis on teaching adults through formal
 classes and community organizations. Prerequisite: PSYCH 201, ED 302 or
 equivalent.
ED 825 SUPERVISION OF STUDENT TEACHING
3 cr. (3 and 0)
Developing philosophy of teacher education; analyzing present teacher training program in South Carolina for problem situations on which to base teacher-education programs; determining relative emphasis for each teacher to place upon solving problems in teacher-education program; projecting plans for apprentice training program; supervising apprentice training. Prerequisite: Experience in agricultural education and permission of instructor.

ED 869 SEMINAR
1-3 cr. (1-3 and 0)
Students and faculty review current topics in agricultural education.

ED 889 RESEARCH IN EDUCATION
3 cr. (3 and 0) F, S, SS
Problem selection; types of educational research and techniques employed; use of ERIC system and computer program packages; interpretation of research findings.

AGRICULTURAL MECHANIZATION
K. Webb, Head, Department of Agricultural Engineering

Major: Agricultural Mechanization
Degree: M.Ag.

This program prepares individuals with agricultural and related backgrounds for positions of leadership in technical services, mechanized production and other businesses serving modern agriculture. Students with undergraduate backgrounds in agricultural mechanization, other agricultural curriculums or related curriculums from non-agricultural colleges and universities may apply.

The student’s program will be arranged to include courses in the agricultural mechanization specialty and in supporting areas. Emphasis is placed on developing a coherent program to satisfy student objectives. Research is required of all students, including a minimum of three credit hours of AG M 781.

M 602 DRAINAGE, IRRIGATION AND WASTE MANAGEMENT
3 cr. (2 and 3)

M 606 MECHANICAL AND HYDRAULIC SYSTEMS
3 cr. (2 and 3)

M 652 FARM POWER
3 cr. (2 and 3)

M 660 FARM AND HOME UTILITIES
3 cr. (2 and 3)
AGRICULTURAL MECHANIZATION

AG M 712 FARM MACHINERY MANAGEMENT
3 cr. (2 and 3)
Selection, functional analysis and maximum utilization of existing and developing
farm machinery; computer applications to programming of field operations; av
available capital and labor; machine size; critical field operations; growing degree day
weather; maintenance equipment; procedures; scheduling.

AG M 733 ANALYSIS OF AGRISTRUCTURES
3 cr. (3 and 0)
Materials and their functions in farm buildings; aesthetic values; rational selection
of individual components; farmstead planning; space and environmental consid
erations; crop processing; materials handling; waste disposal.

AG M 771 SELECTED TOPICS IN AGRICULTURAL MECHANIZATION
1-3 cr. (1-3 and 0)
Selected topics not covered in other course offerings. Performance measured by
oral or written reports or examinations; may be repeated for a maximum of six
credits.

AG M 781 SPECIAL PROBLEMS
1-3 cr. (1-3 and 0)
Independent analysis through literature review and laboratory or field research.
Requires written documentation; may be repeated for a maximum of six credits.

AG M 851 SIMULATION OF AGRICULTURAL SYSTEMS
3 cr. (3 and 0)
Synthesis and analysis of agricultural systems via computer simulation; continu
ous and discrete systems; philosophy of system simulation and optimization. Mo
els will be used to teach working techniques, and each student will build a model
a system; computer background not required. Prerequisite: MTH SC 106 or permis
sion of instructor.

AGRONOMY
R.E. Franklin, Head, Department of Agronomy and Soils

Major
Agronomy

Degrees
M.Ag., M.S., Ph.D.

Graduate programs in agronomy are arranged to allow concentration in either crop science or soil science with a supporting minor area. Research activities in soil science include soil chemistry and physics, soil genesis, soil microbiology and fertility. Research in crop science includes crop production, crop physiology, weed science, plant breeding and genetics. Laboratory, greenhouse and field facilities are available.

Students with undergraduate backgrounds in agriculture, biology or other sciences may apply.

AGRON 602 LAND POLLUTION CONTROL
3 cr. (3 and 0) S (odd numbered years)

AGRON 603 SOIL GENESIS AND CLASSIFICATION
2 cr. (1 and 3) F
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 604</td>
<td>SOILS AND LAND USE</td>
<td>2 cr. (1 and 3)</td>
<td>F</td>
</tr>
<tr>
<td>AGR 605</td>
<td>PLANT BREEDING</td>
<td>3 cr. (2 and 2)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 607</td>
<td>PRINCIPLES OF WEED CONTROL</td>
<td>3 cr. (2 and 2)</td>
<td>F</td>
</tr>
<tr>
<td>AGR 608</td>
<td>ADVANCED WEED SCIENCE LABORATORY</td>
<td>1 cr. (0 and 2)</td>
<td>S (odd numbered years)</td>
</tr>
<tr>
<td>AGR 621</td>
<td>FIELD CROPS-MONOCOTS AND SPECIALTY CROPS</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>AGR 622</td>
<td>FIELD CROPS-DICOTS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 623</td>
<td>FIELD CROPS-FORAGES</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 624</td>
<td>ADVANCED FIELD CROPS LABORATORY</td>
<td>1 cr. (0 and 2)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 625</td>
<td>SEED SCIENCE AND TECHNOLOGY</td>
<td>3 cr. (2 and 2)</td>
<td></td>
</tr>
<tr>
<td>AGR 652</td>
<td>SOIL FERTILITY AND MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 653</td>
<td>SOIL FERTILITY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 655</td>
<td>SEMINAR</td>
<td>1 cr. (1 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>AGR 656</td>
<td>SEMINAR</td>
<td>1 cr. (1 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 675</td>
<td>SOIL PHYSICS AND CHEMISTRY</td>
<td>3 cr. (2 and 3)</td>
<td>S</td>
</tr>
<tr>
<td>AGR 690</td>
<td>SOIL ORGANISMS IN CROP PRODUCTION</td>
<td>3 cr. (2 and 3)</td>
<td>F</td>
</tr>
<tr>
<td>AGR 801</td>
<td>CROP PHYSIOLOGY AND NUTRITION</td>
<td>3 cr. (3 and 0)</td>
<td>F (odd numbered years)</td>
</tr>
<tr>
<td></td>
<td>Basic concepts and physiologic aspects of growth and culture applied to crop management practices. Prerequisite: BOT 421/621 or equivalent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGR 802</td>
<td>PEDOLOGY</td>
<td>3 cr. (3 and 0)</td>
<td>F (odd numbered years)</td>
</tr>
<tr>
<td></td>
<td>Current concepts and theories in soil genesis and morphology; advanced study of taxonomy. Prerequisite: AGRON 403/603.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGRONOMY

AGRON 804 THEORY AND METHODS OF PLANT BREEDING
3 cr. (3 and 0) F (even numbered years)
Concepts and principles of plant breeding and genetics as applied to development and maintenance of improved crop varieties; theoretical considerations of various breeding methods.

AGRON 805 SOIL FERTILITY
3 cr. (3 and 0) S (even numbered years)
Soil properties affecting nutrient availability and plant growth; inventory of major soil groups with reference to plant stress features; behavior of essential elements in soils in relation to plant availability; current soil fertility research. Prerequisite: AGRON 452, 403 or permission of instructor.

AGRON 806 SPECIAL PROBLEMS
1-3 cr. (0 and 3-9)
Research not related to a thesis.

AGRON 807 SOIL PHYSICS
4 cr. (3 and 3) F (even numbered years)
Principles and applications of transport of water and solutes in soils emphasizing unsaturated flow phenomenon. Prerequisite: MTH SC 108 or equivalent.

AGRON 808 SOIL CHEMISTRY
3 cr. (2 and 3) F (odd numbered years)
Principles and theories concerning the structure and chemical properties of soil colloids, ionic exchange and membrane phenomena, chemical equilibria, soil acidity, oxidation-reduction relations, soil chemistry of plant nutrients.

AGRON 812 CROP ECOLOGY AND LAND USE
3 cr. (3 and 0) F (even numbered years)
Concepts and factors affecting adaptation and distribution of crop plants; micrometeorology and crop response to environmental factors with modifications of microclimate by agricultural operations; interactions among crop plants and between weeds and crop plants under field conditions.

AGRON 820 PESTICIDE RESIDUES IN THE ENVIRONMENT
3 cr. (3 and 0) S (odd numbered years)
Accumulation, decomposition and/or attenuation of pesticides in man's environment; pesticide structures and properties; sorption-desorption by soil; diffusion and transport in water; volatility and diffusion in air; chemical-, bio- and photo-degradation. Prerequisite: Introductory courses in organic and physical chemistry or permission of instructor.

AGRON 825 SEMINAR
1 cr. (1 and 0) F, S
Special topics and original research in agronomy. Credit may be earned for more than one semester by doctoral candidates.

AGRON 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

AGRON 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
Animal Physiology

Major

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Physiology</td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

The graduate program in animal physiology uses the facilities of the departments of Animal Science; Dairy Science; Entomology, Fisheries and Wildlife; Food Science; and Poultry Science. It includes faculty from these departments plus the Department of Biological Sciences.

Physiological processes of vertebrates are considered in detail. Areas of greatest research emphasis are reproduction, endocrinology and environmental and digestive physiology.

Students enrolling in animal physiology should have a strong background in the biological sciences and at least one course in organic chemistry.

Courses

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 660</td>
<td>Systems Physiology II</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>PH 801</td>
<td>Electron Microscopy of Biological Specimens</td>
<td>3</td>
<td>F, S</td>
</tr>
<tr>
<td>PH 806</td>
<td>Experimental Animal Physiology</td>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>PH 807</td>
<td>Special Problems in Animal Physiology</td>
<td>1-3</td>
<td>F, S, SS</td>
</tr>
</tbody>
</table>
ANIMAL PHYSIOLOGY

AN PH 808 MAMMALIAN AND AVIAN ENDOCRINOLOGY
3 cr. (3 and 0) S (odd numbered years)

Advanced concepts of the interrelationships of the nervous and endocrine systems as they influence growth and development, body metabolism, body regulatory mechanisms, behavior, reproduction in mammals and birds and lactation in mammals. The integrating actions of hormones as they affect production will be emphasized. Prerequisites: AN PH 660 and ZOOL 675 or permission of course coordinator.

AN PH 812 DIGESTIVE-METABOLIC, EXCRETORY AND RESPIRATORY PHYSIOLOGY
5 cr. (4 and 3) F (even numbered years)

Development of advanced concepts of mechanisms and functions of gastrointestinal tract (mastication, salivation, digestion, absorption, metabolism, excretion), kidney (filtration, secretion, reabsorption) and respiratory systems (transport, exchange and utilization of gases), and the action of hormones and pharmacologic agents on these systems. Prerequisites: ZOOL 459/659 and AN PH 660 or permission of course coordinator.

AN PH 814 MEMBRANE, CARDIOVASCULAR AND NEURO-MUSCULAR PHYSIOLOGY
5 cr. (4 and 3) S (odd numbered years)

Development of advanced concepts in membrane physiology (permeability, action potentials, specialized functions), cardiovascular physiology (functions of the heart, blood-vascular system in maintaining acid-base balance, clotting mechanisms, homeostasis, circulation), neuro-muscular physiology (anatomy and function of the nervous system, special senses, reflexes, control of muscular activity), and the action of several pharmacologic agents on muscle and nerve functions. Prerequisites: ZOOL 459/659 and AN PH 660 or permission of course coordinator.

AN PH 851 ANIMAL PHYSIOLOGY SEMINAR
1 cr. (1 and 0)

Current research and development in animal physiology through related literature and student and faculty participation. May be repeated for a maximum of two hours credit.

AN PH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by various departments represent possible electives for the student in animal physiology. Descriptions for all 800-level courses can be found under the respective department headings.

BIOCH 606 PHYSIOLOGICAL CHEMISTRY
3 cr. (3 and 0)

BIOCH 608 PHYSIOLOGICAL CHEMISTRY LABORATORY
1 cr. (0 and 3)

BIOCH 623 PRINCIPLES OF BIOCHEMISTRY
3 cr. (3 and 0)

BIOCH 624 PRINCIPLES OF BIOCHEMISTRY
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 625</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>CH 626</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>CH 815</td>
<td>LIPIDS AND BIOMEMBRANES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 817</td>
<td>CHEMISTRY AND METABOLISM OF HORMONES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 819</td>
<td>REGULATION OF INTERMEDIARY METABOLISM</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 824</td>
<td>CELLULAR REGULATION AT THE MOLECULAR LEVEL</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>SC 653</td>
<td>ANIMAL REPRODUCTION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>SC 655</td>
<td>REPRODUCTIVE MANAGEMENT</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>SC 661</td>
<td>PHYSIOLOGY OF LACTATION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>SC 803</td>
<td>PHYSIOLOGY OF REPRODUCTION AND MILK SECRETION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>T 670</td>
<td>INSECT PHYSIOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>T 870</td>
<td>ADVANCED INSECT PHYSIOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>RCO 614</td>
<td>BASIC IMMUNOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>RCO 811</td>
<td>BACTERIAL CYTOLOGY AND PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(4 and 0)</td>
</tr>
<tr>
<td>600</td>
<td>AVIAN PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>605</td>
<td>ANIMAL HISTOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>657</td>
<td>COMPARATIVE PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>658</td>
<td>CELL PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>659</td>
<td>SYSTEMS PHYSIOLOGY I</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ZOOL 670</td>
<td>ANIMAL BEHAVIOR</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ZOOL 671</td>
<td>ANIMAL BEHAVIOR LAB</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>ZOOL 675</td>
<td>VERTEBRATE ENDOCRINOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ZOOL 680</td>
<td>ANALYSIS OF DEVELOPMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

ANIMAL SCIENCE

L.T. Frobish, Head, Department of Animal Science

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science</td>
<td>M.Ag.</td>
</tr>
<tr>
<td>Animal and Food Industries</td>
<td>M.S.</td>
</tr>
<tr>
<td>Animal Physiology</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Nutrition</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN SC 601</td>
<td>BEEF PRODUCTION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>AN SC 608</td>
<td>PORK PRODUCTION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>AN SC 652</td>
<td>ANIMAL BREEDING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>AN SC 802</td>
<td>TOPICAL PROBLEMS</td>
<td>1-3 cr.</td>
<td>(1-3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Animal science experiments and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpretation of their results.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN SC 803</td>
<td>MEAT TECHNOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Biochemistry, histology and microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of fresh, frozen, cured, smoked, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>processed meats; quality of meats and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>meat products, processing methods,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutritive value and research techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: AN SC 353 and 355.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN SC 804</td>
<td>METHODS IN ANIMAL BREEDING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Gene and zygotic frequency; systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of mating; heritabilities; genetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>consequences of selection; and criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for evaluating improvement in beef</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cattle, swine, and sheep. Prerequisite:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN SC 452/652.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN SC 805</td>
<td>NUTRITION OF MEAT ANIMALS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Metabolism of carbohydrates, lipids,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>proteins, inorganic elements and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vitamins in relation to practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>production situations; common</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutritional aberrations. Prerequisite:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUTR 401/601 equivalent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Credit to be arranged.

APPLIED ECONOMICS

Robinson, Head, Department of Agricultural Economics and Rural Sociology

Major: Applied Economics
Degree: Ph.D.

The graduate program in applied economics utilizes the facilities and faculty of the Department of Agricultural Economics and Rural Sociology in College of Agricultural Sciences and the Department of Economics in College of Commerce and Industry. Students may carry out their dissertation research under the direction of a faculty member from either department.

DAIRY SCIENCE

Martin, Head, Department of Dairy Science

Major: Dairy Science
Degrees: M.Ag., M.S., Ph.D.

Animal and Food Industries
Animal Physiology
Nutrition

CULTURED DAIRY PRODUCTS
3 cr. (2 and 3)

DAIRY MANUFACTURERS
3 cr. (2 and 3)

LABORATORY TECHNIQUES
3 cr. (2 and 3)

PLANT MANAGEMENT
3 cr. (2 and 3)

MARKET MILK
3 cr. (3 and 0)

DAIRY CATTLE FEEDING AND MANAGEMENT
3 cr. (2 and 3)

ANIMAL REPRODUCTION
3 cr. (3 and 0)

REPRODUCTIVE MANAGEMENT
1 cr. (0 and 3)

ANIMAL REPRODUCTIVE MANAGEMENT
1 cr. (0 and 3)

PHYSIOLOGY OF LACTATION
3 cr. (3 and 0)
DY SC 801 TOPICAL PROBLEMS
1-3 cr. (1-3 and 0)
Problems in dairying not covered by thesis research. Credit varies with problem selected.

DY SC 803 PHYSIOLOGY OF REPRODUCTION AND MILK SECRETION
3 cr. (3 and 0)
Development of advanced concepts of steroidogenesis, gametogenesis, fertilization, placentation, embryogenesis, embryonic-endometrial relationships, parturition and lactation, and the influence of hormones on these processes. Students will evaluate the most recent scientific literature in these areas for information, experimental methods and validity of authors' conclusions, and will select a problem to review related literature and write a research proposal for solving the problem. Prerequisite: DY SC 453/653 and 461/661 or permission of instructor.

DY SC 808 INDUSTRIAL DAIRY SCIENCE
3 cr. (3 and 0)
Managerial training for operating dairy and food plants; managerial policy and decision making.

DY SC 820 DAIRY SCIENCE GRADUATE SEMINAR
1 cr. (1 and 0)
Ongoing research, evaluation of research needs, research techniques, critical reviews and discussions of published research in all areas of dairy science. Relevant to all dairy science disciplines.

DY SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ENTOMOLOGY
S.B. Hays, Head, Department of Entomology, Fisheries and Wildlife

Major Entomology

Degrees M.Ag., M.S., Ph.D.

Facilities of the Agricultural Experiment Station on campus and at five substations located in various parts of the state are available for graduate student research. Teaching and research laboratories, greenhouses and other facilities are equipped for study and research in economic entomology, insect ecology, insect pathology, insect physiology, insect toxicology, medical and veterinary entomology, pest management and traditional fields of taxonomy and morphology.

ENT 601 INSECT PESTS OF ORNAMENTAL PLANTS AND SHADE TREE
3 cr. (2 and 3)

ENT 602 FRUIT, NUT AND VEGETABLE INSECTS
3 cr. (2 and 3)

ENT 603 FIELD CROP INSECTS
3 cr. (2 and 3)

ENT 604 STRUCTURAL, INDUSTRIAL AND HOUSEHOLD INSECTS
3 cr. (2 and 3)
T 605 INSECT MORPHOLOGY
4 cr. (3 and 3)

T 610 INSECT TAXONOMY
3 cr. (1 and 6)

T 612 FIELD AND MUSEUM ENTOMOLOGY
3 cr. (0 and 9)

T 620 TOXICOLOGY OF INSECTICIDES
3 cr. (2 and 3)

T 655 MEDICAL AND VETERINARY ENTOMOLOGY
3 cr. (2 and 3)

T 668 INTRODUCTION TO RESEARCH
2 cr. (1 and 3)

T 669 AQUATIC INSECTS
3 cr. (1 and 6)

T 670 INSECT PHYSIOLOGY
3 cr. (2 and 3)

T 680 INSECT PATHOLOGY
3 cr. (2 and 3)

T 808 TAXONOMY OF IMMATURE INSECTS
3 cr. (1 and 6)

Identification of immature insects emphasizing the Holometabola. Identified collection required.

T 809 SEMINAR IN ENTOMOLOGY
1 cr. (1 and 0)

Current literature and research in entomology. One or more presentations required.

T 810 SPECIAL TOPICS IN ENTOMOLOGY
1-4 cr. (1-4 and 0)

Current areas of entomological research and pest management. Course may be repeated for credit. Prerequisite: Permission of instructor.

T 812 ENTOMOLOGY HISTORY AND LITERATURE
1 cr. (1 and 0)

Literature related to development of the science of entomology. Reading in available journals, indexing and abstracting journals required.

T 840 INSECT ECOLOGY
3 cr. (2 and 3)

Principles of insect ecology, population dynamics and natural regulating mechanisms of insect populations; effect of environment on distribution and abundance of insects.
ENTOMOLOGY

ENT 853 APPLIED SYSTEMATICS
3 cr. (2 and 3)
Application of evolutionary principles to resolution of contemporary zoological problems; legal issues and technical skills for efficient operation of international zoological information storage and retrieval system. Prerequisite: A taxonomic course in entomology or zoology or permission of instructor.

ENT 856 MEDICAL ENTOMOLOGY
3 cr. (2 and 3)
Disease vectors of animals emphasizing insects and related Arthropod disease carriers. Prerequisite: ENT 301 or permission of instructor.

ENT 860 INSECT PEST MANAGEMENT
3 cr. (3 and 0)
Application of ecological principles to the management or control of insect populations; major factors influencing insect population fluctuations; integrated system including biological, cultural, physical, chemical and other techniques forming unified multifaceted approach based on applied ecology.

ENT 861 INSECT TOXICOLOGY
3 cr. (2 and 3)
History, development, application, chemical nature and mode of action of insecticides. Prerequisite: Organic chemistry.

ENT 863 SPECIAL PROBLEMS IN ENTOMOLOGY
1-3 cr. (0 and 3-9)
Insect toxicology, insect physiology, medical entomology and biological control insects through research not related to a thesis.

ENT 870 ADVANCED INSECT PHYSIOLOGY
3 cr. (2 and 3)
Metabolism; excretion; regulatory mechanisms; endocrine system; pheromone nervous system; insect immunity; defensive secretions; chemicals controlling insect behavior.

ENT 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ENT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

ENVIRONMENTAL SCIENCE
R.F. Borgman, Program Coordinator, Department of Food Science

Advanced degrees are not awarded in environmental science. Courses are offered to provide a minor or electives for students in other areas.

EN SC 631 PUBLIC HEALTH ADMINISTRATION
3 cr. (3 and 0) F

EN SC 671 MAN AND HIS ENVIRONMENT
2 cr. (2 and 0) F

EN SC 672 ENVIRONMENTAL PLANNING AND CONTROL
2 cr. (2 and 0) S
EXPERIMENTAL STATISTICS

Byrd, Chairman, Experimental Statistics and Statistical Services

Advanced degrees are not awarded in experimental statistics. A minor is offered at the master's and doctoral levels. Courses are offered as support courses to students majoring in other areas. Courses to be used to satisfy the minor should be approved at the beginning of the student's program. Students who elect a minor at the doctoral level must demonstrate competence in the theoretical basis as well as the application of statistics.

ST 662 STATISTICS APPLIED TO ECONOMICS
3 cr. (3 and 0) S

ST 801 STATISTICAL METHODS
4 cr. (3 and 3) F, S, SS

Introduction and application of statistics in research; estimation, test of significance, analysis of variance, multiple comparison techniques, basic designs, mean square expectations, variance components analysis, simple and multiple linear regression correlation, and nonparametric procedures. Prerequisite: Permission of instructor.

ST 803 REGRESSION AND LEAST SQUARES ANALYSIS
3 cr. (3 and 0) F
Regression analysis; simple and multiple linear, curvilinear and multiple curvilinear; curve fitting; least squares and computer techniques for fitting of constants; analysis of planned experiments. Prerequisite: EX ST 801.

ST 804 SAMPLING
3 cr. (3 and 0) F
Principles of scientific sampling; finite population sampling; simple random, stratified, multistage and systematic sampling; optimum allocation; methods of obtaining, processing and reporting survey information. Sampling as related to the environment, natural resources, and social and economic problems. Prerequisite: ST 801.

ST 805 DESIGN AND ANALYSIS OF EXPERIMENTS
3 cr. (3 and 0) S
Review of the basic designs and analysis; data transformations; single degree of freedom, orthogonality and responses in ANOVA; covariance; response surfaces; complete blocks; introduction to least squares analysis of experiments; uses of standard computer programs for selected analyses. Prerequisite: EX ST 801.

ST 811 SPECIAL PROBLEMS IN EXPERIMENTAL STATISTICS
1-3 cr. (0 and 2-6)
Statistical aspects of an individualized research problem; emphasis on determining an appropriate experimental design, performing proper analyses and generating effective reports.

ST 812 SPECIAL TOPICS IN EXPERIMENTAL STATISTICS
1-3 cr. (1-3 and 0) S
Selected topics in applied statistics not covered in other courses.
FOOD SCIENCE

W.P. Williams, Head, Department of Food Science

Major

Animal and Food Industries

Animal Physiology

Nutrition

Degrees

M.S.

Ph.D.

M.N.S., M.S., Ph.D.

FD SC 601 FOOD CHEMISTRY I
4 cr. (3 and 3)

FD SC 602 FOOD CHEMISTRY II
4 cr. (3 and 3)

FD SC 603 FOOD PRESERVATION AND PROCESSING I
3 cr. (3 and 0)

FD SC 604 FOOD PRESERVATION AND PROCESSING II
3 cr. (3 and 0)

FD SC 605 FOOD PRESERVATION AND PROCESSING LABORATORY I
1 cr. (0 and 3)

FD SC 606 FOOD PRESERVATION AND PROCESSING LABORATORY II
1 cr. (0 and 3)

FD SC 622 QUALITY ASSURANCE AND SENSORY EVALUATION
2 cr. (2 and 0)

FD SC 624 QUALITY ASSURANCE AND SENSORY EVALUATION LABORATORY
1 cr. (0 and 3)

FD SC 664 FOOD PACKAGING SYSTEMS
3 cr. (3 and 0)

FD SC 666 FOOD PACKAGING SYSTEMS LABORATORY
1 cr. (0 and 3)

FD SC 801 TOPICAL PROBLEMS IN FOOD SCIENCE
1-3 cr. (1-3 and 0)

Topics in food science not covered in other courses or by thesis research. Cumulative credit not to exceed three semester hours.

FD SC 802 FOOD ENZYMATOLOGY
2 cr. (2 and 0)

Production, utilization and application of food enzymes in the food industry; effects of food enzymes on color, texture and flavor of foods and food products; health and legal aspects of use of enzymes in foods; current topics in food enzymology.

Prerequisite: FD SC 401/601 or permission of instructor.

FD SC 803 FOOD FERMENTATIONS
2 cr. (2 and 0)

Processes for production of fermented beverages and food products; methods to control stability and quality of these products. **Prerequisite:** MICRO 407/607 or permission of instructor.
SC 804 THERMAL PROCESSING OF PACKAGED FOODS
3 cr. (3 and 0)
Mathematical methods and models used to design and evaluate heat processing
packaged foods; prediction of shelf life and nutrient loss; comparison with other
methods of preservation. Prerequisite: Permission of instructor.

SC 805 FOOD RHEOLOGY
2 cr. (2 and 0)
Physical and rheometric characteristics of foods and their modification by micro-
macromolecular constituents and chemical environments; experimental obser-
don; measurement techniques; psychorheology; texture profiles of foods;
mathematical models. Prerequisite: Permission of instructor.

SC 806 CHEMISTRY OF FOOD COLORS AND PIGMENTS
2 cr. (2 and 0)
Chemical, physical and biological properties of natural and artificial food colorants
pigments in raw and processed foods and food products; regulation of color
itives in foods. Prerequisite: FD SC 401/601 or permission of instructor.

SC 807 FOOD COLLOIDS
2 cr. (2 and 0)
Colloidal behavior and interaction of food constituents and added ingredients in
ersions created through food manufacture; functional properties of naturally
urring food components in the formation and stabilization of food batters, emul-
sions, foams and microencapsulated substances. Prerequisite: FD SC 401/601 or
mission of instructor.

SC 808 FOOD FLAVORS
2 cr. (2 and 0)
Natural and artificial flavor compounds and their interaction and fate in food
ore, during and after processing and storage. Prerequisite: FD SC 401/601 or
mission of instructor.

SC 851 FOOD SCIENCE SEMINAR
1 cr. (1 and 0)
A review of current research and related developments in food science by faculty,
ts and invited lecturers.

SC 852 FOOD SCIENCE SEMINAR
1 cr. (1 and 0)
Continuation of FD SC 851.

SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

Franklin, Head, Department of Agronomy and Soils

Advanced degrees are not awarded in genetics. Courses are offered as a
or for students majoring in other areas.
GENETICS

GEN 610 DEVELOPMENTAL, SOMATIC CELL AND IMMUNOGENETICS
3 cr. (3 and 0)

GEN 651 ADVANCED GENETICS
3 cr. (3 and 0) F

GEN 701 MODERN DEVELOPMENTS IN GENETICS
3 cr. (3 and 0)
Contemporary developments in genetics for secondary school teachers; general approaches to the problems of health and behavior; methods and equipment used to illustrate principles of genetics in the theory and laboratory. Prerequisite: genetics course or equivalent in biology courses.

GEN 801 CYTOGENETICS
3 cr. (2 and 3) S (even numbered years)
Classical and contemporary problems of chromosome structure, behavior and transmission; recombination; interspecific hybridization; euchromatin and heterochromatin; polyplody; mutable genetic systems; structural and numerical aberrations of chromosomes and their effects upon breeding systems of plants and animals. Prerequisite: GEN 302 or equivalent.

GEN 803 BIOMETRICAL GENETICS
3 cr. (3 and 0) S
Statistical methodology in the study of population genetics. Probability as applied to genetic systems, gene and zygotic frequencies, derivation of genetic expectations, forces that change gene frequency, inbreeding, estimation and testing of genetic parameters, partitioning of variance, responses to selection and other statistical aspects of continuous variation. Prerequisite: GEN 451/651, EX ST 801 equivalent.

GEN 806 SPECIAL PROBLEMS IN GENETICS
1-3 cr. (0 and 3-9)
Research not related to a thesis.

HORTICULTURE
R.L. Andersen, Head, Department of Horticulture

Major
Horticulture
Plant Physiology

Degrees
M.Ag., M.S.
Ph.D.

Graduate study in horticulture is designed to acquaint the student with the important biological principles underlying the production, postharvest physiology and handling of horticultural crops. This includes not only the study of the economic product prior to harvest, but also of its harvesting, handling, processing, storage and marketing. Scientific knowledge obtained in horticultural research, as well as that available in the related fields of botany, plant physiology, biochemistry and genetics, gives the student a broad base for future work.

The Master of Science and Master of Agriculture degrees are offered in the areas of pomology, olericulture, floriculture, ornamental horticulture, turf, postharvest physiology and handling, and horticultural production technology.
The department participates in an interdepartmental program awarding the Doctor of Philosophy degree with a major in plant physiology. This program offers opportunities for doctoral research in horticulture and is described on page 84.

RT 606 NURSERY TECHNOLOGY
 3 cr. (2 and 3) S

RT 607 LANDSCAPE DESIGN
 3 cr. (2 and 3) F

RT 610 FLORICULTURE
 3 cr. (2 and 3) S

RT 612 TURF MANAGEMENT
 3 cr. (2 and 3) F

RT 613 ADVANCED TURFGRASS CULTURE
 3 cr. (3 and 0) S

RT 652 COMMERCIAL POMOLOGY
 3 cr. (2 and 3) F

RT 654 SUBTROPICAL AND TROPICAL HORTICULTURE
 3 cr. (3 and 0)

RT 655 SMALL FRUIT AND NUT CROPS
 4 cr. (3 and 3) S

RT 656 VEGETABLE CROPS
 3 cr. (3 and 0) S

RT 661 PROBLEMS IN LANDSCAPE DESIGN
 4 cr. (3 and 3) F

RT 662 LANDSCAPE DESIGN IMPLEMENTATION
 3 cr. (2 and 3) S

RT 664 POSTHARVEST HORTICULTURE
 3 cr. (2 and 2) F

RT 670 HORTITHERAPY
 2 cr. (2 and 0)

RT 671 INTERNSHIP
 1-6 cr. (0 and 2-12)

RT 673 HORTITHERAPY LAB
 1 cr. (0 and 2)

RT 801 PROBLEMS IN SMALL FRUIT PRODUCTION
 3 cr. (3 and 0) F (odd numbered years)

Problems in producing blueberries, strawberries, brambles and grapes.
HORT 802 RESEARCH SYSTEMS IN HORTICULTURE
3 cr. (2 and 3) F (even numbered years)
Current trends, developments and techniques in horticultural research. Prerequisites: CH 223 and 227, or CH 201 and PHYS 207, or BIOCH 210.

HORT 803 EXPERIMENTAL OLERICULTURE
3 cr. (3 and 0) F (even numbered years)
Sources of information on research developments in vegetable crops.

HORT 804 SCIENTIFIC ADVANCES IN ORNAMENTAL HORTICULTURE
3 cr. (3 and 0) S (odd numbered years)
Research and current developments in ornamental horticulture covered in scientific periodicals.

HORT 805 PHYSIOCHEMICAL PROCEDURES FOR DETERMINING QUALITY IN HORTICULTURAL CROPS
3 cr. (2 and 3) F (even numbered years)
Titrations, organoleptic evaluations, refractory, colorimetry and quality evaluations with succulometers and texturometers; effect of acids, sugars, salts and other chemical constituents on quality of horticultural crops.

HORT 806 POSTHARVEST PHYSIOLOGY AND HANDLING OF HORTICULTURAL CROPS
3 cr. (3 and 0) S (even numbered years)
Principles, developments and research findings dealing with physiological and biochemical changes and processes occurring in horticultural plant organs after harvest; biological aspects of methods and practices relating to harvesting, handling, transportation and storage of horticultural commodities for fresh market. Prerequisite: BOT 421/621 or equivalent.

HORT 807 POMOLOGY
3 cr. (3 and 0) S (odd numbered years)
Growth and development of deciduous fruits emphasizing peach and apple. Prerequisite: HORT 352.

HORT 808 SPECIAL INVESTIGATIONS IN HORTICULTURE
2 cr. (2 and 0) S, SS
Research not related to a thesis. Prerequisite: HORT 802 or 805.

HORT 809 SEMINAR I
1 cr. (1 and 0) F
Current topics in horticulture prepared and presented by the student.

HORT 810 SEMINAR II
1 cr. (1 and 0) S
Continuation of HORT 809.

HORT 811 QUANTITATIVE EXPOSITION OF PLANT DEVELOPMENT
2 cr. (1 and 3) S (even numbered years)
Principles and application of quantitative morphology and crop production analysis; techniques for visually detecting minute daily changes in plant development; graphic and statistical evaluation of the influence of specific environmental factors and their interactions on plant development; practical and theoretical applications derived systems of observation and analysis.
NUTRITION

T 870 PRACTICUM IN HORTITHERAPY
3 cr. (1 and 4) S
Practicum in developing, evaluating and reporting on a hortitherapy project.
Prerequisite: HORT 470/670 or permission of instructor.

T 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

T 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

NUTRITION

Borgman, Program Coordinator, Department of Food Science

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td>M.N.S., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

The M.S. and Ph.D. degree programs in nutrition are interdepartmental. Course work and curricula developed and offered by the departments of Animal Science, Dairy Science, Food Science and Poultry Science. Applicants should have a strong background in the biological and physical sciences. Students with deficiencies may be admitted if their deficiencies are corrected by completing appropriate undergraduate courses. A student’s program of study will include a core of basic courses in nutrition, chemistry, statistics and physiology. Additional course work may be taken in areas of special interest as approved by the advisory committee. The student must complete an original research project and submit a thesis. The subject area of the research project will involve the use of human, laboratory animal or domestic animal models.

The Master of Nutritional Sciences degree program is a graduate program in human nutrition offered through the Department of Food Science. The student with career aspirations in public health, community nutrition, clinical dietetics. Applicants should have a strong background in the biological sciences. Those with background deficiencies may be admitted completing undergraduate course work to correct deficiencies. The student’s program of study will include a core of courses in human nutrition addition to course work in statistics, biochemistry and physiology. An experimental education practicum will be completed in lieu of a thesis.

R 601 FUNDAMENTALS OF NUTRITION
3 cr. (3 and 0) F, S

R 625 NUTRITION AND DIETETICS
3 cr. (3 and 0) F

R 651 HUMAN NUTRITION
3 cr. (3 and 0) F, S, SS

R 655 NUTRITION AND METABOLISM
3 cr. (3 and 0) S
NUTRITION

NUTR 701 THERAPEUTIC NUTRITION
3 cr. (3 and 0) S
Interrelationship of pathological, physiological and metabolic alterations produced by various disease states and body nutrient status; application of current practices in nutritional therapy and dietary management in treatment of disease.

NUTR 702 PUBLIC HEALTH NUTRITION
3 cr. (3 and 0) SS
Improvement of dietary practices of the general population; application of nutritional principles to problems of disease and infection.

NUTR 703 NUTRITION EDUCATION
3 cr. (3 and 0) SS
Methods of instruction appropriate for varied age and educational levels; preparation and use of visual aids; cultural patterns in food use as related to nutrition improvement programs for various population groups.

NUTR 704 FOOD SERVICE SYSTEMS
3 cr. (3 and 0) F
Volume feeding systems and their relationship to food quality, food acceptability, sanitation and materials selection; physical plant layout; management structure; food flow dynamics; computer-assisted diet formulation and accounting in various feeding systems.

NUTR 705 NUTRITION PRACTICUM
1-6 cr. (0 and 1-6) F, S, SS
Supervised training in outlining important aspects of practical nutrition situations and preparing plans to make improvements or changes.

NUTR 706 NUTRITION FOR TEACHERS
3 cr. (3 and 0) SS
Principles of nutrition applied to nutrition education. Prerequisite: Permission of instructor.

NUTR 801 TOPICAL PROBLEMS IN NUTRITION
1-3 cr. (1-3) F, S, SS
Topics not covered in other courses or by thesis research. Credit varies with problems selected.

NUTR 802 SPECIAL TOPICS IN NUTRITION
1-3 cr. (1-3) (Offered as needed)
Topics of special interest or contemporary subjects not examined in other courses.

NUTR 808 MONOGASTRIC NUTRITION
3 cr. (3 and 0) F
Basic concepts and current research related to nutrient requirement and metabolism of poultry, swine and other monogastric species. Prerequisites: NUTR 401/601, 451/651 or PS 451/651.

NUTR 809 RUMINANT NUTRITION
3 cr. (3 and 0) F
Microbiological, biochemical and physiological processes involved in the synthesis of amino acids, proteins and B-vitamins; relation of these processes to utility
NUTRITION

of proteins, lipids, and fibrous and non-fibrous feed ingredients; properties and
functions of nutrients, non-protein nitrogen compounds and growth-promoting sub-
stances for dairy cattle, beef cattle and sheep. **Prerequisite:** NUTR 401/601 or
permission of instructor.

NUTR 812 NUTRITION OF CARBOHYDRATES AND LIPIDS
3 cr. (3 and 0) S
Energy utilization; metabolism of carbohydrates including those digestible; me-
bolism of lipids; diseases associated with abnormalities in metabolism. **Prerequi-
te:** General biochemistry and a course in nutrition.

NUTR 813 NUTRITION TECHNIQUES WITH LARGE ANIMALS
2 cr. (1 and 3) S
In vivo and in vitro methods for evaluating nutrient utilization in beef and dairy
attle, sheep, swine and horses.

NUTR 814 NUTRITION TECHNIQUES WITH LABORATORY ANIMALS
2 cr. (1 and 3) F
Techniques of husbandry, handling and using laboratory animals for nutritional
search. **Prerequisite:** Permission of instructor.

NUTR 816 AMINO ACIDS AND PROTEIN NUTRITION
2 cr. (2 and 0) F
Nutrition of amino acids, non-protein nitrogen and proteins related to humans and
domestic animals; essentiality, interrelationships and metabolism of amino acids.

NUTR 818 VITAMINS AND MINERALS
4 cr. (3 and 3) S
Dietary vitamins and mineral requirements of humans and domestic animals. Lab-
atory materials include development of nutritional imbalances and chemical
and biological assays of nutrients. **Prerequisites:** General biochemistry and
nutrition.

NUTR 851 NUTRITION SEMINAR I
1 cr. (1 and 0) F, SS
Current research and developments in nutrition. Topics, selected by the instruc-
tor and students, will come from student research and nutrition literature.

NUTR 852 NUTRITION SEMINAR II
1 cr. (1 and 0) S, SS
Continuation of NUTR 851.

NUTR 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

NUTR 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by the various departments represent possible
lectives for the student in nutrition. Descriptions for all 800-level courses can be
ound under the respective department headings.

NUTR 805 NUTRITION OF MEAT ANIMALS
3 cr. (3 and 0)
BIOCH 606 PHYSIOLOGICAL CHEMISTRY
3 cr. (3 and 0) S

BIOCH 608 PHYSIOLOGICAL CHEMISTRY LABORATORY
1 cr. (0 and 3)

BIOCH 815 LIPIDS AND BIOMEMBRANES
3 cr. (3 and 0)

BIOCH 817 CHEMISTRY AND METABOLISM OF HORMONES
3 cr. (3 and 0)

BIOCH 822 ENZYMES
3 cr. (3 and 0)

PS 651 POULTRY NUTRITION
2 cr. (2 and 0)

PLANT PATHOLOGY
O.J. Dickerson, Head, Department of Plant Pathology and Physiology

Graduate training in plant pathology is designed to aid students in understanding the principles and techniques used to diagnose plant problems, to engage in research involving causal agents and host-pathogen interactions, and to teach plant pathology. Facilities are available on campus and at four branch stations in South Carolina. Current research interest includes virology; nematology; diseases of ornamental, fruit, field crops and vegetables; epidemiology; physiological results of stress; and chemical control of causal agents.

Undergraduate study in a crop science or biology generally provides a good background for graduate work in plant pathology.

PL PA 611 PLANT DISEASE DIAGNOSIS
1 cr. (0 and 3) SS (odd numbered years)

PL PA 612 PLANT DISEASE DIAGNOSIS II
1 cr. (0 and 3) SS (even numbered years)

PL PA 651 BACTERIAL PLANT PATHOGENS
3 cr. (2 and 3) S (odd numbered years)

PL PA 656 PLANT VIROLOGY
3 cr. (2 and 3) S (even numbered years)

PL PA 658 PLANT PARASITIC NEMATODES
3 cr. (2 and 3) F (odd numbered years)

PL PA 700 INTERNSHIP IN PLANT PATHOLOGY
1-5 cr. (0 and 8-40) F

Professional employment under competent supervision in an approved agency dealing with vocational or occupational aspects of plant pathology. Weekly and
Terminal reports required; graded on pass/fail basis. **Prerequisites:** Graduate standing for at least one semester, PL PA 301 and permission of graduate program coordinator.

PL PA 800 ADVANCED PLANT PATHOLOGY
3 cr. (3 and 0) F (odd numbered years)
Economic and social significance and history of plant pathology, host-parasite interactions (host defense mechanisms, mycotoxins, pathotoxins, mycoplasmas), ecology (mycorrhizae, pollution, soil-borne plant pathogens), and disease loss and appraisal. Selected pathogens used to illustrate concepts and principles; outside assignments introduce topics not covered in class. **Prerequisite:** PL PA 301.

PL PA 801 EPIDEMIOLOGY AND CONTROL OF PLANT DISEASES
3 cr. (3 and 0) S (even numbered years)
Epidemiology and control of plant diseases including practical and theoretical coverage of chemical, physical and biological means of plant disease control. **Prerequisites:** PL PA 301 and organic chemistry.

PL PA 803 FUNGAL PLANT PATHOGENS
3 cr. (1 and 6) S (odd numbered years)
Plant pathogenic fungi including recognition of fungus disease symptoms, isolation of fungi that cause diseases, cultural features of fungi, morphological characteristics, physiological reactions to environment, disease cycles, and management of pathogens and diseases. **Prerequisites:** BIOL 104 or equivalent, PL PA 301 and BOT 411/611.

PL PA 804 PHYSIOLOGICAL PLANT PATHOLOGY
3 cr. (3 and 0) F (even numbered years)
Interaction of pathogen and host in development of plant diseases; factors influencing infection; development of pathogen within host. **Prerequisites:** BOT 21/621, PL PA 301 and organic chemistry.

PL PA 805 SPECIAL PROBLEMS IN PLANT PATHOLOGY
Credit to be arranged. F, S, SS
Research not related to a thesis. **Prerequisite:** Permission of instructor.

PL PA 807 SEMINAR
1 cr. (1 and 0) F
Areas of plant pathology and plant physiology not covered by formal courses. Relevant literature will be reviewed, and material will be organized and presented by students.

PL PA 808 TECHNIQUES AND METHODS IN PLANT PATHOLOGY
1 cr. (0 and 3) F
Research techniques and methods. **Prerequisite:** PL PA 301 or concurrent registration in PL PA 301.

PL PA 809 PHYSIOLOGICAL TECHNIQUES IN PLANT PATHOLOGY
2 cr. (1 and 3) S (odd numbered years)
Techniques in separation science; qualitative and quantitative analysis of concern to students in plant pathology and plant physiology. **Prerequisites:** organic chemistry or permission of instructor.
PLANT PATHOLOGY

PL PA 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

PL PA 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PLANT PHYSIOLOGY
N.D. Camper, Program Coordinator, Department of Plant Pathology and Physiology

Major
Plant Physiology

Degree
Ph.D.

The graduate program in plant physiology is interdisciplinary. Students may select courses and a major area of study from the departments of Agronomy and Soils, Horticulture, and Plant Pathology and Physiology in the College of Agricultural Sciences and the botany program in the Department of Biological Sciences in the College of Sciences.

The following courses offered by various departments represent possible electives for the student in plant physiology. Descriptions for all 800-level courses can be found under the respective department headings.

AGRON 690 SOIL ORGANISMS AND CROP PRODUCTION
3 cr. (2 and 3)

AGRON 801 CROP PHYSIOLOGY AND NUTRITION
3 cr. (3 and 0)

AGRON 805 SOIL FERTILITY
3 cr. (3 and 0)

AGRON 812 CROP ECOLOGY AND LAND USE
3 cr. (3 and 0)

AGRON 820 PESTICIDE RESIDUES IN THE ENVIRONMENT
3 cr. (3 and 0)

AGRON 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BOT 821 INORGANIC PLANT METABOLISM
4 cr. (3 and 3)

BOT 822 ORGANIC PLANT METABOLISM
3 cr. (3 and 0)

BOT 823 PLANT GROWTH AND DEVELOPMENT
3 cr. (3 and 0)

BOT 824 MODE OF ACTION OF GROWTH SUBSTANCES
4 cr. (3 and 3)

BOT 861 PLANT CELL BIOLOGY
3 cr. (3 and 0)
PLANT PHYSIOLOGY COLLOQUIUM
1 cr. (1 and 0)

DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

RESEARCH SYSTEMS IN HORTICULTURE
3 cr. (2 and 3)

EXPERIMENTAL OLERICULTURE
3 cr. (3 and 0)

PHYSIOCHEMICAL PROCEDURES FOR DETERMINING QUALITY IN HORTICULTURE CROPS
3 cr. (2 and 3)

POSTHARVEST PHYSIOLOGY AND HANDLING OF HORTICULTURAL CROPS
3 cr. (3 and 0)

QUANTITATIVE EXPOSITION OF PLANT DEVELOPMENT
2 cr. (1 and 3)

DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PHYSIOLOGICAL PLANT PATHOLOGY
3 cr. (3 and 0)

DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

POULTRY SCIENCE
D. Barnett, Head, Department of Poultry Science

Major
Poultry Science
Animal and Food Industries
Animal Physiology
Nutrition

Degrees
M.Ag.
M.S.
Ph.D.
M.S., Ph.D.

Graduate study in poultry science in the M.S. and M.Ag. programs may emphasize physiology, nutrition, management, products and processing, diseases. At the Ph.D. level interdisciplinary study is available, but only in nutrition and physiology. Applicants with backgrounds in the basic biological sciences and all areas of animal agriculture are welcome.

AVIAN PHYSIOLOGY
3 cr. (3 and 0)

POULTRY MANAGEMENT
3 cr. (3 and 0) S (odd numbered years)
PS 603 POULTRY MANAGEMENT LAB
1 cr. (0 and 3) S (odd numbered years)

PS 605 TOPICAL PROBLEMS
1-3 cr. (0 and 3-9)

PS 651 POULTRY NUTRITION
2 cr. (2 and 0) F (odd numbered years)

PS 653 POULTRY NUTRITION LABORATORY
1 cr. (0 and 3) F (odd numbered years)

PS 654 LEAST COST FEED FORMULATION
1 cr. (0 and 2) S

PS 655 POULTRY PRODUCTS GRADING AND TECHNOLOGY
3 cr. (2 and 3) S (odd numbered years)

PS 658 AVIAN MICROBIOLOGY AND PARASITOLOGY
4 cr. (3 and 3) F (even numbered years)

PS 660 SEMINAR
1 cr. (1 and 0)

PS 804 POULTRY PATHOLOGY
3 cr. (1 and 6) S (odd numbered years)

Etiological agents, prophylaxis and treatment of poultry diseases. Laboratory work includes experiments in bacteriology, virology, protozoology and immunology procedures emphasizing isolation and identification of disease-producing agents.

Prerequisite: PS 458/658 or permission of instructor.

PS 805 SEMINAR
1 cr. (1 and 0) F

Report on special topics or original research by students, staff and visiting speakers.

PS 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

WILDLIFE AND FISHERIES BIOLOGY

S.B. Hays, Head, Department of Entomology, Fisheries and Wildlife

Major Degree
Wildlife Biology M.S.

Students desiring to pursue graduate work in wildlife and fisheries biology should have sound undergraduate training in the biological or related sciences. Programs of study are designed to emphasize the relationships between wild animals and their changing environments. Additional course work for a major in wildlife biology is usually taken in experimental statistics, botany, zoology or other related areas. The following areas of concentration are offered: uplands and wetlands wildlife biology, fresh water fisheries science and marine fisheries science.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 612</td>
<td>WILDLIFE MANAGEMENT</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>B 616</td>
<td>FISHERY BIOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>B 660</td>
<td>BIOLOGY AND MANAGEMENT OF MARINE FISH AND SHELLFISH</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>B 662</td>
<td>AQUATIC PRODUCTIVITY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>B 668</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>2 cr. (1 and 3)</td>
<td></td>
</tr>
<tr>
<td>IT 668</td>
<td>AQUATIC INSECTS</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>B 809</td>
<td>SEMINAR IN WILDLIFE AND FISHERIES SCIENCE</td>
<td>1 cr. (1 and 0)</td>
<td></td>
</tr>
<tr>
<td>B 815</td>
<td>PRINCIPLES OF WILDLIFE BIOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>B 816</td>
<td>APPLIED WILDLIFE BIOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>B 818</td>
<td>ECOLOGY AND MANAGEMENT OF WETLAND WILDLIFE</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>B 819</td>
<td>SPECIAL TOPICS IN WILDLIFE MANAGEMENT</td>
<td>1-4 cr. (1-4 and 0)</td>
<td>Permission of instructor.</td>
</tr>
<tr>
<td>B 840</td>
<td>IMPOUNDMENT AND STREAM MANAGEMENT</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
</tbody>
</table>

Current literature and research in fisheries and wildlife sciences. One or more presentations required. May be repeated for a maximum of four credits. Prerequisite: Permission of instructor.

Techniques and practices involved in management of wildlife species emphasizing upland game.

Identification, ecology and management of waterfowl and marshland furbearers emphasizing economically important species. Laboratory work includes demonstration and application of relevant wetland management techniques, current literature topics and field trips. Prerequisites: ZOOL 411/611 or WFB 412/612 or permission of instructor.

Current areas of wildlife research and management. May be repeated for credit. Prerequisite: Permission of instructor.

Principles and techniques of managing ponds and streams for sport fishing and commercial fishing emphasizing trout streams, farm ponds and reservoirs. Laboratory work includes demonstration and application of management techniques and field trips to observe other management practices. Prerequisite: ZOOL 410/610 and 463/663 or permission of instructor.
WFB 850 AQUACULTURE
 3 cr. (3 and 0)
 Basic aquacultural techniques applied to freshwater and marine organisms; past and present culture of finfishes and shellfishes around the world; principles underlying fish production; water quality, feeding and nutrition as they influence productivity of cultured aquatic organisms. Prerequisite: WFB 416/616 or ZOOL 463/663.

WFB 861 SPECIAL TOPICS IN FISHERY BIOLOGY
 1-4 cr. (1-4 and 0)
 Current areas of active fisheries research and management presented in lecture-seminar format. May be repeated for credit. Prerequisite: Permission of instructor.

WFB 863 SPECIAL PROBLEMS IN WILDLIFE AND FISHERIES BIOLOGY
 1-3 cr. (0 and 3-9)
 Research not related to a thesis. Credit varies with problems selected. Prerequisite: Permission of instructor.

WFB 891 MASTER'S THESIS RESEARCH
 Credit to be arranged.
COLLEGE OF ARCHITECTURE

ARCHITECTURE
BUILDING SCIENCE
CITY AND REGIONAL PLANNING
VISUAL STUDIES
COLLEGE OF ARCHITECTURE

P. David Pearson, Dean

The College of Architecture offers professional degree programs leading to the Master of Architecture, Master of City and Regional Planning, Master of Fine Arts in visual arts and Master of Architecture in management. Clemson University is the only institution in South Carolina offering studies in architecture and environmental design at its several levels.

As an enrichment to its graduate offerings, the Clemson Architecture Foundation in collaboration with the college maintains the Daniel Center for Building Research and Urban Study in Genoa, Italy, and each graduate student is expected to spend the period of one semester and a summer residence at that facility. The activities there include regular classes, coordinated field trips and lectures by visiting professors, as well as participation by design critics from Italian and other European universities. Participation is open to qualified graduate students in the College of Architecture.

The following courses are included in the overseas program:

CA 612 DIRECTED RESEARCH IN ARCHITECTURAL HISTORY
3 cr. (1 and 6)

CA 620 VISUAL ARTS STUDIO
3 cr. (0 and 9)

CA 642 BUILDING SCIENCE LABORATORY
1-9 cr. (0-3 and 3-18)

CA 850 ARCHITECTURAL STUDIO
1-9 cr. (0-3 and 3-18)

Studio problems in architectural and urban design in the framework of a dense and ancient urban area. Coordinated field trips and related lectures will be an adjunctive structured resource in the conduct to these intensive programs. M.Arch degree candidates may substitute CA 850 (9 credits) for CA AR 853, 854 or 855.

CA 860 PLANNING STUDIO
1-9 cr. (0-3 and 3-18)

Studio planning problems programmed to coordinate with concurrent work undertaken by colleagues in CA 850. Specialist lectures from other Italian universities will be scheduled. Master of City and Regional Planning degree candidates may substitute CA 860 from CA PL 854, 863 or 865 with approval of credit hours by major adviser.

CA 880 VISUAL ARTS STUDIO
1-9 cr. (0-3 and 3-18)

Intensive graduate work in the visual arts studio. Adjunct lectures and gallery tours will be scheduled with leading Italian artists, art critics and historians; field work required. Master of Fine Arts candidates may substitute CA 880 for a graduate visual arts studio on the home campus.
ARCHITECTURE

Ith J. Russo, Head, Department of Architectural Studies

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>M.Arch.</td>
</tr>
</tbody>
</table>

The graduate program in architecture formulates in-depth professional studies using research as the vehicle for environmental problem solving. Each student is offered the opportunity to develop specific interests and abilities. Optional areas of concentration include building science, building systems, construction management, general design, health care facilities planning and design, housing, landscape design and urban design. The professional program provides an opportunity to work with government officials, experts in other fields and the general public while using the region as a laboratory for research and public service. Students seek out available sources and collaborate with other professionals as particular problems may require.

The graduate program generally comprises two years of study in the professional architectural curriculum. Applicants who have completed an undergraduate degree in design or its equivalent will enter at the fifth-year level (the 4-2 program) and work toward the Master of Architecture as the first professional degree. Applicants possessing an undergraduate professional degree in architecture (B.Arch.) will enter at the sixth-year level (the 5-1 program) for such period of work as needed for the Master of Architecture as a second professional degree.

Mission Requirements:
The following requirements for admission to the graduate program in architecture apply to students in the 4-2 and 5-1 programs:

1. (a) 4-2 program: Attainment of a B.A. or B.S. degree in design (or equivalent) or a B.S. degree in building science and management for those wishing to concentrate in construction management.
 (b) 5-1 program: Attainment of the first professional degree (B.Arch.).
2. Attainment of a satisfactory academic record in the last 60 major* credit (semester) hours.
3. Completion of a counseling review with the dean of the College of Architecture, the head of the Department of Architectural Studies and other members of the review committee. A portfolio of previous creative efforts including work done in an architect’s office, a statement of educational goals and a curriculum vitae should be presented at this review.
4. Letters of recommendation from three of the following: the dean of the undergraduate school, an undergraduate teacher, an employer or a personal acquaintance.
5. Completion of the Graduate Record Examination.
6. Work experience in an approved architectural office.

*Major credit hours are those which relate directly to the student’s major (i.e., for architecture majors: architectural design, art and architectural history, building science, city and regional planning, visual studies, etc.).
ARCHITECTURE

Requirements for Degree Candidacy:
1. (a) 4-2 Program: Thirty (30) semester hours in the student’s prescribed professional curriculum in the graduate program with a minimum grade point ratio of 3.00.
 (b) 5-1 Program: Eighteen (18) semester hours in the student’s prescribed professional curriculum in the graduate program with a minimum grade point ratio of 3.00.
2. Work experience of a minimum of 1,000 hours in an architecture office. The majority of these hours should be obtained prior to application to the Graduate School.

Requirements for Awarding of a Degree:
1. (a) 4-2 Program: A minimum of 48 semester hours of credit with a grade point ratio of 3.00 or above average in the student’s professional curriculum, excluding a thesis or a terminal project.
 (b) 5-1 Program: A minimum of 27 semester hours of credit with a grade point ratio of 3.00 or above average in the student’s professional curriculum, excluding a thesis or a terminal project.
2. (a) 4-2 Program: Satisfactory completion of a thesis or a terminal project, each of 12 credit hours, while in residence as a full-time student
 (b) 5-1 Program: Satisfactory completion of a thesis or a terminal project, each of nine credit hours, while in residence as a full-time student

CA AR 624 FURNITURE DESIGN/INDUSTRIAL PRODUCT DESIGN
3 cr. (1 and 4)

CA AR 625 ENERGY CRITERIA ON ARCHITECTURAL DESIGN
3 cr. (3 and 0)

CA AR 681 ARCHITECTURAL OFFICE PRACTICE
3 cr. (3 and 0)

CA AR 685 HEALTH CARE DELIVERY SYSTEMS AND HEALTH CARE FACILITIES SEMINAR
3 cr. (3 and 0)

CA AR 688 HEALTH CARE FACILITIES PROGRAMMING TECHNIQUES
3 cr. (2 and 3)

CA AR 801 PROFESSIONAL PRACTICE SEMINAR
3 cr. (3 and 0)
Emerging methods of architectural practice and management of the firm. Prerequisite: CA AR 481/681.

CA AR 853 ARCHITECTURAL DESIGN
6-9 cr. (0 and 18-27)
City planning design and development of complex building structures. Students in the 5-1 program will enroll for six credit hours. Those in the 4-2 program will enroll for nine credit hours.
AR 854 ARCHITECTURAL DESIGN
6-9 cr. (0 and 18-27)
Architectural and planning research and design of complex buildings and urban environments. Students in the 5-1 program will enroll for six credit hours. Those in the 4-2 program will enroll for nine credit hours. Prerequisite: CA AR 853.

AR 857 ARCHITECTURAL DESIGN
9 cr. (0 and 27)
Urban design problems, a portion of which will be undertaken as group effort and individual problems. Prerequisite: CA AR 854.

AR 858 PRELIMINARY THESIS OR TERMINAL PROJECT
3 cr. (1 and 6)
Preliminary analysis of data to determine most advisable form of terminal presentation within thesis or non-thesis options for Master of Architecture degree. Prerequisites: CA AR 853 and 854, or CA 850 substituting for CA AR 853 or 854.

AR 859 TERMINAL PROJECT
1-12 cr. (0 and 3-36)
Special project in lieu of architectural thesis. Approval of department faculty required; may be repeated for no more than 12 credits. Students in the 5-1 program will enroll for nine credit hours. Those in the 4-2 program will enroll for 12 credit hours. Prerequisites: CA AR 858 plus CA AR 857 and/or CA 850.

AR 886 HEALTH CARE FACILITIES COMPONENTS AND FUNCTIONS
3 cr. (2 and 3)
Components and service functions of physical and mental health care delivery systems and facilities.

AR 890 DIRECTED STUDIES
1-5 cr.
Special topics not covered in other courses emphasizing field studies, research activities and current developments in architecture and planning. Prerequisite: permission of faculty adviser and department head or dean.

AR 891 ARCHITECTURAL THESIS
1-12 cr.
Each student will select and have approved by his or her major adviser an individual thesis problem of appropriate scope and conduct his or her own comprehensive research. Under approved special circumstances, the thesis may be a team effort. The solution will be presented in oral, written and visual form. May be repeated for no more than 12 credits. Students in the 5-1 program will enroll for nine credit hours. Those in the 4-2 program will enroll for 12 credit hours. Prerequisite: AR 854.

BUILDING SCIENCE
E. Knowland, Head, Department of Building Science

Advanced degrees are not awarded in building science. However, a construction management concentration is offered under the Master of Architecture degree program (see item 1, page 91). Courses are also offered to provide electives for students in other areas.
The two-year professional Master of City and Regional Planning curriculum consists of a core and an elective concentration. The core provides the student with the common basic skills and knowledge needed to succeed as a professional planner. The elective concentration facilitates either (1) the generalist capabilities or (2) the development of a planning specialty. Where appropriate, specialty concentrations are aligned with doctoral programs to assist qualified students in preparing for academic or research careers in addition to their professional training.

The Overseas Center for Urban Studies in Genoa, Italy, provides a unique core element in the planning studies program. It provides a semester in an interdisciplinary program of fine arts, design and planning studies.

Admission Requirements:

1. A bachelor's degree from an accredited college or university.
2. A satisfactory academic record in the last 60 major* credit hours of undergraduate work.
3. A counseling review with the Dean of the College of Architecture and the Head of the Department of Planning Studies. This review is for acceptance as well as counseling in the case of applicants from outside the College of Architecture.
4. Letter of recommendation from any three of the following: the dean of the undergraduate school, an undergraduate teacher, an employer or personal acquaintance.
5. Completion of the Graduate Record Examination.

*Major credit hours are those which relate directly to the student's major (i.e., for architecture majors: architectural design, art and architectural history, building science, city and regional planning, visual studies, etc.).
Requirements for Degree Candidacy:

The two-year Master of City and Regional Planning degree requires a minimum of 60 semester hours. Twelve courses, each of three semester credits, make up the core curriculum. Four approved three-semester electives are required to complete an optional concentration. In addition, each student is required to complete an internship (or equivalent) and a final project paper or thesis. Typical optional concentrations include design, planning implementation, health and social services, planning methods and quantitative analysis, local government finance, transportation planning, regional and natural resource economics, urban economics, public administration, environmental planning, recreation planning, and small city and rural planning.

Requirements for Awarding of a Degree:

Thesis Option**

(a) A minimum of 54 hours of course work with a B average in the student's prescribed professional curriculum including the thesis.

(b) Satisfactory completion of a six-semester-hour planning thesis. Those students who have been approved by the planning faculty and performed satisfactorily on the written comprehensive examination be permitted this option.

(c) The final oral examination requires satisfactory answers to questions concerning the student's thesis and concentration area.

Non-Thesis Option**

(a) A minimum of 57 hours of course work with a B average in the student's prescribed professional curriculum.

(b) Satisfactory completion of an approved three-semester-hour terminal paper. Students must perform satisfactorily on a written comprehensive examination covering the core planning courses before being permitted to write the terminal paper.

(c) The final oral examination requires satisfactory answers to questions concerning the student’s terminal paper and concentration area.

PL 611 INTRODUCTION TO CITY AND REGIONAL PLANNING
3 cr. (3 and 0)

PL 672 IMPLEMENTATION OF THE LOCAL PLANNING PROCESS
3 cr. (3 and 0)

PL 673 GOVERNMENT AND PLANNING LAW
3 cr. (3 and 0)

PL 683 SEMINAR ON PLANNING COMMUNICATION
3 cr. (3 and 0)

PL 812 CITY AND REGIONAL PLANNING THEORY
3 cr. (3 and 0)

On approval of the majority of the faculty, either a thesis or a terminal paper of up to nine semester hours may be permitted with a corresponding reduction in the required course work.
Urban theory as a planning experience during the evolution of human settlements; historical background considered as a basic knowledge for understanding living standards, yielding ideas for improving standards through planning proposals. **Prerequisite:** Permission of instructor or department head.

CA PL 821 INTERGOVERNMENTAL RELATIONS IN THE PLANNING PROCESS
1-3 cr. (1-3 and 0)
Operations, structure and review procedures between local, state and multistate agencies and the federal government; techniques of regional delineation and analysis; problems in governmental planning operations. **Prerequisite:** Permission of instructor and department head.

CA PL 822 URBAN SYSTEMS AND DESIGN
3 cr. (3 and 0)
Translation of the intricate mathematical exploration patterns of the complex needs of a city and their interrelationships into a possible range of built forms. Focus is on the translation area with its constituent spatial and nonspatial characteristics. **Prerequisite:** Permission of instructor or department head.

CA PL 823 SOCIAL POLICY PLANNING AND DELIVERY SYSTEMS
3 cr. (3 and 0)
Concepts of planning social service delivery systems: basic principles, role of the public sector (at national, state and local levels), components of delivery systems, and methods for planning and evaluation. **Prerequisite:** Permission of instructor.

CA PL 831 PRINCIPLES OF SITE PLANNING AND DESIGN
3 cr. (3 and 0)
Introduction to site evaluation and project objective definition; site analysis techniques; methods of quantification; environmental and regulatory aspects; consideration of contextual guidelines in site planning and design.

CA PL 832 PROBLEMS IN SITE PLANNING
3 cr. (1 and 2)
Advanced site planning and design concepts studies developed through site projects, concentration on industrial, residential and recreational facilities, and emphasis on use-specific site analysis and development alternative generation. **Prerequisite:** CA PL 831.

CA PL 853 COMPARATIVE STUDIES IN PLANNING METHODS AND ANALYSIS
3 cr. (0 and 9)
Simulated office procedures with projects aimed at developing skills in the three main sectors of the planning process — survey, analysis and creative planning — emphasizing plans for physical development.

CA PL 854 PLANNING AND BUILT FORM STUDIES: STUDIO
3 cr. (0 and 9)
Theoretical course work applied to simulated real-life project exercises.
PL 858 PRELIMINARY PLANNING THESIS
3 cr. (0 and 9)
Preliminary analysis of data to determine most advisable form of terminal presen-
tation within thesis or non-thesis options for Master of City and Regional Planning
degree. Prerequisite: Permission of faculty.

PL 859 PLANNING TERMINAL PROJECT
3 cr. (0 and 9)
Student selects, with approval of adviser, and conducts research on an individual
planning problem of suitable scope. Oral, written and, where appropriate, visual
presentation of thesis required. Student must enroll during final semester.

PL 862 CITIZEN PARTICIPATION IN PLANNING
3 cr. (3 and 0)
Methods and validity of citizen participation in city and regional planning process.
Prerequisite: Permission of instructor.

PL 863 URBAN AND METROPOLITAN PLANNING STUDIES: STUDIO
3-6 cr. (0 and 9-18)
Projects pertaining to land use, transportation, urban design, public facilities,
olic services, capital improvement program, etc., accomplished through indi-
gual or small group activity under guidance of planning faculty.

PL 865 ADVANCED LAND USE AND BUILT FORM STUDIES: STUDIO
3-9 cr. (0 and 9-27)
Continuation of CA PL 863; may include terminal paper on one or more of items
ed in CA PL 863.

PL 871 SEMINAR ON PLANNING AND MANAGEMENT OF CHANGE
3 cr. (3 and 0)
Potentials of planning and management approaches emphasizing relationship
tegration among various implementing techniques and instruments, impor-
ce of public-private sector partnerships and potential impact of various policies
programs. New towns will be considered. Prerequisites: CA PL 672 and per-
sion of instructor or department head.

PL 881 QUANTITATIVE METHODS FOR URBAN PLANNING AND POLICY
3 cr. (3 and 0)
Conceptual foundations of quantitative methods; survey of quantitative tech-
es in relation to major tasks of urban planning process.

PL 882 SEMINAR IN MATHEMATICAL MODELING FOR URBAN AND
REGIONAL PLANNING
3 cr. (3 and 0)
Mathematical models for analysis of urban systems; predictive and estimating
els; optimizing models; simulation; evaluation. Theoretical knowledge is applied
development of operational empirical models.

PL 883 TECHNIQUES FOR ANALYZING DEVELOPMENT IMPACTS
3 cr. (3 and 0)
Models and techniques for analyzing development impacts in urban areas and
ions; economic, social, physical, energy and fiscal impact methods. Operational
nowledge of these techniques will be developed. Prerequisites: CA PL 881, 885
permission of instructor.
CA PL 884 PUBLIC SERVICES AND FACILITIES PLANNING
3 cr. (3 and 0)
Approaches, concepts and operations of public services and facilities; potent impact on various parts of the community and its inhabitants. Prerequisite: Permission of instructor.

CA PL 885 CITY AND REGIONAL FINANCIAL PLANNING
3 cr. (3 and 0)
Concepts and functions of budgetary processes—operating budget, capital improvement program and revenue sources—for local, regional, state and federal funding of public activities. Prerequisite: Permission of instructor or department head.

CA PL 889 SELECTED TOPICS IN PLANNING
3 cr. (3 and 0)
Topics not covered in other courses, emphasizing current literature and results of current research. May be repeated for credit. Prerequisite: Permission of instructor.

CA PL 890 DIRECTED STUDIES IN CITY AND REGIONAL PLANNING
1-5 cr. (0 and 1-5)
Student pursues individual professional interests under guidance of city and regional planning program graduate faculty.

CA PL 891 PLANNING THESIS
3-9 cr.
Student, working individually, programs a planning problem of appropriate scope and conducts research. Oral, written and, where appropriate, visual presentation of thesis required. Prerequisite: Permission of faculty.

CA PL 893 CITY AND REGIONAL PLANNING INTERNSHIP
6 cr. (0 and 6)
Twelve weeks of supervised professional employment in an approved planning office or agency. Monthly reports covering student's experience required; grade on pass/fail basis. Prerequisite: Two semesters of city and regional planning equivalent.

VISUAL STUDIES
J.T. Acorn, Head, Department of Visual Art and History

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Studies</td>
<td>M.F.A.</td>
</tr>
</tbody>
</table>

The Master of Fine Arts degree is the terminal degree within the areas of visual arts. The program offers maximum opportunity for a student to pursue his or her individual direction within these areas. Interdisciplinary projects are encouraged within the department and the college. The primary goal of the program is the development of each student to a high degree of professional competence.

Admission Requirements:
The graduate program in visual studies leading to the Master of Fine Arts degree admits a limited number of talented and creative professional candidates on a competitive basis as follows:
1. Attainment of a bachelor's degree from an accredited college or university with a major in visual arts area (B.F.A.), a liberal arts or science degree, or an undergraduate major in architecture or fine arts. Especially qualified persons may be accepted from other degree backgrounds.

2. Attainment of a satisfactory academic record in the last 60 major credit hours of undergraduate work.

3. A portfolio/documentation of candidate's creative work in one or more of the following: ceramics, cinematography, painting, sculpture, printmaking, graphic design, drawing, photography, multimedia. This portfolio, which may include slides, photographs, films, other documentation or the final work, will be reviewed by the admissions committee, composed of members of the faculty of the Department of History and Visual Studies. On acceptance of the past accomplishments of the candidate, a personal interview will be arranged.

4. Letters of recommendation are preferred from three of the following: an of the undergraduate school, a former major professor, a producing artist or a personal acquaintance. Other letters of recommendation will be accepted.

Requirements for Degree Candidacy:

1. The prospective candidate must have a review of his or her work at the end of each semester. It will be determined at this time if the student should continue or whether additional study is required at either the undergraduate or graduate level.

2. Completion of 30 hours and a full-time residency during the second year of study.

Requirements for Awarding of a Degree:

1. A minimum of 45 credit hours with a B average or above in the student's professional curriculum. Included in this are 33 hours of studio art and 12 hours in history of art and architectural history.

2. Completion of a 15-credit-hour thesis culminating in satisfactory completion of a written documentary of the "thesis show" and an oral examina­tion by the Graduate Committee.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA 605</td>
<td>DRAWING</td>
<td>3 cr. (1 and 6)</td>
</tr>
<tr>
<td>VA 607</td>
<td>PAINTING</td>
<td>3 cr. (1 and 6)</td>
</tr>
<tr>
<td>VA 609</td>
<td>SCULPTURE</td>
<td>3 cr. (1 and 6)</td>
</tr>
<tr>
<td>VA 611</td>
<td>PRINTMAKING</td>
<td>3 cr. (1 and 6)</td>
</tr>
</tbody>
</table>

or credit hours are those which relate directly to the student's major (i.e., for architecture majors: architectural design, art and architectural history, building science, city and regional planning, visual studies, etc.).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA VA 613</td>
<td>PHOTOGRAPHY</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>CA VA 615</td>
<td>GRAPHIC DESIGN</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>CA VA 617</td>
<td>CERAMIC ARTS</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>CA VA 690</td>
<td>DIRECTED STUDIES</td>
<td>1-5 cr.</td>
<td></td>
</tr>
<tr>
<td>CA VA 850</td>
<td>VISUAL ARTS STUDIO</td>
<td>3 cr. (0 and 9)</td>
<td></td>
</tr>
<tr>
<td>CA VA 851</td>
<td>VISUAL ARTS STUDIO</td>
<td>3-6 cr.</td>
<td></td>
</tr>
<tr>
<td>CA VA 870</td>
<td>VISUAL ARTS STUDIO</td>
<td>6 cr. (1 and 15)</td>
<td></td>
</tr>
<tr>
<td>CA VA 871</td>
<td>VISUAL ARTS STUDIO</td>
<td>3-6 cr.</td>
<td></td>
</tr>
<tr>
<td>CA VA 880</td>
<td>VISUAL ARTS STUDIO</td>
<td>3-15 cr.</td>
<td></td>
</tr>
<tr>
<td>CA VA 891</td>
<td>MASTER'S RESEARCH</td>
<td>3-15 cr.</td>
<td></td>
</tr>
<tr>
<td>CA AH 603</td>
<td>HISTORY OF MODERN ARCHITECTURAL MOVEMENT</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>CA AH 604</td>
<td>CURRENT DIRECTIONS IN ARCHITECTURE</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>

Concentrated and advanced work in ceramics, drawing, painting, printmaking, sculpture, photography, graphic design or multimedia. **Prerequisite:** Permission of department head or instructor.

Continuation of CA VA 850. May be repeated for maximum of six credits. **Prerequisite:** Permission of department head or instructor.

Advanced theory; directed research in art criticism; applied work in ceramic, drawing, painting, sculpture, photography, graphic design or multimedia. **Prerequisite:** Permission of department head or instructor.

Continuation of CA VA 870. May be repeated for maximum of six credits. **Prerequisite:** Permission of department head or instructor.

Continuation of CA VA 871. May be repeated for maximum of 15 credits. **Prerequisite:** Permission of department head or instructor.

May be repeated for maximum of 15 credits. **Prerequisite:** Permission of department head or instructor.

No degrees are offered in Architectural and Art History. Courses are offered to provide electives for students in other areas.
AH 605 THE HISTORY OF PLANNING AND CITIES
3 cr. (3 and 0)

AH 611 DIRECTED RESEARCH IN ART HISTORY
3 cr. (3 and 0)

AH 612 DIRECTED RESEARCH IN ART HISTORY
3 cr. (3 and 0)

AH 613 TWENTIETH CENTURY VISUAL ARTS
3 cr. (3 and 0)

AH 617 STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD I
3 cr. (3 and 0)

AH 618 STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD II
3 cr. (3 and 0)

AH 619 STUDIES IN THE ART AND ARCHITECTURE OF THE EARLY MIDDLE AGES
3 cr. (3 and 0)

AH 620 STUDIES IN THE ART AND ARCHITECTURE OF THE LATE MIDDLE AGES
3 cr. (3 and 0)

AH 623 STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE I
3 cr. (3 and 0)

AH 624 STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE II
3 cr. (3 and 0)

AH 625 ARCHITECTURE OF THE TECHNOLOGICAL REVOLUTION: 1685-1865
3 cr. (3 and 0)

AH 627 EIGHTEENTH CENTURY VISUAL ARTS
3 cr. (3 and 0)

AH 628 NINETEENTH CENTURY VISUAL ARTS
3 cr. (3 and 0)

AH 629 STUDIES IN THE ART AND ARCHITECTURE OF INDIA AND THE FAR EAST I
3 cr. (3 and 0)

AH 801 THEORIES OF ARCHITECTURE
3 cr. (3 and 0)

Solution of architectural theories from Vitruvius to the present. Special emphasis on the writings of leading architects and theorists and the impact of these theories on architectural solutions. Prerequisite: Graduate status.
CA AH 802 PHENOMENOLOGY OF ARCHITECTURE
3 cr. (3 and 0)
Basic principles of phenomenological methods as they apply to the theoretical understanding of modern architecture. Emphasis on selected writings of Heidegger, Harries and Norberg-Schulz. Prerequisite: CA AH 801.

CA AH 815 ART AND ARCHITECTURAL HISTORY SEMINAR I
3 cr. (3 and 0)
Particular aspect of period of art/architectural history. Prerequisite: Permission of instructor.

CA AH 816 ART AND ARCHITECTURAL HISTORY SEMINAR II
3 cr. (3 and 0)
Continuation of CA AH 815.
COLLEGE OF COMMERCE AND INDUSTRY

ACCOUNTING
BUSINESS ADMINISTRATION
ECONOMICS
FINANCE
INDUSTRIAL MANAGEMENT
MANAGEMENT SCIENCE
MARKETING
TEXTILE AND POLYMER SCIENCE
TEXTILE CHEMISTRY
TEXTILE SCIENCE
The College of Commerce and Industry offers advanced degrees in the following areas of study:

- Accounting
- Applied Economics*
- Business Administration
- Economics
- Industrial Management
- Management Science**
- Textile and Polymer Science
- Textile Chemistry***
- Textile Science
- Management Science**
- Textile and Polymer Science
- Textile Chemistry***
- Textile Science

Courses are also offered in finance and marketing to provide electives for students in other areas.

Graduate programs offered by the College of Commerce and Industry are designed to equip students for professional careers in business, industry, government, and education.

ACCOUNTING

J.R. Davis, Director, School of Accountancy

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>M.P. Acc.</td>
</tr>
</tbody>
</table>

The School of Accountancy's Master of Professional Accountancy degree program prepares students for professional accounting in industrial, commercial, governmental, financial or public accounting. The program requires 31 semester hours and is open to students with appropriate backgrounds. Both full- and part-time students may be accommodated; full-time students are able to complete the program in one calendar year. The program recognizes the rapid pace of change in accounting resulting from technological advances in the managing of data, the theory and practice of management, and increases in the volume and scope of authoritative pronouncements from the FASB, SEC, and IRS.

Applicants should hold at least a bachelor's degree from an institute whose scholastic rating is acceptable to the Graduate Admissions Committee of the School of Accountancy. Admission to the program is based on academic record and score on the Graduate Management Aptitude Test (GMAT). Letters of recommendation and relevant work experience may be considered also. Applicants should have completed a basic business core as well as the following accounting prerequisites: Intermediate Accounting.

*Jointly administered by the Department of Agricultural Economics and Rural Sociology and the Department of Economics. The Ph.D. degree is awarded by the College of Agricultural Sciences.

**Jointly administered by the Department of Management and the Department of Mathematical Sciences. The Ph.D. degree is awarded by the College of Commerce and Industry.

***The Ph.D. degree program is jointly administered by the School of Textiles and the Department of Chemistry. The Ph.D. in chemistry with a major in textile chemistry is awarded by College of Sciences.
ACCOUNTING

ACCOUNTING (three semester hours), Cost Accounting (three semester hours), Tax (three semester hours) and Auditing (three semester hours).

CT 604 INDIVIDUAL TAXATION
3 cr. (3 and 0)

CT 605 CORPORATE TAXATION
3 cr. (3 and 0)

CT 610 BUDGETING AND EXECUTIVE CONTROL
3 cr. (3 and 0)

CT 611 ADVANCED ACCOUNTING
3 cr. (3 and 0)

CT 615 AUDITING
3 cr. (3 and 0)

CT 616 AUDITING PRACTICE AND PROCEDURE
3 cr. (3 and 0)

CT 630 GOVERNMENTAL AND INSTITUTIONAL ACCOUNTING
3 cr. (3 and 0)

CT 801 CONTEMPORARY FINANCIAL ACCOUNTING THEORY
3 cr. (3 and 0)

Development of accounting theory from its origin to the present; currently advocated pronouncements of professional accounting societies. Prerequisite: ACCT 2 or equivalent.

CT 802 ADVANCED AUDITING
3 cr. (3 and 0)

Basic auditing theory; current publications and research in auditing; contemporary auditing cases and problems. Prerequisite: ACCT 415 or equivalent.

CT 803 ACCOUNTING INFORMATION SYSTEMS
3 cr. (3 and 0)

Accounting systems including database concepts, systems design and evaluation, systems controls and systems implementation. Prerequisites: ACCT 302, 303 equivalent.

CT 804 THE ENVIRONMENT OF ACCOUNTING
3 cr. (3 and 0)

Study of the professional, legislative, judicial and social environment in which the accounting profession operates. Prerequisite: ACCT 801.

CT 805 RESEARCH SEMINAR IN ACCOUNTING
1 cr. (1 and 0)

Latest developments in accounting; individual research in the student's professional area of interest. Prerequisites: ACCT 801 and 803.

CT 806 ADVANCED ACCOUNTING PROBLEMS
3 cr. (3 and 0)
ACCOUNTING

Examination of specialized aspects of financial accounting including business combinations accounting and reporting practices of regulated and nonregulated industries, emerging practices and developments in financial accounting, fund accounting, and corporate reorganizations and liquidations. Prerequisite: ACCT 3 or equivalent.

ACCT 815 FEDERAL AND STATE INCOME TAXATION OF CORPORATION
3 cr. (3 and 0)
Tax principles and concepts involved in corporate-shareholder transactions, tax planning of corporations, Subchapter C and related provisions of the Internal Revenue Code. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 816 TAXATION OF ESTATES, GIFTS AND FIDUCIARIES
3 cr. (3 and 0)
Federal estate and gift tax laws; federal income tax laws related to trusts and estates. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 817 TAX PLANNING AND RESEARCH
3 cr. (3 and 0)
Tax research methodology as applied to the solution of routine and complex problems. Emphasis is on methodology of solution rather than a specific tax area. Tax planning will cover all phases of taxation — state, local, federal, income, gift, etc. Prerequisites: ACCT 815 and 816.

ACCT 821 CONTROLLERSHIP
3 cr. (3 and 0)
Advanced internal accounting emphasizing accounting implications for management decision making. Prerequisite: ACCT 803.

ACCT 822 MANAGEMENT ACCOUNTING IN TEXTILES AND MANUFACTURING
3 cr. (3 and 0)
Techniques and problems related to accounting for products in manufacturing organizations with particular emphasis on textiles. Prerequisite: ACCT 821.

ACCT 823 MANAGEMENT ACCOUNTING IN FINANCIAL INSTITUTIONS
3 cr. (3 and 0)
Study of elements necessary for an accounting system designed to measure and control costs in the setting of a depository financial institution. Prerequisite: ACCT 821.

ACCT 830 ADVANCED FINANCIAL MANAGEMENT
3 cr. (3 and 0)
Topics concerning financial management in the non-financial institution; case analysis and computer-based financial modeling are used. Prerequisite: FIN 306 or equivalent.

BUSINESS ADMINISTRATION
G.R. Thompson, Assistant Dean, College of Commerce and Industry

Major Degree
Business Administration M.B.A.
The Master of Business Administration degree program is designed to enable individuals to study advanced concepts of business, industry and government operations. The program is intended for both the active manager or technical supervisor as well as the recent graduate who is interested in advanced study in the field of business. Classes in the program are offered in the evening on the Furman University campus in Greenville, S.C. Separate fee structures apply to this program. See page 23.

Requirements for the M.B.A. degree include 30 semester hours of graduate credit beyond the bachelor's degree. Certain prerequisite courses are required of all students. In most instances, individuals with an undergraduate business degree will have completed the necessary courses. Students who have completed the prerequisite courses may begin taking advanced courses during the fall, spring or summer sessions.

The following prerequisite courses, or their equivalents taken at another institution, are required of all students:

- Principles of Accounting and Control Systems
- Introduction to Statistics
- Principles of Economics
- Business Management and Organization
- Business Finance
- Legal Environment of Business
- Quantitative Methods

The advanced courses CF 802, 803, 804, 806, 807, 808, 809 and 810 are required of all candidates for the degree regardless of their academic background. Six credit hours of electives are also required and should be chosen from the remaining courses.

801 RESEARCH AND COMMUNICATIONS
3 cr. (3 and 0)
Concept of systems as related to the flow of communications examined as a means of improving the decision-making process. Library and field research are discussed.

802 MANAGERIAL ECONOMICS
3 cr. (3 and 0)
Functioning of the market economy with emphasis on the role of prices in determining the allocation of resources, the functioning of the firm in the economy and the rules governing the production of economic goods. Emphasis is on the use of economic analysis in managerial decision making. Prerequisite: Economic Principles and Basic Statistics.

803 STATISTICAL ANALYSIS OF BUSINESS OPERATIONS
3 cr. (3 and 0)
Examination of the role of statistical inference in decision making of business managers. Emphasis is on techniques and proper applications of modern statistical methods in business and on univariate and multivariate analysis including analysis of variance, regression and covariance. Other topics include sample theory and design, sic experimental designs and time series analysis. Prerequisite: Basic Statistics.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF 804</td>
<td>MANAGERIAL ACCOUNTING AND INFORMATION SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
<td>Preparation, analysis, interpretation and use of accounting information in guidance and control of a business enterprise. Case material and problems are used. Prerequisite: Principles of Accounting and a demonstrated proficiency in basic finance.</td>
</tr>
<tr>
<td>CF 805</td>
<td>LEGAL AND SOCIAL ENVIRONMENT OF BUSINESS</td>
<td>3 cr. (3 and 0)</td>
<td>Examination of the interaction between business and the social, political and legal order. Through analysis of particular situations, attention is focused on the broad effects of the total environment on the administration of business enterprise.</td>
</tr>
<tr>
<td>CF 806</td>
<td>OPERATIONS MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td>Examination of analytical methods as applied to business and industrial problems. Basic mathematical and statistical models useful to management decision making in the functions of production, marketing, finance and general management are developed. Emphasis is on the development and application of deterministic and probabilistic models to problems in forecasting, production scheduling, inventory, maintenance, queuing, plant location, product lines, line balancing, critical path methods and simulation. Prerequisite: CF 803 and a demonstrated proficiency in basic management principles.</td>
</tr>
<tr>
<td>CF 807</td>
<td>FINANCIAL MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td>Theory of financial management as it relates to the financial problems faced by business concerns; assessment of the validity of emerging formalized techniques for improving decision making in the financial area. Topics include financial planning, short- and long-term fund raising, capital budgeting, the administration of working capital, recapitalization, listing of securities and reorganization. Case material and problems are used. Prerequisite: CF 804 and a demonstrated proficiency in basic finance.</td>
</tr>
<tr>
<td>CF 808</td>
<td>MANAGERIAL PROBLEMS IN MARKETING</td>
<td>3 cr. (3 and 0)</td>
<td>Major decisions facing marketing executives and top management in their attempt to harmonize the objectives and resources of the organization with the opportunities found in the marketplace; recent theoretical developments in marketing and related disciplines and their application in management. Readings, case analysis and discussions are used. Prerequisite: A demonstrated proficiency in basic marketing principles.</td>
</tr>
<tr>
<td>CF 809</td>
<td>ORGANIZATION THEORY AND BEHAVIOR</td>
<td>3 cr. (3 and 0)</td>
<td>Improving the administrator’s understanding and application of the principles of individual, group and intergroup behavior to the direction and control of human problems. The case study method is used to relate principles in the behavioral sciences to the decision-making process. Prerequisite: A demonstrated proficiency in basic management principles.</td>
</tr>
<tr>
<td>CF 810</td>
<td>MANAGERIAL POLICY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>
Decisions involved in establishment of managerial policy. Problems, resources and alternative courses of action are analyzed and discussed relative to the selection of company objectives and the most feasible means for achieving company goals. The course integrates material and treats the coordination of the affairs of the firm as a whole. Case studies are emphasized. This course should be completed as the final course in the program.

F 811 INTERNATIONAL BUSINESS MANAGEMENT
3 cr. (3 and 0)
Survey and analysis of economic, managerial and financial aspects of U.S. firms operating abroad, including the impact of U.S. and foreign government policies on management; discussion of case studies of specific companies operating abroad. Prerequisite: Advanced standing.

F 812 FINANCIAL MARKETS AND INSTITUTIONS
3 cr. (3 and 0)
In-depth examination of the major American financial markets and the primary financial institutions participating in these markets. Emphasis is on the decision making in each of the institutions in conjunction with a discussion of the constraints of a regulatory and tax nature as well as the economic environment and internal policies as they affect each institution.

F 813 INDUSTRIAL RELATIONS
3 cr. (3 and 0)
The relationship between management and employees, as institutions and as individuals; examination of the role of management and unions in society and the issues in labor-management relations. Topics include the issues and processes of collective bargaining, contract negotiation and administration and dispute resolution; government regulation of labor relations.

F 814 DIRECTED RESEARCH IN QUANTITATIVE ANALYSIS
3 cr. (3 and 0)
F 815 DIRECTED RESEARCH IN QUALITATIVE ANALYSIS
3 cr. (3 and 0)

ECONOMICS
L. Cottle, Head, Department of Economics

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>M.A.</td>
</tr>
<tr>
<td>Applied Economics</td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

Applicants to the M.A. degree program must have completed at least 12 semester hours of undergraduate economics, including a course in intermediate price theory. A background in mathematics, including at least one course each in calculus and statistics, and a course in computer science equivalent to CP SC 120 are also required. In some instances, the computer science course may be waived for applicants who have completed satisfactorily a year of an appropriate foreign language. When necessary, the economic theory, mathematics, statistics and computer science courses
ECONOMICS

may be taken at Clemson before enrolling in or during the early part of the program.

The graduate program will include one course in econometrics or statistics and one course in mathematical economics as part of the major.

The Department of Economics and the Department of Agricultural Economics and Rural Sociology in the College of Agricultural Sciences jointly offer and administer a Ph.D. program in applied economics. It is described under Applied Economics in the College of Agricultural Sciences.

ECON 603 DEVELOPMENT OF ECONOMIC THOUGHT
3 cr. (3 and 0)

ECON 604 COMPARATIVE ECONOMIC SYSTEMS
3 cr. (3 and 0)

ECON 607 NATIONAL INCOME AND EMPLOYMENT ANALYSIS
3 cr. (3 and 0) F, S

ECON 608 ARBITRATION
3 cr. (3 and 0)

ECON 609 MANAGERIAL ECONOMICS
(MGT 609) 3 cr. (3 and 0)

ECON 610 ECONOMIC DEVELOPMENT
3 cr. (3 and 0)

ECON 611 INTRODUCTION TO ECONOMETRICS
(MGT SC 611) 3 cr. (3 and 0)

ECON 612 INTERNATIONAL TRADE AND FINANCE
3 cr. (3 and 0) S

ECON 619 ECONOMICS OF DEFENSE
3 cr. (3 and 0)

ECON 620 PUBLIC SECTOR ECONOMICS
3 cr. (3 and 0)

ECON 621 URBAN ECONOMICS
3 cr. (3 and 0)

ECON 622 MONETARY THEORY AND POLICY
3 cr. (3 and 0)

ECON 624 THE ORGANIZATION OF INDUSTRIES
3 cr. (3 and 0) F

ECON 750 ECONOMIC CONCEPTS AND CLASSROOM APPLICATIONS FOR TEACHERS
3 cr. (3 and 0)

Introduction to economic concepts, analysis and methods emphasizing microeconomics and the market system; development of approaches to teaching econ
CURRENT ISSUES IN ECONOMICS FOR TEACHERS

3 cr. (3 and 0)
Analysis of current economic policy issues such as inflation, regulation, protectionism and energy policy, emphasizing the presentation of these topics to secondary-school students. Not open to graduate students in the College of Commerce and Industry. Prerequisite: ECON 200, 201 or 750.

MICROECONOMIC THEORY

3 cr. (3 and 0) F
Microeconomic theory and its use to analyze and predict the behavior of industries, firms and consumers under various market conditions.

ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS I

3 cr. (3 and 0)
Girorous development of price theory under alternative product and resource market structures. Prerequisite: Permission of instructor.

MACROECONOMIC THEORY

3 cr. (3 and 0) S
Macroeconomic theory involving static and dynamic models and their use in analysis of economic problems and policies.

ECONOMETRIC METHODS I

GT SC 807) 3 cr. (3 and 0)
Economic models expressed as systems of equations; problems of identification, parameter estimation, measurement errors and statistical inference; techniques of simulation, forecasting, model validation and interpretation.

ECONOMETRIC METHODS II

GT SC 808) 3 cr. (3 and 0)
Continuation of ECON 807; current economic models and estimation procedures. Prerequisite: ECON 807.

MATHEMATICAL ECONOMICS

3 cr. (3 and 0)
Continuation of ECON 802; examination of current literature developing such topics as demand for capital, industrial structures, labor markets and monetary phenomena. Prerequisite: ECON 802.

HISTORY OF ECONOMIC THOUGHT

3 cr. (3 and 0)
Development of economic thought from early Greek thought to Keynesian economics; writings of major economists such as Smith, Ricardo, Marx, Marshall and Keynes; development of major economic theories.

LABOR ECONOMICS

3 cr. (3 and 0)
Wage and employment theory; labor markets; labor history; current problems in labor and manpower economics.
ECON 817 PUBLIC EMPLOYEE LABOR RELATIONS
 3 cr. (3 and 0)
 Labor relations in public sector; analysis of employer-employee relationships
government institutions and factors affecting these relationships including potent
role of public employee unions in decision-making process.

ECON 820 PUBLIC SECTOR ECONOMICS
 3 cr. (3 and 0)
 Impact of government on resource allocation, income distribution and stabil
role of regulation; principles of taxation.

ECON 825 ECONOMICS OF ENVIRONMENTAL QUALITY
 3 cr. (3 and 0) F (even numbered years)
 Pricing and distribution emphasizing effects upon economic welfare; goods a
cated by government purchase for joint consumption and those distributed
rationing; alternate plans for allocating public goods. Prerequisite: ECON 314
equivalent.

ECON 831 SEMINAR IN URBAN DEVELOPMENT ECONOMICS
 3 cr. (3 and 0)
 Economic analysis of development of urban areas within system of cities; cen
place theory and general equilibrium models of interregional economic activ
emphasizing central place systems, spatial interaction and stochastic process
development of city focusing on housing and land use patterns, transporta
tion and urban form.

ECON 840 INTERNATIONAL TRADE THEORY
 3 cr. (3 and 0)
 Theory of free trade from Ricardo to present; theory and application of optim
and second-best tariffs; recent empirical testing of trade and tariff theory. Prereq
sites: ECON 314 and 802 or permission of instructor.

ECON 850 MONETARY THEORY
 3 cr. (3 and 0)
 Economic analysis of money in our economy and effects of monetary policy
prices, interest rates, output and employment.

ECON 888 DIRECTED READING IN ECONOMICS
 1-3 cr. (1-3 and 0)
 Directed reading and research in the student’s field of interest. May be repeat
for up to three credit hours.

ECON 891 MASTER’S THESIS RESEARCH
 Credit to be arranged.

ECON 900 SEMINAR IN ADVANCED ECONOMIC THEORY
 3 cr. (3 and 0) F (odd numbered years)
 Selected topics that have been and are being discussed in scholarly journal

FINANCE
R.H. Maybry, Head, Department of Finance

Advanced degrees are not awarded in finance. Courses are offered
provide electives for students in other areas.
THE OBJECTIVE OF THE M.S. PROGRAM IN INDUSTRIAL MANAGEMENT IS TO PREPARE TECHNICALLY OR QUANTITATIVELY ORIENTED COLLEGE GRADUATES FOR POSITIONS OF MAJOR MANAGEMENT RESPONSIBILITY IN INDUSTRY. THE PROGRAM IS DESIGNED TO BADEN CAREER OPPORTUNITIES IN INDUSTRIAL, OPERATIONS OR ENGINEERING MANAGEMENT FOR GRADUATES OF BUSINESS, ENGINEERING, SCIENCE AND MATHEMATICS CURRICULA.

REQUIREMENTS FOR THE M.S. DEGREE INCLUDE A MINIMUM OF 30 SEMESTER CREDITS OF GRADUATE WORK BEYOND THE BACHELOR'S DEGREE. ALL STUDENTS TAKE A REQUIRED CURRICULUM OF 24 HOURS IN THE AREAS OF MANAGEMENT SCIENCE, STATISTICAL ANALYSIS, FINANCE, OPERATIONS MANAGEMENT, HUMAN RESOURCES MANAGEMENT, PRODUCTION AND PRICING ANALYSIS, MANAGEMENT RESEARCH METHODS AND MANAGEMENT POLICY. ELECTIVES MUST BE SELECTED FROM THE DISCIPLINES OF ACCOUNTING, COMPUTER SCIENCE, ECONOMICS, ENGINEERING, FINANCE, MANAGEMENT, MANAGEMENT SCIENCE, MARKETING, MATHEMATICAL SCIENCE, SCIENCE OR STATISTICS. A THESIS OR NON-THESIS OPTION IS ALLOWED.

THE PH.D. PROGRAM IS DESIGNED TO DEVELOP A HIGH-LEVEL MANAGEMENT SCHOLAR, ONE WHO IS CAPABLE OF APPLYING THE MOST ADVANCED CONCEPTS AND METHODS OF ANALYSIS AND RESEARCH TO INDUSTRIAL MANAGEMENT PROBLEMS. IT ALSO PROVIDES EXCELLENT PREPARATION FOR A UNIVERSITY TEACHING AND RESEARCH CAREER.

THE PH.D. PROGRAM IS A BALANCED PROGRAM OF MANAGEMENT THEORY, ANALYTICAL TECHNIQUE AND RESEARCH METHODOLOGY. EACH STUDENT IS EXPECTED TO SHOW COMPETENCY IN FOUR AREAS OF STUDY: MANAGEMENT, PRODUCTION AND OPERATIONS ANALYSIS, STATISTICAL ANALYSIS AND RESEARCH METHODOLOGY. EACH STUDENT MUST ALSO COMPLETE A MINIMUM OF 12 SEMESTER CREDIT HOURS IN A SPECIFIED AREA OF CONCENTRATION. CHOICE OF AN AREA OF CONCENTRATION AND SELECTION OF COURSES WITHIN THE AREA WILL BE MADE IN CONSULTATION WITH THE STUDENTS' ADVISORY COMMITTEE.

GT 602 PRODUCTION AND OPERATIONS MANAGEMENT I
3 cr. (3 and 0) F, S

GT 605 ECONOMICS OF TRANSPORTATION
3 cr. (3 and 0) F, S
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 606</td>
<td>LOCATION ECONOMICS</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>MGT 608</td>
<td>PRODUCTION AND OPERATIONS MANAGEMENT II</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>MGT 609</td>
<td>MANAGERIAL ECONOMICS</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>MGT 611</td>
<td>INTRODUCTION TO ECONOMETRICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 615</td>
<td>BUSINESS STRATEGY</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>MGT 616</td>
<td>MANAGEMENT OF HUMAN RESOURCES</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>MGT 617</td>
<td>LOGISTICS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>MGT 618</td>
<td>MANAGEMENT INFORMATION SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>MGT 620</td>
<td>DEFENSE MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>MGT 623</td>
<td>INTERNATIONAL BUSINESS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 624</td>
<td>INTERNATIONAL TRANSPORTATION AND LOGISTICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 800</td>
<td>MANAGEMENT GAMING</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
</tbody>
</table>

Introduction to management game literature and practical application of management games as educational adjuncts. Student participation required in a comprehensive, computerized management simulation game. **Prerequisite:** Permission instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 801</td>
<td>PRODUCTION AND PRICING ANALYSIS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Mathematical formulation of production and pricing theory as it applies to management decision making; analytical techniques of production and pricing analysis. **Prerequisite:** MGT 409/609 or permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 802</td>
<td>FINANCE</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
</tbody>
</table>

Analysis of financial condition of business firms as means of recognizing current and long-term financial needs; selection of most feasible actions necessary to secure best possible financing under varied circumstances.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 803</td>
<td>OPERATIONS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>
INDUSTRIAL MANAGEMENT

Concepts and techniques of operation management. Topics include forecasting, aggregate planning, inventory management, scheduling and production control, project management and quality control. Prerequisite: MGT SC 413/613 or equivalent.

T 804 MANAGERIAL POLICY
3 cr. (3 and 0) F
Management policy making emphasizing determining objectives and developing and policies for achieving them. Managerial Policy builds upon and integrates the graduate courses; case method is used extensively; written and oral presentation required.

T 805 ADVANCED QUALITY CONTROL
3 cr. (3 and 0)
Statistical techniques employed in complex quality control schemes including recent developments in statistical quality control. Prerequisite: MTH SC 301 and IT 304 or equivalent.

T 807 COMPARATIVE MANAGEMENT THEORY
3 cr. (3 and 0)
Evolution of management theory up to and including contemporary theories; integration of early management thought with more recent contributions in scientific management, behavioral management and quantitative management. Prerequisite: Graduate standing.

T 810 MANAGEMENT AND THE LAW
3 cr. (3 and 0)
Legal environment in which managers operate; legal processes, institutions and machinery, and those areas in the substantive law, including both private law and governmental regulations, that affect various managerial functions. Prerequisite: W 322 or equivalent or permission of instructor.

T 811 ADVANCED MARKETING ANALYSIS
3 cr. (3 and 0)
Seminar in marketing approaching topic from viewpoint of highest level management and emphasizing decision-making process in marketing. Prerequisite: MKT 3/650 or permission of instructor.

T 812 TRANSPORTATION PLANNING AND POLICY
3 cr. (3 and 0)
Transportation policy and planning in U.S. from 1789 to present; various transport modes with respect to economic efficiency and environmental effect; feasibility and likely results of substituting one mode for another in context of integrated transportation systems; future transportation systems and attendant problems and policies. Prerequisite: MGT 405/605 or permission of instructor.

T 813 RESEARCH METHODS IN MANAGEMENT
3 cr. (3 and 0)
Techniques of management research including designing and conducting projects, analyzing and reporting results; emphasis on management studies. Prerequisite: MGT 614 or permission of instructor.

T 816 MANAGEMENT OF HUMAN RESOURCES
3 cr. (3 and 0) S
Advanced consideration of topics covered in MGT 416/616. Prerequisite: MGT 416/616 or permission of instructor.

MGT 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

MGT 910 SEMINAR IN OPERATIONS MANAGEMENT
1-3 cr. (1-3 and 0)
New methodological developments, both analytical and philosophical, in operations management; development of theory of management science; converting management theory into practice while considering behavioral and economic aspects of the problem. Prerequisite: Permission of instructor.

MGT 911 SEMINAR IN DECISION THEORY
1-3 cr. (1-3 and 0)
Framework and methodology for management decision making in a statistical setting. Prerequisite: Permission of instructor.

MGT 912 SEMINAR IN FINANCIAL ANALYSIS
3 cr. (3 and 0)
Management of firm’s financial affairs in attempt to develop an optimal capital structure. Prerequisite: Permission of instructor.

MGT 913 MANAGEMENT SYSTEMS ANALYSIS
3 cr. (3 and 0)
Design, construction and analysis of stochastic simulation models for typical management decisions; design; input-output; variance reduction; applications; validation; implementation; optimum seeking techniques; designed experiments. Emphasis is on effect of model results on managerial policy decisions. Prerequisite: COSC 150 or equivalent.

MGT 914 SEMINAR IN MARKETING MANAGEMENT
3 cr. (3 and 0)
Concepts and problems in marketing management. Theory readings, discussion and individual reports in selected areas required. Prerequisite: Permission of instructor.

MGT 915 SEMINAR IN STRATEGIC MANAGEMENT
3 cr. (3 and 0)
Topics pertaining to strategy formulation and implementation, emphasizing literature and current research developments in strategic management. Topics vary depending on the faculty member conducting the seminar. May be repeated under different faculty for a maximum of nine credits. Prerequisite: MGT 804 and permission of instructor.

MGT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

H ADM 610 HOSPITAL INTERNSHIP
3 cr. (0 and 9)

H ADM 800 THE FUNCTION AND ORGANIZATION OF HOSPITALS AND HEALTH SERVICES ADMINISTRATION
3 cr. (3 and 0)
Organization, function, place in community and society of hospitals, individual health services and public health services. This course, in conjunction with an administrative internship, prepares students for major responsibilities in health service administration.

MANAGEMENT SCIENCE

J. Jarvis, Program Coordinator, Department of Mathematical Sciences

Major
Management Science

Degree
Ph.D.

The departments of Management and Mathematical Sciences jointly offer and administer this program. Applicants should have a demonstrated attitude for quantitative analysis and a primary interest in scientific management research and practice. The program is for persons interested in developing and utilizing the growing array of statistical and quantitative techniques used in decision making by the larger and more sophisticated American, foreign and multinational firms. Such techniques include probability models; statistical analysis; linear, nonlinear and dynamic programming; and decision theory.

The program structure blends courses in statistical theory, operations research, functional areas of management, econometrics and economics to provide a balanced offering of advanced work in each field contributing to the degree.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT SC 611</td>
<td>INTRODUCTION TO ECONOMETRICS</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>GT SC 613</td>
<td>MANAGEMENT SCIENCE I</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>GT SC 614</td>
<td>STATISTICAL ANALYSIS</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>GT SC 806</td>
<td>REGIONAL SCIENCE METHODS</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>GT SC 807</td>
<td>ECONOMETRIC METHODS I</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>CON 807</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>GT SC 808</td>
<td>ECONOMETRIC METHODS II</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>CON 808</td>
<td></td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

Regional growth theory, development and planning; role of resources and migration in regional development; definition of regions; concept of planning regions; objectives and measures of regional development. Prerequisite: Permission of instructor.

See ECON 807 for description.

See ECON 808 for description.

GT SC 812 MANAGEMENT SCIENCE II

3 cr. (3 and 0)
Continuation of MGT SC 613; dynamic, integer and nonlinear programming emphasizing applications of different types of mathematical programming to business and industrial problems. Prerequisite: MGT SC 413/613 or permission of instructor.

The following courses offered by various departments represent possible electives for the student in management science. Descriptions for all 800-level courses are listed under the respective department headings.

MGT 801 QUANTITATIVE ECONOMIC ANALYSIS
3 cr. (3 and 0)

MGT 802 FINANCE
3 cr. (3 and 0) F

MGT 803 OPERATIONS MANAGEMENT
3 cr. (3 and 0)

MGT 804 MANAGERIAL POLICY
3 cr. (3 and 0)

MGT 807 COMPARATIVE MANAGEMENT THEORY
3 cr. (3 and 0)

MGT 816 MANAGEMENT OF HUMAN RESOURCES
3 cr. (3 and 0) S

MGT 910 SEMINAR IN OPERATIONS MANAGEMENT
1-3 cr. (1-3 and 0)

MGT 911 SEMINAR IN DECISION THEORY
1-3 cr. (1-3 and 0)

MGT 913 MANAGEMENT SYSTEMS ANALYSIS
3 cr. (3 and 0)

MTH SC 603 STATISTICAL INFERENCE
3 cr. (3 and 0)

MTH SC 671 APPLIED STATISTICAL DECISION THEORY
3 cr. (3 and 0)

MTH SC 673 INTRODUCTION TO NONLINEAR OPTIMIZATION
3 cr. (3 and 0)

MTH SC 800 THEORY OF PROBABILITY
3 cr. (3 and 0)

MTH SC 801 GENERAL LINEAR HYPOTHESIS I
3 cr. (3 and 0)

MTH SC 802 GENERAL LINEAR HYPOTHESIS II
3 cr. (3 and 0)

MTH SC 803 STOCHASTIC PROCESSES I
3 cr. (3 and 0)
Advanced degrees are not awarded in marketing. Courses are offered to provide electives for students in other areas.

T 602 CONSUMER BEHAVIOR
3 cr. (3 and 0)

T 623 MARKETING COMMUNICATIONS
3 cr. (3 and 0)

T 624 SALES MANAGEMENT
3 cr. (3 and 0)

T 625 RETAIL MANAGEMENT
3 cr. (3 and 0)

T 626 INDUSTRIAL MARKETING
3 cr. (3 and 0)
TEXTILE AND POLYMER SCIENCE

E.A. Vaughn, Director, School of Textiles

Major Degree
Textile and Polymer Science Ph.D.

Qualification to pursue the degree is accomplished by obtaining a grade of A or B in at least three courses that are representative of the major area of textile and polymer science or by standing special examinations in those courses. Courses currently considered representative are TEXT 821, Fiber Physics; TEXT 835, Textile Structures; TC 811, Polymer Science; TC 8 Physical Chemistry of Dyeing; or TC 821, Chemistry of Natural Polymers. Other courses, tailored to the individual’s objectives, will be selected by the student and his/her advisory committee. The student will normally take a minor in a selected field of science or engineering and will satisfy the requirements established by the minor department. This usually involves 12-24 credit hours in the minor field. A reading knowledge of one foreign language selected by the advisory committee is also required.

Admission to candidacy for the Ph.D. degree requires completion of written and oral comprehensive examinations. Each candidate must carry out an independent, original scientific investigation and formally report and defend the methodology, results and conclusions.

TEXTILE CHEMISTRY

E.A. Vaughn, Director, School of Textiles

Major Degree
Textile Chemistry M.S.

Applicants must have a bachelor’s degree in textile chemistry, textile science, the physical or life sciences, engineering or a related discipline and must have training in chemistry, physics and mathematics. The student’s major area of study is normally fiber chemistry, polymer chemistry, the chemistry of dyeing and/or finishing of fibers and textiles, or the chemistry of composite systems. The minor area of study is usually
chemistry, physics, engineering, life sciences or mathematics. Each candidate must complete an independent, scientific or technical investigation and formally report and defend the methodology, results and conclusions in a thesis.

615 INTRODUCTION TO POLYMER SCIENCE AND ENGINEERING
3 cr. (3 and 0)

616 CHEMICAL PREPARATION OF TEXTILES
3 cr. (2 and 3)

657 DYEING AND FINISHING I
3 cr. (3 and 0)

658 DYEING AND FINISHING II
3 cr. (3 and 0)

659 DYEING AND FINISHING LABORATORY
1 cr. (0 and 3)

675 CELLULOSE CHEMISTRY
2 cr. (2 and 0)

811 POLYMER SCIENCE I
3 cr. (3 and 0)
Chemistry, kinetics and mechanisms of polymerization reactions; fabrication, separation, properties and structure of polymers, copolymers, terpolymers, etc., emphasizing fiber-forming polymers, polymer solution chemistry and methods for molecular characterization.

812 POLYMER SCIENCE II
3 cr. (3 and 0)
Classical and statistical thermodynamics applicable to the theory of molecular modeling of polymer melt structure emphasizing transport properties, viscoelastic behavior and non-Newtonian properties with particular attention to fiber-forming polymers.

821 CHEMISTRY OF NATURAL POLYMERS I
3 cr. (3 and 0)
Chemistry of natural polymers emphasizing cellulose and fibrous proteins; monosaccharides; cellulose and related polysaccharides including degradation and substitution reactions; globular and fibrous proteins in terms of structure, conformation and chemistry of constituent amino acids.

831 PHYSICAL CHEMISTRY OF DYEING
3 cr. (3 and 0)
Fundamental properties of dye systems; kinetic and thermodynamic data used to correlate dye and fiber structure with proposed dyeing mechanisms; kinetics of diffusions in dyeing processes; theory of color and its use in dyeing operations. Prerequisite: TC 457/657.

891 MASTER’S THESIS RESEARCH
Credit to be arranged.
TEXTILE SCIENCE
E.A. Vaughn, Director, School of Textiles

Major
Textile Science

Degree
M.S.

Applicants must have a bachelor's degree in textile chemistry, textile science, the physical or life sciences, engineering or related disciplines.

A student's major area of study is usually fiber science, polymer science or textile technology. The minor area of study normally is the life or physical sciences, engineering, mathematics or management. Each student must complete an independent, scientific or technical investigation and formal report and defend the methodology, results and conclusions in a thesis.

TEXT 603 FIBER PROCESSING
3 cr. (2 and 2)

TEXT 611 FABRIC DEVELOPMENT
3 cr. (2 and 2)

TEXT 621 FIBER SCIENCE
3 cr. (2 and 2)

TEXT 622 PROPERTIES OF TEXTILE STRUCTURES
3 cr. (2 and 2)

TEXT 626 INSTRUMENTATION
3 cr. (3 and 0)

TEXT 640 COLOR SCIENCE
3 cr. (3 and 0)

TEXT 660 TEXTILE PROCESSES
3 cr. (3 and 0)

TEXT 701 APPLIED SCIENCE TECHNOLOGIES
3 cr. (2 and 4)

Theoretical concepts in chemistry and physics related to applied technologies via a study of selected processes and techniques used in polymer, fiber and textile industries today. Concepts developed in classroom will be translated into industrial applications by use of field trips, demonstrations and experimentation in the laboratory. Not open to students in the College of Commerce and Industry. Prerequisite: Permission of instructor.

TEXT 821 FIBER PHYSICS
3 cr. (3 and 0)

Concepts and theories of fiber structure; methods of investigating natural and man-made fiber structure; examination of various interpretations of fiber structure based upon methods used to investigate structure; analytical and empirical models of fiber structure.

TEXT 830 TEXTILE PHYSICS
3 cr. (3 and 0)
physical principles underlying manufacturing environments in which fibers, yarns and fabrics are produced. Physical and mathematical techniques are developed for study and analysis of the textile plant environment, controls and energy requirements.

XT 835 TEXTILE STRUCTURES I
3 cr. (3 and 0)
Pioneering works relating fiber properties to yarn properties; yarn geometry, fiber arrangements in twisted yarns, extension and breakage of continuous filament yarns, deformation of staple fiber yarns.

XT 840 ADVANCED COLOR SCIENCE
3 cr. (2 and 3)
Application of modern instruments and computers to color matching and control color in industrial environment.

XT 866 FIBER FORMATION
3 cr. (3 and 0)
Formation of fibers by wet, dry and melt spinning emphasizing rheology of solutions and melts, fiber structure, stretching and drawing processes; interrelations of polymer properties and processes that determine fiber properties.

XT 870 ADVANCES IN TEXTILE MANUFACTURING
3 cr. (3 and 0)
Comparisons among cotton, woolen and worsted processing systems with respect to suitability to fiber characteristics, processing of fiber blends, modern yarn production, non-woven fabrics and latest developments in textile machinery.

XT 880 SELECTED TOPICS
3 cr. (3 and 0)
Topics not covered in other textile chemistry or textile science courses.

XT 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

XT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
ADMINISTRATION AND SUPERVISION
ELEMENTARY EDUCATION
INDUSTRIAL EDUCATION
PERSONNEL SERVICES
READING
SECONDARY EDUCATION
SPECIAL EDUCATION
VOCATIONAL/TECHNICAL EDUCATION
COLLEGE OF EDUCATION

The College of Education offers professional degree programs leading the Master of Education, Master of Industrial Education, the Specialist Education and the Doctor of Education.

The College of Agricultural Sciences and the College of Education cooperatively offer a Master of Agricultural Education program. However, the degree is awarded by the College of Agricultural Sciences. (See page 58.)

The College of Education's programs provide a broad range of learning experiences and detailed study in the subject area. They are designed to prepare students for duties required in their areas of concentration, encourage continuing professional development, and to enable students to meet standards recommended by agencies concerned with specific programs. The Specialist and Doctor of Education degrees prepare graduates for leadership positions in the profession.

The Master of Agricultural Education and the Master of Industrial Education programs require 30 semester hours, and the Master of Education program requires 36 semester hours. At least half the courses required for a master's degrees must be numbered 700 or above.

The Specialist in Education degree program requires 30 semester hours beyond the master's degree. The Doctor of Education degree requires 8 semester hours of graduate credit beyond the bachelor's degree, including an internship plus a dissertation. Additional requirements for each degree are listed by department/program.

ELEMENTARY AND SECONDARY EDUCATION

G.W. Gary, Head, Department of Elementary and Secondary Education

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration and Supervision</td>
<td>M.Ed., Ed.S.</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Personnel Services</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Reading</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Special Education</td>
<td>M.Ed.</td>
</tr>
</tbody>
</table>

Students seeking admission to the Master of Education degree programs with majors in administration and supervision, elementary education, special education, reading, personnel services (in the areas of elementary counseling or secondary counseling) and secondary education should have a valid professional teacher's certificate on the appropriate level. Those seeking admission to the personnel services program in the areas of higher education counseling and vocational counseling must have at least 15 hours in psychology, sociology and/or education. Courses in human development and learning theory, with a grade of C or better, are also required for admission.

The Master of Education degree program requires at least 36 semester hours of graduate credit regardless of the major.
A major in educational administration and supervision is offered to experienced teachers who wish to prepare as elementary school administrators, secondary school supervisors, or secondary school supervisors. Courses are selected from four areas as prescribed by the Department of Elementary and Secondary Education.

A major in elementary education is offered to teachers who hold professional early childhood or elementary certificates. Courses may be selected from six areas as prescribed by the Department of Elementary and Secondary Education.

A major in personnel services is offered to those desiring to specialize in guidance counseling in the public schools, post-secondary schools or the vocational counseling field. Degree candidates are required to complete:

1. A minimum of 21 hours in the area of specialization.
2. Three to six hours in field training at the level of specialization.
3. Three to six hours in statistics, research techniques or in a field related to the area of specialization.

A major in reading is offered for reading specialists, consultants and/or supervisors. The 36 semester hours are prescribed by the Department of Elementary and Secondary Education.

A major in secondary education is offered to high school or prospective college teachers in the subject areas of English, history and government, mathematics and natural sciences. Candidates are required to complete at least 12 and not more than 18 hours in education and a minimum of 3 hours in the area of specialization.

A major in special education is offered to those desiring specialization in areas of mental retardation, emotional handicaps and learning disabilities. Appropriate certification is a prerequisite for admission. Courses are prescribed by the Department of Elementary and Secondary Education. The Educational Specialist degree program in school administration consists of 30 semester hours beyond the master's degree which must be selected from five areas as prescribed by the Department of Elementary and Secondary Education. Admission requirements include a master's degree and an administrator's certificate.

D 606 PHILOSOPHY, SCHOOLING AND EDUCATIONAL POLICY.
3 cr. (3 and 0)

D 629 TEACHER AS MANAGER
3 cr. (3 and 0)

D 631 SPECIAL INSTITUTE COURSE: EARLY CHILDHOOD EDUCATION
1-3 cr. (1-3 and 0)

D 632 SPECIAL INSTITUTE COURSE: ELEMENTARY SCHOOL
1-3 cr. (1-3 and 0)

D 633 SPECIAL INSTITUTE COURSE: SECONDARY SCHOOL
1-3 cr. (1-3 and 0)
ED 634 SPECIAL INSTITUTE COURSE: CURRENT PROBLEMS IN EDUCATION
1-3 cr. (1-3 and 0)

ED 635 SPECIAL INSTITUTE COURSE: CURRICULUM
1-3 cr. (1-3 and 0)

ED 636 SPECIAL INSTITUTE COURSE: SUPERVISION AND ADMINISTRATION
1-3 cr. (1-3 and 0)

ED 669 CHARACTERISTICS OF CHILDREN WITH EMOTIONAL HANDICAPS
3 cr. (3 and 0)

ED 670 CHARACTERISTICS OF CHILDREN WITH LEARNING DISABILITIES
3 cr. (3 and 0)

ED 671 THE EXCEPTIONAL CHILD
3 cr. (3 and 0)

ED 672 PSYCHOLOGY OF MENTAL RETARDATION
3 cr. (3 and 0)

ED 673 TEACHING THE MENTALLY RETARDED
3 cr. (3 and 0)

ED 674 EDUCATIONAL PROCEDURES FOR CHILDREN WITH EMOTIONAL HANDICAPS
3 cr. (3 and 0)

ED 675 EDUCATIONAL PROCEDURES FOR CHILDREN WITH LEARNING DISABILITIES
3 cr. (3 and 0)

ED 676 PRACTICUM IN LEARNING DISABILITIES
3 cr. (2 and 3)

ED 677 CHARACTERISTICS OF CHILDREN WHO ARE GIFTED
3 cr. (3 and 0)

ED 678 PRACTICUM IN EMOTIONALLY HANDICAPPED
3 cr. (2 and 3)

ED 679 PRACTICUM IN MENTALLY RETARDED
3 cr. (2 and 3)

ED 680 EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS
3 cr. (3 and 0)

ED 690 STUDENT MANAGEMENT AND DISCIPLINE
3 cr. (3 and 0)
D 697 AUDIO-VISUAL AIDS IN EDUCATION
3 cr. (3 and 0)

D 705 FOUNDATIONS OF COUNSELING AND GUIDANCE SERVICES
3 cr. (3 and 0)
Principles, procedures and policies of guidance programs in school and community settings.

D 707 READING AND INDEPENDENT STUDY IN EDUCATION
1-3 cr. (1-3 and 0)
Individualized, in-depth study of a particular topic not offered in other courses. Reading, research and independent study are supervised by a faculty member. Prerequisite: Permission of instructor.

D 720 SCHOOL PERSONNEL ADMINISTRATION
3 cr. (3 and 0)
School personnel selection, practices and problems. Prerequisites: One administration course and three other graduate courses in education.

D 721 LEGAL PHASES OF SCHOOL ADMINISTRATION
3 cr. (3 and 0)
Legal principles involved in school administration and in court actions. Prerequisites: One administration course and three other graduate courses in education.

D 723 FIELD EXPERIENCE IN ELEMENTARY ADMINISTRATION AND SUPERVISION
3 cr. (1 and 6)
Practicum with an experienced elementary administrator or supervisor.

D 724 FIELD EXPERIENCE IN SECONDARY ADMINISTRATION AND SUPERVISION
3 cr. (1 and 6)
Practicum with an experienced secondary administrator or supervisor.

D 725 PRACTICUM IN SCHOOL SYSTEM ADMINISTRATION AND SUPERVISION
3 cr. (1 and 6)
Practicum with an experienced school-system level administrator or supervisor.

D 740 CURRICULUM PLANNING FOR EARLY CHILDHOOD EDUCATION
3 cr. (3 and 0)
Introduction to early childhood education (ages five through eight); the nature of learning and its bearing upon curriculum; early childhood curriculum content. Prerequisite: Permission of instructor.

D 741 INTRODUCTION TO PUPIL PERSONNEL SERVICES IN HIGHER EDUCATION
3 cr. (3 and 0)
Pupil personnel services offered by institutions of higher education.

D 742 THE PSYCHOLOGY OF POST-SECONDARY POPULATIONS
3 cr. (3 and 0)
Developmental aspects of young adult age group and its relationship to post-secondary schools and training programs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 759</td>
<td>FUNDAMENTALS OF BASIC READING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Historical progression of the teaching of reading; current theories and reading practices; teaching basic reading skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 760</td>
<td>CURRICULUM DEVELOPMENT IN THE ELEMENTARY SCHOOL</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Curriculum planning practices in the elementary school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 761</td>
<td>READING INSTRUCTION IN THE ELEMENTARY SCHOOL</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Knowledge and skills necessary for teaching reading to varied types of elementary school learners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 762</td>
<td>READING DIAGNOSIS AND REMEDIATION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Remedial methods and materials for teaching reading; use of diagnostic instruments and interpretation of test results. Student participates in laboratory/field experience and prepares case study with summary of diagnosis emphasizing remediation procedures. Prerequisite: Three semester hours in reading or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 763</td>
<td>MIDDLE SCHOOL READING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Techniques, materials and theories for teaching reading to middle school students emphasizing correlating reading skills into the content area. Prerequisite: Education major or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 764</td>
<td>THE ROLE OF THE LIBRARY IN THE READING PROGRAM</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Prepares librarians to work with teachers and pupils, and prepares teachers to work with librarians and pupils in the reading program. Prerequisite: Employment as a teacher or librarian and/or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 765</td>
<td>SECONDARY SCHOOL CURRICULUM</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Principles, techniques and trends in secondary school curriculum development and evaluation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 794</td>
<td>SCHOOL AND COMMUNITY RELATIONSHIPS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Interdependence of school and community; identifying and defining societal expectations of schools and effect of these expectations on educational policy; impact of social, political, economic and demographic change on educational policy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 798</td>
<td>TEACHING SECONDARY SCHOOL READING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Methods and materials for secondary reading programs in the following areas: developmental, corrective, remedial, adapted, content area and recreational.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0 801 SEMINAR IN HUMAN GROWTH AND DEVELOPMENT
3 cr. (3 and 0)
Theory and research in human development. Prerequisite: Six semester hours of psychology and/or educational psychology.

0 802 HUMAN DEVELOPMENT: PSYCHOLOGY OF LEARNING
3 cr. (3 and 0)
Major theories of learning processes applied to human education. Student conducts experiments in learning theory. Prerequisite: Six semester hours of psychology and/or educational psychology.

0 803 ADVANCED METHODS OF TEACHING IN THE SECONDARY SCHOOL
3 cr. (3 and 0)
Principles and practices involved in promoting effective learning in secondary schools.

0 804 ADVANCED METHODS OF TEACHING IN THE ELEMENTARY SCHOOL
3 cr. (3 and 0)
Principles and practices involved in promoting effective learning in elementary schools; analysis and evaluation of educational media.

0 805 THE TWO-YEAR COLLEGE
3 cr. (3 and 0)
Historical developments, functions, organization and administration of the two-year college.

0 808 EDUCATIONAL TESTS AND MEASUREMENT
3 cr. (3 and 0)
Construction, use and interpretation of subjective and standard tests; measurement applications.

0 809 ANALYSIS OF THE INDIVIDUAL
3 cr. (3 and 0)
Experience in gathering, interpreting and utilizing data as it relates to the individual. Especially significant to counselors. Prerequisite: ED 808.

0 810 THEORIES AND TECHNIQUES OF COUNSELING
3 cr. (3 and 0)
Counseling theories and techniques. Prerequisite: ED 705 or permission of instructor.

0 811 SCHOOL FINANCE
3 cr. (3 and 0)
School finance relative to programs, revenues and experience.

0 812 THE COUNSELOR AS CONSULTANT
3 cr. (2 and 2)
Rationale, content and consultation process in school and non-school settings; study of and practice in various consulting activities. Prerequisite: ED 810 or 817 or permission of instructor.
ED 813 EDUCATIONAL AND VOCATIONAL INFORMATION SERVICE AND PLACEMENT
3 cr. (3 and 0)
Gathering, interpreting and utilizing educational, social and occupational information; techniques used in placement, survey and follow-up.

ED 814 FIELD EXPERIENCES IN ELEMENTARY SCHOOL GUIDANCE
3 cr. (2 and 3)
Supervised field placement in an elementary school setting to provide the student with an opportunity to implement the roles of counselor, consultant and coordinator. Prerequisites: ED 810 and permission of instructor.

ED 815 FIELD EXPERIENCES IN SECONDARY SCHOOL GUIDANCE
3 cr. (2 and 3)
Supervised field placement in a secondary school setting. Emphasis is on the role and function of counselor. Prerequisites: ED 810 and permission of instructor.

ED 816 FIELD EXPERIENCES IN POST-SECONDARY SETTINGS
3 cr. (2 and 3)
Supervised field placement in a post-secondary school setting to provide the student with counseling and other personnel service experience. Prerequisites: ED 810 and permission of instructor.

ED 817 DEVELOPMENT OF COUNSELING SKILLS
3 cr. (3 and 0)
On-campus experience to help counselors develop communication skills through role-playing activities, audio and video taping, interviewing, lecture and discussion. Prerequisite or Corequisite: ED 810.

ED 818 FIELD PROBLEMS IN SCHOOL ADMINISTRATION AND SUPERVISION OF INSTRUCTION
3 cr. (2 and 3)
Application of research techniques and practices in solution of field problems in school administration and supervision.

ED 820 TEACHING LANGUAGE ARTS TO THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Various approaches to teaching listening, writing, reading and speaking skills to the exceptional child.

ED 821 ASSESSMENT OF THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Interpreting psychological reports, writing educational prescriptions, administering selected tests and designing informal tests. Prerequisites: ED 471/671 and sequence of ED 472/672 and 473/673; or ED 469/669 and 474/674; or ED 470/67 and 475/675; or permission of instructor.

ED 822 TEACHING MATHEMATICS TO THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Various approaches to teaching mathematics to the exceptional child.

ED 823 MAINSTREAMING THE HANDICAPPED
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>830</td>
<td>TECHNIQUES OF SUPERVISION—THE PUBLIC SCHOOLS</td>
<td>3 cr. (3 and 0)</td>
<td>Improving, coordinating and evaluating instruction; modern trends of supervisory practices.</td>
</tr>
<tr>
<td>834</td>
<td>EDUCATIONAL EVALUATION</td>
<td>3 cr. (3 and 0)</td>
<td>Evaluation theory and design applied to classroom instruction and to evaluation procedures applicable to school center and district programs and projects.</td>
</tr>
<tr>
<td>840</td>
<td>PROGRAM DEVELOPMENT AND IMPLEMENTATION IN EARLY CHILDHOOD EDUCATION</td>
<td>3 cr. (2 and 2)</td>
<td>Early childhood education program goals, curriculum sources and beliefs supporting them. Students will develop a modified curriculum for a specific area and level. For advanced graduate students with teaching experience. Prerequisites: ED 830 and 801, relevant teaching experience or permission of instructor.</td>
</tr>
<tr>
<td>850</td>
<td>PUBLIC SCHOOL ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
<td>Theoretical bases of school administration; organizational principles, patterns and practices in public schools; decision making; administration of programs and services. Prerequisite: Three graduate education courses or permission of instructor.</td>
</tr>
<tr>
<td>853</td>
<td>ADMINISTRATION AND SUPERVISION OF SPECIAL EDUCATION</td>
<td>3 cr. (3 and 0)</td>
<td>Administrative and supervisory practices in initiating, maintaining and expanding special education programs. Especially for principals, supervisors and directors of instruction. Prerequisite: ED 471/671 or permission of instructor.</td>
</tr>
<tr>
<td>856</td>
<td>INTRODUCTION TO SCHOOL BUILDING PLANNING</td>
<td>3 cr. (2 and 2)</td>
<td>Planning of educational facilities from conception of need through utilization of capacity. Prerequisite: ED 850 or equivalent.</td>
</tr>
<tr>
<td>857</td>
<td>SELECTED TOPICS IN EDUCATIONAL ADMINISTRATION</td>
<td>1-3 cr. (1-3 and 0)</td>
<td>Current literature and results of current research. Topics vary from year to year. May be repeated for a maximum of six credits.</td>
</tr>
<tr>
<td>861</td>
<td>ORGANIZATION AND SUPERVISION OF READING PROGRAMS</td>
<td>3 cr. (3 and 0)</td>
<td>Supervisory problems with planning reading programs; analysis of methods and materials of teaching; evaluation of reading programs. Prerequisite: ED 762.</td>
</tr>
<tr>
<td>862</td>
<td>CLINICAL RESEARCH IN READING</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>
Reading research and literature. Original investigation in such problems as development of reading skills and attitudes, clinical procedures and techniques required.

Prerequisite: ED 762.

ED 863 PRACTICUM IN READING
3 cr. (2 and 2)
Supervised practicum emphasizing diagnostic and remedial work with readers in public schools. **Prerequisites:** ED 762 and permission of instructor.

ED 864 SPECIAL PROBLEMS IN READING EDUCATION
3 cr. (1 and 4)
Individual study of a specific topic in reading. Student will be allowed to study a large diversity of topics. **Prerequisites:** ED 759 or 761; and ED 762, 808 and 862; permission of instructor.

ED 865 ADVANCED DIAGNOSIS AND REMEDIATION IN READING
3 cr. (2 and 3)
Advanced diagnosis and remediation in reading; review of diagnostic instruments and instructional materials. **Prerequisites:** ED 759 or 761, and ED 762, or permission of instructor.

ED 866 THE PSYCHOLOGY OF TEACHING READING
3 cr. (3 and 0)
Psychological basis of reading process; principles applied in teaching reading. **Prerequisites:** ED 759 or 761 or permission of instructor.

ED 867 ADVANCED PRACTICUM IN READING
3 cr. (2 and 3)
Diagnosis and remediation testing; remediation. Extensive case studies with recommendation for the classroom teacher required. **Prerequisites:** ED 865 and permission of instructor.

ED 871 INTERPERSONAL AND GROUP RELATIONSHIPS
3 cr. (3 and 0)
Experience as a member of a group to aid the student in understanding group dynamics and the role of a group member as a participant and facilitator. Emphasis is on small group participation, communication skills and self-understanding.

ED 881 INDIVIDUAL TESTING
3 cr. (3 and 0)
Interpretation of Wechsler scales with supervised practice in their administration. **Prerequisites:** ED 801, 802, 808, 809 and permission of instructor.

ED 882 PSYCHOEDUCATIONAL EVALUATOR INTERNSHIP I
3 cr. (0 and 6)
Designed to provide psychoeducational evaluators, school psychologists and counselors with supervised practical work in a school psychology setting. Student complete 300 hours of practical work with a certified school psychologist. **Prerequisite:** Open only to those seeking certification as a school psychologist or counselor.

ED 883 PSYCHOEDUCATIONAL EVALUATOR INTERNSHIP II
3 cr. (0 and 6)
Designed to provide psychoeducational evaluators, school psychologists and counselors with practical work in a school psychology setting. Students complete 0 hours of practical work with a certified school counselor. Prerequisite: Open only to those seeking certification as a school psychologist or counselor.

ED 884 SCHOOL PSYCHOLOGY
3 cr. (3 and 0)
Roles and function of the school psychologist, legal/ethical issues; planning and evaluating school psychology service delivery systems; specialized practice procedures to evaluate learning and behavior problems. Prerequisite: ED 801 or 802, or ED 808 or 809, and permission of instructor.

ED 889 RESEARCH IN EDUCATION
3 cr. (3 and 0)
See AG ED 889 for description.

The following courses are applicable only to the Master of Education degree with emphasis in the specific subject areas. Complete descriptions are found in the sections for the College of Agricultural Sciences, the College of Commerce and Industry, the College of Liberal Arts and the College of Sciences.

English
W. Hill, Adviser

GL 700 CHILDREN'S LITERATURE FOR TEACHERS
3 cr. (3 and 0)

GL 701 LITERATURE FOR TEACHERS
3 cr. (3 and 0)

History and Government
W. Johnson, Adviser

ST 700 UNITED STATES THROUGH THE CIVIL WAR
3 cr. (3 and 0)

ST 710 UNITED STATES SINCE 1865
3 cr. (3 and 0)

ST 720 SOUTHERN HISTORY
3 cr. (3 and 0)

ST 760 BRITISH HISTORY
3 cr. (3 and 0)

ST 770 EUROPE TO THE 18TH CENTURY
3 cr. (3 and 0)

ST 775 EUROPE SINCE THE 18TH CENTURY
3 cr. (3 and 0)

ST 790 HISTORICAL AREA STUDIES
3 cr. (3 and 0)

CON 750 ECONOMIC CONCEPTS AND CLASSROOM APPLICATIONS FOR TEACHERS
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 751</td>
<td>CURRENT ISSUES IN ECONOMICS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>J.K. Luedeman, Adviser</td>
<td></td>
</tr>
<tr>
<td>MTH SC 701</td>
<td>NUMBER SYSTEMS FOR THE ELEMENTARY GRADES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 702</td>
<td>NUMBER SYSTEMS FOR THE MIDDLE GRADES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 703</td>
<td>MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS—GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 705</td>
<td>MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS—ALGEBRA, PROBABILITY AND STATISTICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 710</td>
<td>ELEMENTARY CALCULUS FROM AN ADVANCED VIEWPOINT</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 712</td>
<td>MODERN ALGEBRAIC CONCEPTS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 721</td>
<td>MATRIX ALGEBRA I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 722</td>
<td>MATRIX ALGEBRA II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 725</td>
<td>COMBINATORIAL MATHEMATICS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 730</td>
<td>MODERN GEOMETRY FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 731</td>
<td>NON-EUCLIDEAN GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 732</td>
<td>PROJECTIVE GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 741</td>
<td>INTRODUCTION TO LINEAR PROGRAMMING WITH APPLICATIONS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 751</td>
<td>FUNDAMENTAL CONCEPTS OF CALCULUS I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 771</td>
<td>NUMERICAL METHODS IN SECONDARY MATHEMATICS I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 781</td>
<td>HISTORY OF MATHEMATICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>
Natural Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 701</td>
<td>SOLAR SYSTEM ASTRONOMY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr.</td>
</tr>
<tr>
<td>TR 711</td>
<td>STELLAR ASTRONOMY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr.</td>
</tr>
<tr>
<td>L 700</td>
<td>CLASSICAL GENETICS</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 701</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM I</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 702</td>
<td>ECOLOGY</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 703</td>
<td>SURVEY OF THE KINGDOMS MONERA, PROTISTA AND FUNGI</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 704</td>
<td>ANALYTICAL THINKING IN BIOLOGY</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 705</td>
<td>PUBLIC HEALTH MICROBIOLOGY</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 706</td>
<td>BASIC METHODS OF PRESERVING VERTEBRATES FOR TEACHING COLLECTIONS</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 707</td>
<td>PREPARATION OF PLANTS FOR PERMANENT TEACHING COLLECTIONS</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 708</td>
<td>FOOD MICROBIOLOGY</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 731</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM II</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 732</td>
<td>MICROECOSYSTEMS IN THE CLASSROOM</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 733</td>
<td>THE BRAIN, NERVOUS SYSTEM AND SENSE ORGANS</td>
<td>1 cr.</td>
</tr>
<tr>
<td>L 734</td>
<td>THE PHYSIOLOGY OF RESPIRATION</td>
<td>1 cr.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>BIOL 761</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM III</td>
<td>1 cr.</td>
</tr>
<tr>
<td>BIOL 762</td>
<td>HUMAN GENETICS</td>
<td>1 cr.</td>
</tr>
<tr>
<td>BIOL 763</td>
<td>FUNDAMENTAL IMMUNOLOGY AND SEROLOGY IN PUBLIC HEALTH</td>
<td>1 cr.</td>
</tr>
<tr>
<td>BOT 701</td>
<td>EVOLUTIONARY BOTANY FOR TEACHERS</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>BOT 702</td>
<td>MODERN BOTANICAL CONCEPTS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CH 700</td>
<td>PHYSICAL SCIENCE IN THE ELEMENTARY SCHOOL—CHEMISTRY</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CH 701</td>
<td>REVIEW OF GENERAL CHEMISTRY I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CH 702</td>
<td>CHEMISTRY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CH 703</td>
<td>SPECIAL PROBLEMS IN CHEMISTRY FOR ELEMENTARY AND SECONDARY SCHOOL TEACHERS</td>
<td>3-6 cr. (2-6 and 6-0)</td>
</tr>
<tr>
<td>GEN 701</td>
<td>MODERN DEVELOPMENTS IN GENETICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>GEOL 700</td>
<td>EARTH SCIENCE I</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>GEOL 750</td>
<td>EARTH SCIENCE II</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>NUTR 706</td>
<td>NUTRITION FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PHYS 703</td>
<td>MODERN PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PHYS 711</td>
<td>ORIGINS OF PHYSICAL SCIENCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PHYS 716</td>
<td>EXPERIMENTAL PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>4 cr. (2 and 4)</td>
</tr>
<tr>
<td>PHYS 723</td>
<td>WEATHER SCIENCE FOR SCIENCE TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>
The Master of Industrial Education degree allows for specialization in four areas: industrial arts education, vocational-technical education, administration and supervision for the two-year college, and education for industry. Sufficient flexibility is permitted to structure each student's plan of study to meet the objectives for any of the four areas of specialization listed above. The industrial arts area is designed to improve competencies in teaching industrial arts, pre-vocational and career education. Persons desiring to improve their competencies in teaching and administering vocational technical subjects in secondary or post-secondary institutions will specialize in the vocational-technical area. The education for industry area is designed to prepare training directors, educational specialists, training coordinators and personnel for other education-related occupations in industry. The program in administration and supervision for the two-year college is specifically designed for persons preparing for administrative or supervisory positions in the technical colleges.

In addition to the general requirements for admission to the Graduate School, departmental requirements for admission to each of the areas of specialization are as follows:

1. Industrial arts education applicants must hold or meet the minimum requirements for an industrial arts teacher’s certificate.
2. Vocational-technical education applicants must hold or meet the minimum requirements for a trade and industrial teacher’s certificate, or show vocational or technical competence through training, work experience or proficiency test results.
3. The program in administration and supervision for the two-year college requires the applicant to show evidence of competency in a teaching area, or to have a minimum of 24 semester hours of courses appropriate to the vocational or technical program to be administered or supervised.
4. The education for industry program requires a minimum of 24 hours of undergraduate courses appropriate to the occupation or industry the applicant desires to enter.

Candidates for the Master of Industrial Education degree are required to complete:

1. Eighteen hours in subjects which contribute to the student’s technical, administrative and/or supervisory competence.
2. Six hours in research or six hours in special problems.
3. Six to twelve hours must be taken outside the major department.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN ED 604</td>
<td>Organization of Industrial Training Materials</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 605</td>
<td>Course Organization and Evaluation</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 607</td>
<td>Architectural Drafting for Industrial Education</td>
<td>2 cr. (0 and 6)</td>
</tr>
<tr>
<td>IN ED 608</td>
<td>Training Programs in Industry</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 610</td>
<td>Special Institute Course: Topics in Industrial Education</td>
<td>1-3 cr. (1-3 and 0)</td>
</tr>
<tr>
<td>IN ED 614</td>
<td>Electronics for Teachers</td>
<td>3 cr. (1 and 6)</td>
</tr>
<tr>
<td>IN ED 615</td>
<td>Construction Practices</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>IN ED 618</td>
<td>Technological Concepts in Manufacturing</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>IN ED 622</td>
<td>History and Philosophy of Industrial and Vocational Education</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 624</td>
<td>School Safety</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 625</td>
<td>Teaching Industrial Subjects</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 632</td>
<td>Advanced Woodworking</td>
<td>2 cr. (1 and 3)</td>
</tr>
<tr>
<td>IN ED 635</td>
<td>Advanced Industrial Metalworking Practices</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>IN ED 638</td>
<td>Advanced Machining</td>
<td>3 cr. (1 and 6)</td>
</tr>
<tr>
<td>IN ED 652</td>
<td>Advanced Projects</td>
<td>1-6 cr. (0 and 3-18)</td>
</tr>
<tr>
<td>IN ED 660</td>
<td>Introduction to Career Education</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IN ED 664</td>
<td>Still Picture Production</td>
<td>3 cr. (1 and 4)</td>
</tr>
<tr>
<td>IN ED 665</td>
<td>Motion Picture Production</td>
<td>3 cr. (1 and 4)</td>
</tr>
</tbody>
</table>
ED 668 ADVANCED POWER TECHNOLOGY — FLUID
3 cr. (2 and 2)

ED 670 INTERNAL COMBUSTION ENGINES
3 cr. (2 and 3)

ED 680 EDUCATIONAL APPLICATIONS OF COMPUTERS
3 cr. (3 and 0)

ED 696 PUBLIC RELATIONS
3 cr. (3 and 0)

ED 815 SEMINAR IN INDUSTRIAL EDUCATION
1 cr. (1 and 0)
Students and faculty discuss and study new technological and professional
advances. May be taken up to three times.

ED 820 RECENT PROCESS DEVELOPMENTS
3 cr. (3 and 0)
New developments in production processes: ultrasonic and electrical discharge
machining, high energy rate forming, precision casting methods, recent joining
techniques.

ED 840 SCHOOL SHOP DESIGN
3 cr. (3 and 0)
All aspects of unit shops, general shops and comprehensive shops for schools
offering vocational industrial subjects and industrial arts courses.

ED 845 CURRICULUM PLANNING AND DEVELOPMENT IN
INDUSTRIAL EDUCATION
3 cr. (3 and 0)
Curriculum construction; departmental coordination of subject matter with other
school subjects; curriculum modification; staff organization in curriculum develop­
ment; selection and organization of course materials.

ED 860 CURRICULUM MATERIALS DEVELOPMENT IN
INDUSTRIAL EDUCATION
3 cr. (3 and 0)
Developing instructional materials and laboratory activities appropriate to learn­
ning and reinforcing concepts taught in industrial education. For industrial arts and
vocational-technical education majors.

ED 861 ADMINISTRATION AND SUPERVISION OF VOCATIONAL
EDUCATION
3 cr. (3 and 0)
Principles and practices of administering and supervising various types of
schools and classes under federal vocational acts and state regulations.

ED 865 AMERICAN INDUSTRIES
3 cr. (3 and 0)
Concepts and principles of American industry and technology; identification of
content of industrial arts courses taught in public schools. Fifteen plant visits
supplement study of industrial organization, economics, management, production
and products.
IN ED 889 RESEARCH IN EDUCATION
(AG ED 889) 3 cr. (3 and 0)
See AG ED 889 for description.

IN ED 894 PROJECT RESEARCH
1-6 cr. (1-6 and 0)
Research related to departmental projects. Open only to students planning
to pursue advanced graduate study. Joint use with IN ED 895, 896 not permitted
if student plans to pursue graduate degree.

IN ED 895 SPECIAL PROBLEMS I
3 cr. (3 and 0)
Special problems in industrial education varying with interests, experiences and
needs of students.

IN ED 896 SPECIAL PROBLEMS II
3 cr. (3 and 0)
Continuation of IN ED 895.

GC 606 PROBLEMS IN SPECIALTY PRINTING
4 cr. (2 and 6)

GC 640 ADVANCED LITHOGRAPHIC METHODS
4 cr. (2 and 4)

GC 644 CURRENT DEVELOPMENTS AND TRENDS IN GRAPHIC
COMMUNICATIONS
3 cr. (2 and 3)

GC 648 PLANNING AND CONTROLLING PRINTING FUNCTIONS
3 cr. (3 and 0)

VOCATIONAL/TECHNICAL EDUCATION
D.H. Pate, Jr., Program Coordinator, Department of Industrial Education

Major Degree
Vocational/Technical Ed.D.
Education

The Doctor of Education degree in vocational and technical education
prepares graduates for leadership positions in the profession. Curricula are
designed for vocationally and technically oriented personnel in colleges,
universities and public schools.

Areas of specialization are available in the following fields:
• Administration—Technical colleges and public schools.
• Curriculum and Instruction—Technical colleges and public schools.
 Emphasis is on curriculum development, materials and instructional
technologies.
• Guidance—Technical colleges, public schools, vocational.
• Teaching—Technical colleges and public schools. Teaching areas in
 most fields taught at Clemson University.
An applicant for the Ed.D. degree must hold bachelor's and master's degrees from approved colleges and must have completed a minimum of three years of successful experience appropriate to his/her proposed field of professional service. (This requirement may be waived for admission, but the applicant cannot become a candidate for the degree until the requirement is met.)

The Ed.D. program consists of graduate course work in vocational and technical foundations; statistics and research; advanced study and an internship in an appropriate field of professional services; and a dissertation.

ED 710 FOUNDATIONS OF VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)
Evolution of vocational and technical education during the twentieth century and recent trends; sociological, psychological and philosophical theories underlying current objectives; definition of broad parameters of the field.

ED 733 CURRICULUM CONSTRUCTION IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)
Students develop a specific course in a selected vocational and technical education area by specifying performance goals and building around these objectives. Prerequisite: AG ED 665 or IN ED 605 or equivalent.

ED 735 APPLICATION OF INSTRUCTIONAL TECHNOLOGY
3 cr. (3 and 0)
Developing and managing programs of instructional technologies for higher education, public schools and industrial training. Prerequisite: Basic course or experience in audio-visual media.

ED 760 PROGRAMS, CONCEPTS AND ISSUES IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)
Current activities and debates in vocational and technical education; traditional innovative programs, career education, school finance, disadvantaged students, handicapped youth, sex equality and other specialized programs.

ED 761 ADMINISTRATION AND SUPERVISION IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)
Principles and practices for administering and supervising vocational and technical schools and classes under federal vocational acts, state regulations and local policies. Prerequisite: VT ED 710 or permission of instructor.

D 763 IN-SERVICE AND CONTINUING EDUCATION
3 cr. (3 and 0)
Formation and skills for developing and administering in-service and continuing education programs. Prerequisite: Permission of instructor.

D 812 VOCATIONAL AND TECHNICAL PROGRAM FINANCE
3 cr. (3 and 0)
National, state and local legislation governing financial support of vocational/technical programs. Students develop budget, audit, and financial administration plans and systems. **Prerequisites:** VT ED 710 and ED 811 or equivalent.

VT ED 876 COLLEGE TEACHING
3 cr. (3 and 0)
Instructional practices; curriculum; techniques of organizing and planning learning experiences; analysis of teaching strategies and systems.

VT ED 882 SEMINAR
1 cr. (1 and 0)
Current issues and problems and proposed research projects.

VT ED 980 INTERNSHIP IN VOCATIONAL/TECHNICAL EDUCATION
1-6 cr. (0 and 3-18)
Internship in which the student gains experience working in a chosen area of specialization in vocational/technical education. Field experience activities must be planned to build competence in the student's field of specialization. **Prerequisite:** Permission of the student's major adviser.

VT ED 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
COLLEGE OF ENGINEERING

AGRICULTURAL ENGINEERING
BIOENGINEERING
CERAMIC ENGINEERING
CHEMICAL ENGINEERING
CIVIL ENGINEERING
COMPUTER ENGINEERING
ELECTRICAL ENGINEERING
ENGINEERING MECHANICS
ENVIRONMENTAL SYSTEMS ENGINEERING
INDUSTRIAL ENGINEERING
MECHANICAL ENGINEERING
The College of Engineering offers advance degrees in the following areas of study:

- Agricultural Engineering*
- Bioengineering
- Ceramic Engineering
- Chemical Engineering
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Engineering Mechanics
- Environmental Systems Engineering
- Industrial Engineering
- Mechanical Engineering

Degrees offered are the Master of Engineering, Master of Science and Doctor of Philosophy. Precise offerings in each area are found in the individual departmental or program descriptions.

The M.S. and Ph.D. programs serve for the most part full-time graduate students. Industrial Residency Programs leading to the Master of Science degree are also available in certain departments. Financial aid in the form of full and partial fellowships and teaching and research assistantships are available. Financial aid packages in excess of $10,000 per calendar year are available to outstanding applicants. A broad and vigorous research program provides excellent thesis and dissertation research opportunities. Details on current research projects and special facilities are available from the various department heads.

The Master of Engineering program is open to individuals both on and off campus who have baccalaureate degrees from ABET-accredited engineering programs or their equivalents, have academic and professional records which indicate motivation for and the ability to complete additional professional study, and are accepted by the head of the department in which they plan to major and by the dean of the College of Engineering.

The college offers cooperative graduate programs with industry in which semesters of on-campus study are alternated with work assignments in industry.

AGRICULTURAL ENGINEERING

B.K. Webb, Head, Department of Agricultural Engineering

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Graduate programs in agricultural engineering are designed to prepare the individual for leadership, creative accomplishment and continued professional learning and to qualify the student to conduct independent scientific research.

Each degree program is planned individually to augment the student’s previous engineering and science background with adequate breadth in engineering and specialization in an area of agricultural engineering.

*Jointly administered by the College of Engineering and the College of Agricultural Sciences. The degrees are awarded by the College of Engineering.
Agricultural work, in addition to agricultural engineering, consists of mathematics, physics, chemistry, statistics, and biological and engineering sciences.

GE 616
AGRICULTURAL MACHINERY DESIGN
3 cr. (2 and 3) S

GE 622
SOIL AND WATER RESOURCES ENGINEERING II
3 cr. (2 and 3) S

GE 631
AGRICULTURAL STRUCTURES AND ENVIRONMENTAL DESIGN
4 cr. (3 and 3) F

GE 642
AGRICULTURAL PROCESS ENGINEERING
3 cr. (2 and 3) S

GE 650
AGRICULTURAL ENGINEERING INSTRUMENTATION
3 cr. (2 and 3)

GE 665
ENGINEERING PROPERTIES OF BIOLOGICAL MATERIALS
2 cr. (1 and 3) S

GE 781
SPECIAL PROBLEMS
1-3 cr.

Student selects subject and conducts library, laboratory and/or field research; technical report documenting study required; may be repeated for maximum of six credits. For Master of Engineering degree candidates only.

GE 811
TILLAGE AND SOIL DYNAMICS
3 cr. (3 and 0)

Physical and dynamic properties of soil related to actions of tillage tools, tractive vehicles and plant growth and development; soil strength parameters; seedling environment and emergence; mechanics of tillage implements; soil compaction causes and effects; tractive efforts of wheel and track-type vehicles; off-the-road locomotion. **Prerequisite:** AG E 416/616 or equivalent.

GE 822
WATER MOVEMENT IN SOILS
3 cr. (3 and 0)

Theory and principles of water movement in soils; theory and application of flow of water through soil in unsaturated and saturated states; flow nets and seepage forces; fundamentals of engineering design with respect to ground water problems and soil moisture relationships. **Prerequisite:** MTH SC 208 or equivalent.

GE 865
HEAT AND MOISTURE TRANSFER IN BIOLOGICAL MATERIALS
3 cr. (3 and 0)

Heat and moisture diffusion in biological materials; criteria for selecting proper operational mathematics to solve certain boundary value problems; integral transforms of Laplace, Fourier and Hankel applied to various geometric configurations; influence of respiration heat and transpiration moisture production. **Prerequisites:** MTH SC 453/653, 434/634 or permission of instructor.
AG E 871 SELECTED TOPICS IN AGRICULTURAL ENGINEERING
1-3 cr. (1-3 and 0)
Supervised, in-depth study of an area not covered in other courses. Performance measured by oral and written reports and/or by examination; may be repeated for a maximum of six credits.

AG E 882 SYSTEMS ENGINEERING
3 cr. (2 and 3)
Systems analysis methods applied to engineering of agricultural operations; activity network analysis, critical path method, PERT, linear programming, modeling, simulation, linear systems analysis, application of digital computation in analysis of complex systems.

AG E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

AG E 901 SPECIAL PROBLEMS IN AGRICULTURAL ENGINEERING
3 cr. (3 and 0)
Library and/or laboratory research on one of the following subjects, depending on the student's field of study or interests: power and machinery, soil and water resources, farm structures, electric power and processing, food engineering, forest engineering or waste management. Technical report required.

AG E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BIOENGINEERING

A.F. von Recum, Head, Department of Bioengineering

Major: Bioengineering

Degrees: M.S., Ph.D.

The bioengineering program is devoted to the application of engineering science, methods and techniques to problems ranging from basic biomedical research to applied health care delivery. The principal areas of concentration are biomaterials and biomechanics, systems physiology and medical computing. The traditionally strong emphasis in the areas of materials and mechanics is directed toward the development of materials and devices (including artificial organs) for surgical implantation. Systems physiology is concerned with analyzing the complex of physical, chemical and biological processes that constitute living systems. Heavy reliance is placed on computer-assisted modeling, considerable direct laboratory experience and bioinstrumentation.

The faculty is augmented by six adjunct medical faculty, and most research programs are conducted in collaboration with medical, clinical or research-oriented institutions. All students have some direct experience with an appropriate aspect of this medical involvement.

Students enrolling in this program usually have a strong background in the more traditional engineering disciplines. Some background in general biology and physiology is recommended but is not a prerequisite. Students with degrees in science may also be considered for admission if they can demonstrate proficiency in certain prescribed engineering courses.
Candidates are allowed wide flexibility in planning their programs but are encouraged to seek advice and direction from the faculty because of the rapid evolution of this emerging discipline. There is a thesis and a non-thesis degree option for the master's degree curriculum.

O E 601 **COMPUTERS FOR BIOSCIENTISTS**
1 cr. (1 and 0)

O E 602 **MEDICAL APPLICATIONS OF ENGINEERING SCIENCE**
3 cr. (3 and 0)

O E 615 **DENTAL MATERIALS**
2 cr. (2 and 0)

O E 650 **SPECIAL TOPICS IN BIOMEDICAL ENGINEERING**
1-4 cr.

O E 800 **SEMINAR IN BIOMEDICAL ENGINEERING RESEARCH**
1 cr. (1 and 0)
Special topics and original research in biomedical engineering. Credit may be earned for more than one semester.

O E 801 **BIOMATERIALS**
3 cr. (3 and 0)
Primary and secondary factors determining performance of artificial organs in terms of materials used and design properties for each specific site of implantation. Topics include metallurgy of stainless steel, cobalt-chromium alloys, dental amalgams, chemistry of medical polymers, physical properties of reinforced structures, ceramic-metallic bonding and corrosion in biological media.

IO E 802 **RESEARCH TECHNIQUES IN BIOMATERIALS EVALUATION**
3 cr. (1 and 6)
Autoradiography; microradiography; electron beam microprobe; electron microscopy; optical microscopy; ultraviolet fluorescence; immunoelectrophoresis; blood chemistry analysis; urine chemistry analysis; techniques employed in determining compatibility of biomaterials with the physiological environment; research techniques associated with determining thrombogenic characteristics of biomaterials; corrosion and wear of biomaterials. **Prerequisite:** BIO E 801.

IO E 803 **POLYMERS AS BIOMATERIALS**
3 cr. (3 and 0)
Problems and accomplishments in bioengineering pertaining to utilization of polymeric materials; interactions caused by contact of such compositions with living systems; review of state of the art of this branch of biomaterials; presentation of outlook to an active research area.

IO E 820 **STRUCTURAL BIOMECHANICS**
3 cr. (3 and 0)
Mechanical functions of the human body treated as an engineering structure and the devices used to assist and supplement these functions; movement of the musculoskeletal system; locomotion; gait; prehension; lifting; function of artificial limbs; orthopedic prostheses and braces; effect of vibration and impact on the body; mathematical and other models of the body. **Prerequisite:** Permission of instructor.
BIO E 823 ARTIFICIAL CARDIAC ASSISTANCE AND REPLACEMENT
2 cr. (2 and 0)
Medical and bioengineering aspects of artificial hearts and cardiac assist devices;
physiology and pathological aspects of patients with need for such devices; history
of artificial heart development; design aspects of current devices; state of the art; animal experiments and human preliminary trials. Prerequisites: BIO E 882 and
ZOOL 459/659.

BIO E 847 ELEMENTS OF BIOENGINEERING
4 cr. (4 and 0)
Cardiovascular systems and regulation; physiology of blood, heart and organs;
properties of blood as a fluid; fluid flow equations; turbulence; pulse
propagation; respiration and control of breathing; gas exchange; heart-lung by-pass
devices; renal function and control; artificial kidney-devices; heat flow and tem
perature regulation; and mathematical models. Prerequisite: ZOOL 459/659.

BIO E 850 SPECIAL TOPICS IN BIOMEDICAL ENGINEERING
1-4 cr. (0-4 and 12-0)
Directed study of advanced topics in bioengineering intended to develop in
depth areas of particular student interest. Credit may be earned for more than one
semester. Prerequisite: Permission of instructor.

BIO E 870 BIOINSTRUMENTATION
3 cr. (2 and 2)
Concepts and techniques of instrumentation in bioengineering emphasizing ef
facts of instrumentation on the biological system under investigation; transducers
and couplers; data conversion; conditioning and transmission; experimental prob
lems in acute and chronic procedures with static and dynamic subjects.

BIO E 882 EXPERIMENTAL SURGERY
3 cr. (1 and 4)
All phases of experimental surgery including selection of animal models, prepara
tion of animals for surgery, general and special surgical techniques, and basic and
applied instrumentation. Prerequisite: ZOOL 459/659 or equivalent.

BIO E 890 INTERNSHIP
1-5 cr. (0 and 8-40)
Observation and assignment in a medical college, dental college, hospital, veter
nary clinic, dental clinic, health service or industrial department. Credit to be ar
ranged. Prerequisite: Permission of department head.

BIO E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

BIO E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by various departments represent possible elec
tives for the student in bioengineering. Descriptions for all 800-level courses are
listed under the respective department headings.

AN PH 801 ELECTRON MICROSCOPY OF BIOLOGICAL SPECIMENS
3 cr. (1 and 6)
Enrollment is open to students with baccalaureate degrees in any branch of engineering and to those with degrees in chemistry or physics who have credit for certain prescribed courses in engineering. Students may direct their programs toward traditional fields of ceramic engineering or toward multidisciplinary fields such as biomedical or materials engineering. The latter is an area of concentration within the ceramic engineering degree program and provides a multidisciplinary approach to the study of the relation between properties of materials and their structure and composition. Emphasis is placed on the design of material components to be compatible with a variety of application environments. Courses in chemistry, physics and mathematics as well as engineering provide background for learning the behavior of materials. The study includes research to selected material topics in ceramics, metals or polymers with the preparation of a thesis as a major part of the program.
CERAMIC ENGINEERING

CR E 602 SOLID STATE CERAMICS
3 cr. (3 and 0)

CR E 603 GLASSES
3 cr. (3 and 0)

CR E 604 CERAMIC COATINGS
3 cr. (3 and 0)

CR E 610 ANALYTICAL PROCESSES
3 cr. (2 and 3)

CR E 612 RAW MATERIAL PREPARATION
3 cr. (3 and 0)

CR E 616 ELECTRONIC CERAMICS
3 cr. (3 and 0)

CR E 618 PROCESS CONTROL
3 cr. (3 and 0)

CR E 619 SCIENCE OF ENGINEERING MATERIALS
3 cr. (3 and 0)

CR E 620 SCIENCE OF ENGINEERING MATERIALS
3 cr. (3 and 0)

CR E 701 SPECIAL PROBLEMS
3 cr. (1-3 and 0)

Practical problems in ceramic engineering analysis or design. Students are assigned individual problems with topics varying from year to year in keeping with developments, and interests and experience of students and instructor; may be repeated for additional credit.

CR E 807 SPECIALIZED CERAMICS
3 cr. (3 and 0)

Student makes advanced study of one of the following: structural products, refractories, whitewares, abrasives, enamels, glass, cements or raw material processing.

CR E 809 HIGH-TEMPERATURE MATERIALS
3 cr. (3 and 0)

Properties of oxides, carbides, nitrides, borides and silicides; obtainment and measurement of high temperatures; measurement of properties at high temperatures.

CR E 814 CERAMIC PHYSICAL PROCESSING
3 cr. (3 and 0)

Role of physical processing in determining structure and composition of products.

CR E 815 COLLOIDAL AND SURFACE SCIENCE
3 cr. (3 and 0)

Theory and application of colloidal and surface chemistry to ceramic materials and processes.
E 816 CONSTITUTION AND STRUCTURE OF GLASSES
3 cr. (3 and 0)
Modern concepts of glass structure and properties.

E 821 ANALYTICAL PROCEDURES AND EQUIPMENT I
3 cr. (2 and 3)
Theory and application of powder X-ray diffractometry, emission spectroscopy, electron microscopy and optical microscopy to ceramic problems.

E 822 ANALYTICAL PROCEDURES AND EQUIPMENT II
3 cr. (2 and 3)
Continuation of CR E 821.

E 824 MECHANICAL PROPERTIES OF CERAMIC MATERIALS
3 cr. (3 and 0)
Stress-strain-time relations in elasticity, plasticity and rupture showing effects of high and low temperature and structures.

E 825 MAGNETIC AND ELECTRICAL CERAMIC MATERIALS
3 cr. (3 and 0)
Application of magnetic and electrical theory to ceramic insulators, semiconductors, and ferroelectric and ferromagnetic products.

E 826 CERAMIC COATINGS
3 cr. (3 and 0)
Glassy and crystalline coatings emphasizing fundamentals of application, adhesion theories and development of required properties.

E 828 SOLID STATE CERAMIC SCIENCE
3 cr. (3 and 0)
Bonding and structure of crystalline materials as related to mechanical, thermal and chemical properties of solids.

E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
CHEMICAL ENGINEERING

CH E 621 PROCESS DEVELOPMENT, DESIGN AND OPTIMIZATION OF CHEMICAL ENGINEERING SYSTEMS I
3 cr. (2 and 3)

CH E 622 PROCESS DEVELOPMENT, DESIGN AND OPTIMIZATION OF CHEMICAL ENGINEERING SYSTEMS II
3 cr. (0 and 9)

CH E 624 INTRODUCTION TO INDUSTRIAL POLLUTION
3 cr. (3 and 0)

CH E 630 CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)

CH E 650 CHEMICAL ENGINEERING KINETICS
3 cr. (3 and 0)

CH E 802 PROCESS DYNAMICS AND CONTROL
3 cr. (3 and 0)

Utilization of engineering principles in dynamic analysis and design of chemical processes, processing equipment and plants; systems dynamics; closed loop control and optimization. **Prerequisites:** CH E 353 and MTH SC 208 or permission instructor.

CH E 803 HEAT, MASS AND MOMENTUM TRANSFER
3 cr. (3 and 0)

Fundamental mechanisms of molecular and turbulent transport of heat, mass and momentum.

CH E 804 CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)

Equilibria of physical and chemical systems; generalized properties of hydrocarbons; application of thermodynamic methods in equipment design.

CH E 805 CHEMICAL ENGINEERING KINETICS
3 cr. (3 and 0)

Kinetics of chemical reactions, particularly in design and operation of chemical reactors.

CH E 812 POLYMER ENGINEERING
3 cr. (3 and 0)

Reactor designs used in polymer production; effect on reactor design of kinetic behavior of step and addition polymerization; epoxy curing reactions; polymer solubility; influence of polymerizer design and polymerization conditions on polymer crystallinity; morphological changes occurring in fiber and film processing. **Prerequisite:** Permission of instructor.

CH E 814 APPLIED NUMERICAL METHODS IN PROCESS SIMULATION
3 cr. (3 and 0)

Numerical solution techniques as applied to chemical process systems; finite difference techniques for partial differential equations stressing applied numerical methods rather than theoretical numerical analysis; standard methods for ordinary differential equations reviewed. **Prerequisite:** Permission of instructor.
CHEMICAL ENGINEERING

E 815 POLYMER ENGINEERING LABORATORY
3 cr. (2 and 3)
Techniques and fundamental principles of polymerization reactor design and processing unit operations. Laboratory experiments emphasize relation between synthesis/processing and product and properties pilot-scale equipment. Prerequisite: Permission of instructor.

E 818 POLYMER PROCESSING
3 cr. (3 and 0)
Processing of polymeric materials; injection molding; calendering; extrusion and face activation of plastic film; physical science principles such as crystallization, face chemistry, heat transfer and rheology applied to process operations.

E 821 HEAT TRANSPORT
3 cr. (3 and 0)
Heat transport by conduction, convection and radiation.

E 822 MASS TRANSFER AND DIFFERENTIAL CONTACT OPERATIONS
3 cr. (3 and 0)
Diffusion theory in binary and multicomponent gas and liquid systems; HTU concept; design considerations in absorption and extraction.

E 823 MASS TRANSFER AND STAGewise CONTACT OPERATIONS
3 cr. (3 and 0)
Stagewise contact operations emphasizing distillation; vapor-liquid equilibria; integral and differential distillation; binary and multicomponent rectification; analytical methods; batch rectification; azeotropic and extractive distillation.

E 834 ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)
Classical and statistical thermodynamics applied to problems in chemical engineering with emphasis on modern methods of predicting thermophysical properties of gases and liquids. Students' and instructor's interests influence course content and usually include: fundamentals of applied statistical mechanics, molecular theory of dense fluids, descriptions of intermolecular forces, gas-liquid and liquid-liquid critical phenomena, theories of interfacial phenomena and adsorption, statistical mechanics of polymeric systems, statistical mechanics of polydisperse computer simulation of fluids by Monte Carlo, molecular dynamics and stochastic dynamics methods. Prerequisite: CH E 804 or equivalent.

E 845 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Topics not covered in other courses emphasizing current literature and results of current research. Topics vary from year to year to keep pace with developments; may be repeated for credit.

E 846 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Topics not covered in other courses emphasizing current literature and results of current research. Topics vary from year to year to keep pace with developments; may be repeated for credit.
CHEMICAL ENGINEERING

CH E 890 SPECIAL PROJECTS
1-6 cr.
Comprehensive analytical and/or experimental treatment of phenomena of current interest in chemical engineering emphasizing modern technological problems. May be repeated for maximum of six credits; graded on pass/fail basis. Prerequisite: Permission of instructor and department head.

CH E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

CH E 945 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Primarily a more comprehensive study of topics first covered in CH E 845 and 894.

CH E 946 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Primarily a more comprehensive study of topics first covered in CH E 845 and 894.

CH E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

CIVIL ENGINEERING
R.H. Brown, Head, Department of Civil Engineering

Major Degrees
Civil Engineering M.Eng., M.S., Ph.D.

The Department of Civil Engineering offers programs of study in the specialty areas of construction, structures, traffic and transportation, water resources. A program may also encompass course work in several related interdisciplinary fields including environmental systems engineering and bioengineering.

Excellent facilities for graduate work are available, and each student's educational and research program can be arranged to suit his/her personal and professional goals. Each student must carry out an independent study culminating in a thesis or a special report.

CE 603 USE OF COMPUTERS IN STRUCTURAL ANALYSIS AND DESIGN
3 cr. (2 and 2)

CE 604 MASONRY STRUCTURAL DESIGN
3 cr. (3 and 0)

CE 605 STRUCTURAL SYSTEMS DESIGN
3 cr. (2 and 3)

CE 610 TRAFFIC ENGINEERING OPERATIONS
3 cr. (3 and 0) S

CE 612 URBAN TRANSPORTATION PLANNING
3 cr. (3 and 0) F
617 AIR PHOTO INTERPRETATION I
3 cr. (2 and 3) S

619 GENERAL PHOTOGRAMMETRY
3 cr. (2 and 3) F

621 HYDROLOGY
3 cr. (3 and 0)

631 APPLIED SOIL MECHANICS
3 cr. (2 and 2)

632 CONSTRUCTION PROJECT ADMINISTRATION
3 cr. (2 and 3)

633 CONSTRUCTION PLANNING AND SCHEDULING
3 cr. (3 and 0)

634 CONSTRUCTION ESTIMATING AND PROJECT CONTROL
3 cr. (2 and 3)

635 ENGINEERING PROJECT ANALYSIS
3 cr. (2 and 2)

638 CONSTRUCTION SUPPORT OPERATIONS
3 cr. (3 and 0)

639 CONSTRUCTION EQUIPMENT SELECTION AND MAINTENANCE
3 cr. (3 and 0)

641 APPLIED HYDRAULICS
3 cr. (3 and 0)

653 ADVANCED STRUCTURAL ANALYSIS
3 cr. (3 and 0)

662 COASTAL ENGINEERING I
3 cr. (3 and 0)

663 COASTAL ENGINEERING II
3 cr. (3 and 0)

664 PHYSICAL MODELS IN FLUID MECHANICS
3 cr. (2 and 2)

670 PROBABILISTIC DESIGN IN CIVIL ENGINEERING
3 cr. (3 and 0)

680 WIND ENGINEERING
3 cr. (2 and 2)
CE 801 MATRIX METHODS OF STRUCTURAL ANALYSIS
3 cr. (3 and 0)
Matrix methods of structural analysis; development of member stiffness flexibility matrices; procedures used to employ matrix methods. Student writes a or uses computer programs to analyze and design complex structures such as continuous span bridges, tall and low rise buildings, towers, arches and domes. Prerequisite: CE 453/653 or permission of instructor.

CE 802 PRESTRESSED CONCRETE ANALYSIS AND DESIGN
3 cr. (3 and 0)
Analysis and design of prestressed concrete beams, columns and slabs; loss of prestress; balanced design concept; cable layout; continuous spans; anchor details. Prerequisite: CE 402.

CE 803 REINFORCED CONCRETE STRUCTURAL SYSTEMS
3 cr. (3 and 0)
Second course in design of reinforced concrete structures. Advanced conception in analysis and design of beams, columns and slabs; effect of past and present research in formulation of reinforced concrete design codes; behavior and design of two-way floor systems. Prerequisite: CE 402.

CE 804 THEORY AND DESIGN OF THIN PLATES
3 cr. (3 and 0)
Development of plate equations for elastic analysis and design of thin rectangular, circular and continuous plates by classical methods; solutions for concentrated point and ring loads; use of influence functions; development of linear buckling theory for plates; use of numerical methods such as finite difference schemes and finite element techniques in the solution of plate problems. Prerequisite: Permission of instructor.

CE 805 PLASTIC ANALYSIS AND DESIGN OF STEEL STRUCTURES
3 cr. (3 and 0)
Plastic analysis of unbraced and braced frameworks; moment-curvature relationships in the inelastic range; concept of yield hinge and theorems of limit analysis; statical and kinematical methods for calculating plastic collapse loads and displacements at incipient plastic collapse; design examples of multistory frame plastic potential flow law, yield conditions and elastic-plastic stress-strain relations. Prerequisites: CE 302 and CE 453/653 or permission of instructor.

CE 806 METAL COMPRESSION MEMBERS
3 cr. (3 and 0)
Theoretical behavior of compression members: struts, beams, beam-column plate girders and arches; theoretical predictions related to experimental results and to recognized design specifications for metals. Prerequisite: CE 453/653 or permission of instructor.

CE 807 NUMERICAL AND APPROXIMATE METHODS OF STRUCTURAL ANALYSIS
3 cr. (3 and 0)
Application of numerical methods to solution of structural problems such as nonuniform beams, column and frame stability, beams on elastic foundation, and vibration of beams and frames; principal emphasis on use of Newmark’s method numerical analysis. Prerequisite: CE 453/653 or permission of instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Mandatory Hours</th>
<th>Optional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>FINITE ELEMENT METHODS IN ENGINEERING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic concepts of finite element analysis; development of simple triangular, rectangular and quadrilateral elements in plane stress, plane strain and axisymmetric stress cases; plate bending; shell and three-dimensional elements; higher order elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>relative advantages and disadvantages of their use; applications of the method problems of heat flow, seepage, dynamics and inelastic behavior. Prerequisite: CE 301 or permission of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HIGHWAY GEOMETRIC DESIGN</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometric design of roadways, at-grade intersections and interchanges in accordance with conditions imposed by driver ability, vehicle performance, safety and economics. Prerequisite: CE 310/610.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AIRPHOTO INTERPRETATION II</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of airphoto interpretation as applied to transportation planning; identification and analysis of cultural, industrial and recreational land use features to project future needs of transportation system. Transportation projects utilizing airphoto interpretation required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>HIGHWAY AND AIRPORT PAVEMENT DESIGN</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural design of rigid and flexible pavements; design of bases and sub-bases; theory of stresses and application of plate bearing, triaxial and California Bearing design methods to flexible pavements; Westergaard analysis for rigid pavements; pavement evaluation methods. Prerequisite: CE 330.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TRAFFIC FLOW THEORY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualitative and quantitative description of traffic flow; parameters used to characterize flow; procedures for adjusting parameters to optimize flow; solution of traffic problems by analogy and queuing theory. Prerequisite: CE 410/610.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TRANSPORTATION SAFETY ENGINEERING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present methodology for conducting transportation accident studies; accident characteristics as related to operator facility and mode; statistical applications to accident data; current trends and problems in transportation safety. Prerequisite: CE 410.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>HIGHWAY PLANNING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Various aspects of highway planning: planning surveys, needs studies, impact studies, sufficiency ratings, highway finance, highway administration, and extensive treatment of economic evaluation of alternative highway projects by benefit cost analysis, annual cost, rate of return and investment return procedures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>MASS TRANSIT PLANNING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass transit planning; characteristics of modern mass transit systems; case studies of mass transit in selected cities; transit studies; marketing and financing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mass transit; recent innovation in mass transit; current issues in mass transit; future developments in mass transit.

CE 818 AIRPORT PLANNING AND DESIGN
3 cr. (3 and 0)
Planning and design of airports and other air transportation facilities; characteristics of air transport; future role of air transport in overall transportation program.

CE 819 TRANSPORTATION RESEARCH
2-4 cr.
Independent investigation of problems in transportation engineering.

CE 822 AGGREGATES AND CONCRETES FOR CONSTRUCTION
3 cr. (3 and 0)
Identification and suitability of aggregates for construction; characteristics properties of bituminous and portland cements and concretes. Design problem and field trip required. Prerequisite: CE 320.

CE 830 ADVANCED SOIL MECHANICS
3 cr. (3 and 0)
Stresses in soils; plastic equilibrium of soil masses; failure conditions; earth pressures; analysis of flexible retaining wall bulkheads; solution of problems by element theory. Prerequisite: CE 330.

CE 831 FOUNDATION ENGINEERING
3 cr. (2 and 3)
Requirements for satisfactory foundations; theory and design of shallow foundations; pressure distribution beneath rigid and flexible shallow foundations; bearing capacity and settlement of deep foundations; foundation failures. Laboratory includes site investigation field tests and determination of design parameters. Prerequisite: CE 830.

CE 835 CONSTRUCTION PROJECT MODELING AND CONTROL
3 cr. (3 and 0)
Planning the project from standpoint of constructibility and available resources; optimization of crew size, equipment size and operations; Kelvin modeling concepts; linear programming; queuing theory; learning curve and uncertainty; simple modeling examples; organizational project control networks. Prerequisite: CE 433; MTH SC 208 or equivalent.

CE 837 CONSTRUCTION SPECIFICATIONS AND CONTRACTS
3 cr. (2 and 3)
Elements of specifications delineating responsibilities of all involved parties; identifying courses of action during abnormal circumstances; necessary parts of contract dealing with governmental regulations and institutional preferences; licenses, bonds, insurance and taxes. Prerequisite: CE 324 or equivalent.

CE 840 CONSTRUCTION OF NUCLEAR POWER PLANTS
3 cr. (2 and 3)
Activities involved in identifying need, designing, obtaining construction permits, constructing and testing new plant; roles of EPA, NRC and other regulatory agencies; comparison of nuclear power plants with fossil fuel plants. Prerequisite: 324 or equivalent.
846 FLOW IN OPEN CHANNELS
3 cr. (3 and 0)
Flow in open channels; applications of digital computer; concepts of boundary layer theory; uniform and varied flow; hydraulic jump; design criteria for prismatic channels and transitions; some applications of unsteady flow. Prerequisites: Graduate standing and permission of instructor.

860 ADVANCED FLUID MECHANICS
3 cr. (3 and 0)
Laminar and turbulent flows; boundary layer and free shear flows (jets, wakes, etc.); descriptions of velocity, shear stress and pressure measurements, and aerodynamic drag.

861 MECHANICS OF SEDIMENT TRANSPORT
3 cr. (2 and 2)
Characterization of sediments; physical principles governing processes of fluvial, fluvial and estuarine sediment transport. Prerequisite: CE 421/621 or equivalent.

862 HEAT TRANSFER AT WATER SURFACES
3 cr. (3 and 0)
Daily and annual heat transfer at air-water interface of rivers and lakes including calculation of heat rejection rates on artificially heated lakes, wind speed functions, aerodynamic methods and Bowen ratio concepts; various techniques currently used to measure evaporation; effects of atmospheric stability on evaporation. Prerequisite: EM 320.

865 HYDROLOGIC SYSTEMS ANALYSIS
3 cr. (3 and 0)
Hydrologic cycle as a hydrologic system; deterministic hydrology; all aspects of physical hydrology emphasizing balanced approach to ground water hydrology and surface water hydrology; infiltration; soil moisture and evapo-transpiration; probability analysis and system synthesis by convolution. Prerequisite: Permission of instructor.

866 ADVANCED HYDROLOGIC SYSTEMS ANALYSIS
3 cr. (3 and 0)
Continuation of CE 865. Deterministic hydrology emphasizing parametric hydrology, system synthesis and correlation analysis; statistical hydrology; time series analysis; stochastic hydrology. Prerequisite: CE 865 or permission of instructor.

871 COASTAL HYDRODYNAMICS
3 cr. (3 and 0)
Hydrodynamics applied to coastal waters; gravity wave theory; tidal wave phenomenon; oceanic turbulence; mathematical modeling of estuaries and bays. Prerequisite: EM 320.

872 MARINE POLLUTION CONTROL
2 cr. (2 and 0)
Current technology and problems related to water quality management in marine environment; coastal and estuarine problems; submarine outfall systems; disposal of dredged material and wastewater sludges; thermal and oil pollution; water quality monitoring, monitoring and surveillance in the marine environment; design of
oceanographic surveys required for water quality control. **Prerequisites:** EM 350 and ESE 601 or equivalent.

CE 889 SPECIAL PROBLEMS I
1-3 cr.
Research design problems from field of structures, construction, soil mechanics, transportation, ocean and coastal engineering or materials engineering. Subject matter varies with interest and experience of student and instructor.

CE 890 SPECIAL PROBLEMS II
1-3 cr.
Research design problems from field of structures, construction, soil mechanics, transportation, ocean and coastal engineering, or materials engineering. Subject matter varies with interest and experience of student and instructor.

CE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

CE 893 SELECTED TOPICS IN CIVIL ENGINEERING
1-6 cr. (1-6 and 1-6)
Topics not covered in other courses. May be repeated for credit.

CE 901 THEORY AND DESIGN OF SHELL STRUCTURES
3 cr. (3 and 0)
Theory and design of thin shell structures; membrane theory of shells of revolution and translation; analysis and design of domes, hyperbolic paraboloid, elliptic paraboloid, cylindrical and prismatic shells; design of folded plates, cylindrical shell roofs and cylindrical tanks; design recommendations for concrete shells. **Prerequisite:** CE 801 or permission of instructor.

CE 902 DYNAMIC ANALYSIS OF STRUCTURES
3 cr. (3 and 0)
Analysis and design of structures subjected to dynamic loading; response of lumped and distributed parameter systems of one or many degrees of freedom; approximate design methods; introduction to earthquake analysis and design. **Prerequisite:** CE 801 or permission of instructor.

CE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

COMPUTER ENGINEERING

A.W. Bennett, Head, Department of Electrical and Computer Engineering

Major
Degree
Computer Engineering
M.S.

The computer engineering program is a combination of computer software, hardware, systems and applications. Enrollment is open to graduates in any branch of engineering, computer science or applied mathematics who have an appropriate computer background.

E&CE 606 INTRODUCTION TO MICROELECTRONICS PROCESSING
3 cr. (3 and 0)
E 614 ANALYSIS OF ROBOTIC SYSTEMS
3 cr. (3 and 0)

E 617 SOFTWARE DESIGN
3 cr. (3 and 0) F

E 622 ELECTRONICS III
3 cr. (3 and 0) F, S

E 625 MICROCOMPUTER INTERFACING
3 cr. (2 and 2) F, S

E 626 DIGITAL COMPUTER DESIGN
3 cr. (3 and 0) S

E 629 COMPUTER ORGANIZATION
3 cr. (3 and 0) F, S

E 631 DIGITAL ELECTRONICS
3 cr. (2 and 2) F

E 633 MICROCOMPUTER ROBOTS
3 cr. (1 and 4)

E 635 INTRODUCTION TO OPTICAL DEVICES
3 cr. (3 and 0)

E 638 COMPUTER COMMUNICATIONS
3 cr. (3 and 0) F

E 639 INTRODUCTION TO FIBER OPTICS
3 cr. (3 and 0)

E 641 THEORY OF SEQUENTIAL MACHINES
3 cr. (3 and 0)

E 650 COMPUTER SYSTEM DESIGN PROJECT
2 cr. (0 and 4) F, S

E 652 PROGRAMMING SYSTEMS
3 cr. (3 and 0) S

E 654 PHYSIOLOGICAL CONTROL SYSTEMS
3 cr. (2 and 2)

E 660 COMPUTER-AIDED ANALYSIS AND DESIGN
3 cr. (3 and 0) F

E 661 ANALOG/HYBRID COMPUTATION AND SIMULATION
3 cr. (2 and 2)

E 663 MICROCOMPUTERS II
3 cr. (2 and 2) S

E 667 INTRODUCTION TO DIGITAL SIGNAL PROCESSING
3 cr. (3 and 0) F
E&CE 668 THE EMBEDDED MICROPROCESSOR
3 cr. (2 and 2)

E&CE 671 MICROCOMPUTER APPLICATION IN MEDICAL INSTRUMENTATION
3 cr. (3 and 0)

E&CE 691 SELECTED TOPICS
1-3 cr. (1-3 and 0)

E&CE 802 ELECTRIC MOTOR CONTROL
3 cr. (3 and 0)

Control aspects of ac and dc motors; solid state and logic devices used in starting and control. The dynamics of the motors under control are studied using computer modeling. Prerequisite: E&CE 421/621.

E&CE 841 DISTRIBUTED COMPUTING AND NETWORKS
3 cr. (3 and 0) S

Design oriented toward distributed computing and computing concepts; design issues; implementation techniques; communication networks; analytical tools; system evaluation; data transmission principles; data concentration. Prerequisite: E&CE 421/621.

E&CE 842 COMPUTER ARCHITECTURE
3 cr. (3 and 0) S

Fundamental issues that arise in the composition of logic elements into computer systems; design and analysis of processors, busses, memory hierarchies, communications controllers and associated software. Prerequisite: E&CE 429/629 equivalent.

E&CE 843 COMPUTER GRAPHICS
3 cr. (3 and 0)

Concepts and structure of integrated graphics computer system design; operation of various graphical input and display devices; three-dimensional display concepts; structure of graphical display files; graphics programming languages. Prerequisite: Programming experience in FORTRAN, COBOL and other high-level languages.

E&CE 844 DIGITAL SIGNAL PROCESSING*
3 cr. (3 and 0)

E&CE 845 COMPUTER SYSTEM DESIGN AND OPERATION
3 cr. (3 and 0)

Factors involved in design, acquisition and operation of a computer system; analysis methods; alternative computer systems; computer economics; performance evaluation; operational requirements. Prerequisite: Permission of instructor.

E&CE 846 DIGITAL PROCESSING OF SPEECH SIGNALS*
3 cr. (3 and 0)

E&CE 847 DIGITAL IMAGE PROCESSING*
3 cr. (3 and 0)

*Descriptions of these 800-level courses are listed under Electrical Engineering.
COMPUTER ENGINEERING

E 850 COMPUTATION AND SIMULATION
3 cr. (3 and 0)
Computer modeling as related to engineering problems; matching problems and computers to obtain most effective solution.

E 851 ADVANCED TOPICS IN COMPUTER ARCHITECTURE
3 cr. (3 and 0)
Analysis and design of multiprocessor and modular computer systems. Topics include recent developments in integration, fabrication and application of multiprocessor systems. Prerequisite: E&CE 842.

E 852 SOFTWARE ENGINEERING
3 cr. (3 and 0)
Design, construction verification and testing of large-scale computer software systems. Topics include software science, requirements writing, design graphics, calculus of programs, verification proofs and symbolic execution. Prerequisite: computer engineering major or permission of instructor.

E 853 COMPUTER DATA DISPLAYS
3 cr. (3 and 0)
Methods and hardware required for visually displaying computer output; cathode discrete readout and large screen displays. Prerequisite: E&CE 429/629 or approval of instructor.

E 855 ARTIFICIAL INTELLIGENCE
3 cr. (3 and 0)
The problem of creating intelligent behavior in machines, emphasizing computer-directed approaches; models of cognitive processes, goal-seeking behavior, self-learning systems, learning algorithms, game-playing machines, pattern recognition and heuristic programming; practical applications such as machine aids to human problem-solving and computer control of external manipulators; current developments.

E 856 PATTERN RECOGNITION*
3 cr. (3 and 0)

E 858 AUTOMATA THEORY
3 cr. (3 and 0)
Structure and capabilities of sequential machines; machine identification; regular expressions; linear machines; stochastic machines.

E 890 ENGINEERING REPORT RESEARCH
Variable credit hours.
Research culminating in writing an engineering report to satisfy one of the non-thesis options for the Master of Science degree. The engineering report is similar to a thesis but requires only departmental approval. Graded on a pass/fail basis.

E 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

Descriptions of these 800-level courses are listed under Computer Engineering.
E&CE 892 SPECIAL PROBLEMS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Term paper, special design or other problems in electrical and computer engineering approved by the instructor. Not to be used for investigation associated with the M.S. thesis or the engineering report. May be repeated for additional credit.

E&CE 893 SELECTED TOPICS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Topics not covered in other courses; current literature and results of current research. Topics vary from year to year in keeping with developments in the field. May be repeated for additional credit. Prerequisite: Permission of instructor.

ELECTRICAL ENGINEERING
A.W. Bennett, Head, Department of Electrical and Computer Engineering

Major
Electrical Engineering

Degrees
M.Engr., M.S., Ph.D.

Students in electrical engineering may direct their programs toward fields of communication, computers, controls, digital signal processing, electronics, networks, power systems or one of the multidisciplinary fields such as biomedical engineering or systems engineering.

E&CE 603 ENERGY CONVERSION
3 cr. (3 and 0) F

E&CE 604 SEMICONDUCTOR DEVICES
3 cr. (3 and 0) S

E&CE 606 INTRODUCTION TO MICROELECTRONICS PROCESSING
3 cr. (3 and 0)

E&CE 610 INTRODUCTION TO DIGITAL CONTROL SYSTEMS
3 cr. (3 and 0) F, S

E&CE 611 ELECTRICAL SYSTEMS
1 cr. (0 and 2) F, S

E&CE 614 ANALYSIS OF ROBOTIC SYSTEMS
3 cr. (3 and 0)

E&CE 617 SOFTWARE DESIGN
3 cr. (3 and 0) F

E&CE 620 POWER SYSTEM ANALYSIS I
3 cr. (3 and 0) F, S

E&CE 621 ELECTRICAL MACHINERY
3 cr. (3 and 0) F, S

E&CE 622 ELECTRONICS III
3 cr. (3 and 0) F, S
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 624</td>
<td>POWER SYSTEMS ANALYSIS II</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>E 625</td>
<td>MICROCOMPUTER INTERFACING</td>
<td>3 cr.</td>
<td>(2 and 2) F, S</td>
</tr>
<tr>
<td>E 626</td>
<td>DIGITAL COMPUTER DESIGN</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>E 627</td>
<td>OPERATIONAL AMPLIFIERS</td>
<td>2 cr.</td>
<td>(2 and 0) S</td>
</tr>
<tr>
<td>E 628</td>
<td>ANALOG COMMUNICATIONS</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E 629</td>
<td>COMPUTER ORGANIZATION</td>
<td>3 cr.</td>
<td>(3 and 0) F, S</td>
</tr>
<tr>
<td>E 630</td>
<td>DIGITAL COMMUNICATIONS</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>E 631</td>
<td>DIGITAL ELECTRONICS</td>
<td>3 cr.</td>
<td>(2 and 2) F</td>
</tr>
<tr>
<td>E 632</td>
<td>INSTRUMENTATION</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E 633</td>
<td>MICROCOMPUTER ROBOTS</td>
<td>3 cr.</td>
<td>(1 and 4)</td>
</tr>
<tr>
<td>E 634</td>
<td>POWER ELECTRONICS</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E 635</td>
<td>INTRODUCTION TO OPTICAL DEVICES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E 636</td>
<td>RADIATION AND WAVE PROPAGATION</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E 637</td>
<td>LASER TECHNOLOGY AND APPLICATIONS</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>E 638</td>
<td>COMPUTER COMMUNICATIONS</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E 639</td>
<td>INTRODUCTION TO FIBER OPTICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E 641</td>
<td>THEORY OF SEQUENTIAL MACHINES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E 650</td>
<td>COMPUTER SYSTEM DESIGN PROJECT</td>
<td>2 cr.</td>
<td>(0 and 4) F, S</td>
</tr>
<tr>
<td>E 651</td>
<td>SYSTEM DESIGN PROJECT</td>
<td>2 cr.</td>
<td>(0 and 4) F, S</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>E&CE 652</td>
<td>PROGRAMMING SYSTEMS</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>E&CE 654</td>
<td>PHYSIOLOGICAL CONTROL SYSTEMS</td>
<td>(2 and 2)</td>
<td></td>
</tr>
<tr>
<td>E&CE 658</td>
<td>CIRCUIT DESIGN OF MODERN ANALOG FILTERS</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 659</td>
<td>COMPUTER-AIDED DESIGN OF ELECTRONIC CIRCUITS</td>
<td>(3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 660</td>
<td>COMPUTER-AIDED ANALYSIS AND DESIGN</td>
<td>(3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 661</td>
<td>ANALOG/HYBRID COMPUTATION AND SIMULATION</td>
<td>(2 and 2)</td>
<td></td>
</tr>
<tr>
<td>E&CE 663</td>
<td>MICROCOMPUTERS II</td>
<td>(2 and 2) S</td>
<td></td>
</tr>
<tr>
<td>E&CE 667</td>
<td>INTRODUCTION TO DIGITAL SIGNAL PROCESSING</td>
<td>(3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 668</td>
<td>THE EMBEDDED MICROPROCESSOR</td>
<td>(2 and 2)</td>
<td></td>
</tr>
<tr>
<td>E&CE 670</td>
<td>COMPUTER APPLICATIONS FOR NON-ENGINEERS</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 671</td>
<td>MICROCOMPUTER APPLICATIONS IN MEDICAL INSTRUMENTATION</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 691</td>
<td>SELECTED TOPICS</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 701</td>
<td>SPECIAL PROBLEMS</td>
<td>1-3 cr. F, S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical problems in engineering analysis or design in students' fields of interest. May be repeated for additional credit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E&CE 801</td>
<td>ANALYSIS OF LINEAR SYSTEMS</td>
<td>(3 and 0) F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundations of linear system analysis; matrix algebra, linear graph theory and operational mathematics applied to formulation and solution of system equations in time and frequency domains.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E&CE 802</td>
<td>ELECTRIC MOTOR CONTROL</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control aspects of ac and dc motors; solid state and logic devices used in motor starting and control. The dynamics of the motors under control are studied using computer modeling. Prerequisite: E&CE 421/621.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CE 803 LINEAR CONTROL THEORY AND DESIGN
3 cr. (3 and 0)
Analysis and design of continuous and discrete linear control systems; vector
spaces; transformations; notation of a basis; transfer functions; state variable for-
mation; Cayley-Hamilton theorem; Jordan canonical forms; controllability; obser-
ability; adjoint systems; stability; multiple input-output systems; design
chniques. Prerequisite: E&CE 410/610 or equivalent.

CE 804 OPTIMAL CONTROL THEORY
3 cr. (3 and 0)
Design of optimum control systems; ordinary minima with constraints; Lagrange
multipliers; variational approach to control problems; necessary and sufficient con-
ditions; free and fixed endpoint problems; Hamilton-Jacobi equations; minimum
principle of Pontryagin; design of time and fuel optimal control systems; design of
ear systems with quadratic criteria and systems with the control constrained to a
sphere. Prerequisite: E&CE 803. Corequisite: MTH SC 654, 664 or permission
structor.

CE 805 STOCHASTIC OPTIMAL CONTROL
3 cr. (3 and 0)
Methods of design formulation and techniques in continuous and discrete
hastic optimal control systems: stochastic processes and model development,
imal filtering and prediction, optimal fixed-point, interval and lag smoothing;
inimum performance functions.

CE 806 IDENTIFICATION IN CONTROL
3 cr. (3 and 0)
Design techniques in determining the input-output parameters of systems used in
ntrol: mathematical concepts, classical methods, regression and sequential re-
sion techniques, stochastic approximation, quasilinearization, invariant imbed-
g, gradient methods, delay model techniques in identification. Prerequisite:
E 805.

CE 807 POWER SYSTEM TECHNIQUES
3 cr. (3 and 0)
Electric power system operation; development of models of transmission line
ponents and networks; computer methods for solving linear and nonlinear
ems of network equations; operating problems in load flow, scheduling and
omic dispatch. Prerequisite: Permission of instructor.

CE 809 SEMICONDUCTOR MATERIALS
3 cr. (3 and 0)
Solids; crystalline state; energy band structure of semiconductors; effective mass
roximation; impurity states; surface states; transport phenomenon; galvanome-
ic effects; electro-optical effects and magneto-optical effects. Prerequisite:
E 404.

CE 817 POWER SYSTEM TRANSIENTS
3 cr. (3 and 0)
Power system transients; stability studies; fault analysis using bus impedance
rix; switching transients. Prerequisite: Permission of instructor.
E&CE 819 DETECTION AND ESTIMATION THEORY
3 cr. (3 and 0)
Theory of statistical testing of hypotheses applied to detection and estimation
communication signal parameters; detection of signals with random amplitude
phase and arrival time in noise; detection of single and multiple observation; es-
mates and their properties; signal resolution. **Prerequisite:** E&CE 820.

E&CE 820 THEORY OF COMMUNICATIONS I
3 cr. (3 and 0)
Modern communications systems emphasizing modulation and methods of ta-
ing into account effects of noise on various systems. **Prerequisite:** E&CE 428/628
equivalent.

E&CE 821 THEORY OF COMMUNICATIONS II
3 cr. (3 and 0)
Continuation of E&CE 820.

E&CE 822 INFORMATION THEORY
3 cr. (3 and 0)
Statistical problems encountered in information handling; relations of probabili-
ty information and coding theory; unified treatment of set theory, sample space, ra-
dom variables, information measure and capacity applied to communication.

E&CE 823 INTEGRATED CIRCUIT TECHNOLOGY
3 cr. (3 and 0)
Characteristics of semiconductor devices as used in integrated circuits; mor-
lithic and hybrid construction related to electrical performance; categorization
of circuits by technology and design guidelines.

E&CE 825 SOLID-STATE ELECTRONICS
3 cr. (3 and 0)
Modern physics approach to electrons in solids; elementary quantum mechan-
ics; plasmas; band theory; application of these principles to modern am-
pifiers, e.g., the traveling-wave tube, tunnel diode, masers and parametric amplifiers.

E&CE 830 ELECTROMAGNETICS
3 cr. (3 and 0)
Vector analysis; electrostatics; electrostatic fields in material bodies; solution
boundary-value problems; stationary currents; static magnetic fields; magne-
t fields in material bodies; quasi-stationary magnetic fields. **Prerequisite:** Permis-

E&CE 840 PHYSICS OF SEMICONDUCTOR DEVICES
3 cr. (3 and 0)
Semiconductor device physics emphasized rather than circuits; detailed analy-
 of the p-n junction, traps, surface states and conduction processes in device
analysis and models of Schottky diode, MIS diode, MOSFET, charge couples de-
 vices and solar cells; charge control concepts, transit time effects, surface ty-
d devices and practical aspects of device process. **Prerequisites:** E&CE 404 ar-
406/606.
ELECTRICAL ENGINEERING

ACE 841 DISTRIBUTED COMPUTING AND NETWORKS*
3 cr. (3 and 0) S

ACE 842 COMPUTER ARCHITECTURE*
3 cr. (3 and 0) S

ACE 843 COMPUTER GRAPHICS*
3 cr. (3 and 0)

ACE 844 DIGITAL SIGNAL PROCESSING
3 cr. (3 and 0)
Digital filter design; discrete Hilbert transforms; discrete random signals; effects of finite register length in digital signal processing; homomorphic signal processing; power spectrum estimation; speech processing, radar and other applications. Prerequisite: E&CE 467/667.

ACE 845 COMPUTER SYSTEM DESIGN AND OPERATION*
3 cr. (3 and 0)

ACE 846 DIGITAL PROCESSING OF SPEECH SIGNALS
3 cr. (3 and 0)
Application of digital signal processing techniques to problems related to speech synthesis, recognition and communication; digital models and representations of speech wave forms; Fourier analysis; homomorphic processing; linear predictive coding; algorithms for recognizing isolated words and continuous speech; man-machine communications by voice. Prerequisite: E&CE 467/667.

ACE 847 DIGITAL IMAGE PROCESSING
3 cr. (3 and 0)
Digital image fundamentals; comparison of image transforms including KL, Fourier, Walsh, Hadamard, cosine and slant; image data compression techniques; image enhancement algorithms; image restoration; image encoding process; image segmentation and description. Prerequisite: E&CE 467/667.

ACE 850 COMPUTATION AND SIMULATION*
3 cr. (3 and 0)

ACE 851 ADVANCED TOPICS IN COMPUTER ARCHITECTURE*
3 cr. (3 and 0)

ACE 852 SOFTWARE ENGINEERING*
3 cr. (3 and 0) F

ACE 853 COMPUTER DATA DISPLAYS*
3 cr. (3 and 0)

ACE 855 ARTIFICIAL INTELLIGENCE*
3 cr. (3 and 0)

Descriptions of these 800-level courses are listed under Computer Engineering.
E&CE 856 PATTERN RECOGNITION
3 cr. (3 and 0)
Several approaches to general pattern recognition problems with practical computer-oriented applications; feature extraction; classification algorithms; discriminant functions; learning schemes; statistical methods; information theory approaches; applications; current developments.

E&CE 857 CODING THEORY
3 cr. (3 and 0)
Principles of algebraic coding and its application to transmission of information over noisy communications channels; introduction to abstract algebra; code performance bounds; code representations; linear codes of the Hamming and Bose-Chandnuri types and burst-error correcting codes; problems of implementation and decoding. Prerequisite: E&CE 822.

E&CE 858 AUTOMATA THEORY*
3 cr. (3 and 0) S

E&CE 870 BIOSYSTEMS ANALYSIS
3 cr. (3 and 0) F
Classical and recent mathematical models of biological systems, particularly those which relate to modern systems theory and as they apply to humans; biomedical instrumentation; data collection and processing.

E&CE 890 ENGINEERING REPORT RESEARCH
Variable credit hours.
Research culminating in writing an engineering report to satisfy one of the non-thesis options for the Master of Science degree. The engineering report is similar to the thesis but requires only departmental approval. Graded on a pass/fail basis.

E&CE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

E&CE 892 SPECIAL PROBLEMS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Term paper, special design or other problems in electrical and computer engineering approved by the instructor. Not to be used for investigation associated with the M.S. thesis or the engineering report. May be repeated for additional credit.

E&CE 893 SELECTED TOPICS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Topics not covered in other courses; current literature and results of current research. Topics vary from year to year in keeping with developments in the field; may be repeated for additional credit. Prerequisite: Permission of instructor.

E&CE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

*Descriptions of these 800-level courses are listed under Computer Engineering.
Enrollment is open to students with baccalaureate or master's degrees in any branch of engineering and to those with degrees in physics or applied mathematics who have credit for certain prescribed courses in engineering. The three general areas of concentration are solid mechanics, dynamics, and fluid mechanics. Some limitations are imposed on the selection of courses to reflect the particular concentration. The usual minor is mathematics. Suitable minor programs may also be arranged in physics, civil engineering or mechanical engineering.

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 625</td>
<td>ADVANCED STRENGTH OF MATERIALS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>M 650</td>
<td>MECHANICAL VIBRATIONS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>M 670</td>
<td>EXPERIMENTAL STRESS ANALYSIS</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>M 829</td>
<td>ENERGY METHODS AND VARIATIONAL PRINCIPLES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Application of variational principles in solid mechanics problems; virtual work; Castigliano’s theorems on deflection and rotation; stationary potential energy; energy stability criterion; Hamilton’s principle. **Prerequisite:** EM 831 or permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 831</td>
<td>THEORY OF ELASTICITY I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Theory of stress and deformation for continuous media; linear stress-strain relations for elastic material; two-dimensional problems including Airy stress function, polynomial solutions, plane stress and plane strain in rectangular and polar coordinates, torsion and bending of prismatic bars and thermal stresses. **Prerequisites:** M 304 and MTH SC 206.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 832</td>
<td>THEORY OF ELASTICITY II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Continuation of EM 831 including topics from either three-dimensional problems associated with an infinite elastic medium, elastic half-space, contact stresses, symmetrically loaded sphere and circular cylinder, complex variable methods in plane elasticity, stress concentrations problems, singular stresses, and fracture and composite materials. **Prerequisites:** EM 831 and PHYS 812.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 834</td>
<td>PRINCIPLES OF STRUCTURAL STABILITY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Practical criteria for analysis of conservative and nonconservative systems stability; methods of adjacent equilibrium, initial imperfections, total potential energy and vibration as applied to practical problems. **Prerequisite:** EM 831.
EM 845 INTERMEDIATE DYNAMICS
3 cr. (3 and 0)
Kinematics and dynamics of particles and rigid bodies, Lagrange and Hamilton formulation of mechanics; two-body central force problem; rendezvous of two bodies in a central force field; rotation of rigid bodies about a fixed point in space; vector analysis and matrix methods as aids in mathematical analysis. Prerequisite: EM 202 or permission of instructor.

EM 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

EM 893 SELECTED TOPICS IN ENGINEERING MECHANICS
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for credit.

EM 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

ENVIRONMENTAL SYSTEMS ENGINEERING
T.M. Keinath, Head, Department of Environmental Systems Engineering

Major
Environmental Systems Engineering

Degrees
M.Engr., M.S., Ph.D.

Environmental systems engineering is concerned with the engineering aspects of the control of man's environment. Emphasis is placed on applying basic principles of the sciences through research and design to environmental engineering problems.

The M.Engr. and M.S. programs are designed to build on the student's previous engineering or science background. Students with a baccalaureate degree in any branch of engineering, as well as chemistry, physics and biology majors with a strong mathematical background, may be admitted to the program. Students may elect to specialize in one of six areas: (1) water and wastewater treatment systems, (2) air pollution control, (3) environmental management systems, (4) nuclear environmental, (5) environmental chemistry and (6) environmental biology. Master's degree candidates must complete 27 hours of course work and six hours of research culminating in the presentation of a satisfactory thesis for M.S. candidates or a special problem report for M.Engr. candidates.

The Ph.D. program is directed toward providing the student with a comprehensive background in the fundamental aspects of environmental engineering. The major field of study is generally interdisciplinary in nature, consisting of course work in several areas of engineering and the basic sciences. Each student's research program is tailored to suit his or her personal and professional goals. Qualifying, comprehensive and final examinations are required. No foreign language is required.

ESE 601 ENVIRONMENTAL ENGINEERING
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (A and B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>602</td>
<td>WATER AND WASTE TREATMENT SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>630</td>
<td>AIR POLLUTION ENGINEERING</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>670</td>
<td>WATER RESOURCES ENGINEERING</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>685</td>
<td>HAZARDOUS AND TOXIC WASTES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>701</td>
<td>SPECIAL PROBLEMS</td>
<td>1-6 cr. (1-6 and 0)</td>
</tr>
<tr>
<td>802</td>
<td>ENVIRONMENTAL ENGINEERING PRINCIPLES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>803</td>
<td>PHYSICOCHEMICAL OPERATIONS IN WATER AND WASTEWATER TREATMENT SYSTEMS</td>
<td>4 cr. (4 and 0)</td>
</tr>
<tr>
<td>804</td>
<td>BIOCHEMICAL OPERATIONS IN WASTEWATER TREATMENT SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>805</td>
<td>LABORATORY IN WATER AND WASTEWATER TREATMENT OPERATIONS</td>
<td>1 cr. (0 and 4)</td>
</tr>
<tr>
<td>806</td>
<td>INTEGRATED DESIGN OF WATER AND WASTEWATER TREATMENT SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Environmental engineering problems selected to meet the interests and experience of student and instructor. Formal report required; restricted to Master of Engineering students; graded on pass/fail basis.

Environmental engineering principles required for simulation and modeling of environmental engineering phenomena. Topics include mass transfer, reactor kinetics, simulation techniques and applications to various natural and engineered systems.

Principles of physicochemical operations used in water and wastewater treatment. Includes sedimentation, filtration, mixing, gas transfer, adsorption, ion exchange, evaporation, drying, coagulation, precipitation and oxidation. Prerequisites: ESE 802 and 843.

Principles of biochemical operations used in wastewater treatment. Includes modeling of ideal biochemical reactors and design criteria for aerated lagoons, activated sludge, trickling filters, rotating biological contactors, nitrification, denitrification and digestion. Prerequisites: ESE 802 and 851.

Laboratory exercises in selected water and wastewater treatment operations including sedimentation, filtration, adsorption, coagulation, softening, chlorination, aeration, activated sludge and digestion. Corequisites: ESE 803 and 804.

Integration of water and wastewater treatment operations into complex systems through consideration of process engineering principles. The team approach is employed in the design of one integrated system. Prerequisites: ESE 803, 804 and
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESE 809</td>
<td>INDUSTRIAL WASTEWATER TREATMENT</td>
<td>3 cr. (3 and 0)</td>
<td>Industrial wastewater management and the application of liquid treatment processes to the solution of specific industrial wastewater problems. Case studies of industrial wastewater treatment strategies. Prerequisite: ESE 803 and 804.</td>
</tr>
<tr>
<td>ESE 810</td>
<td>ENVIRONMENTAL RADIATION PROTECTION</td>
<td>3 cr. (3 and 0)</td>
<td>Fundamental principles and theoretical foundations of radiological health and radiation safety including radiation fundamentals, basic and advanced concepts of environmental radiation protection, internal and external dosimetry, radiation transport and shielding, environmental dose calculations, natural and anthropogenic sources of radioactivity. Prerequisite: Permission of instructor.</td>
</tr>
<tr>
<td>ESE 811</td>
<td>ENVIRONMENTAL RADIATION PROTECTION LABORATORY I</td>
<td>1 cr. (0 and 3)</td>
<td>Experimental methods in environmental radiation protection including nuclear electronics, nuclear statistics, radiation detection, radiation interactions, shielding, health physics instrumentation, nuclear spectroscopy and spectrometry, nuclear analytical techniques. Prerequisite: Permission of instructor.</td>
</tr>
<tr>
<td>ESE 812</td>
<td>ENVIRONMENTAL NUCLEAR ENGINEERING</td>
<td>3 cr. (3 and 0)</td>
<td>Environmental aspects of nuclear technology emphasizing nuclear reactors and the nuclear fuel cycle; environmental transport of radioactive materials; radioactive effluents from nuclear power plants; nuclear power plant safety; environmental aspects of fuel cycle activities; waste management. Prerequisites: ESE 610 and permission of instructor.</td>
</tr>
<tr>
<td>ESE 813</td>
<td>ENVIRONMENTAL RADIATION PROTECTION LABORATORY II</td>
<td>1 cr. (0 and 3)</td>
<td>Continuation of ESE 811; advanced experiments in radiation detection, radiation protection, health physics and environmental monitoring. Prerequisites: ESE 610 and permission of instructor.</td>
</tr>
<tr>
<td>ESE 831</td>
<td>AIR QUALITY MONITORING</td>
<td>3 cr. (2 and 3)</td>
<td>Principles of ambient and source measurements of air pollutants and siting of pollution monitors. Laboratory exercises include source testing and ambient analysis. Prerequisite: Permission of instructor.</td>
</tr>
<tr>
<td>ESE 832</td>
<td>AIR POLLUTION METEOROLOGY</td>
<td>3 cr. (3 and 0)</td>
<td>Applications of meteorology to air pollution; micrometeorology; plume rise modeling; atmospheric diffusion; deposition and washout of pollutants; air chemist and applications of diffusion modeling to air quality planning. Prerequisite: Permission of instructor.</td>
</tr>
<tr>
<td>ESE 833</td>
<td>AIR POLLUTION CONTROL SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
<td>Principles and design of air pollution control equipment including mechanical collectors, electrostatic precipitators, baghouse filters, wet scrubbers, adsorbents, and incinerators. Prerequisite: ESE 430/630 or permission of instructor.</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL SYSTEMS ENGINEERING

E 843 ENVIRONMENTAL ENGINEERING CHEMISTRY I
3 cr. (3 and 0)
Principles of chemical kinetics and thermodynamics applied to fundamental understanding of aqueous environmental samples including natural waters, wastewaters and treated waters; factors controlling chemical concentrations, acid-based equilibria, solubility equilibria, complex formation, electrochemistry, adsorption phenomena.

E 844 ENVIRONMENTAL ENGINEERING CHEMISTRY LABORATORY I
1 cr. (0 and 3)
Laboratory experience in performing analytical methods commonly used in water quality studies and interpreting results. Analyses include sample program design, general parameters, residue analysis, alkalinity and acidity, oxygen and oxygen demand, hardness and major cations, nutrients.

E 847 ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING CHEMISTRY
2 cr. (2 and 0)
Advanced principles and methods in environmental engineering chemistry with applications to both natural and treatment systems; current investigative and study techniques. Topics include the nature, fluxes and controlling processes of chemical species and radionuclides in environmental systems. Prerequisite: ESE 443/643 or equivalent.

E 848 ENVIRONMENTAL ENGINEERING CHEMISTRY II
2 cr. (2 and 0)
Applications of principles of organic chemistry and biochemistry to problems of environmental control and waste treatment; treatability and potential health hazards complex organic compounds emphasized.

E 849 ENVIRONMENTAL SYSTEMS ENGINEERING CHEMISTRY LABORATORY II
2 cr. (0 and 6)
Theory and applications of instrumental methods of analysis as applied to measurements for environmental control; spectroscopy and spectrophotometric techniques; electrochemical analyses; chromatographic methods of analysis; light scattering and electrophoretic measurements.

E 850 STREAM AND ESTUARINE ANALYSIS
3 cr. (3 and 0)
Physical, chemical and biological processes and relationships which exist in streams and estuaries; estuarine environment; free-flowing streams; mechanisms which describe transport of conservative and nonconservative materials through estuarine systems; the estuary as a resource and techniques for its management.

E 852 ECOLOGICAL MODELS
3 cr. (2 and 3)
Systems analysis applied to ecology; construction of models which predict ecological consequences of stresses to the environment; frequency response analysis, energy models, information flow, and transfer functions for population interactions. Prerequisites: A course in ecology and in computer programming or permission of instructor.
ESE 856 POLLUTION OF THE AQUATIC ENVIRONMENT
3 cr. (3 and 0)
Effects of domestic and industrial water pollution on the physical, chemical and
biological characteristics of natural waters; associated environmental determinants
of human disease, toxicology and epidemiology of chronic disease.

ESE 857 POLLUTION OF THE AQUATIC ENVIRONMENT
LABORATORY
1 cr. (0 and 3)
Field and laboratory investigations into physical, chemical and biological effects
resulting from pollution of the aquatic environment.

ESE 861 ENVIRONMENTAL SYSTEMS ENGINEERING SEMINAR
1 cr. (1 and 0)
Current advances and research developments in various areas of environmental
engineering. Off-campus speakers, students and faculty participate; graded on
pass/fail basis.

ESE 862 ENVIRONMENTAL QUALITY CASE STUDY
1 cr. (0 and 3)
An in-depth analysis and investigation of a significant current or recent situation
affecting or involving some facet of environmental quality. Study will be conducted
by a team of students and will result in a comprehensive position paper which
integrates the pertinent social, political and economic considerations in the case
with the technical aspects.

ESE 875 WATER RESOURCES PLANNING
3 cr. (3 and 0)
Water and environmental planning emphasizing factors underlying planning pro-
cess; historical treatment of water resources development; changing objectives and
goals from national and local standpoints; current legislation and guidelines for
planning and economic analyses; evolving policy issues; political and institutional
dimensions; roles of Congress, executive agencies and interest groups in environ-
mental planning and implementation.

ESE 876 WATER RESOURCES SYSTEMS
3 cr. (3 and 0)
Current mathematical modeling, optimization and simulation techniques applied
to design of various water resources systems including environmental control sys-
tems, hydrologic systems and integrated multipurpose systems. Specific tech-
niques utilized are linear programming, dynamic programming, Monte Carlo
simulation, queuing theory and Markov processes.

ESE 881 SPECIAL PROBLEMS
1-4 cr.
Problems selected to meet interests and experience of student and instructor.

ESE 883 SELECTED TOPICS IN ENVIRONMENTAL
ENGINEERING
1-4 cr.
A comprehensive study of a topic in environmental engineering not covered
by another course. Topics will vary to keep pace with current developments. May be
taken concurrently with ESE 884 which (if offered) would be a different topic.
INDUSTRIAL ENGINEERING

M. Davis, Head, Department of Industrial Engineering

Major Degrees
Industrial Engineering M.S., Ph.D.

Industrial engineering is concerned with the design, improvement and installation of integrated systems of people, materials and equipment. It draws upon specialized knowledge and skill in mathematical, physical and social sciences, together with the principles and methods of engineering analysis and design, to specify, predict and evaluate the results obtained from such systems.

An important feature of the graduate industrial engineering program is the flexibility to tailor plans of study to individual student interests and needs. Students may concentrate their studies in selected industrial engineering topics and choose minor areas of study from a wide range of fields. Students may also concentrate their studies in a particular problem area such as facilities planning and material handling, quality control and reliability, decision support systems, energy production/distribution, computer-based control, information/communication systems, construction management and manufacturing systems.

If the student chooses, he or she may devise a plan of study that combines industrial engineering core courses with courses from other departments in the College of Engineering and the University. The primary purpose of such a plan is to permit optimum use of the total University resources to provide the best possible preparation for a professional career in industrial engineering.

Students with a bachelor's degree in engineering or physical sciences may be accepted. Those with other backgrounds may be accepted or may be required to successfully complete certain prerequisite courses before formal entrance into the program.

652 RELIABILITY ENGINEERING
3 cr. (3 and 0)

673 MICROCOMPUTER APPLICATIONS IN INDUSTRIAL ENGINEERING
3 cr. (2 and 3)
IE 680 METHODS OF OPERATIONS RESEARCH I
3 cr. (3 and 0)

IE 681 METHODS OF OPERATIONS RESEARCH II
3 cr. (3 and 0)

IE 682 SYSTEMS MODELING
3 cr. (3 and 0)

IE 684 ENGINEERING ECONOMIC ANALYSIS
3 cr. (3 and 0)

IE 686 PRODUCTION PLANNING AND CONTROL
3 cr. (3 and 0)

IE 688 HUMAN FACTORS ENGINEERING
3 cr. (2 and 3)

IE 703 ENGINEERING PROJECT OPERATIONS
3 cr. (3 and 0)
Project organization and planning; project engineering; decision-making processes; patterns of leadership; project financial analysis; time-cost-performance trade-offs and sensitivity analysis; project scheduling and control techniques; project documentation; communication; communication skills. Prerequisite: B.S. degree in engineering.

IE 803 ENGINEERING OPTIMIZATION AND APPLICATIONS
3 cr. (3 and 0)
Nonlinear programming; search methods; dynamic programming and discrete optimization; quadratic programming; linearization; direct search; gradient methods; penalty functions; recursive optimization; implicit enumeration. Prerequisite: Multivariate calculus or permission of instructor.

IE 807 DISCRETE SYSTEMS SIMULATION
3 cr. (3 and 0)
Discrete and Monte Carlo simulation used to model and study stochastic operational systems; simulation languages GPSS V and GASP IV. Prerequisite: Introductory statistics or permission of instructor.

IE 808 CONTINUOUS SYSTEMS SIMULATION
3 cr. (3 and 0)
Continuous systems simulation and feedback type simulation models and their use in analyzing engineering, business, governmental and military systems; concept of industrial dynamics; simulation languages GASP IV and DYNAMO. Prerequisite: IE 807 or permission of instructor.

IE 860 DYNAMIC PROGRAMMING
3 cr. (3 and 0)
Theory and methodology of dynamic programming; Bellman's principle of optimality; Mitten's sufficiency conditions; recursive optimization of serial and non-serial multistage systems; optimization of discrete and continuous systems through decomposition. Emphasis is placed on special aspects of problem formulations. Prerequisites: IE 680 and multivariate calculus or permission of instructor.
861 NONLINEAR PROGRAMMING AND METHODS OF SEARCH
3 cr. (3 and 0)
Methods for nonlinear, continuous problems; classical optimization; separable
programming; quadratic programming; geometric programming; gradient methods;
izable directions; accelerating adaptive direct search methods. Prerequisites: IE 680 and multivariate calculus or permission of instructor.

880 ADVANCED METHODS OF OPERATIONS RESEARCH
3 cr. (3 and 0)
Methods and applications in discrete optimization; integer and mixed integer
programming; Boolean minimization; network optimization; permutation methods;
plicit enumeration; surrogate and aggregate constraints. Prerequisite: IE 681 or permission of instructor.

884 ADVANCED ENGINEERING ECONOMIC ANALYSIS
3 cr. (3 and 0)
Engineering economic analysis for engineering research, development and con­
struction projects emphasizing detailed treatment of tax effects, methods for deter­
ning discount rates, proper use of economic criteria in various decision enviroments (certainty vs. uncertainty, single vs. multiple project selections, etc.).

885 DESIGN AND ANALYSIS OF SIMULATION MODELS
3 cr. (3 and 0)
Design and validation of operations research-type simulation models; analysis of statistical properties of input data of these models. Prerequisites: IE 807 and MGT 614 or permission of instructor.

181

886 OPERATIONS RESEARCH IN PRODUCTION CONTROL I
3 cr. (3 and 0)
Latest techniques in scientific inventory management, scheduling and forecast­
g; operations research; statistics; computer methods; case studies. Prerequi­
tes: IE 680 and multivariate calculus or permission of instructor.

888 APPLIED QUEUING THEORY AND MARKOV PROCESSES
3 cr. (3 and 0)
Analysis of single and multiple channel queues using mathematical queuing
tory; Markov processes including rewards, value and policy iteration techniques.

890 SPECIAL PROBLEMS IN INDUSTRIAL ENGINEERING
1-3 cr. (1-3 and 0)
Principles and methods of industrial engineering applied to analysis of a current terest problem. May be repeated for additional credit. Prerequisite: Permission of instructor.

891 MASTER'S THESIS RESEARCH
Credit to be arranged.

893 SELECTED TOPICS IN INDUSTRIAL ENGINEERING
1-3 cr. (1-3 and 0)
Selected topics in industrial engineering emphasizing new developments in sys­
ms science, systems analysis and operations research. May be repeated for ad­
ditional credit. Prerequisite: Permission of instructor.
IE 895 INDUSTRIAL ENGINEERING SEMINAR
1 cr. (1 and 0)
Series of weekly, one-hour seminars given by students, faculty and guests on topics of current interest. Graded on pass/fail basis.

IE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

MECHANICAL ENGINEERING
C.E.G. Przirembel, Head, Department of Mechanical Engineering

Major
Mechanical Engineering

Degrees
M.Eng., M.S., Ph.D.

Students will be accepted for the Master of Engineering degree program with undergraduate degrees in mechanical engineering (or equivalent) from ABET-accredited programs. Enrollment in the M.S. and Ph.D. programs is open to those students with degrees in physics, applied mathematics, any branch of engineering.

Programs may be selected with concentrations in mechanical and manufacturing systems design (CAD/CAM, kinematics and dynamics, materials, robotics and vibrations) or thermal/fluid sciences (fluid mechanics, heat transfer, thermodynamics and energy systems).

ME 604 CONTROL SYSTEMS DESIGN
3 cr. (3 and 0)

ME 606 COMPUTER CONTROL OF MACHINES AND PROCESSES
3 cr. (2 and 2)

ME 607 APPLIED HEAT TRANSFER
3 cr. (3 and 0)

ME 608 NUMERICAL METHODS IN ENGINEERING ANALYSIS
3 cr. (3 and 0)

ME 610 FRACTURE AND FATIGUE CONTROL IN ENGINEERING STRUCTURES
3 cr. (3 and 0)

ME 611 GAS POWER SYSTEMS
3 cr. (3 and 0)

ME 618 FINITE ELEMENT ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS
3 cr. (3 and 0)

ME 620 ENERGY SOURCES AND THEIR UTILIZATION
3 cr. (3 and 0)

ME 621 CONDUCTION HEAT TRANSFER
3 cr. (3 and 0)
622 PRINCIPLES OF TURBOMACHINERY
3 cr. (3 and 0)

623 INTRODUCTION TO AERODYNAMICS
3 cr. (3 and 0)

625 KINEMATICS AND DYNAMICS OF MACHINERY II
3 cr. (3 and 0)

629 THERMAL ENVIRONMENTAL CONTROL
3 cr. (3 and 0)

630 FLUID POWER — HYDRAULICS
3 cr. (3 and 0)

652 SAFETY ENGINEERING
3 cr. (2 and 3)

653 DYNAMIC PERFORMANCE OF VEHICLES
3 cr. (3 and 0)

654 COMPUTER-AIDED DESIGN OF MACHINE ELEMENTS
3 cr. (3 and 0)

655 DESIGN FOR COMPUTER-AUTOMATED MANUFACTURING
3 cr. (3 and 0)

656 DESIGN AND APPLICATION OF INDUSTRIAL ROBOTS
3 cr. (3 and 0)

659 MATERIALS SELECTION IN DESIGN
3 cr. (3 and 0)

693 SELECTED TOPICS IN MECHANICAL ENGINEERING
1-6 cr.

701 APPLICATIONS OF ENGINEERING ANALYSIS
3 cr. (3 and 0)
Derivation of conservation and describing equations; initial and boundary conditions for engineering problems; lumped and distributed parameter models; review of application of analytical and numerical solutions to engineering problems.

801 FOUNDATIONS OF FLUID MECHANICS
3 cr. (3 and 0)
Derivations of basic equations for multidimensional flow fields; analytical techniques for solving problems in laminar viscous flow and laminar inviscid flow; theories of similitude. Prerequisites: Graduate standing and permission of instructor.

805 HEAT AND MASS TRANSFER I
3 cr. (3 and 0)
Conduction and radiation heat transfer; fundamentals, material properties, applications to engineering problems, classical and numerical solutions; diffusion mass transfer. Prerequisite: Permission of instructor.
ME 806 HEAT AND MASS TRANSFER II
3 cr. (3 and 0)
Convective heat transfer; convective mass transfer; conservation equations; linear and turbulent internal and external flow; analytical and numerical solutions; empirical correlations; application to engineering design. Prerequisite: Permission of instructor.

ME 807 MECHANICAL SYSTEMS I
3 cr. (3 and 0)
Integration and application of selected topics from strength of materials, elasticity, kinematics and dynamics; nature of stress and strain in engineering materials; computer synthesis and analysis of planar linkages; rigid body dynamics applied to engineering systems; energy techniques. Prerequisites: EM 304 and ME 405.

ME 810 MACROSCOPIC THERMODYNAMICS
3 cr. (3 and 0)
First, second and third laws of thermodynamics with engineering applications; thermodynamic property relations; chemical equilibrium. Required for thermal science majors. Prerequisite: ME 312 or equivalent.

ME 811 GAS DYNAMICS
3 cr. (3 and 0)
Concepts from thermodynamics, one-dimensional gas dynamics, one-dimensional wave motion, normal and oblique shocks; flow in ducts and wind tunnels; two-dimensional equation of motion; small perturbation theory. Prerequisite EM 320 or equivalent.

ME 812 EXPERIMENTAL METHODS IN THERMAL SCIENCE
3 cr. (2 and 2)
Theories of measurements and instrumentation and techniques for measuring temperature, pressure and velocity on a practical graduate engineering level; mathematical presentation of data, uncertainty analysis, data acquisition technique and theory and state-of-the-art measuring systems.

ME 814 TURBULENT BOUNDARY LAYER
3 cr. (3 and 0)
Semiempirical theories of Reynolds stress terms; analytical methods of solving turbulent boundary layer momentum and energy equations for flows with pressure gradient and/or heat transfer; theories pertinent to experimental techniques used for turbulent boundary layer study. Prerequisite: ME 801.

ME 815 STATISTICAL THERMODYNAMICS I
PHYS 815 3 cr. (3 and 0)
See PHYS 815 for description.

ME 816 ENERGY CONVERSION
3 cr. (3 and 0)
Nonconventional methods of energy conversion emphasizing power aspects: solar thermal, solar photovoltaic, fusion, magneto-hydrodynamics, thermoelectric, thermionics and fuel cells. Prerequisite: Graduate standing.
E 817 COMBUSTION THEORY
3 cr. (3 and 0)
Study of combustion theory and fundamentals, particularly in fluid flow situations; view of turbulent flame empirical results in combustion systems. Prerequisites: E 801 and 810.

E 820 MODERN CONTROL ENGINEERING
3 cr. (3 and 0)
Mathematical modeling of engineering systems using differential and difference equations; state variable time solutions using analytic and computer-aided analysis techniques; state control principles of controllability, observability, stability and performance specification; trade-offs between state variable and transfer function techniques. Prerequisite: An undergraduate controls course or permission of instructor.

E 821 ADVANCED CONTROL ENGINEERING
3 cr. (3 and 0)
Concepts in multivariable, nonlinear, stochastic and optimal control engineering; design and analysis considerations related to physical machines and processes; mathematical methods as needed. Prerequisite: An undergraduate controls course or permission of instructor.

E 831 CONVECTIVE HEAT TRANSFER
3 cr. (3 and 0)
Derivation of continuity, momentum and energy equations for boundary layer flow; solutions for confined and external flow regimes in laminar and turbulent flow. Prerequisites: ME 304, 801 and MTH SC 208.

E 832 RADIATIVE HEAT TRANSFER
3 cr. (3 and 0)
Radiation properties; enclosure theory; radiation exchange between solid bodies; radiative exchange in the presence of absorbing, transmitting and emitting media; combined radiation, conduction and convection exchange. Prerequisites: ME 304 equivalent and permission of instructor.

E 833 HEAT TRANSFER WITH CHANGE OF PHASE
3 cr. (3 and 0)
Nucleate boiling in a pool; film boiling in a pool; forced nucleate boiling; forced film boiling; effect of impurities on boiling phenomena; dropwise condensation; filmwise condensation; effect of noncondensable gases on condensation; boiling and condensing processes in systems. Prerequisites: ME 304 or equivalent and permission of instructor.

E 841 ADVANCED MECHANICAL ENGINEERING DESIGN I
3 cr. (3 and 0)
Design projects selected from industry or government are addressed by a graduate student/faculty design team. Students are required to create and structure a problem solution, the solution being a preliminary design study encompassing analysis, synthesis, evaluation, economic cost/benefit considerations and engineering project organization. Prerequisite: Graduate standing or permission of instructor.
ME 842 ADVANCED MECHANICAL ENGINEERING DESIGN II
3 cr. (3 and 0)
Case study method of individual design problems and projects. Cases used as a basis for problem formulation, problem analysis, design theory exemplification and for class discussion and evaluation. Principles of mechanical and engineering sciences introduced and utilized as required for case considerations. Prerequisite: ME 306 or equivalent or permission of instructor.

ME 843 NONLINEAR DYNAMICS OF MECHANICAL SYSTEMS
3 cr. (3 and 0)
Behavior of nonlinear mechanical systems analyzed with numerical, graphical and analytical methods; emphasis on understanding nonlinear effects and methods of analysis. Prerequisite: Graduate standing and/or permission of instructor.

ME 844 RANDOM VIBRATION: THEORY AND MEASUREMENT
3 cr. (3 and 0)
Analysis and measurement of random phenomena. Topics include description of random phenomena (probability theory, response of systems to random phenomena and digital signal processing theory); use of spectrum analyzer and other digital signal recording instruments. Prerequisite: ME 302 or MTH SC 208 and permission of instructor.

ME 845 VIBRATION OF CONTINUOUS MEDIA
3 cr. (3 and 0)
Fundamental principles of generation, propagation, absorption, reflection and scattering of vibrational wave in solids and fluids; free forced oscillation of flexible strings, bars, membranes and plates; theory of wave motion in liquids and gases. Prerequisite: Permission of instructor.

ME 890 ENGINEERING PROJECT
1-3 cr. (0 and 3-9)
Comprehensive analytical and/or experimental treatment of phenomena of current interest in mechanical engineering emphasizing modern technological problems. May be repeated for a maximum of nine credits.

ME 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ME 893 SELECTED TOPICS IN MECHANICAL ENGINEERING
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for credit.

ME 930 ADVANCED TOPICS IN HEAT TRANSFER
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for a maximum of six credits.

ME 931 ADVANCED TOPICS IN FLUID MECHANICS
3 cr. (3 and 0)
Topics not covered in other courses. May be repeated for a maximum of six credits.
ME 932 ADVANCED TOPICS IN THERMODYNAMICS
3 cr. (3 and 0)
Topics not covered in other courses. May be repeated for a maximum of six credits.

ME 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

MAT E 605 PHYSICAL METALLURGY
3 cr. (3 and 0)

MAT E 620 INTRODUCTION TO MECHANICAL METALLURGY
3 cr. (3 and 0)

MAT E 622 INTRODUCTION TO CHEMICAL METALLURGY
3 cr. (3 and 0)

MAT E 624 INTRODUCTION TO EXtractive METALLURGY
3 cr. (3 and 0)

MAT E 650 SPECIAL TOPICS IN MATERIALS ENGINEERING
1-4 cr.

MAT E 661 ELEMENTS OF METALLURGY
3 cr. (2 and 3)

MAT E 662 HEAT TREATMENT OF STEELS
3 cr. (2 and 3)

MAT E 663 METALLURGY OF WELDING AND NONDESTRUCTIVE TESTING
3 cr. (2 and 3)

MAT E 664 INDUSTRIAL CORROSION OF METALS
3 cr. (2 and 3)

MAT E 665 INTRODUCTION TO PLASTICS
3 cr. (3 and 0)

MAT E 800 SEMINAR IN MATERIALS RESEARCH
1 cr. (1 and 0)
Presentation and discussion of special topics and original research in materials engineering. Credit may be earned for more than one semester.

MAT E 820 DEFORMATION MECHANISMS IN SOLIDS
3 cr. (3 and 0)
Dislocation theory of solids; mechanisms of plastic deformation in single crystals and polycrystalline aggregates of metals and nonmetals; ductile and brittle fractures; fatigue, creep and stress corrosion cracking of metals. Prerequisite: MAT E 661/661 or equivalent.

MAT E 822 CHEMICAL METALLURGY
3 cr. (3 and 0)
Applications of chemical thermodynamics to metallic systems including gas-metal reactions, metallic solutions, phase equilibria and diffusion. Prerequisite: A course in thermodynamics.
MAT E 824 EXTRACTIVE METALLURGY
3 cr. (3 and 0)

Materials and processes used in extraction of metals from ores emphasizing theory and practice: pyrometallurgy, oxidation-reduction reactions, smelting and refining processes, hydrometallurgy and electrometallurgy. Prerequisite: A course in thermodynamics or physical chemistry.
The College of Forest and Recreation Resources offers the Master of Science and Doctor of Philosophy degrees in forestry and the Master of Science degree in recreation and park administration. In addition, the college offers two professional degrees, the Master of Forestry and the Master of Recreation and Park Administration.

The College of Forest and Recreation Resources is concerned with the management, use and stewardship of our forest resources and with improving the quality of life through rewarding use of leisure. These two general areas of study offer broad opportunities in the management of our forests and our recreation resources for their maximum service to present and future generations.

FORESTRY

M.A. Taras, Head, Department of Forestry

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry</td>
<td>M.For., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Enrollment in the Master of Forestry and Master of Science programs is open to students having baccalaureate degrees in forestry, wood utilization or disciplines related to these fields. A master's degree, preferably in some forestry discipline, is required for enrollment in the Ph.D. program. The candidate may be required to satisfy undergraduate deficiencies before being admitted to full status.

A formal thesis is required for the M.S. and the Ph.D. degrees. For the M.For., a non-thesis degree, a minimum of 36 semester hours of graduate course work must be completed with at least 18 of the required hours coming from courses numbered 700 or above.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 601</td>
<td>HARVESTING FOREST PRODUCTS I</td>
<td>3 cr. (2 and 3) S</td>
</tr>
<tr>
<td>FOR 602</td>
<td>FOREST MENSURATION</td>
<td>3 cr. (2 and 3) S</td>
</tr>
<tr>
<td>FOR 603</td>
<td>FOREST SOILS SEMINAR</td>
<td>1 cr. (1 and 0) S</td>
</tr>
<tr>
<td>FOR 604</td>
<td>FOREST ECONOMICS</td>
<td>3 cr. (3 and 0) S</td>
</tr>
<tr>
<td>FOR 605</td>
<td>FOREST INFLUENCES</td>
<td>2 cr. (2 and 0)</td>
</tr>
<tr>
<td>FOR 606</td>
<td>WOOD AND WOOD FIBER IDENTIFICATION</td>
<td>2 cr. (1 and 3) S</td>
</tr>
</tbody>
</table>
FORESTRY

608 AERIAL PHOTOGRAPHS IN FORESTRY
3 cr. (2 and 3) F

609 MULTIPLE-USE FORESTRY
3 cr. (3 and 0) S

610 SILVICULTURE
4 cr. (3 and 3) S

611 HARVESTING FOREST PRODUCTS II
3 cr. (2 and 3) S

612 FOREST PROTECTION
2 cr. (2 and 0) S

613 INTEGRATED FOREST PEST MANAGEMENT
4 cr. (3 and 3)

614 FOREST MANAGEMENT PLANS
2 cr. (1 and 6)

615 FOREST WILDLIFE HABITAT MANAGEMENT
3 cr. (2 and 3)

616 FOREST POLICY AND ADMINISTRATION
2 cr. (2 and 0) S

617 FOREST MANAGEMENT AND REGULATION
4 cr. (3 and 3) F

618 FOREST VALUATION
3 cr. (3 and 0) S

620 FOREST PRODUCTS
3 cr. (2 and 3) F

621 BIOLOGY AND SILVICULTURE OF HARDWOOD FORESTS
2 cr. (1 and 2)

623 LECTURES IN FORESTRY
2 cr. (2 and 0)

624 FOREST GENETICS AND TREE BREEDING
3 cr. (3 and 0) S

629 WOOD DESIGN
3 cr. (2 and 3) F

630 COMPOSITE WOOD MATERIALS
3 cr. (2 and 3)

631 RECREATION RESOURCE PLANNING IN FOREST MANAGEMENT
3 cr. (3 and 0) F
FOREST SITE CAPABILITY
2 cr. (2 and 0)

FOREIGN WOODS AND THEIR PROPERTIES
2 cr. (1 and 3)

PARK AND FOREST STRUCTURES
2 cr. (2 and 0)

WOOD AS AN ENERGY SOURCE
2 cr. (2 and 0)

SPECIAL PROBLEMS IN FORESTRY
1-3 cr. (1-3 and 0) F, S, SS
Directed individual study of a special problem in an applied field of forestry.
Written report of study results required.

DATA PROCESSING IN FORESTRY PROBLEMS
3 cr. (2 and 0) F, S
Illustration, analysis and discussion of specific approaches used in forestry problems for handling, arranging and analyzing large volumes of field data and presentation in concise, meaningful form. Prerequisite: CP SC 205 or permission of instructor.

ADVANCED MENSURATION
3 cr. (2 and 3) S (even numbered years)
Continuation of FOR 602 emphasizing specialized sampling techniques and statistical methods often required only in forestry; compilation of timber volume table forest survey problems. Prerequisites: EX ST 301 and FOR 302/602 or permission of instructor.

PHOTO INTERPRETATION
3 cr. (2 and 3) S (odd numbered years)
Current methodology in aerial photo interpretation techniques; flight plans; taking and processing aerial photographs; using aerial photographs in timber inventories and cruising. Prerequisites: EX ST 301 and FOR 308/608 or permission of instructor.

ADVANCED FOREST ECONOMICS
3 cr. (2 and 3) S (odd numbered years)
Examination, discussion and application of economic principles to forestry problems in use of land, labor and capital; use of theory in problems of resource allocation and efficiency in forest management. Prerequisites: FOR 304/604 and 418/618 or permission of instructor.

ADVANCED SILVICULTURE I—FOREST SOILS
3 cr. (3 and 0) F (even numbered years)
Effects of soil on tree growth; kinds, extent and quality of sites; individual site characteristics such as nutrients, moisture, structure and physiography will be related to tree growth and site productivity; site manipulation by physical, chemical and biological methods. Prerequisite: Permission of instructor.
FOR 806 ADVANCED SILVICULTURE II—FOREST TREE GROWTH AND DEVELOPMENT
3 cr. (3 and 0) F (odd numbered years)
Growth and development of economically important forest tree species; structure, function, phenology and wood formation related under forest stand conditions; manipulation of forest tree growth by cultural practice; examination of current research in growth and culture of forest trees and stands. **Prerequisite**: BOT 421/621 or permission of instructor.

FOR 807 SPECIAL PROBLEMS IN FORESTRY
Credit to be arranged. F, S, SS
Special problems in forestry research methods that do not directly pertain to the candidate's thesis.

FOR 808 SEMINAR
1 cr. (1 and 0) F, S
Discussions of research and current developments in forestry. Students and staff participate; may be taken up to two semesters for credit; graded on a pass/fail basis.

FOR 809 PRODUCTS BIODETERIORATION
2 cr. (1 and 3)
Detailed investigation of the role of microorganisms in reducing the strength, aesthetics and value of products in service. Emphasis is on deterioration of wood.

FOR 891 MASTER'S THESIS RESEARCH
Credit to be arranged. F, S, SS

FOR 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

RECREATION AND PARK ADMINISTRATION
H. Brantley, Head, Department of Parks, Recreation and Tourism Management

Major
Recreation and Park Administration

Degrees
M.R.P.A., M.S.

This program is designed for persons who wish to increase their competence in providing leisure services. Flexibility permits individual development in professional interest areas of research and park planning, therapeutic recreation, outdoor/environmental interpretation, travel and tourism management, or administration of recreation and park systems.

A minimum of 36 semester hours is required. Each candidate completes an original, independent project to meet degree requirements.

Applicants whose academic records do not meet full admission requirements may be considered if successful work experience in a recreation position can be demonstrated. Students from non-recreation disciplines are required to develop background knowledge of recreation through undergraduate course work. All applicants must submit scores on the aptitude section of the Graduate Record Examination.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRTM 600</td>
<td>Supervision of Recreation Personnel, Patterns and Processes</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 601</td>
<td>World Geography of Recreation and Parks</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 602</td>
<td>Campus Recreation</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 611</td>
<td>Therapeutic Recreation for Selected Populations</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>PRTM 612</td>
<td>Therapeutic Recreation and Mental Health</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 613</td>
<td>Therapeutic Recreation for Physically Disabled</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>PRTM 621</td>
<td>Recreation Financial Resource Management</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 631</td>
<td>Methods of Environmental Interpretation</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>PRTM 632</td>
<td>Historic Site Interpretation</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 633</td>
<td>Introduction to Museology</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>PRTM 641</td>
<td>Commercial Recreation</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 642</td>
<td>Tourism</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 643</td>
<td>Resorts in National and International Tourism</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 644</td>
<td>Tour Planning and Operations</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 645</td>
<td>Conference/Convention Planning and Management</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PRTM 646</td>
<td>Community Tourism Development</td>
<td>1-3 cr. (1-3 and 0)</td>
</tr>
<tr>
<td>PRTM 702</td>
<td>Group Processes in Leisure Service</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Improvement in human relations skills, knowledge of interpersonal needs and problems of individuals and groups; students gain understanding of how others affect them and how they affect others and become more effective professional recreators and park administrators, supervisors, interpreters and educators.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRTM 703</td>
<td>SEMINAR IN RECREATION AND PARK ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
<td>Case problems relating to administration of a park and recreation agency.</td>
</tr>
<tr>
<td>PRTM 704</td>
<td>COMPREHENSIVE RECREATION PLANNING</td>
<td>3 cr. (3 and 0)</td>
<td>Comprehensive recreation planning theories and practices at federal, state and local levels. Selected case study projects are undertaken in cooperation with other university departments and governmental agencies.</td>
</tr>
<tr>
<td>PRTM 707</td>
<td>PRINCIPLES OF ENVIRONMENTAL INTERPRETATION</td>
<td>3 cr. (3 and 0)</td>
<td>Methods of providing learning experiences in out-of-doors focusing on meaning, scope and values of interpretation.</td>
</tr>
<tr>
<td>PRTM 708</td>
<td>SELECTED TOPICS</td>
<td>3 cr. (3 and 0)</td>
<td>Problems of recreation and leisure through a directed reading program and seminar. Student also studies problem areas of own specialization.</td>
</tr>
<tr>
<td>PRTM 709</td>
<td>SPECIAL PROBLEMS</td>
<td>1-3 cr. (1-3 and 0)</td>
<td>Directed, individual comprehensive investigation of a special problem to use knowledge gained in formal courses, provide experience and training in research, and prepare for professional goals. Topics vary in areas of interest or experience of student and instructor. Report of findings required.</td>
</tr>
<tr>
<td>PRTM 710</td>
<td>CURRENT ISSUES IN RECREATION</td>
<td>1 cr. (1 and 0)</td>
<td>Current topics seminar emphasizing student preparation, organization and communication of material and ideas not covered in formal courses. May be repeated for a maximum of three semester hours of credit.</td>
</tr>
<tr>
<td>PRTM 801</td>
<td>PHILOSOPHICAL FOUNDATIONS OF RECREATION AND PARK ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
<td>Current theories and philosophies in recreation as it is influenced by, and has influence on, leisure and the changing environment in America. Student develops his or her own professional philosophy of recreation and leisure.</td>
</tr>
<tr>
<td>PRTM 805</td>
<td>RECREATIONAL ASPECTS OF WATER RESOURCES</td>
<td>3 cr. (3 and 0)</td>
<td>Relationship of recreation to water; history and legislative background; governmental involvement; current research related to planning, pollution and demand; future policy decisions.</td>
</tr>
<tr>
<td>PRTM 806</td>
<td>URBAN RECREATION ANALYSIS</td>
<td>3 cr. (3 and 0)</td>
<td>Interrelationship of social, political and economic factors in providing public or private recreation services in urban areas.</td>
</tr>
<tr>
<td>PRTM 811</td>
<td>RESEARCH AND EVALUATION IN RECREATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>

195
RECREATION AND PARK ADMINISTRATION

Principles, methods and strategies for planning, designing, evaluating and applying studies of recreation. **Prerequisite:** MTH SC 601 or MGT SC 611 or 414/614, or EX ST 801.

PRTM 812 LEISURE SERVICES FOR THE ELDERLY
3 cr. (3 and 0)
The elderly and role of leisure services in later life; needs of community-based and institutionalized elderly; service delivery systems to meet these needs.

PRTM 815 THERAPEUTIC RECREATION AND ACTIVITY THERAPY ADMINISTRATION
3 cr. (3 and 0)
Service delivery structures; interdisciplinary relationships; consultation methods; in-service training; funding sources; service evaluation in therapeutic recreation and activity therapy programs.

PRTM 820 RECREATION RESOURCE POLICY ISSUES AND PROCESSES
3 cr. (3 and 0)
Outdoor recreation policy-formation structures and processes are surveyed through case studies involving past and current public policy issues.

PRTM 891 THESIS RESEARCH
Credit to be arranged.
COLLEGE OF LIBERAL ARTS

ENGLISH
HISTORY
POLITICAL SCIENCE
PSYCHOLOGY
SOCIOLOGY
The College of Liberal Arts offers the Master of Arts degree in English and in history. Graduate courses are also offered in political science, psychology and sociology to provide electives for students in other areas.

ENGLISH

R.W. Hill, Program Coordinator, Department of English

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>M.A.</td>
<td></td>
</tr>
</tbody>
</table>

An applicant for the M.A. degree in English must present at least 12 semester credits of undergraduate courses in English beyond the sophomore level. An applicant for the M.Ed. degree in secondary education with emphasis in English must present at least nine such credits. The credits should include one course each in the English language, Shakespeare and American literature above the sophomore level; students deficient in these requirements may seek provisional admission.

M.A. students complete 24 semester credits of approved graduate courses and write a thesis; or, under the non-thesis option, complete 36 credits of approved graduate courses. The M.Ed. degree program in secondary education with emphasis in English requires a total of 36 credits with a minimum of 12 and a maximum of 18 credits taken in the College of Education.

Candidates for graduate degrees must also satisfy the following departmental requirements: demonstrated proficiency in composition; completion of ENGL 800, Introduction to Research; completion of ENGL 685 (required of graduate assistants and M.Ed. students but recommended for all); a reading knowledge of an approved foreign language (M.A. program only) and a comprehensive oral examination.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 600</td>
<td>THE ENGLISH LANGUAGE</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 601</td>
<td>STRUCTURE OF MODERN ENGLISH</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 603</td>
<td>THE CLASSICS IN TRANSLATION</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 604</td>
<td>CLASSICAL DRAMA</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 605</td>
<td>STUDIES IN ENGLISH LITERATURE TO 1700</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 606</td>
<td>STUDIES IN ENGLISH LITERATURE SINCE 1700</td>
<td>3 cr.</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ENGL 607</td>
<td>THE MEDIEVAL PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 608</td>
<td>CHAUCER</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 609</td>
<td>THE EARLIER ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 610</td>
<td>DRAMA OF ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 611</td>
<td>SHAKESPEARE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 612</td>
<td>STUDIES IN SHAKESPEARE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 613</td>
<td>THE LATER ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 614</td>
<td>MILTON</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 615</td>
<td>THE RESTORATION AND EIGHTEENTH CENTURY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 616</td>
<td>THE ROMANTIC PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 617</td>
<td>THE VICTORIAN PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 618</td>
<td>THE ENGLISH NOVEL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 622</td>
<td>STUDIES IN AMERICAN LITERATURE I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 623</td>
<td>STUDIES IN AMERICAN LITERATURE II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 624</td>
<td>STUDIES IN AMERICAN LITERATURE III</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 625</td>
<td>THE AMERICAN NOVEL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 626</td>
<td>SOUTHERN LITERATURE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 630</td>
<td>MODERN DRAMA</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 631</td>
<td>MODERN POETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENGL 632</td>
<td>MODERN FICTION</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 635</td>
<td>LITERARY CRITICISM</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 655</td>
<td>AMERICAN HUMOR</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 685</td>
<td>COMPOSITION FOR TEACHERS</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGL 700</td>
<td>CHILDREN'S LITERATURE FOR TEACHERS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Literature for grades preschool through junior high.</td>
<td></td>
</tr>
<tr>
<td>ENGL 701</td>
<td>LITERATURE FOR TEACHERS</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Literary studies of special interest to secondary school teachers.</td>
<td></td>
</tr>
<tr>
<td>ENGL 800</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>1 cr.</td>
</tr>
<tr>
<td></td>
<td>Literary history and research; use of libraries and bibliographical tools; exposition of scholarship. Required of all candidates for the degrees Master of Arts and Master of Education with a concentration in secondary education, English.</td>
<td></td>
</tr>
<tr>
<td>ENGL 801</td>
<td>TOPICS IN COMPOSITION AND RHETORIC</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal theories and practices in modern grammar, rhetoric, stylistics and semantics related to teaching composition.</td>
<td></td>
</tr>
<tr>
<td>ENGL 802</td>
<td>TOPICS IN LITERARY GENRES</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal literary genres.</td>
<td></td>
</tr>
<tr>
<td>ENGL 805</td>
<td>TOPICS IN MEDIEVAL LITERATURE</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal works in verse and prose from c. 1100-1500.</td>
<td></td>
</tr>
<tr>
<td>ENGL 808</td>
<td>TOPICS IN RENAISSANCE AND RESTORATION LITERATURE</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal works in verse and prose from c. 1500-1700.</td>
<td></td>
</tr>
<tr>
<td>ENGL 811</td>
<td>TOPICS IN NEOCLASSIC AND ROMANTIC LITERATURE</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal works in verse and prose from c. 1700-1832.</td>
<td></td>
</tr>
<tr>
<td>ENGL 814</td>
<td>TOPICS IN VICTORIAN AND MODERN BRITISH LITERATURE</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Principal works in verse and prose from c. 1832 to present.</td>
<td></td>
</tr>
<tr>
<td>ENGL 820</td>
<td>TOPICS IN AMERICAN LITERATURE TO 1865</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Significant authors; works in poetry and prose; literary-intellectual movements such as puritanism, the enlightenment, romanticism and transcendentalism from c. 1607-1865.</td>
<td></td>
</tr>
</tbody>
</table>
L 823 TOPICS IN AMERICAN LITERATURE SINCE 1865
3 cr. (3 and 0)
Significant authors; works in poetry and prose; literary-intellectual movements as realism, naturalism, modernism and postmodernism from 1865 to the present.

L 831 SPECIAL TOPICS
3 cr. (3 and 0)
Topics not covered in other courses.

L 835 TOPICS IN LITERARY CRITICISM
3 cr. (3 and 0)
Principal statements of literary critics from the classical era to the present.

L 837 TOPICS IN LINGUISTICS
3 cr. (3 and 0)
Concepts of traditional and modern grammarians; development of English language.

L 840 DIRECTED STUDIES
3 cr. (3 and 0)
Editorial work in linguistics or American, British or European literature not offered in other courses. Prerequisite: Permission of director of graduate studies.

L 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

HISTORY
Johnson, Program Coordinator, Department of History

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>M.A.</td>
</tr>
</tbody>
</table>

The M.A. in history requires 30 credits in courses numbered 600 or above must be divided as follows: (1) a minimum of 12 credits in courses numbered between 800 and 890; (2) a minimum of 12 elective courses selected with the approval of the director of the graduate program in history; (3) a minimum of six credits in graduate thesis research. Additionally, the student must write a thesis acceptable to the department and demonstrate reading knowledge of a foreign language. A final examination, which may be written or oral or a combination of the two forms, is required of all candidates.

Students holding an assistantship in the Department of History who receive a grade lower than B in any graduate course may have their assistantship terminated at the discretion of the director of the graduate program.

L 600 STUDIES IN UNITED STATES HISTORY
3 cr. (3 and 0)

L 640 STUDIES IN LATIN AMERICAN HISTORY
3 cr. (3 and 0)
HISTORY

HIST 650 STUDIES IN ANCIENT HISTORY
3 cr. (3 and 0)

HIST 660 STUDIES IN BRITISH HISTORY
3 cr. (3 and 0)

HIST 670 STUDIES IN EARLY EUROPEAN HISTORY
3 cr. (3 and 0)

HIST 671 STUDIES IN MODERN EUROPEAN HISTORY
3 cr. (3 and 0)

HIST 692 STUDIES IN DIPLOMATIC HISTORY
3 cr. (3 and 0)

HIST 693 STUDIES IN SOCIAL HISTORY
3 cr. (3 and 0)

HIST 694 STUDIES IN COMPARATIVE HISTORY
3 cr. (3 and 0)

HIST 695 STUDIES IN THE HISTORY OF IDEAS
3 cr. (3 and 0)

HIST 696 STUDIES IN LEGAL HISTORY
3 cr. (3 and 0)

HIST 700 UNITED STATES THROUGH THE CIVIL WAR
3 cr. (3 and 0)

Problems in United States history through 1865 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 710 UNITED STATES SINCE 1865
3 cr. (3 and 0)

Problems in United States history since 1865 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 720 SOUTHERN HISTORY
3 cr. (3 and 0)

Problems in Southern history with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 760 BRITISH HISTORY
3 cr. (3 and 0)

Problems in the history of Great Britain and the British Empire with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>770</td>
<td>EUROPE TO THE 18TH CENTURY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Problems in European history to 1700 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.</td>
</tr>
<tr>
<td>775</td>
<td>EUROPE SINCE THE 18TH CENTURY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Problems in European history since 1700 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.</td>
</tr>
<tr>
<td>790</td>
<td>HISTORICAL AREA STUDIES</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Problems in the history of Africa, Asia, Latin America or the Middle East with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.</td>
</tr>
<tr>
<td>800</td>
<td>SEMINAR IN UNITED STATES HISTORY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Training in historical research and writing. May be repeated for credit with approval of graduate program director.</td>
</tr>
<tr>
<td>860</td>
<td>SEMINAR IN BRITISH HISTORY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Training in historical research and writing. May be repeated for credit with approval of graduate program director.</td>
</tr>
<tr>
<td>870</td>
<td>SEMINAR IN EUROPEAN HISTORY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Training in historical research and writing. May be repeated for credit with approval of graduate program director.</td>
</tr>
<tr>
<td>880</td>
<td>SPECIAL TOPICS IN HISTORY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Training in historical research and writing. May be repeated for credit with approval of graduate program director.</td>
</tr>
<tr>
<td>885</td>
<td>INDEPENDENT STUDY</td>
<td>3 cr.</td>
<td>3 cr. (3 and 0) Critical study of a historical topic, selected according to needs of student and approval of graduate program director.</td>
</tr>
<tr>
<td>891</td>
<td>MASTER'S THESIS RESEARCH</td>
<td></td>
<td>Credit to be arranged.</td>
</tr>
</tbody>
</table>
POLITICAL SCIENCE

C.W. Dunn, Head, Department of Political Science

Advanced degrees are not awarded in political science. Courses offered to provide electives for students in other areas.

POL SC 609 DIRECTED STUDY IN AMERICAN INSTITUTIONS 3 cr. (3 and 0)

POL SC 622 PUBLIC POLICY ANALYSIS 3 cr. (3 and 0)

POL SC 623 MUNICIPAL ADMINISTRATION 3 cr. (3 and 0)

POL SC 624 ADMINISTRATIVE LAW 3 cr. (3 and 0)

POL SC 625 GRANTS AND THE GOVERNMENTAL BUDGETARY PROCESS 3 cr. (3 and 0)

POL SC 627 GOVERNMENT PERSONNEL ADMINISTRATION 3 cr. (3 and 0)

POL SC 628 AMERICAN DEFENSE POLICY ANALYSIS 3 cr. (3 and 0)

POL SC 629 AMERICAN POLITICS AND EDUCATION 3 cr. (3 and 0)

POL SC 632 AMERICAN CONSTITUTIONAL LAW I 3 cr. (3 and 0)

POL SC 633 AMERICAN CONSTITUTIONAL LAW II 3 cr. (3 and 0)

POL SC 642 POLITICAL PARTIES AND POLITICS 3 cr. (3 and 0)

POL SC 662 PEACE AND ORDER IN INTERNATIONAL RELATIONS 3 cr. (3 and 0)

PSYCHOLOGY

E.H. Galluscio, Head, Department of Psychology

Advanced degrees are not awarded in psychology. Courses are offered to provide electives for students in other areas.

PSYCH 615 SYSTEMS AND THEORIES OF PSYCHOLOGY 3 cr. (3 and 0)

PSYCH 624 PHYSIOLOGICAL PSYCHOLOGY 3 cr. (3 and 0)
PHYSIOLOGICAL PSYCHOLOGY LABORATORY
1 cr. (0 and 3)

GROUP DYNAMICS
3 cr. (3 and 0)

THEORIES OF PERSONALITY
3 cr. (3 and 0)

ABNORMAL PSYCHOLOGY
3 cr. (3 and 0)

SEMINAR TOPICS IN CURRENT PSYCHOLOGY
3 cr. (3 and 0)

Advanced degrees are not awarded in sociology. Courses are offered to provide a minor for students majoring in other areas.

HUMAN ECOLOGY
3 cr. (3 and 0)

METHODS OF SOCIAL RESEARCH II
3 cr. (3 and 0)

SOCIOLOGICAL THEORY
3 cr. (3 and 0)

SOCIOLOGY OF ORGANIZATIONS
3 cr. (3 and 0)

SOCIOLOGY OF LEISURE
3 cr. (3 and 0)

SOCIOLOGY OF SPORT
3 cr. (3 and 0)

THE COMMUNITY
3 cr. (3 and 0)

DEMOGRAPHY
3 cr. (3 and 0)

MEDICAL SOCIOLOGY
3 cr. (3 and 0)

SOCIOLOGY OF AGING
3 cr. (3 and 0)

REHABILITATION SYSTEMS
3 cr. (3 and 0)
COLLEGE OF NURSING

FAMILY HEALTH NURSING
THE GRADUATE PROGRAM IN NURSING

The graduate program in nursing is based on the belief that nursing is a responsible, searching, transactional relationship considering man at the continuum of human development and within the context of human culture. The program develops self-directive, critically thinking scholars prepared to participate with peers in their own and other disciplines.

Graduate education in nursing at Clemson University is postulated on the belief that development and testing of theoretical knowledge is the foundation for the discipline of nursing science. Theoretical knowledge in nursing requires the base of learning, understanding, insights and professional values acquired in the undergraduate nursing major.

Specialization within nursing is introduced at the master’s level at which time the practitioner demonstrates expertise in caring for individuals and families in a variety of environmental settings and at various stages of human development. Graduate level nursing education provides opportunities to transmit nursing knowledge to future generations of nursing practitioners through understanding of the teaching-learning process.

The dynamic forces brought to bear on family and community life require that graduate education in family health nursing provide opportunities for collaborative involvement in health promotion with the consumer public and other professionals. Thus, an education milieu that supports scientific liberal study, interdisciplinary collaboration and involvement with the consumer public provides for educational experiences needed to practice manistic nursing in rural settings.

Admission Requirements

In addition to meeting University admission requirements, students applying for admission to this program should be graduates of baccalaureate programs accredited by the National League for Nursing. Under unusual circumstances, this requirement may be waived by the dean of the College of Nursing. In addition the applicants are to be licensed to practice professional nursing in South Carolina and carry nurse’s liability insurance. Course work deficiencies in health assessment must be removed during the semester of the program, and credits taken to remove a deficiency are counted in the 47 credit hours required for graduation.

The Program

The Master of Science degree program in nursing prepares students for a leadership role in family health nursing with emphasis on one of the following clinical options:

- Family Health Nursing

NOTE: The college reserves the right to limit enrollment of students in any course and not to offer a clinical option if enrollment is insufficient.
The family health nurse provides nursing care and education to families in health agencies and as an independent practitioner of nursing in collaboration with other professionals. Families are seen primarily in their home, community agencies, clinics, family practice centers, physicians' offices or hospitals. The College of Nursing Center provides a site for assessment of clients, nursing interventions and referrals. Supporting course content covers the family, community, nursing role and process, structure of the health care system, research and joint endeavors with another professional discipline (i.e., architecture). Courses in the humanities and social and biological sciences are selected in accordance with student's needs.

Students who select the nursing education option are prepared to teach nursing in the clinical and community health settings. In addition, students are prepared to function in curriculum development and as a role model within any family health nursing setting.

The program can be completed within four sequential semesters but may take longer depending upon the student's needs or wishes. The degree is awarded upon satisfactory completion of 47 semester hours of approved graduate credit exclusive of credits earned in courses taken to meet deficiencies as determined by the major adviser. A thesis, amounting to six credits, is required.

NURS 701 HEALTH ASSESSMENT
2 cr. (1 and 3)
Development of skills in assessment of individuals; identification of common health problems; systematic appraisal of physical, emotional and mental health status of individuals; physical, emotional and mental assessment of the client related to the nursing process; nurse-client communication. Prerequisite: Baccalaureate degree in nursing or permission of instructor.

NURS 801 FAMILY HEALTH NURSING
3 cr. (1 and 6)
Application of nursing process and humanistic nursing to care of families; biophysical, psychosocial, cultural, intellectual and spiritual nature of health and illness; forces for health and illness; dynamics of family health; helping relationship; crisis intervention; longitudinal analyses of care of selected families and clinical areas of study.

NURS 804 NURSING THEORY
2 cr. (2 and 0)
Definition of theory and processes used to develop theory; selected models of nursing are presented and evaluated to determine if they classify as theories and their relevance to family health nursing.
NURS 807 CLINICAL NURSING RESEARCH
3 cr. (3 and 0)
Research methodology emphasizing research in clinical nursing; ethics in research with human subjects; selected original research papers and other topics and activities related to developments in nursing. Research activity does not include thesis advisement.

NURS 812 THE DYNAMICS OF COMMUNITY HEALTH
3 cr. (3 and 0)
Relation of family health to community; epidemiological appraisal of community health; significance of process in planning and decision making; values guiding use and availability of health resources.

NURS 815 THE PROMOTION AND MAINTENANCE OF HEALTH
3 cr. (1 and 6)
Incorporation of longitudinal analyses of study of families selected in NURS 801; continuity and coordination of health care; collaboration among professionals; continuing expansion of concepts of care; emerging systems of health maintenance. Prerequisites: NURS 801, 804 and 812.

NURS 827 FOUNDATIONS OF NURSING EDUCATION
3 cr. (3 and 0)
Philosophies and theories of nursing, teaching and learning that influence development of nursing education in institutions of higher learning; influences of experientialism and existentialism on nursing educational process. Prerequisite: NURS 801, 804, 812, 815 or possession of a master's degree in nursing.

NURS 828 THE COLLEGE TEACHER OF NURSING
3 cr. (2 and 3)
Roles and responsibilities of the nurse-teacher in collegiate nursing programs; curriculum development and evaluation; use of teaching methods, materials and clinical laboratory. Prerequisite: NURS 827.

NURS 831 ADULT NURSING I
6 cr. (3 and 9)
Advanced concepts related to humanistic nursing care of young adults; current research related to common health problems of the young adult; role of nurse as primary care provider and family advocate. Clinical laboratory practice selected from acute, ambulatory and community settings. Prerequisites: NURS 801, 804, 812 and 815.

NURS 832 ADULT NURSING II
6 cr. (3 and 9)
Advanced concepts related to humanistic nursing care of middle-aged adults; current research related to common health problems of middle-aged adults; role of nurse as primary care provider and family advocate. Clinical laboratory practice selected from acute, ambulatory and community settings. Prerequisite: NURS 831.

NURS 833 REHABILITATIVE NURSING I
6 cr. (3 and 9)
Advanced concepts, principles and theories basic to humanistic practice of professional rehabilitative nursing; repatterning as an integral part of human development process. Clinical laboratory practice selected from rehabilitation, ambulatory and community settings. Prerequisites: NURS 801, 804, 812 and 815.
NURS 834 REHABILITATIVE NURSING II
6 cr. (3 and 9)
Advanced body of knowledge concerned with neuromuscular and skeletal function common to normal human development and also seen in neuromuscular and skeletal injury; utilization of current research to propose innovative approaches for positive repatterning of long-term health alterations; maximizing role of professional nurse as member of interdisciplinary health team. Prerequisite: NURS 833.

NURS 835 CHILD HEALTH NURSING I
6 cr. (3 and 9)
Physiological, psychological and developmental theories and practices relative to childhood (early years through adolescence) and their relationship to the practice of humanistic nursing; research in nursing and other disciplines emphasized to potentiate the nurse as teacher, advocate and primary care provider. Clinical laboratory practice selected from acute, ambulatory, home, school and other community settings. Prerequisites: NURS 801, 804, 812 and 815.

NURS 836 CHILD HEALTH NURSING II
6 cr. (3 and 9)
Continuation of NURS 835, concentrating on nursing strategies that reflect the multifaceted origins of health problems of the child within the family. Clinical laboratory practice selected from acute, ambulatory, home, school and other community settings. Prerequisite: NURS 835.

NURS 837 MATERNAL-INFANT NURSING I
6 cr. (3 and 9)
Theory and practice in care of expanding families; concepts of theory development; analysis and evaluation of present theory development in this clinical specialty and in fields related to maternal and infant care; behavioral, psychoanalytic, maturational and cultural theories of growth and development. Clinical laboratory practice takes place in hospitals, community centers, physicians' offices and clients' homes. Prerequisites: NURS 801, 804, 812 and 815.

NURS 838 MATERNAL-INFANT NURSING II
6 cr. (3 and 9)
Continuation of NURS 837, concentrating on care of families with complicated pregnancies and with infants who have developmental variations. Clinical laboratory practice selected from primary care, neonatal care, acute care and genetic counseling clinic settings. Prerequisite: NURS 837.

NURS 840 GERONTOLOGICAL NURSING I
6 cr. (3 and 9)
Research, knowledge, concepts and issues basic to advanced practice of humanistic gerontological nursing; theories of environment and change related to the aging; phenomenon of human aging as reflected by changes in elders' patterns of living. Clinical laboratory practice selected from a variety of gerontological settings. Prerequisites: NURS 801, 804, 812 and 815.

NURS 841 GERONTOLOGICAL NURSING II
6 cr. (3 and 9)
Continuation of NURS 840, building on review of phenomena of aging research; theories relevant to humanistic gerontological nursing practice by family nurse specialist. Clinical laboratory practice selected from a variety of gerontological settings. Prerequisite: NURS 840.
NURS 879 SPECIAL TOPICS IN NURSING
1-3 cr. (1-3 and 0-9)
In-depth study of selected topics such as therapeutic communication, legal and ethical issues in nursing and health care, and political process in health. Prerequisite: Permission of instructor.

NURS 889 SPECIAL PROBLEMS IN NURSING
1-6 cr. (1-6 and 0)
Problems selected to meet special and individualized interests of students. Prerequisites: NURS 801, 804, 807 and permission of instructor.

NURS 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
Research activities related to thesis; minimum of six hours required. Prerequisites: NURS 801, 804 and 807.
COLLEGE OF SCIENCES

BIOCHEMISTRY
BIOLOGY
BOTANY
CHEMISTRY
COMPUTER SCIENCE
GEOLGY
MATHEMATICAL SCIENCES
MICROBIOLOGY
PHYSICS
ZOОLOGY
The College of Sciences offers the Master of Science degree in biochemistry, botany, chemistry, computer science, mathematics, microbiology, physics and zoology, and the Doctor of Philosophy degree in biochemistry, chemistry, computer science, mathematics, microbiology, physics and zoology.

A graduate program leading to the Ph.D. with major emphasis in botany is available through an interdepartmental plant physiology program. In addition, the Ph.D. in management science is awarded jointly with the departments of Management and Mathematical Sciences. Graduate courses are also offered in geology to provide a minor for students majoring in the sciences and other areas.

All graduate programs offered in this college emphasize a broad academic foundation in the disciplinary area combined with intensive study and research in a specific area culminating in a departmental report, thesis or dissertation.

Although the college does not award any professional graduate degrees, courses specifically designed for professional-level graduate work are available in almost all departments with special attention being paid to secondary-level public school teachers who wish to take a major concentration in the sciences while pursuing a professional degree in education.

BIOCHEMISTRY

C.S. Brown, Program Coordinator, Department of Biological Sciences

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
<th>M.S., Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enrollment in the biochemistry program is open to students with baccalaureate degrees in agricultural, biological or physical sciences, or engineering. Entering students must have satisfactory academic records in mathematical, physical and biological sciences. Students with deficiencies may be admitted but will be required to correct these deficiencies during the first year.

Attendance and participation in departmental seminars is mandatory for all graduate students.

Biochemistry 622, 624, 625 and 626 (eight total credit hours) constitute the core of the biochemistry program. All students are expected to complete these courses if they have not had their equivalents at another accredited institution.

In addition to core courses, the M.S. degree requires a minimum of 16 credit hours of course work. Twelve of the 16 credits must be in 800-level courses. At least eight of these 800-level credits (including BIOCH 851) must be in biochemistry courses. Two of the following three courses are required: BIOCH 820, 822 and 831. A minimum of six semester hours of M.S. research (BIOCH 891), culminating in a thesis, is required.
The Ph.D. degree, in addition to core courses, requires a minimum of 27 credit hours of course work with 15 credits in 800-level biochemistry courses and 12 credits in an approved minor area. BIOCH 820, 822 and 831 are required of all Ph.D. students. In addition, one course must be selected from the following: BIOCH 815, 824 and 819. Of the 35 required hours, a minimum of 18 hours must be 800-level courses. Successful completion of written and oral comprehensive exams (after three semesters in residence) will admit the student to candidacy for the Ph.D. degree.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCH 606</td>
<td>PHYSIOLOGICAL CHEMISTRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 608</td>
<td>PHYSIOLOGICAL CHEMISTRY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
</tr>
<tr>
<td>BIOCH 622</td>
<td>A PHYSICAL APPROACH TO BIOCHEMISTRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 623</td>
<td>PRINCIPLES OF BIOCHEMISTRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 624</td>
<td>PRINCIPLES OF BIOCHEMISTRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 625</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
</tr>
<tr>
<td>BIOCH 626</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
</tr>
<tr>
<td>BIOCH 810</td>
<td>ADVANCED BIOCHEMICAL TECHNIQUES</td>
<td>1-3 cr. (0 and 3-9)</td>
</tr>
<tr>
<td>BIOCH 815</td>
<td>LIPIDS AND BIOMEMBRANES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 817</td>
<td>CHEMISTRY AND METABOLISM OF HORMONES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>BIOCH 819</td>
<td>REGULATION OF INTERMEDIARY METABOLISM</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Physical and chemical techniques for analysis of biological materials. Emphasis is on instrumentation. Prerequisites: BIOCH 422/622 and 425/625; or 423/623 and 425/625; or 406/606 and 408/608; or permission of instructor.

Isolation, chemical and physical properties and metabolism of lipids; purification, structure, function and biosynthesis of biomembranes. Prerequisites: BIOCH 422/622 or 423/623, and 424/624 or permission of instructor.

Isolation, assay and chemistry of the various hormones; hormonal control of metabolism and body functions; endocrinopathies of hormone imbalance. Prerequisites: BIOCH 422/622 or 423/623, and 424/624 or permission of instructor.

Dynamic processes of intermediary metabolism emphasizing control of catabolism and anabolism in both plants and animals. Subject matter will be covered in lectures, discussions and guided reading of original current and classical literature.
Prerequisites: BIOCH 422/622 or 423/623, and 424/624 or permission of instructor.

BIOCH 820 NUCLEIC ACIDS AND PROTEIN BIOSYNTHESIS
3 cr. (3 and 0)
Isolation, composition, structure, maturation and functions of nucleic acids; mechanisms of protein synthesis. Students review recent papers in literature, file reports and write a potential experimental research proposal. Prerequisites: BIOCH 422/622 or 423/623, and 424/624 or permission of instructor.

BIOCH 821 PROTEINS
3 cr. (3 and 0)
Isolation, composition, structure and properties of proteins; methods of isolation, analysis and characterization; properties of "unusual" protein systems. Prerequisite: BIOCH 422/622 or 423/623 or permission of instructor.

BIOCH 822 ENZYMES
3 cr. (3 and 0)
Kinetics, mechanisms of action, inhibitions and general properties of enzymes. Prerequisite: BIOCH 422/622 or 423/623.

BIOCH 824 CELLULAR REGULATION AT THE MOLECULAR LEVEL
3 cr. (3 and 0)
Cellular regulation at translational and transcriptional level. Students present recent papers from literature and write a research proposal. Prerequisite: BIOCH 820 or permission of instructor.

BIOCH 825 NEUROCHEMISTRY
3 cr. (3 and 0)
Morphological basis of neurochemistry; function of neural membranes; synaptic functions; brain metabolism; physiological integration of brain structure and function; related topics in medical and behavioral biochemistry; experimental approaches; current and classical papers from neurochemical literature. Prerequisite: BIOCH 424/624.

BIOCH 831 PHYSICAL BIOCHEMISTRY
3 cr. (3 and 0)
Description and theory of physical methods and instrumentation used in analysis of biological macromolecules. Prerequisites: BIOCH 422/622 or 423/623, and one semester of physical chemistry or permission of instructor.

BIOCH 851 BIOCHEMISTRY SEMINAR
1 cr. (1 and 0)
Students review current topics in biochemistry.

BIOCH 871 ADVANCED TOPICS
1-3 cr. (1-3 and 0)
Course offerings include bioenergetics, metabolic control mechanisms, biochemistry to unusual systems and current advances in more traditional areas. Topic to be discussed each semester will be announced prior to registration. Prerequisite: Permission of instructor.

BIOCH 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BIOLOGY

Helm, Director, Biology Program

Advanced degrees are not awarded in biology as a major. These courses are taught by faculty in the life sciences and are offered for elementary and secondary education majors.

700 CLASSICAL GENETICS
1 cr.

Classical principles of genetics including Mendelian genetics, chromosomal inheritance, gene interactions and population genetics. Restricted to elementary and secondary school teachers.

701 THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM I
1 cr.

Introduction to theory and practice of instructional uses of microcomputers and terminals in the biology classroom; use and construction of programs needed to teach biology through use of drill and practice, tutorial, simulation and testing techniques. Restricted to elementary and secondary school teachers.

702 ECOLOGY
1 cr.

Theories, principles and examples describing interactions of individuals, populations and communities with their environment; emphasis and examples come from natural situations. Restricted to elementary and secondary school teachers.

703 SURVEY OF THE KINGDOMS MONERA, PROTISTA AND FUNGI
1 cr. SS

Distribution, classification, morphology and economic importance of bacteria, green algae, eucaryotic algae, protozoans, fungi, lichens and viruses. Laboratory investigations applicable for use in classroom. Restricted to elementary and secondary school teachers.

704 ANALYTICAL THINKING IN BIOLOGY
1 cr.

Role of analysis and critical thinking in biology as a science; rationale and theories provide a basis for this teaching approach. Learning experiences, with modification, applicable at high school level. Restricted to elementary and secondary school teachers.

705 PUBLIC HEALTH MICROBIOLOGY
1 cr.

Microbiologist's role in maintenance of public health including food inspection, sewage and water treatment, vaccination programs, air quality control and epidemiology at state and federal levels. Restricted to elementary and secondary school teachers.

706 BASIC METHODS OF PRESERVING VERTEBRATES FOR TEACHING COLLECTIONS
1 cr. (1 and 0)

BIOL 707
PREPARATION OF PLANTS FOR PERMANENT TEACHING COLLECTIONS
1 cr. (1 and 0)
History and principles of herbarium collections (vascular plants, bryophytes, fungi, lichens, algae, fruit and seeds). Includes methods used by major herbaria for serving various plant collections and inexpensive methods for small teaching collections. Restricted to elementary and secondary school teachers.

BIOL 708
FOOD MICROBIOLOGY
1 cr. (1 and 0)
Factors that influence the survival and growth of microbes in foods, methods of enumeration, food fermentations; food spoilage and foodborne illness. Methods of biological specifications for foods and aspects of control of product quality, safety are also discussed. Restricted to elementary and secondary school teachers.

BIOL 709
MICROTECHNIQUES
1 cr.
Principles and practical applications of light microscopy and microtechniques: basic histology, staining and repair of the light microscope with limited instruction on the techniques of transmission and scanning electron microscopy. Lab prov experience in the use of materials and equipment necessary for light microscopy.

BIOL 731
THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM II
1 cr.
Intermediate-level continuation of BIOL 701. Restricted to elementary and secondary school teachers.

BIOL 732
MICROECOSYSTEMS IN THE CLASSROOM
1 cr.
Theory and techniques for establishing and maintaining freshwater aquaria, water aquaria, earthworm microecosystems, research aquatic microecosystem and terraria in the laboratory; microecosystems used to illustrate ecological principles in the laboratory. Restricted to elementary and secondary school teachers.
Prerequisite: BIOL 702 or permission of instructor.

BIOL 733
THE BRAIN, NERVOUS SYSTEM AND SENSE ORGANS
1 cr.
Structural and functional approach to the nervous system and sense organs, mainly of vertebrates; understanding sought at molecular, cellular, tissue and gross anatomy levels. Laboratory practice includes dissection, physiological and histological studies and exercises using students as experimental subjects. Restricted to elementary and secondary school teachers.

BIOL 734
THE PHYSIOLOGY OF RESPIRATION
1 cr.
Human respiration including anatomy, mechanics, gas transport and control of respiration; recent advances in high altitude and underwater breathing, artifical blood substitutes and liquid breathing. Restricted to elementary and secondary school teachers.
THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM III
1 cr.
Advanced-level continuation of BIOL 731. Restricted to elementary and secondary school teachers.

HUMAN GENETICS
1 cr.
Genetic principles as they relate to human inheritance, emphasizing patterns of human inheritance and their implication in society. Student project required. Restricted to elementary and secondary school teachers.

FUNDAMENTAL IMMUNOLOGY & SEROLOGY IN PUBLIC HEALTH
1 cr.
Antigens and antigenicity, production and characterization of antibody, antigen-antibody reactions, cell-mediated immune response. Restricted to elementary and secondary school teachers.

MODERN MOLECULAR GENETICS
1 cr.
Survey of molecular genetics and its recent advances. Topics include nucleic acid structure and function, transcription, translation, replication, processing, regulation, and recombinant DNA.

BOTANY
McInnis, Program Coordinator, Department of Biological Sciences

Major

Degree
Botany
M.S.
Plant Physiology
Ph.D.

Candidates for graduate work in botany or plant physiology should have a strong undergraduate background in the biological and physical sciences, especially botany and chemistry. Undergraduate curricula which provide this background are botany, biology or chemistry, or one of the cultural plant sciences such as agronomy, forestry or horticulture.

Candidates for the Master of Science degree must complete 24 semester hours of course work and six hours of research and must present and defend a thesis based on original research. Research topics are generally selected from one of the following areas: taxonomy/biosystematics, ecology, development, ecology, mycology, phycology or physiology.

In addition to the Master of Science degree in botany, the department participates in an interdepartmental program awarding the Doctor of Philosophy degree with a major in plant physiology. This program offers considerable opportunity for doctoral research in botany. It is described under Plant Physiology in the College of Agricultural Sciences.

INTRODUCTORY MYCOLOGY
4 cr. (3 and 3) F (even numbered years)

PHYCOLOGY
4 cr. (3 and 3) S (odd numbered years)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Terms Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 621</td>
<td>PLANT PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3) F, S, SS</td>
</tr>
<tr>
<td>BOT 631</td>
<td>INTRODUCTORY PLANT TAXONOMY</td>
<td>4 cr.</td>
<td>(3 and 3) F, SS</td>
</tr>
<tr>
<td>BOT 632</td>
<td>PLANT GEOGRAPHY</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>BOT 635</td>
<td>PLANT BIOSYSTEMATICS</td>
<td>3 cr.</td>
<td>(3 and 0) S (odd numbered years)</td>
</tr>
<tr>
<td>BOT 637</td>
<td>PHYLOGENY OF ANGIOSPERMS</td>
<td>3 cr.</td>
<td>(3 and 0) F (even numbered years)</td>
</tr>
<tr>
<td>BOT 641</td>
<td>PLANT ECOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3) F</td>
</tr>
<tr>
<td>BOT 646</td>
<td>BIOLOGICAL OCEANOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0) S (even numbered years)</td>
</tr>
<tr>
<td>BOT 651</td>
<td>PLANT ANATOMY</td>
<td>4 cr.</td>
<td>(3 and 3) F</td>
</tr>
<tr>
<td>BOT 655</td>
<td>VASCULAR PLANT MORPHOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3) S (odd numbered years)</td>
</tr>
<tr>
<td>BOT 656</td>
<td>PLANT MICROTECHNIQUE</td>
<td>2 cr.</td>
<td>(0 and 6) S (even numbered years)</td>
</tr>
<tr>
<td>BOT 661</td>
<td>CYTOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0) S (even numbered years)</td>
</tr>
<tr>
<td>BOT 701</td>
<td>EVOLUTIONARY BOTANY FOR TEACHERS</td>
<td>3 cr.</td>
<td>(2 and 3) S, SS</td>
</tr>
</tbody>
</table>

Survey of plant kingdom emphasizing evolutionary relationships of plant divisions based primarily on morphology; non-vascular plants; vascular plants. Restricted to students in secondary education.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Terms Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 702</td>
<td>MODERN BOTANICAL CONCEPTS FOR TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0) F, SS</td>
</tr>
</tbody>
</table>

Topics stressing functional processes in plants: physiology, ecology, genetics and evolution. Restricted to students in secondary education.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Terms Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 805</td>
<td>SPECIAL PROBLEMS IN BOTANY</td>
<td>Credit to be arranged</td>
<td>Research in botany or plant physiology not related to a thesis. Prerequisite: Permission of instructor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Terms Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 807</td>
<td>SEMINAR</td>
<td>1 cr.</td>
<td>(1 and 0) F, S</td>
</tr>
</tbody>
</table>

Areas of botanical sciences not covered in other courses. Student reviews literature, organizes and presents material; may be taken for credit only twice.
813 SPECIAL TOPICS IN MYCOLOGY
2-4 cr. (0-2 and 0-6) S
Literature and current developments in a major group of fungi. Topics vary each semester and may include broader fields of mycological research such as fungal physiology and systematics. May be repeated for credit. Prerequisite: Permission of instructor.

815 PHYCOLOGY COLLOQUIUM
1-3 cr. (1-3 and 0) F (odd numbered years)
Phenomena associated with algae. Discussion topics, taken from current scientific literature, present to students a forum for criticizing research, conceiving new ideas for research, developing research outlines and proposals, and incorporating knowledge gained from phycology into a more inclusive understanding of physical and biological systems. Prerequisite: BOT 413/613 or permission of instructor.

821 INORGANIC PLANT METABOLISM
4 cr. (3 and 3) F (odd numbered years)
Cult, soil, water and nutrient relations; permeability, uptake and translocation; respiration; mineral nutrition. Prerequisite: BOT 421/621 or permission of instructor.

822 ORGANIC PLANT METABOLISM
3 cr. (3 and 0) S (even numbered years)
Respiration and photosynthesis; synthesis, translocation, storage, transformation degradation of organic materials, fats, carbohydrates, proteins, pigments and organic acids. Prerequisites: BOT 421/621, general biochemistry or permission of instructor.

823 PLANT GROWTH AND DEVELOPMENT
3 cr. (3 and 0) F (even numbered years)
Vegetative and reproductive growth and development from seed to maturity, flowering, fruiting and senescence; natural and synthetic growth regulators; meristem. Prerequisites: BOT 421/621, organic chemistry or permission of instructor.

824 MODE OF ACTION OF GROWTH SUBSTANCES
4 cr. (3 and 3) S (odd numbered years)
Physiology and biochemistry of both natural and synthetic growth regulators, auxins, growth retardants, herbicides and other inhibitors; methodology and mechanism of action. Prerequisites: BOT 421/621 and general biochemistry, or 822 or permission of instructor.

831 ADVANCED PLANT TAXONOMY
3 cr. (2 and 3) S (even numbered years)
Principles of plant classification; relationships and characteristics of major groups of vascular plants. Student collects and identifies spring flora of area. Prerequisite: 331/631 or permission of instructor.

832 SPECIAL TOPICS IN PLANT SYSTEMATICS
1-4 cr. (1-3 and 0-3) S
Special topics in classical and experimental approaches to plant systematics. May be repeated for credit. Prerequisite: BOT 331/631 or permission of instructor.
BOTANY

BOT 841 THE BIOLOGY OF AQUATIC VASCULAR PLANTS
3 cr. (2 and 3) S (odd numbered years)
Salient features of the aquatic environment relative to aquatic vascular plant structural adaptations of the vegetative and reproductive organs of water plant histories of important aquatic plant families, their biological characteristics, ecological interactions and distribution. Prerequisites: BOT 331/631, ZOOL 410/6 permission of instructor.

BOT 842 PHYSIOLOGICAL PLANT ECOLOGY
3 cr. (3 and 0) F (odd numbered years)
Interactions between individual plants and their environment; plant adaptability relation to influences of environmental factors upon gas exchange by plants, nutrient relations, plant water relations and reproduction and establishment plants. Prerequisites: BOT 421/621 and 441/641 or permission of instructor.

BOT 843 PHYSIOLOGICAL PLANT ECOLOGY LABORATORY
1 cr. (0 and 3) F (odd numbered years)
Methods and measurements used in physiological plant ecology research; element theory and "hands-on" work with equipment to measure photosynthesis, plant water status and other biological and environmental parameters. Corequisite: Concurrent enrollment in BOT 842.

BOT 845 SPECIAL TOPICS IN PLANT ECOLOGY
1-4 cr. (1-3 and 0-3) S
Methods in vegetation analysis; ecological instrumentation; unique vegetation systems; other topics and advances in plant ecology. Applicable for all graduate students in ecology; may be repeated for credit. Prerequisite: BOT 441/6 permission of instructor.

BOT 861 PLANT CELL BIOLOGY
3 cr. (3 and 0) F (even numbered years)
Structure, development and activities of plant cells; ultrastructural organization uniquely associated with dynamics of cellular growth and development in plants. Prerequisite: BOT 421/621 or 461/661 or permission of instructor.

BOT 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

BOT 921 PLANT PHYSIOLOGY COLLOQUIUM
1 cr. (1 and 0)
Topics from current plant physiology literature give students a forum for criticism research, conceiving new research ideas, developing research outlines and proposals, and integrating knowledge from various subdisciplines of plant physiology. May be repeated for credit. Prerequisite: BOT 421/621 or permission of instructor.

BOT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

CHEMISTRY

D.D. DesMarteau, Head, Department of Chemistry and Geology

Major Chemistry

Degrees M.S., Ph.D.
Degree concentrations are offered in analytical, inorganic, organic and technical chemistry. Research areas also include bio-organic chemistry, inorganic, environmental studies and chemical physics. A Ph.D. degree in chemistry with a concentration in textile chemistry environmental studies is offered jointly with the School of Textiles.

Students in either degree program must present satisfactory research essays and must complete, or have completed, a computer science course equivalent to Clemson University's CP SC 110. In some instances, computer science course requirement may be waived for candidates for U.S. degree who have satisfactorily completed undergraduate courses in French, German or Russian. Students in the Ph.D. program must pass a language requirement in French, German or Russian.

Master of Science degree candidates must complete 24 hours of course work and six hours of research culminating in the presentation of a satisfactory thesis.

Doctor of Philosophy degree candidates must qualify to pursue the Ph.D. degree by completing a core of four courses with at least a B average during the first two years of study. The core courses are taken in four areas: one organic, one in physical and two selected from analytical, inorganic, biochemistry. Qualification requirements may also be satisfied by examination.

Admission to candidacy for the Ph.D. degree requires completion of a cumulative or a comprehensive examination in the area of concentration. The examination, the type of which depends upon the area selected by the student, may be followed by an oral presentation before the advisory committee.

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits (3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INORGANIC CHEMISTRY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>INSTRUMENTAL ANALYSIS</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ADVANCED ORGANIC CHEMISTRY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ORGANIC SPECTROSCOPY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHYSICAL CHEMISTRY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHYSICAL CHEMISTRY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SPECTROSCOPY AND MOLECULAR STRUCTURE</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHYSICAL CHEMISTRY LABORATORY</td>
<td>1 cr.</td>
</tr>
</tbody>
</table>
CHEMISTRY

CH 640 PHYSICAL CHEMISTRY LABORATORY
 1 cr. (0 and 3)

CH 654 CHEMICAL SYNTHESIS
 3 cr. (1 and 6)

CH 691 INTRODUCTION TO RADIOCHEMISTRY
 3 cr. (2 and 3)

CH 700 PHYSICAL SCIENCE IN ELEMENTARY SCHOOL — CHEMISTRY
 3 cr. (2 and 3)

Basic chemical principles and their applications to everyday life; selecting, carrying out and discussing short, safe, inexpensive experiments to illustrate the principles. Restricted to graduate students in elementary education; graduate students in secondary education may take this course by special permission of instructor.

CH 701 REVIEW OF GENERAL CHEMISTRY
 3 cr. (3 and 0)

Basic principles encountered in a general chemistry course; explanation of observed facts in terms of modern atomic and molecular structure. Restricted to graduate students in elementary and secondary education.

CH 702 CHEMISTRY FOR HIGH SCHOOL TEACHERS
 3 cr. (2 and 3)

Modern chemical topics selected to meet needs of students; fundamental concepts in organic, bio-organic and physical chemistry. Laboratory provides experience in performance and interpretation of illustrative experiments. Restricted to graduate students in secondary education.

CH 703 SPECIAL PROBLEMS IN CHEMISTRY FOR ELEMENTARY AND SECONDARY SCHOOL TEACHERS
 3-6 cr. (2-6 and 6-0)

Directed, individual study in designing experiments and teaching materials; in-depth study of one or more advanced topics. Seminars used as teaching evaluation procedure; student completes project which can be used in his own teaching situation. Restricted to graduate students in elementary and secondary education; may be repeated for additional credit.

CH 804 FUNDAMENTAL PRINCIPLES OF INORGANIC CHEMISTRY
 3 cr. (3 and 0)

Fundamental principles of modern inorganic chemistry showing their relation to other areas of chemistry.

CH 805 THEORETICAL INORGANIC CHEMISTRY
 3 cr. (3 and 0)

Application of group theory to structure and properties of inorganic molecules.

Prerequisites: CH 435/635 and 804 or permission of instructor.

CH 806 PHYSICAL METHODS IN INORGANIC CHEMISTRY
 3 cr. (3 and 0)

Theory and application of infrared, Raman, visible, ultraviolet, NMR, ESR, Mössbauer and mass spectrometry to inorganic chemistry. Prerequisite: CH 804 or permission of instructor.
CHEMISTRY OF THE TRANSITION ELEMENTS
3 cr. (3 and 0)
Structure, spectroscopy and reactivity of transition metals and their compounds.
Prerequisite: CH 804 or permission of instructor.

CHEMISTRY OF THE NONMETALLIC ELEMENTS
3 cr. (3 and 0)
Development and application of a bonding model for descriptive inorganic chemistry of boron, carbon, silicon, nitrogen, phosphorus, oxygen and sulfur. Prerequisite: CH 804 or permission of instructor.

ANALYTICAL CHEMISTRY
3 cr. (3 and 0)
Art of analytical chemistry: sample selection, sample treatment, practical aspects of instrumentation, analytical chemistry of 70 chemical elements and several organic functional groups; understanding of complete, economically feasible analytical procedures for determination of components of complex mixtures.

CHEMICAL SPECTROSCOPIC METHODS
3 cr. (2 and 3)
Emission and absorption spectroscopy, chemical microscopy, X-ray diffraction and fluorescence techniques in analytical chemistry; theory and operation of instruments.

ELECTROANALYTICAL CHEMISTRY
3 cr. (2 and 3)
Theory and practical application of modern electrochemistry applied to analytical chemistry.

SEPARATION SCIENCE
3 cr. (3 and 0)
Fundamental thermodynamic and kinetic concepts of separation and practical aspects of current separation techniques used in analytical chemistry.

ORGANIC CHEMISTRY I
3 cr. (3 and 0)
Theoretical concepts of organic chemistry, stereochemistry and mechanisms of organic reactions. Prerequisites: CH 224, 421 or 621 and permission of instructor.

ORGANIC CHEMISTRY II
3 cr. (3 and 0)
Continuation of CH 821; mechanisms of organic reactions including photochemistry and Woodward-Hoffman rules; modern synthetic organic chemistry. Prerequisite: CH 821 or permission of instructor.

FUNDAMENTAL PRINCIPLES OF POLYMER CHEMISTRY
3 cr. (3 and 0)
Organic chemistry of natural and synthetic macromolecules.

CHEMISTRY OF HETEROCYCLIC COMPOUNDS
3 cr. (3 and 0)
Chemistry of heterocyclic compounds of nitrogen, oxygen, sulfur and other elements. Prerequisites: CH 821 and/or CH 822 or permission of instructor.
CH 830 FUNDAMENTALS OF PHYSICAL CHEMISTRY
3 cr. (3 and 0)
Principles of classical thermodynamics, chemical kinetics and quantum chemistry. Prerequisite: CH 331/631 or equivalent.

CH 831 CHEMICAL THERMODYNAMICS
3 cr. (3 and 0)
Classical thermodynamics emphasizing theory and significance of energy and systems of variable composition. Prerequisite: CH 331/631 or its equivalent.

CH 834 STATISTICAL THERMODYNAMICS
3 cr. (3 and 0)
Statistical thermodynamics: ensemble method, ideal gases, internal degrees of freedom, solid state, imperfect gases, distribution function method in fluids and time-dependent fluctuations. Prerequisite: CH 831.

CH 835 CHEMICAL KINETICS
3 cr. (3 and 0)
Rate processes and reaction mechanisms; order of reaction; theory of rate processes; relation of reaction rates to mechanism; homogenous and heterogeneous catalysis; experimental methods; chain reactions; diffusion; effects of solvent, temperature and pressure on reaction rates and mechanisms. Lectures supplemented by assigned problems, paper and oral examination of topic of special interest to student.

CH 837 QUANTUM CHEMISTRY
3 cr. (3 and 0)
Mathematical and conceptual formulation of quantum theory of electronic structure of atoms and molecules; eigenvalue solution of one-dimensional Schroedinger equation and application of this method to chemical problems.

CH 840 TECHNIQUES OF EXPERIMENTAL CHEMISTRY
3 cr. (1 and 6)
Theory and practice in major experimental techniques used in chemical research: chromatography; NMR, IR, visible, UV and ORD/CD spectrophotometry; glassblowing and high vacuum techniques; mass spectrometry; ESR; Mossbauer spectrometry and tracer analysis.

CH 851 SEMINAR
1-2 cr.
Students and faculty review current topics in chemistry. May be taken more than one semester.

CH 861 PRINCIPLES OF BIOCHEMISTRY
3 cr. (3 and 0)
Rigorous, quantitative treatment of properties of biological molecules using modern techniques of organic, physical and analytical chemistry to study structural relationships and biological activity. Prerequisites: Satisfactory performance on placement examinations in organic and physical chemistry.

CH 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
H 900 ADVANCED TOPICS IN INORGANIC CHEMISTRY
1-4 cr. (1-4 and 0)
Metal-metal bonding; homogeneous catalysis; photochemistry; bioinorganic chemistry. Topics vary with interests of students; may be taken for additional credit.

H 910 SPECIAL TOPICS IN ANALYTICAL CHEMISTRY
1-4 cr. (1-4 and 0)
Separation methods; advanced electrochemistry; new techniques in analytical chemistry; organic analytical reagents; data acquisition and processing; instrument-computer interfacing. Topics vary with interests of students; may be taken for additional credit.

H 920 ADVANCED TOPICS IN ORGANIC CHEMISTRY
1-4 cr. (1-4 and 0)
Heterocyclic compounds; stereochemistry; natural products; organometallic chemistry; photochemistry. Topics vary with interests of students; may be taken for additional credit.

H 930 ADVANCED TOPICS IN PHYSICAL CHEMISTRY
1-4 cr. (1-4 and 0)
Special problems in molecular spectroscopy, molecular orbital treatments, applications of group theory to chemical structure, irreversible thermodynamics and in statistical mechanics. Topics vary with interest of students; may be taken for additional credit.

H 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

COMPUTER SCIENCE

1. Turner, Jr., Head, Department of Computer Science

Major Degree
Computer Science M.S., Ph.D.

The following are required for unconditional admission to graduate study in computer science:

1. The ability to design, code, test and document computer programs written in high-level programming language. (This implies programming experience considerably beyond that obtained in most beginning programming courses.)

2. Basic mathematics including calculus, elementary probability and statistics, and discrete mathematics or logic.

3. Intermediate-level computer science, including computer organization and data representation, machine and assembly language programming, data structures, file organization and processing, and programming systems.

An applicant with minimal deficiencies may be admitted provisionally, while one with several deficiencies may be required to satisfactorily complete prerequisite work as a post-baccalaureate student prior to admission as a graduate student.
A candidate for the M.S. degree must satisfactorily complete an approved program of 30 graduate hours. At the discretion of the student advisory committee, a thesis or non-thesis option is available. Six hours of research credit may be counted toward the degree requirements with the thesis option. Students may take up to six hours of approved courses in areas outside the department. A scholarly paper or thesis must be prepared and presented by all M.S. degree candidates. Both thesis and non-thesis degree candidates must pass a final oral comprehensive examination.

Students must demonstrate proficiency in computer organization, operating systems and systems programming, database systems, programming languages and compilers, theory of computation and software engineering to receive the M.S. degree in computer science.

Although there are no formal course requirements for the Ph.D. degree, the typical program would require two to four years of effort beyond the M. degree and include an additional 12 hours of study in computer science. Each candidate is required to pass a qualifying examination, a comprehensive examination and the defense of the candidate's dissertation.

CP SC 622 SYSTEM PROGRAMMING
3 cr. (3 and 0)

CP SC 623 INTRODUCTION TO OPERATING SYSTEMS
3 cr. (3 and 0)

CP SC 628 DESIGN AND IMPLEMENTATION OF PROGRAMMING LANGUAGES
3 cr. (3 and 0)

CP SC 629 TRANSLATION OF PROGRAMMING LANGUAGES
3 cr. (3 and 0)

CP SC 630 COMPUTER PERFORMANCE EVALUATION
3 cr. (3 and 0)

CP SC 635 MICROPROGRAMMING
3 cr. (3 and 0)

CP SC 650 THEORY OF COMPUTATION
3 cr. (3 and 0)

CP SC 662 DATABASE MANAGEMENT SYSTEMS
3 cr. (3 and 0)

CP SC 663 ON-LINE SYSTEMS
3 cr. (3 and 0)

CP SC 671 SYSTEMS ANALYSIS
3 cr. (3 and 0)

CP SC 672 SOFTWARE DEVELOPMENT METHODOLOGY
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 680</td>
<td>FUNDAMENTALS OF COMPUTER SCIENCE</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SC 681</td>
<td>SPECIAL TOPICS IN COMPUTER SCIENCE</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>SC 740</td>
<td>COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>SC 741</td>
<td>COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>SC 823</td>
<td>OPERATING SYSTEMS DESIGN</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SC 825</td>
<td>SOFTWARE SYSTEMS FOR DATA COMMUNICATIONS</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SC 828</td>
<td>THEORY OF PROGRAMMING LANGUAGES</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SC 840</td>
<td>DESIGN AND ANALYSIS OF ALGORITHMS</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

SC 680 FUNDAMENTALS OF COMPUTER SCIENCE

3 cr. (3 and 0)

SC 681 SPECIAL TOPICS IN COMPUTER SCIENCE

1-3 cr. (1-3 and 0)

SC 740 COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS I

4 cr. (3 and 2)

Programming and problem solving for high school computer science teachers. Topics include programming methodology, control structures, procedures, scopes, data types and elementary structures, files, recursion, program correctness and documentation. Restricted to graduate students in secondary education. **Prerequisite:** Introductory computer programming.

SC 741 COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS II

4 cr. (3 and 2)

Continuation of CP SC 740 with emphasis on preparation for teaching advanced cement computer science. Topics include data structures, list processing, sorting, searching and analysis of algorithms. Restricted to graduate students in secondary education. **Prerequisite:** CP SC 740 or equivalent.

SC 823 OPERATING SYSTEMS DESIGN

3 cr. (3 and 0)

Analytic, simulation and conceptual models of operating systems and their application to the design and implementation of actual systems; kernel design and its implementation in systems such as MULTICS and UNIX; models of concurrent processes, processor scheduling and memory management. **Prerequisites:** MTH SC 301/601 and CP SC 423/623.

SC 825 SOFTWARE SYSTEMS FOR DATA COMMUNICATIONS

3 cr. (3 and 0)

Structure of software systems supporting communication between physical devices having diverse data-processing, data-input and data-output capabilities; characterization of data communications software in terms of unified network architectures consisting of several functional layers; evaluation of several existing network architectures. **Prerequisite:** CP SC 622 or permission of instructor.

SC 828 THEORY OF PROGRAMMING LANGUAGES

3 cr. (3 and 0)

Syntax and semantics of programming languages; finite state and pushdown processors; context-free models of syntax; parsing algorithms and semantic models. **Prerequisite:** CP SC 428/628 or equivalent.

SC 840 DESIGN AND ANALYSIS OF ALGORITHMS

3 cr. (3 and 0)

Basic techniques for design and analysis of algorithms; models and techniques for obtaining upper and lower time and space bounds; time/space tradeoffs; inherently difficult problems. **Prerequisite:** MTH SC 419/619 or E&ECE 352 or equivalents.
COMPUTER SCIENCE

CP SC 862 DATABASE MANAGEMENT SYSTEM DESIGN
3 cr. (3 and 0)
Concepts and structures for design and implementation of a DBMS; theoretical foundations for query systems; data modeling and information representation; user interface and internal system design considerations; system performance modeling and measurement; topics from the literature. Prerequisites: CP SC 340 and 462/662.

CP SC 864 COMPUTER ARCHITECTURE
3 cr. (3 and 0)
Computer architecture and structures from the classical Von Neumann machine to state-of-the-art computer organizations. Nonconventional architectures such as array, pipeline, associative, dataflow, reduction and tree machines are discussed.

CP SC 881 SPECIAL TOPICS
1-3 cr. (1-3 and 0)
Advanced topics from current problems of interest in computer science; topics vary from semester to semester. May be repeated for credit. Prerequisite: Permission of instructor.

CP SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

GEOLOGY

P.K. Birkhead, Program Coordinator, Department of Chemistry and Geology

Advanced degrees are not awarded in geology. Courses are offered as a minor as interdisciplinary support for students in other areas.

GEOL 600 ENVIRONMENTAL GEOLOGY
3 cr. (3 and 0)

GEOL 602 STRUCTURAL GEOLOGY
3 cr. (2 and 2)

GEOL 603 INVERTEBRATE PALEONTOLOGY
3 cr. (2 and 3)

GEOL 604 ECONOMIC GEOLOGY
3 cr. (3 and 0)

GEOL 605 GEOMORPHOLOGY
4 cr. (3 and 3)

GEOL 606 MINERALOGY
3 cr. (2 and 3)

GEOL 607 QUATERNARY GEOLOGY
3 cr. (2 and 2)

GEOL 608 GEOHYDROLOGY
3 cr. (3 and 0)
OL 609 PETROLOGY
3 cr. (2 and 3)

OL 610 OPTICAL MINERALOGY
3 cr. (1 and 5)

OL 611 RESEARCH PROBLEMS
1-3 cr. (0 and 3-9)

OL 613 STRATIGRAPHY AND SEDIMENTATION
3 cr. (3 and 0)

OL 700 EARTH SCIENCE I: GEOLOGY FOR SCIENCE TEACHERS
3 cr. (2 and 3)
Physical geology for secondary school teachers of earth science and physical sciences: materials of earth's crust, processes of formation and change, geologic features of earth. Field trips provide observation of materials, operating processes and results of processes in nature. Restricted to secondary school teachers.

OL 711 EARTH SCIENCE II: SPECIAL TOPICS IN GEOLOGY FOR SCIENCE TEACHERS
1 cr. (0 and 2)
Earth science topics suitable for elementary and secondary school programs in a teaching laboratory format. Grade is based on final oral and/or written report. May be repeated for credit. Corequisite: GEOL 101, 700 or permission of instructor.

MATHEMATICAL SCIENCES

Fulton, Head, Department of Mathematical Sciences

Major Degrees
Mathematical Sciences M.S., Ph.D.

Entering students are expected to have a background in linear algebra, differential equations, a computer language and statistics.

Students seeking the master’s degree may choose a thesis or non-thesis option. Either prior to or during the program, the following general distributional requirements must be met: advanced calculus, modern algebra, probability and a subsequent applied statistics course, mathematical programming, an additional course in statistics or operations research, a numerical computer science course, a discrete computing science course, core courses beyond advanced calculus and modern algebra, and an applied models course.

In addition, six courses (to be approved by the advisory committee) must be selected from or complement one of the following specialty areas: algebra/combinatorics, analysis, computational mathematics, operations research, probability and statistics.

A minimum of 36 graduate hours is required for the master's degree. Students in the non-thesis option are required to complete a project.

Students are admitted to candidacy for the Ph.D. degree upon the successful completion of a written comprehensive examination on the subject matter of the major and minor fields.
The departments of Management and Mathematical Sciences jointly offer and administer a Ph.D. program in management science. It is described under Management Science in the College of Commerce and Industry.

MTH SC 600 THEORY OF PROBABILITY
 3 cr. (3 and 0)

MTH SC 601 STATISTICAL METHODOLOGY
 3 cr. (3 and 0)

MTH SC 603 INTRODUCTION TO STATISTICAL THEORY
 3 cr. (3 and 0)

MTH SC 605 STATISTICAL THEORY AND METHODS II
 3 cr. (3 and 0)

MTH SC 606 SAMPLING THEORY AND METHODS
 3 cr. (3 and 0)

MTH SC 607 REGRESSION AND TIME SERIES ANALYSIS
 3 cr. (3 and 0)

MTH SC 608 TOPICS IN GEOMETRY
 3 cr. (3 and 0)

MTH SC 609 STATISTICAL THEORY AND METHODS III
 3 cr. (3 and 0)

MTH SC 612 INTRODUCTION TO MODERN ALGEBRA
 3 cr. (3 and 0)

MTH SC 615 INTRODUCTION TO TOPOLOGY
 3 cr. (3 and 0)

MTH SC 619 DISCRETE MATHEMATICAL STRUCTURES I
 3 cr. (3 and 0)

MTH SC 620 DISCRETE MATHEMATICAL STRUCTURES II
 3 cr. (3 and 0)

MTH SC 628 NUMERICAL LINEAR ALGEBRA
 3 cr. (3 and 0)

MTH SC 630 ACTUARIAL FINITE DIFFERENCES
 3 cr. (3 and 0)

MTH SC 631 THEORY OF INTEREST
 3 cr. (3 and 0)

MTH SC 634 ADVANCED ENGINEERING MATHEMATICS
 3 cr. (3 and 0)

MTH SC 635 COMPLEX VARIABLES
 3 cr. (3 and 0)
MATHEMATICAL SCIENCES

I SC 640 LINEAR PROGRAMMING
3 cr. (3 and 0)

I SC 641 INTRODUCTION TO STOCHASTIC MODELS
3 cr. (3 and 0)

I SC 653 ADVANCED CALCULUS I
3 cr. (3 and 0)

I SC 654 ADVANCED CALCULUS II
3 cr. (3 and 0)

I SC 657 APPLIED MATHEMATICS I
3 cr. (3 and 0)

I SC 658 APPLIED MATHEMATICS II
3 cr. (3 and 0)

I SC 660 INTRODUCTION TO NUMERICAL ANALYSIS I
3 cr. (3 and 0)

I SC 661 INTRODUCTION TO NUMERICAL ANALYSIS II
3 cr. (3 and 0)

I SC 663 MATHEMATICAL ANALYSIS I
3 cr. (3 and 0)

I SC 664 MATHEMATICAL ANALYSIS II
3 cr. (3 and 0)

I SC 701 NUMBER SYSTEMS FOR THE ELEMENTARY GRADES
3 cr. (3 and 0)

I SC 702 NUMBER SYSTEMS FOR THE MIDDLE GRADES
3 cr. (3 and 0)

I SC 703 MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS — GEOMETRY
3 cr. (3 and 0)

I SC 705 MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS — ALGEBRA, PROBABILITY & STATISTICS
3 cr. (3 and 0)
MATH SC 710 ELEMENTARY CALCULUS FROM AN ADVANCED VIEWPOINT
3 cr. (3 and 0)
Origins of calculus; limits of sequences and functions; the derivative; maxima
minima; continuous functions; composite and inverse functions; calculus of spec
functions; area and the integral. Intended for high school calculus teachers. May
be included in the degree program for mathematics education majors. Prerequi
MTH SC 108 or its equivalent.

MTH SC 712 MODERN ALGEBRAIC CONCEPTS
3 cr. (3 and 0)
Groups; rings; Boolean algebras; integral domains; fields; Galois theory. Stric
restricted to graduate students in secondary education.

MTH SC 721 MATRIX ALGEBRA I
3 cr. (3 and 0)
Determinants; matrices; vectors; vector spaces; linear transformations; introduc
of matrices by systems of equations. Restricted to graduate students in sec
education.

MTH SC 722 MATRIX ALGEBRA II
3 cr. (3 and 0)
Continuation of MTH SC 721: linear transformations, similarity, polynomials
polynomial matrices, and matrix analysis. Restricted to graduate students in sec
education.

MTH SC 725 COMBINATORIAL MATHEMATICS FOR TEACHERS
3 cr. (3 and 0)
Permutations; combinations; generating functions; recurrence relations; princ
of inclusion-exclusion; partitions; Latin squares; block designs; finite geometr
graphs; codes; Polya's theorem; recreational mathematics. Restricted to gradu
students in secondary education.

MTH SC 730 MODERN GEOMETRY FOR TEACHERS
3 cr. (3 and 0)
Concepts of Euclidean geometry reviewed and extended by means of cordinates, vectors, matrices and conic sections. Restricted to graduate students in secondary education.

MTH SC 731 NON-EUCLIDEAN GEOMETRY
3 cr. (3 and 0)
Euclid's fifth postulate; discovery of non-Euclidean geometry; hyperbolic pl
geometry. Restricted to graduate students in secondary education.

MTH SC 732 PROJECTIVE GEOMETRY
3 cr. (3 and 0)
Analytic and synthetic development of properties of projective geometry and subgeometries, ranging from affine to Euclidean geometry. Restricted to gradu
students in secondary education.
INTRODUCTION TO LINEAR PROGRAMMING WITH APPLICATIONS
3 cr. (3 and 0)
Development of mathematical theory of simplex algorithm; survey of mathematical background required including matrix algebra, systems of linear equations, vector spaces; problem formulation emphasized. Restricted to graduate students in secondary education.

FUNDAMENTAL CONCEPTS OF CALCULUS I
3 cr. (3 and 0)
Set theory; real number system; functions and relations; metric sets and limits; continuity and differentiation; integration. Restricted to graduate students in secondary education. Prerequisite: One year of undergraduate calculus.

NUMERICAL METHODS IN SECONDARY MATHEMATICS I
3 cr. (3 and 0)
Update of traditional techniques for teaching high school mathematics through introduction of computer methods for investigation of processes and reinforcement of concepts; development of programs requiring participants to "invent" algorithms to solve problems in typical high school mathematics course; use of general purpose programming language; methods of teaching this language to high school students. Restricted to graduate students in secondary education.

HISTORY OF MATHEMATICS
3 cr. (3 and 0)
Development of mathematics beginning with ancient numeration systems, continuing through origins of geometry and irrational numbers in classical and Alexandrian Greek periods and extending through development of calculus; Cantor's theory; controversy over Euclid's fifth postulate; completeness of real numbers; the mathematics of the infinite and its applications; origins of probability and statistics, abstract algebra, topology, computing machines and mathematical logic. Restricted to graduate students in education. Prerequisite: One year of calculus at the college level.

THEORY OF NUMBERS
3 cr. (3 and 0)
Properties of integers, divisors and prime numbers; fundamental properties of congruence; polynomial and primitive roots; quadratic residues. Restricted to graduate students in secondary education. Prerequisite: One year of calculus at the college level.

MATHEMATICAL PROBLEMS IN THE CURRICULUM
3 cr. (3 and 0)
Mathematical problems in curriculum of elementary or secondary school. Restricted to graduate students in elementary or secondary education.

PROBABILITY
3 cr. (3 and 0)
Basic probability theory with emphasis on results and techniques useful in operations research and statistics. Topics include axiomatic probability, advanced combinatorial probability, conditional informative expectation, functions of random variables, moment generating functions, distribution theory and limit theorems. Prerequisite: MTH SC 206.
MTH SC 801 GENERAL LINEAR HYPOTHESIS I
3 cr. (3 and 0)
Least-square estimates; Gauss-Markov theorem; confidence ellipsoids and confidence intervals for estimable functions; tests of hypotheses; one-two and high way layouts; analysis of variance for other models. **Prerequisites:** MTH SC 403/603 and 311.

MTH SC 802 GENERAL LINEAR HYPOTHESIS II
3 cr. (3 and 0)
Continuation of MTH SC 801.

MTH SC 803 STOCHASTIC PROCESSES I
3 cr. (3 and 0)
Theory and analysis of time series; recurrent events; Markov chains; random walks; renewal theory; application to communication theory; operation research. **Prerequisite:** MTH SC 402/602 or 800.

MTH SC 804 STOCHASTIC PROCESSES II
3 cr. (3 and 0)
Continuation of MTH SC 803: renewal theory, branching processes, Brown motion, queuing theory, Markov decision processes, semi-Markov processes, point processes, applications to statistics and others. **Prerequisite:** MTH SC 803.

MTH SC 805 DATA ANALYSIS
3 cr. (3 and 0)
Methodology in analysis of statistical data emphasizing applications to real problems using computer-oriented techniques: computer plots, transformations, criteria for selecting variables, error analysis, multiple and stepwise regression, analysis residuals, model building in time series and ANOVA problems, jackknife and random subsampling, multidimensional scaling, clustering. **Prerequisites:** MTH SC 301 and 402/602, or MTH SC 301 and 800.

MTH SC 806 NONPARAMETRIC STATISTICS
3 cr. (3 and 0)
Order statistics; tolerance limits; rank-order statistics; Kolmogorov-Smirnov or sample statistics; Chi-square goodness-of-fit test; two-sample problem; linear rank statistics; asymptotic relative efficiency. **Prerequisite:** MTH SC 402/602 or 800.

MTH SC 807 APPLIED MULTIVARIATE ANALYSIS
3 cr. (3 and 0)
Applied multivariate analysis: computer plots of multivariate observations; multidimensional scaling; multivariate tests of means, covariances and equality of distributions; univariate and multivariate regressions and their comparisons; MANOVA principle components analysis; factor analysis; analytic rotations; canonical correlations. **Prerequisites:** MTH SC 403/603 and 805 or permission of instructor.

MTH SC 809 TIME SERIES ANALYSIS, FORECASTING AND CONTROL
3 cr. (3 and 0)
Modeling and forecasting random processes; autocorrelation functions and spectral densities; model identification, estimation and diagnostic checking; transfer function models; feedforward and feedback control schemes. **Prerequisites:** MTH SC 402/602 and 405/605, or MTH SC 800 and 405/605, or equivalent.
H SC 810 MATHEMATICAL PROGRAMMING
3 cr. (3 and 0)
Formulation and solution of linear programming models and mathematical development of the simplex method using linear algebra. Topics include revised simplex methods, duality, sensitivity analysis, parametric programming, game theory and work models. **Prerequisite:** MTH SC 311.

H SC 811 NONLINEAR PROGRAMMING
3 cr. (3 and 0)
Theoretical development of nonlinear optimization with applications; classical minimization; convex and concave functions; separable programming; quadratic programming; gradient methods. **Prerequisites:** MTH SC 452/652 and 453/653.

H SC 813 ADVANCED LINEAR PROGRAMMING
3 cr. (3 and 0)
Development of linear programming theory using inequality systems, convex cones, polyhedra and duality; solution algorithms and computational considerations for large scale and special structured problems using techniques of upper bounded variables, decomposition, partitioning and column generation; game theory; chance constraints; nonlinear representations. **Prerequisite:** MTH SC 452/652, 810 or equivalent.

H SC 814 NETWORK FLOWS AND INTEGER PROGRAMMING
3 cr. (3 and 0)
Max-flow/min-cut theorem; combinatorial applications; minimum cost flow problems (transportation, shortest path, transhipment); solution algorithms (including out-of-kilter); integer programming including problems with network and special structure and general integer solution methods (branch and bound, cutting plane, augment theoretic). **Prerequisite:** MTH SC 452/652, 810 or equivalent.

H SC 815 DATA STRUCTURES
3 cr. (3 and 0)
Representation and transformation of information; formal description of processes and data structures; tree and list structures; push-down stacks; string and formula manipulation; hashing techniques; interrelation between data structure and program structure; storage allocation methods. **Prerequisites:** Computational maturity and permission of instructor.

H SC 816 GRAPH ALGORITHMS
3 cr. (3 and 0)
Design, analysis and implementation of algorithms and data structures associated with the solution of problems formulated as networks and graphs; applications in graph theory, combinatorial optimization and network programming. **Prerequisites:** MTH SC 652, 810, 863, 854 or permission of instructor.

H SC 817 STOCHASTIC MODELS IN OPERATIONS RESEARCH I
3 cr. (3 and 0)
Stochastic control; structure of sequential decision processes; stochastic inventory models; recursive computation of optimal policies; discrete parameter finite Markov decision processes; various optimality criteria; computation by policy improvement and other methods; existence of optimal stationary policies; stopping time problems; examples from financial management, maintenance and reliability, arch, queuing and shortest path. **Prerequisite:** MTH SC 803.
MTH SC 818 STOCHASTIC MODELS IN OPERATIONS RESEARCH II
3 cr. (3 and 0)
Introduction to queuing theory: Markovian queues, repairman problems, queues with an embedded Markov structure, the queue GI/G/1, queues with a large number of servers, decision making in queues; introduction to reliability theory; failure distributions; stochastic models for complex systems; maintenance and replacement policies; reliability properties of multicomponent structures. Prerequisite: MTH SC 817.

MTH SC 821 REAL ANALYSIS I
3 cr. (3 and 0)
Hausdorff and metric spaces; cardinal and ordinal numbers; rings and algebras sets; exterior and interior measure; completion of measures; Borel and Lebesgue measures in Euclidean n-space; integration theory associated with a measure; types of convergence; derivatives. Prerequisite: MTH SC 454/654.

MTH SC 822 REAL ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 821.

MTH SC 823 COMPLEX ANALYSIS I
3 cr. (3 and 0)
Topological concepts; complex integration; local and global properties of analytic functions; power series; representation theorems; calculus of residues. Designated for non-engineering majors. Prerequisite: MTH SC 464/664.

MTH SC 824 COMPLEX ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 823 including introductory topological analysis.

MTH SC 825 ORDINARY DIFFERENTIAL EQUATIONS I
3 cr. (3 and 0)
Techniques of analysis of systems of differential, difference and integral equations including existence and uniqueness theorems, sensitivity analysis, stability, control and linear systems. Prerequisites: MTH SC 454/654 or 464/664 and 31

MTH SC 831 FOURIER SERIES
3 cr. (3 and 0)
Fourier series with applications to solution of boundary value problems in partial differential equations of physics and engineering; introduction to Bessel functions and Legendre polynomials. Prerequisite: MTH SC 464/664.

MTH SC 837 CALCULUS OF VARIATIONS
3 cr. (3 and 0)
Fundamental theory of the calculus of variations; variable end points; the parametric problem; the isoperimetric problem; fundamental sufficiency theorems. Prerequisite: MTH SC 454/654 or 464/664.

MTH SC 841 APPLIED MATHEMATICS I
3 cr. (3 and 0)
Linear spaces; spectral theory of operators; Green's function; eigenvalue problems of ordinary differential equations, partial differential equations. Prerequisite MTH SC 464/664 and 853.
TH SC 842 APPLIED MATHEMATICS II
3 cr. (3 and 0)
Continuation of MTH SC 841.

TH SC 850 COMPUTATIONAL PROBLEMS IN DISCRETE STRUCTURES
3 cr. (3 and 0)
Digital representation and application of basic discrete structures; sets; relations; graphs; digraphs; automata; unary algebras; computational analog of product structure in each case. Prerequisites: Computational maturity and permission of instructor.

TH SC 851 ABSTRACT ALGEBRA I
3 cr. (3 and 0)
Fundamental theory of modern algebra; finite groups including permutation groups, p-groups, Sylow theorems and structure of finite abelian groups; groups with chain conditions; Krull-Schmidt and Jordan-Holder theorems; solvable, nilpotent and free groups; Galois theory; finite fields; Wedderburn theorem.

TH SC 852 ABSTRACT ALGEBRA II
3 cr. (3 and 0)
Continuation of MTH SC 851 including structure of rings and other algebraic systems.

TH SC 853 ADVANCED LINEAR ALGEBRA
3 cr. (3 and 0)
Properties of finite dimensional vector spaces: bases, dimensions, transformations, projections and orthogonality. Prerequisites: MTH SC 311 and 412/612.

TH SC 854 THEORY OF GRAPHS
3 cr. (3 and 0)
Connectedness; path problems; trees; matching theorems; directed graphs; fundamental numbers of the theory of graphs; groups and graphs. Prerequisite: Permission of instructor.

TH SC 855 COMBINATORIAL ANALYSIS
3 cr. (3 and 0)
Combinations; permutations; permutations with restricted position; Polya's theorem; principle of inclusion and exclusion; partitions; recurrence relations; generating functions; Mobius inversion; enumeration techniques; Ramsey numbers; finite projective and affine geometrics; Latin rectangles; orthogonal arrays; block designs; error detecting and error correcting codes. Prerequisite: MTH SC 311.

TH SC 856 APPLICABLE ALGEBRA
3 cr. (3 and 0)
Applied algebraic ideas in lattice theory and Boolean Algebra; finite-state sequential machines; group theory as applied to network complexity and combinatorial enumeration; algebraic coding theory. Topics vary with background and interests of students. Prerequisites: MTH SC 851 and 853 or permission of instructor.

TH SC 861 ADVANCED NUMERICAL ANALYSIS I
3 cr. (3 and 0)
Interpolation and approximation; numerical quadrature; numerical solution of functional differential equations; integral equations and overdetermined linear sys-
tems; eigenvalue problems; approximation using splines. **Prerequisites:** MTH SC 428/628 and digital computer experience.

MTH SC 862 ADVANCED NUMERICAL ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 861.

MTH SC 863 DIGITAL MODELS I
3 cr. (3 and 0)
Experimental mathematics; pseudo-stochastic processes; analytical and algebraic formulations of time-independent simulation; continuous-time simulation and discrete-time simulation; digital optimization; Fibonacci search; ravine search gradient methods; current research in digital analysis. **Prerequisites:** MTH SC 31453/653 and digital computer experience.

MTH SC 864 DIGITAL MODELS II
3 cr. (3 and 0)
Continuation of MTH SC 863.

MTH SC 867 SYSTEMS AND SOFTWARE
3 cr. (3 and 0)
Systems organization and software design of the IBM 3081-K; working knowledge of machine organization; basic assembler language, operating systems overview, program support facilities; job control language, data management, library management, interactive system concepts. **Prerequisites:** CP SC 205 and MTH SC 311419/619.

MTH SC 868 AN INTRODUCTION TO NUMERICAL PROCESSES
3 cr. (3 and 0)
Numerical solution of linear algebraic systems and systems of ordinary differential equations; computational problems in discrete event simulation. **Prerequisites:** MTH SC 208, 301 and 311.

MTH SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

MTH SC 901 PROBABILITY THEORY I
3 cr. (3 and 0)
Axiomatic theory of probability; distribution functions; expectation; cartesian product of infinitely many probability spaces and the Kolmogorov consistency theorem; models of convergence; weak and strong laws of large numbers. **Prerequisites:** MTH SC 402/602 and 822, or MTH SC 800 and 822, or permission of instructor.

MTH SC 902 PROBABILITY THEORY II
3 cr. (3 and 0)
Continuation of MTH SC 901: characteristic functions, infinitely divisible distributions, central limit theorems, laws of large numbers, conditioning and limit properties of sums of dependent random variables, conditioning, martingales. **Prerequisite:** MTH SC 901.

MTH SC 907 MULTIVARIATE ANALYSIS
3 cr. (3 and 0)
Multivariate normal distribution; Wishart distribution; Hotellings T2 distribution...
INTRODUCTION TO HARMONIC ANALYSIS
3 cr. (3 and 0)
Trigonometric functions and series; summability methods; convergence and summability of Fourier series; Fourier integrals; Fourier transforms; Banach algebra \(\mathcal{B} \) and ideals in \(L^1 \). Prerequisites: MTH SC 822 and 824.

FUNCTIONAL ANALYSIS I
3 cr. (3 and 0)
Hilbert, normed and Banach spaces and topological linear operators in these spaces; Hahn-Banach, uniform boundedness and closed-graph theorems; applications to problems in analysis; spectral theory for linear operators. Prerequisite: MTH SC 821.

FUNCTIONAL ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 927.

SPECIAL TOPICS IN MATHEMATICAL STATISTICS
1-3 cr. (1-3 and 0)
Advanced topics in mathematical statistics from current problems of interest.

SPECIAL TOPICS IN ANALYSIS
1-3 cr. (1-3 and 0)
Advanced analysis topics from current problems of interest.

SPECIAL TOPICS IN APPLIED MATHEMATICS
1-3 cr. (1-3 and 0)
Advanced topics in applied mathematics from current problems of interest.

SPECIAL TOPICS IN ALGEBRA
1-3 cr. (1-3 and 0)
Advanced topics in algebra from current problems of interest.

SPECIAL TOPICS IN CONVEXITY
1-3 cr. (1-3 and 0)
Advanced topics in convexity from current problems of interest.

SPECIAL TOPICS IN NUMERICAL PROCESSES
1-3 cr. (1-3 and 0)
Advanced topics in numerical processes from current problems of interest.

SPECIAL TOPICS IN OPERATIONS RESEARCH
1-3 cr. (1-3 and 0)
Advanced topics in operations research from current problems of interest.

DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
Graduate work in microbiology requires sound undergraduate training in the biological and physical sciences. This training may be received in an undergraduate program in biology (botany, microbiology or zoology), chemistry or in one of the agricultural sciences. Undergraduate work in bacteriology or microbiology is desirable but not necessary.

All students will complete a curriculum which will assure a sound knowledge of the basic areas of microbiology including at least three of the following: bacterial physiology and metabolism, pathogenic microbiology, virology, immunology, microbial genetics and applied and environmental microbiology. The program is selected by the student with the guidance and approval of an advisory committee. Each candidate must present and defend a thesis based upon original research.

Research disciplines include pathogenic, food, environmental and marine microbiology; microbial ecology; bacterial and plant virology; molecular biology; microbial genetics; microbial physiology and metabolism; and anaerobic microbiology.

MICRO 600 PUBLIC HEALTH MICROBIOLOGY
3 cr. (3 and 0) S

MICRO 601 ADVANCED BACTERIOLOGY
4 cr. (2 and 6) F

MICRO 603 MARINE MICROBIOLOGY
3 cr. (2 and 3)

MICRO 605 GENERAL MICROBIOLOGY
4 cr. (3 and 3) F, S, SS

MICRO 607 FOOD AND DAIRY MICROBIOLOGY
4 cr. (3 and 3)

MICRO 610 SOIL MICROBIOLOGY
3 cr. (2 and 3) S (even numbered years)

MICRO 611 PATHOGENIC BACTERIOLOGY
4 cr. (3 and 3) S

MICRO 612 BACTERIAL PHYSIOLOGY
4 cr. (3 and 3) S

MICRO 613 INDUSTRIAL MICROBIOLOGY
3 cr. (2 and 3) F

MICRO 614 BASIC IMMUNOLOGY
3 cr. (2 and 3) F
RO 615 MICROBIAL GENETICS
4 cr. (3 and 3) F

RO 616 INTRODUCTORY VIROLOGY
3 cr. (3 and 0) S

RO 617 MOLECULAR MECHANISMS OF CARCINOGENESIS AND AGING
3 cr. (3 and 0)

RO 802 BACTERIOLOGICAL TECHNIC
4 cr. (2 and 6) F
Analytical and experimental procedures used in bacteriology including techniques for studying bacterial cytology, physiology and metabolism. Designed to give students experience in more advanced methods of investigation.

RO 803 SPECIAL PROBLEMS IN MICROBIOLOGY
Credit to be arranged.
Research not related to a thesis.

RO 804 CURRENT TOPICS IN MICROBIOLOGY
1 cr. (1 and 0)
Evaluation of current research literature in various areas of microbiology; critical evaluation of specific publications in terms of their merit. Required of all microbiology graduate students; may be repeated for credit.

RO 806 PATHOGENESIS AND INFECTIOUS DISEASE
3 cr. (3 and 0)
Medically important host-parasite relationships at the cellular and subcellular levels with emphasis on bacterial and viral infections in man. Prerequisite: MICRO 611 or permission of instructor.

RO 807 SEMINAR
1 cr. (1 and 0)
Topics not covered in other courses. Students review literature, organize and present material; may be taken twice for credit.

RO 810 RECOMBINANT DNA AND GENETIC ENGINEERING IN MICROBES
4 cr. (2 and 6)
Principles and applications of recombinant DNA technology including recombinant DNA techniques, restriction endonucleases, DNA modifying enzymes, cloning vectors, gene isolation techniques and molecular cloning techniques. Prerequisites: MICRO 305 and GEN 305 or permission of instructor.

RO 811 BACTERIAL CYTOLOGY AND PHYSIOLOGY
4 cr. (4 and 0) S (odd numbered years)
Structure, chemistry and physiology of the various bacterial cell components; physiology of bacterial growth and reproduction in batch, continuous and synchronous cultures; economy of the bacterial cell including endogenous metabolism and maintenance requirements; physiology of bacterial death; regulation of enzyme and nucleic acids syntheses. Prerequisites: MICRO 305/605; BIOCH 423/623 and 424/624 or concurrent registration in BIOCH 424/624; MTH SC 206 or permission of instructor.
MICRO 812 BACTERIAL METABOLISM
3 cr. (3 and 0) S (even numbered years)
Various biochemical pathways occurring in bacterial cells; fermentations of carbohydrates and related compounds and of nitrogenous organic compounds; anaerobic and aerobic respiration, including electron transport systems and oxidation phosphorylation; bacterial photosynthesis; nitrogen fixation; biosyntheses of amino acids, purines, pyrimidines, lipids, proteins, nucleic acids and polysaccharides.
Prerequisites: MICRO 305/605; BIOCH 423/623 and 424/624 or concurrent registration in BIOCH 424/624; MTH SC 206 or permission of instructor.

MICRO 815 ADVANCED MICROBIAL GENETICS
3 cr. (3 and 0)
Current developments in microbial genetics; integration of genetics and biochemistry; analysis of genetic fine structure in microorganisms; nature of bacterial variation and expression of mutations; population dynamics; physiochemical mechanisms of heredity; regulation of gene action in microorganisms; physiology and genetics of virulent and lysogenic bacteriophages. Prerequisite: MICRO 415/615.

MICRO 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

MICRO 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PHYSICS
P.B. Burt, Head, Department of Physics and Astronomy

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

For the Master of Science Degree:
A student is admitted to candidacy for the M.S. degree upon completion of a written preliminary examination covering topics determined by the faculty.

It is usually recommended that students submit a thesis to fulfill the requirements for the M.S. degree; however, a non-thesis option is available. In the non-thesis option, a minimum of 36 credit hours is required, including six credit hours of PHYS 890, Directed Activities in Applied Physics. A written report must be submitted in connection with this activity.

A final oral examination is required on the student's general area of study and on the thesis or the directed activities report.

A program leading to the M.S. degree in physics with a concentration in health physics is available. A different selection of course work including six credits of health physics or biophysics and nine credits of courses in biology, biochemistry or chemistry is prescribed.

For the Doctor of Philosophy Degree:
Students who enter with a bachelor's degree will take the preliminary examination for the M.S. degree. Students whose performance is satisfactory to the faculty may bypass the master's degree. Otherwise, the M.S. degree must be awarded as an integral part of the doctoral program.
Students are admitted to candidacy for the Ph.D. degree upon successful completion of a written preliminary examination and a written comprehensive examination on topics determined by the faculty. The student must take a final oral examination on the dissertation only. This must be taken at least three weeks prior to the convocation in which the degree is expected.

- PHYS 617 INTRODUCTION TO BIOPHYSICS I
 3 cr. (3 and 0)

- PHYS 618 INTRODUCTION TO BIOPHYSICS II
 3 cr. (3 and 0)

- PHYS 620 ATMOSPHERIC PHYSICS
 3 cr. (3 and 0)

- PHYS 621 MECHANICS I
 3 cr. (3 and 0)

- PHYS 622 MECHANICS II
 3 cr. (3 and 0)

- PHYS 625 EXPERIMENTAL PHYSICS I
 4 cr. (2 and 6)

- PHYS 626 EXPERIMENTAL PHYSICS II
 4 cr. (2 and 6)

- PHYS 627 INSTRUMENTATION IN EXPERIMENTAL PHYSICS
 3 cr. (2 and 2)

- PHYS 632 OPTICS
 3 cr. (3 and 0)

- PHYS 642 ELECTROMAGNETIC THEORY
 3 cr. (3 and 0)

- PHYS 646 SOLID STATE PHYSICS
 3 cr. (3 and 0)

- PHYS 652 NUCLEAR AND PARTICLE PHYSICS
 3 cr. (3 and 0)

- PHYS 655 QUANTUM PHYSICS I
 3 cr. (3 and 0)

- PHYS 656 QUANTUM PHYSICS II
 3 cr. (3 and 0)

- PHYS 657 BASIC HEALTH AND RADIOLOGICAL PHYSICS I
 3 cr. (3 and 0)

- PHYS 658 BASIC HEALTH AND RADIOLOGICAL PHYSICS II
 3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 660</td>
<td>CONTEMPORARY PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>PHYS 665</td>
<td>THERMODYNAMICS AND STATISTICAL MECHANICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>PHYS 673</td>
<td>X-RAY CRYSTALLOGRAPHY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>PHYS 703</td>
<td>MODERN PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Rutherford model of the atom; molecular description of matter;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>quantum theory of matter; nuclear forces; radioactivity; special</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>relativity. Restricted to students in secondary education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 711</td>
<td>ORIGINS OF PHYSICAL SCIENCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Historical development of concepts in physical science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasizing the alternative and perhaps conflicting explanations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of physical phenomena which led to our present understanding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples drawn from physics and astronomy. Restricted to students</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in secondary education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 716</td>
<td>EXPERIMENTAL PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>4 cr.</td>
<td>(2 and 4)</td>
</tr>
<tr>
<td></td>
<td>Experimental techniques employed in determination of fundamental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>quantities in classical and modern physics; experiments suitable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for classroom demonstration to broaden the concepts of physics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted to students in secondary education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 720</td>
<td>EARTH SCIENCE III: METEOROLOGY AND OCEANOGRAPHY FOR SCIENCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>TEACHERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical processes governing the motions of the earth’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>atmosphere and oceans.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special topics include descriptions of experiments well suited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for classroom use at the junior and senior high school level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 721</td>
<td>EARTH SCIENCE IV: SPECIAL TOPICS IN METEOROLOGY FOR SCIENCE</td>
<td>1 cr.</td>
<td>(0 and 2)</td>
</tr>
<tr>
<td></td>
<td>TEACHERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved topics in meteorology in a field or laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>environment. Topics would not normally be covered in a formal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>course but may be an extension of a course. Corequisite: PHYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720, 723 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 723</td>
<td>WEATHER SCIENCE FOR SCIENCE TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Meteorological phenomena emphasizing non-mathematical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>descriptions of atmospheric physics principles: solar and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>terrestrial radiation, adiabatic processes and cloud</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>formation, local severe storms, global circulation patterns,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>air mass motion and fronts. Restricted to students in secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 811</td>
<td>METHODS OF THEORETICAL PHYSICS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Analytical methods and techniques used in theoretical physics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vector and tensor analysis as applied to physical problems, use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of matrices and groups in classical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>PHYS 812</td>
<td>METHODS OF THEORETICAL PHYSICS II</td>
<td>3 cr. (3 and 0)</td>
<td>Continuation of PHYS 811: use of integral transforms, integral equations, special functions, calculus of variations and numerical approximations in solutions of physical problems.</td>
</tr>
<tr>
<td>PHYS 815</td>
<td>STATISTICAL THERMODYNAMICS I</td>
<td>3 cr. (3 and 0)</td>
<td>Fundamental principles of kinetic theory and quantum statistical mechanics; Boltzmann statistics, Fermi-Dirac statistics and Bose-Einstein statistics. Prerequisite: A course in thermodynamics or permission of instructor.</td>
</tr>
<tr>
<td>PHYS 816</td>
<td>STATISTICAL THERMODYNAMICS II</td>
<td>3 cr. (3 and 0)</td>
<td>Generalized ensemble theory and fluctuations; applications to solids, liquids, gases and blackbody radiation. Prerequisite: PHYS 815.</td>
</tr>
<tr>
<td>PHYS 817</td>
<td>ADVANCED STATISTICAL MECHANICS</td>
<td>3 cr. (3 and 0)</td>
<td>Current topics in statistical mechanics; phase transitions and critical phenomena. Prerequisite: PHYS 816.</td>
</tr>
<tr>
<td>PHYS 821</td>
<td>CLASSICAL MECHANICS I</td>
<td>3 cr. (3 and 0)</td>
<td>Dynamics of particles; variational principles and Lagrange's equations; two-body central force problems; dynamics of rigid bodies. Matrix formulations freely used.</td>
</tr>
<tr>
<td>PHYS 822</td>
<td>CLASSICAL MECHANICS II</td>
<td>3 cr. (3 and 0)</td>
<td>Special relativity in classical mechanics; Hamilton's equations; canonical transformations; Hamilton-Jacobi theory; small oscillations.</td>
</tr>
<tr>
<td>PHYS 841</td>
<td>ELECTRODYNAMICS I</td>
<td>3 cr. (3 and 0)</td>
<td>Field theory of electromagnetism; Maxwell's equations and their application to study of electromagnetic wave production and propagation; wave optics and theories of interference and diffraction.</td>
</tr>
<tr>
<td>PHYS 842</td>
<td>ELECTRODYNAMICS II</td>
<td>3 cr. (3 and 0)</td>
<td>Production and propagation of electromagnetic waves beginning with use of Maxwell's equations; wave guides; diffraction phenomenon; boundary effects; theory of electrons and microscopic phenomena.</td>
</tr>
<tr>
<td>PHYS 845</td>
<td>SOLID STATE PHYSICS I</td>
<td>3 cr. (3 and 0)</td>
<td>Physical properties of crystalline solids; crystalline state determination by diffraction methods; theories of specific heat; properties of metallic lattices and alloys; lattice energy and ferroelectrics.</td>
</tr>
</tbody>
</table>
PHYSICS

PHYS 846 SOLID STATE PHYSICS II
3 cr. (3 and 0)
Continuation of PHYS 845: electronic properties of solids, band theory of solids, physics of semiconductors, theories of magnetism and magnetic resonance phenomena.

PHYS 875 SEMINAR IN CONTEMPORARY PHYSICS
1-3 cr. (1-3 and 0)
Students and interested faculty study areas of physics currently being extensively investigated.

PHYS 890 DIRECTED ACTIVITIES IN APPLIED PHYSICS
1-6 cr.
Training and work on practical problems. Activities are supervised by department faculty or by appropriate adjunct professor; written description of student’s activities must be submitted to course supervisor at completion of activity. Maximum credit limits are six credit hours in a semester and three credit hours in a single summer session; graded on a pass/fail basis.

PHYS 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

PHYS 951 QUANTUM MECHANICS I
3 cr. (3 and 0)
Review of wave mechanics; operator algebra and theory of representation; approximate methods for stationary problems; theory of scattering applied to atomic and nuclear problems.

PHYS 952 QUANTUM MECHANICS II
3 cr. (3 and 0)
Continuation of PHYS 951: time dependent perturbations, radiation absorption and emission, relativistic quantum mechanics, introduction to quantum electrodynamics.

PHYS 966 RELATIVITY
3 cr. (3 and 0)
Special and general theory of relativity including tensor calculus, Lorentz transformation and three experimental tests of general theory: (1) planetary motion and advance of perihelion of Mercury, (2) bending of light rays in gravitational fields and (3) gravitational shift of spectral lines.

PHYS 971 ADVANCED QUANTUM THEORY I
3 cr. (3 and 0)
Development of quantum theory as encountered in systems with an infinite number of degrees of freedom and in systems where relativistic effects are important; advanced scattering theory; quantization of relativistic field theories; development of covariant forms of perturbation theory; other timely subjects. Prerequisite PHYS 951 or permission of instructor.

PHYS 972 ADVANCED QUANTUM THEORY II
3 cr. (3 and 0)
PHYSICS

Continuation of PHYS 971: application of relativistic quantum field theory to various electromagnetic processes; need for renormalization of quantum field theories and its implementation. Prerequisite: PHYS 971 or permission of instructor.

PHYS 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

Astronomy

Students may specialize in astronomy or astrophysics, although their S. or Ph.D. degree will be awarded in physics.

ASTR 601 STELLAR ATMOSPHERES
3 cr. (3 and 0)

ASTR 602 STELLAR INTERIORS AND EVOLUTION
3 cr. (3 and 0)

ASTR 603 GALACTIC STRUCTURES
3 cr. (3 and 0)

ASTR 610 COSMOLOGY
3 cr. (3 and 0)

ASTR 612 PRACTICAL ASTRONOMY
3 cr. (3 and 0)

ASTR 701 SOLAR SYSTEM ASTRONOMY FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)

A lecture and observation course introducing concepts and descriptions basic to modern astronomy. The solar system is surveyed with fundamental physical principles introduced as needed. Planetarium demonstrations and observing sessions are included. Restricted to students in secondary education.

ASTR 711 STELLAR ASTRONOMY FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)

Lecture and observation course covering stellar and galactic astronomy, energy sources and other topics of current interest. Planetarium programs and observing sessions are included. Restricted to students in secondary education.

ASTR 730 EARTH SCIENCE V: ASTRONOMY FOR SCIENCE TEACHERS
3 cr. (3 and 0)

Astronomy with emphasis on the solar system and related phenomena. Topics include the major planets, the sun, comets and meteor showers, evolution of the solar system, celestial motions, time, constellations, structure of the Milky Way and elementary cosmology.

ASTR 731 EARTH SCIENCE VI: SPECIAL TOPICS IN ASTRONOMY
1 cr. (0 and 2)

Approved topics in astronomy to supplement the lecture course ASTR 730. Course is primarily a laboratory/observation course. Corequisite: ASTR 730 or permission of instructor.
Students and faculty study areas of astronomy of current interest.

ZOOLOGY

J.M. Colacino, Program Coordinator, Department of Biological Sciences

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoology</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Students seeking the master’s degree may select either a thesis or no thesis option. Requirements for the thesis option include 24 semester hours of course work, six hours of research, an acceptable thesis and satisfactory performance in a final oral examination. Requirements for the non-thesis option include 36 semester hours of course work and satisfactory performance in a final comprehensive examination.

Requirements for the Ph.D. degree include written and oral comprehensive examinations, research, a dissertation and satisfactory performance in a final oral defense. While there are no required numbers of hours of course work for the doctorate beyond 18 semester hours of research, breadth and depth of preparation in the life sciences will be expected of each candidate.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOL 603</td>
<td>PROTOZOOLOGY</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>ZOOL 604</td>
<td>PROTOZOOLOGY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 605</td>
<td>ANIMAL HISTOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 609</td>
<td>MODERN BIOLOGICAL INSTRUMENTATION</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 610</td>
<td>LIMNOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td>F</td>
</tr>
<tr>
<td>ZOOL 611</td>
<td>ANIMAL ECOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td>F, S</td>
</tr>
<tr>
<td>ZOOL 612</td>
<td>AQUATIC ECOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 615</td>
<td>INTRODUCTION TO MATHEMATICAL ECOLOGY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 620</td>
<td>PRINCIPLES OF EVOLUTION</td>
<td>4 cr. (4 and 0)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 621</td>
<td>SEMINAR IN INVERTEBRATE ZOOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits (Hours)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>OL 630</td>
<td>INTRODUCTION TO POPULATION GENETICS</td>
<td>3 and 0</td>
<td></td>
</tr>
<tr>
<td>OL 650</td>
<td>COMPARATIVE VERTEBRATE EMBRYOLOGY</td>
<td>3 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 656</td>
<td>MEDICAL AND VETERINARY PARASITOLOGY</td>
<td>3 and 3 S</td>
<td></td>
</tr>
<tr>
<td>OL 657</td>
<td>COMPARATIVE PHYSIOLOGY</td>
<td>3 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 658</td>
<td>CELL PHYSIOLOGY</td>
<td>3 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 659</td>
<td>SYSTEMS PHYSIOLOGY I</td>
<td>3 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 662</td>
<td>HERPETOLOGY</td>
<td>2 and 3 F</td>
<td></td>
</tr>
<tr>
<td>OL 663</td>
<td>ICHTHYOLOGY</td>
<td>2 and 3 S</td>
<td></td>
</tr>
<tr>
<td>OL 664</td>
<td>MAMMALOGY</td>
<td>2 and 3 F</td>
<td></td>
</tr>
<tr>
<td>OL 665</td>
<td>ORNITHOLOGY</td>
<td>3 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 670</td>
<td>ANIMAL BEHAVIOR</td>
<td>3 and 0</td>
<td></td>
</tr>
<tr>
<td>OL 671</td>
<td>ANIMAL BEHAVIOR LABORATORY</td>
<td>0 and 3</td>
<td></td>
</tr>
<tr>
<td>OL 675</td>
<td>VERTEBRATE ENDOCRINOLOGY</td>
<td>3 and 0</td>
<td></td>
</tr>
<tr>
<td>OL 676</td>
<td>EXPERIMENTAL VERTEBRATE ENDOCRINOLOGY</td>
<td>0 and 6</td>
<td></td>
</tr>
<tr>
<td>OL 680</td>
<td>ANALYSIS OF DEVELOPMENT</td>
<td>3 and 0</td>
<td></td>
</tr>
<tr>
<td>OL 701</td>
<td>MAN'S IMPACT ON ECOLOGY</td>
<td>3 and 0 SS</td>
<td></td>
</tr>
<tr>
<td>OL 803</td>
<td>POPULATION DYNAMICS</td>
<td>2 and 6 S</td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCTION TO POPULATION GENETICS

3 cr. (3 and 0)

Fundamental relationship of man to his environment as it developed from prehistoric time to present; current overpopulation and pollution. Restricted to graduate students in secondary education.

POPULATION DYNAMICS

4 cr. (2 and 6) S (even numbered years)

Fundamental mechanisms basic to regulation of natural animal populations. Laboratory research project in population dynamics complements theory.
ZOOLOGY

ZOOL 810 BEHAVIORAL ECOLOGY
3 cr. (3 and 0) F (odd numbered years)
Behavior of animals and the ecological context in which various behaviors are shown; empirical and theoretical aspects of behavioral ecology at individual, population and community levels. Prerequisites: ZOOL 411/611 and 470/670 or permission of instructor.

ZOOL 812 SEMINAR
1 cr. (1 and 0) F, S, SS
Current literature on zoology.

ZOOL 815 PHYSIOLOGICAL ECOLOGY
4 cr. (3 and 3) F (even numbered years)
Physiological and biochemical adaptations of invertebrates and vertebrates toward various natural environmental parameters. Field trips acquaint students with natural macro- and microenvironments of individual species. Field measurements of parameters of the environment will be undertaken, and laboratory studies will finish detailed knowledge of various physiological adaptations to these parameters.

ZOOL 816 ADVANCED ECOSYSTEM ANALYSIS I
4 cr. (3 and 3)
Description and analysis of ecological systems; biogeochemical, phycicochemical and ecological principles emphasizing fundamental unity of ecosystems and their abiotic environment. Laboratory focuses on application of these to actual field and laboratory research problems. Prerequisites: MTH SC 210 and 405/605, ZOOL 411/611 or BOT 441/641, ZOOL 415/615 or permission of instructor.

ZOOL 817 ADVANCED ECOSYSTEM ANALYSIS II
4 cr. (3 and 3)
Thermodynamic principles that permit the persistence of ecosystems in time and space are examined based upon specific descriptions developed in ZOOL 81. Laboratory focuses on application of these stability theories to actual field and laboratory research problems. Prerequisite: ZOOL 816.

ZOOL 818 COMMUNITY ECOLOGY
4 cr. (3 and 3)
Structure and function of ecological communities emphasizing description of natural communities and evolutionary rules by which they are organized. Laboratory applies theory to field problems. Prerequisites: MTH SC 108 and 405/605, ZOOL 411/611 or BOT 441/641, or permission of instructor.

ZOOL 835 INTERPRETIVE ELECTRON MICROSCOPY
3 cr. (3 and 0)
Cell structure as viewed through the electron microscope. Characteristic structural features of cells from various tissues and from various organisms at different phylogenetic levels will be stressed. Prerequisite: AN PH 801 or ZOOL 405/605 permission of instructor.

ZOOL 852 PRINCIPLES AND METHODS OF SYSTEMATIC ZOOLOGY
2 cr. (2 and 0) F
Problems confronting taxonomists in zoological sciences and conventional practices developed to handle them.
OL 861 SPECIAL TOPICS
1-4 cr. (1-4 and 0)
Current areas of active research interest in zoological sciences.

OL 863 SPECIAL PROBLEMS
1-4 cr. F, S, SS
Research not related to thesis. Prerequisite: Permission of instructor.

OL 865 ADVANCED ORNITHOLOGY
3 cr. (3 and 0)
Orders and families of birds; fossils; zoogeography; anatomy; physiology; behavior; ecology. Prerequisite: ZOOL 465/665 or permission of instructor.

OL 881 METHODS IN DEVELOPMENTAL BIOLOGY
2 cr. (0 and 6)
Observations and experiments conducted on an individual basis will involve a variety of developmental systems, various techniques used to study development and critical interpretation of results. Prerequisites: ZOOL 480/680 or equivalent and permission of instructor.

OL 883 SPECIAL TOPICS IN EVOLUTIONARY BIOLOGY
1-4 cr. (1-3 and 0-3)
Recent advances in evolutionary biology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

OL 884 SPECIAL TOPICS IN PHYSIOLOGY
1-4 cr. (1-3 and 0-3)
Recent advances in physiology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

OL 885 SPECIAL TOPICS IN ECOLOGY
1-4 cr. (1-3 and 0-3)
Recent advances in ecology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

OL 886 SPECIAL TOPICS IN ANIMAL BEHAVIOR
1-4 cr. (1-3 and 0-3)
Recent advances in animal behavior and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

OL 887 SPECIAL TOPICS IN CELLULAR AND DEVELOPMENTAL BIOLOGY
1-4 cr. (1-3 and 0-3)
Recent advances in cellular and developmental biology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

OL 888 SPECIAL TOPICS IN ORGANISMAL BIOLOGY
1-4 cr. (1-3 and 0-3)
ZOLOGY

Recent advances in organismal biology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. Prerequisite: Permission of instructor.

ZOOL 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ZOOL 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
bsentia, Study in
Master's, 46
Ph.D., 48
cademic Grievances, Graduate Student,
Academic, 13
Academic Records, Permanent, 39
cademic Regulations, 39
cademic Requirements, 30
cademic Standards, 39
counting, 104
dministration and Supervision, 127
dmission as Non-Degree Student, 33
dmission as Post-Baccalaureate
Student, 34
dmission Classifications, 33
dmission Procedures and
Requirements, 30
Readmission, 32
New Applicants, 30
Conditional Acceptance, 31
Applicants Presently Enrolled in
the Graduate School, 31
dmission to Candidacy for Degree, 38
dmission to Degree Program, 33
dvisor, Major, 37
dvisory Committee, 37
gicultural Economics, 54
gicultural Education, 58
gicultural Engineering, 146
gicultural Mechanization, 61
gicultural Sciences, College of, 54
gronomy, 62
imal and Food Industries, 65
imal Physiology, 65
imal Science, 68
ppeals Provisions, 13
plication for Diploma, 38
plied Economics, 69
pointments, Graduate, 26
ecture, 91
ecture, College of, 90
art and Architectural History, 100
sistantships, Departmental Graduate, 27
assistantships, Graduate Resident, 28
stromy, 249
thic Tickets, 24
uditing, 23, 42
chemistry, 215
eering, 146
ology, 217
board of Trustees, 11
planty, 219

Building Science, 93
Business Administration, 106
Calendar, Clemson University, 7
Candidacy for a Graduate Degree, 38
Ceramic Engineering, 151
Certification, Teacher, 36
Change of Degree Program, 32
Checklist on Graduate School
Procedures, 2
Chemical Engineering, 153
Chemistry, 222
City and Regional Planning, 94
Civil Engineering, 156
Clemson University, 10
Commerce and Industry, College of, 104
Commission on Graduate Studies
and Research, 12
Community and Rural Development, 58
Comprehensive Examination before
Admission to Ph.D. Candidacy, 50
Computer Center, 17
Computer Engineering, 162
Computer Science, 227
Concert Tickets, 24
Conditional Acceptance, 31
Continuous Enrollment, 41
Cooperative Education Program, 29
Correspondence Directory, inside
back cover
Course Listing Explanation, 3
Course Work Required
Master's, 45
Ph.D., 45
Credit Loads, Maximum, 41

Dairy Science, 69
Deadline Dates, 2
Deans, Academic and Administrative, 11
Degree Requirements, 45
Departmental Graduate Assistantships, 27
Diploma, Application for, 38
Dissertations, 43
Doctor of Education
Degree Requirements, 51
Doctor of Philosophy Degree
Requirements, 47
Duplication of Higher Degrees, 32

Economics, 109
Education, College of, 126
Electrical Engineering, 166
Elementary Education, 126
INDEX (Continued)

Employees' Eligibility for Graduate Study, 35
Employment, Student, 26, 29
Engineering, College of, 146
Engineering Mechanics, 173
English, 198
Enrollment in Graduate Courses, 35
Clemson University Senior, 35
Pass/Fail Basis, 42
Restrictions, 36
Teacher Certification, 36
Transient Graduate Students, 35
University Employees, 35
Entomology, 70
Environmental Science, 72
Environmental Systems Engineering, 174
Equal Opportunity Statement, inside front cover
Examinations, Final
Master's, 46
Ph.D., 51
Examinations, Comprehensive before Admission to Candidacy, 50
Executive Officers and Deans, 11
Expenses, 22
Experimental Statistics, 73

Family Health Nursing, 208
Fees, 22
Graduate Assistants, 23
Staff Members, 23
Fees, Establishment of, 26
Fees, Past Due, 26
Fees, Refund of, 25
Fees, Settlement of, 24
Fellowships, 28
Filing Graduate Degree Curriculum, 37
Final Doctoral Oral Examination, 51
Final Examination
Master's, 46
Ph.D., 51
Finance, 112
Financial Assistance, 26
Food Science, 74
Food Service, 20
Foreign Students, 21
Forestry, 190
Forest and Recreation Resources, College of, 190
Genetics, 75
Geology, 230
Graduate Appointments, 26
Graduate Assistantships, 27
Graduate Curriculum Committee, 12
Graduate Degree Curriculum, Filing of, 37
Graduate Programs and Course Offerings, 5
Graduate Resident Assistantships, 28
Graduate School, 12
Graduate Student Association, 13
Graduation Fees, 24
GS 799, 41

Health Service, 20
History, 201
Horticulture, 76
Housing, 18
Hospital Administration, 117
Incomplete Graduate Course Work, 39
Industrial Education, 139
Industrial Engineering, 179
Industrial Management, 113
International Services Office, 22
International Students, 21

Language Requirement
Master's, 46
Ph.D., 49
Liberal Arts, College of, 198
Libraries, 15
Loans, 29

Major Adviser, 37
Management, 113
Management Science, 117
Marketing, 119
Married Student Housing, 19
Master's Degree Requirements, 45
Mathematical Sciences, 231
Mechanical Engineering, 182
Medical Requirement, 33
Microbiology, 242

Non-Degree Student, 33
Nursing, College of, 208
Nutrition, 79

Off-Campus Housing, 19
Off-Campus Research Master's, 46
Ph.D., 48
Past Due Accounts, 26
Personnel Services, 127
INDEX (Continued)

- Physics, 244
- Plant Pathology, 82
- Plant Physiology, 84
- Political Science, 204
- Post-Baccalaureate Student, 34
- Poultry Science, 85
- Psychology, 204
- Purpose of Catalog, inside front cover
- Reading, 127
- Readmission, 32
- Recreation and Park Administration, 193
- Regulations, General Graduate School, 36
- Requirements for Degree, 45
- Master’s, 45
- Specialist in Education, 47
- Doctor of Philosophy, 47
- Doctor of Education, 51
- Research Facilities, 17
- Residence Halls, 18
- Residence Requirements
- Master’s, 45
- Ph.D., 47
- Sciences, College of, 214
- Secondary Education, 126
- Seniors, Enrollment in Graduate Courses, 35
- Settlement of University Fees, 24
- Single Student Housing, 18
- Sociology, 205
- Special Education, 127
- Specialist in Education
- Degree Requirement, 47
- Study in Absentia
- Master’s, 46
- Ph.D., 48
- Student Employment, 26, 29
- Student Responsibility, inside front cover
- Student Services, 18
- Teacher Certification, 36
- Textile and Polymer Science, 120
- Textile Chemistry, 120
- Textile Science, 122
- Theses and Dissertations, 43
- Abstract, 44
- Binding Fee, 24, 43
- Guidelines for Preparation of, 44
- Restrictions on use of, 44
- Time Limits
- Master’s, 45
- Ph.D., 49
- Traineeships, 28
- Transfer Credit, Acceptance of, 42
- Transient Student, 35
- Tuition, 22
- University Employees
- Fees, 23
- Enrollment, 35
- University Government and Administration, 10
- Visual Studies, 98
- Visiting Scholars, 22
- Vocational/Technical Education, 142
- Wildlife and Fisheries Biology, 86
- Withdrawal from Courses, 40
- Zoology, 250
DIRECTORY FOR CORRESPONDENCE

Mailing Address
Clemson University, Clemson, South Carolina 29631.

University Switchboard
(803) 656-3311.

Affirmative Action
Address the Director of the Office of Human Resources, telephone (803) 656-3181.

Assistantships
Address the head of the department of proposed major.

Graduate Study
Address the Dean of the Graduate School, telephone (803) 656-3195.

Housing
Address the Housing Office, telephone (803) 656-2295.

International Student Affairs
Address the International Services Office, telephone (803) 656-2457.

Public School Teachers Information
Agricultural Education, telephone (803) 656-3300.
Elementary and Secondary Education, telephone (803) 656-3484.
Industrial Education, telephone (803) 656-3447.
Off-Campus Courses—Office of Educational Services, telephone (803) 656-2497, 2498.

Registration and Class Schedules
Address the Registrar, telephone (803) 656-2171.

Transcripts
Address the Registrar, telephone (803) 656-2171.

University Research
Address the Director of University Research, telephone (803) 656-2375.

Veterans Affairs
Address the Registrar, telephone (803) 656-2171.

The business and administrative offices of the University are open 8 a.m. to 4:30 p.m. Monday through Friday for 12 months of the year except for official University holidays.