The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures

H. Torbati-Sarraf
Mitra Shabani
Paul D. Jablonski
Garrett J. Pataky
A. Poursaeed

Follow this and additional works at: https://tigerprints.clemson.edu/civileng_pubs

Part of the Civil Engineering Commons, and the Mechanical Engineering Commons
The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures

H. Torbati-Sarrafa, a, *, Mitra Shabani b, Paul D. Jablonski c, Garrett J. Pataky b, A. Poursaeed a, d

a Glenn Department of Civil Engineering, Clemson University, Clemson, SC, USA
b Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
c National Energy Technology Laboratory, Albany, OR, USA
d Department of Materials Science and Engineering, Clemson University, Clemson, SC, USA

HIGHLIGHTS

• Incorporation of Mn into CrFeCoNi impairs corrosion resistance of the solid solution.
• The CPT for CrMnFeCoNi was much lower than that of CrFeCoNi.
• Pits on the surface of the CrMnFeCoNi were larger and deeper than those on CrFeCoNi.
• Alternative EIS data representation provides accurate information about corrosion.

ABSTRACT

The electrochemical behavior and susceptibility to pitting corrosion of CrFeCoNi and CrMnFeCoNi high entropy alloys were studied in a 0.1 M NaCl solution at temperatures ranging from 25 to 75 °C. Electrochemical measurements revealed that CrMnFeCoNi is more susceptible to oxide film breakdown and localized corrosion compared to CrFeCoNi. Post corrosion microscopic observations showed severe pitting corrosion for CrMnFeCoNi in higher temperatures compared to CrFeCoNi. Based on in-depth XPS profile measurements on the remaining oxide films, this behavior was attributed to the depletion of Cr in the oxide film and detrimental presence of Mn in the matrix solid solution of CrMnFeCoNi.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

High-entropy alloys (HEA) were first introduced by Yeh et al. in 1995 [1,2] and are regarded as one of the most significant breakthroughs in alloying theory during recent decades [3–6]. Compared with conventional alloys which have been developed around a 'base element' model, HEAs are designed around multiple principal elements with equimolar or near equimolar elemental fractions. Because of the high mixing entropy effect [7], HEAs form disordered solid solutions instead of complex phases or intermetallic compounds [8–14]. HEAs are characterized by unusual
comparable corrosion behavior to SS 304 L in chloride-free H2SO4

However, anodic treatment of the AlxCrFe1.5MnNi0.5 in 15% H2SO4
corrosion potentials and temperatures when exposed to aqueous
Cr-Ni and Ni-based alloys based on experimental
empirical relative estimation of pitting corrosion resistance for Fe-
galvanic cell due to the elemental segregation or intermetallic
corrosion [51,52]. The complex chemistry of HEAs may have either
ration of Tix (x
0, 0.3 and 0.5) in the CrFeCoNi.
However, anodic treatment of the AlxCrFe1.5MnNi0.5 in 15% H2SO4
can significantly improve the protectiveness of the oxide layer
formed on its surface and consequently its corrosion resistance compared to SS 304 [41]. Qiu et al. [29] suggested that incorpo-
rates for practical corrosion and oxidation resistant applications in
combinations of properties not commonly found in conventional
alloys, the alloying elements in HEAs may improve a certain property but can, unintentionally, have a negative influence on other properties [8,11,34—39].

Numerous comparative studies have been conducted between
corrosion properties of HEAs and their commercially available and
well-established counterpart alloys [25,31]. Chen et al. [40] re-
ported that Cu0.5NiAlCoCrFeSi, similar to stainless steel (SS) 304,
was not susceptible to pitting in chloride-free solution, but was less
resistant to localized corrosion in chloride contaminated environ-
ments. It was also shown that corrosion resistance of SS 304 ex-
ceeded that of AlxCrFe1.5MnNi0.5 (x = 0, 0.3 and 0.5) in 0.1 N HCl.
However, anodic treatment of the Al0.5CrFe1.5MnNi0.5 in 15% H2SO4
can significantly improve the protectiveness of the oxide layer
formed on its surface and consequently its corrosion resistance compared to SS 304 [41]. Qiu et al. [29] suggested that incorpo-
rates for practical corrosion and oxidation resistant applications in
combinations of properties not commonly found in conventional
alloys, the alloying elements in HEAs may improve a certain property but can, unintentionally, have a negative influence on other properties [8,11,34—39].

Numerous comparative studies have been conducted between
corrosion properties of HEAs and their commercially available and
well-established counterpart alloys [25,31]. Chen et al. [40] re-
ported that Cu0.5NiAlCoCrFeSi, similar to stainless steel (SS) 304,
was not susceptible to pitting in chloride-free solution, but was less
resistant to localized corrosion in chloride contaminated environ-
ments. It was also shown that corrosion resistance of SS 304 ex-
ceeded that of AlxCrFe1.5MnNi0.5 (x = 0, 0.3 and 0.5) in 0.1 N HCl.
However, anodic treatment of the Al0.5CrFe1.5MnNi0.5 in 15% H2SO4
can significantly improve the protectiveness of the oxide layer
formed on its surface and consequently its corrosion resistance compared to SS 304 [41]. Qiu et al. [29] suggested that incorpo-
rates for practical corrosion and oxidation resistant applications in
combinations of properties not commonly found in conventional
alloys, the alloying elements in HEAs may improve a certain property but can, unintentionally, have a negative influence on other properties [8,11,34—39].

2. Experimental procedures

2.1. Material preparation

The pure equiatomic CrFeCoNi and CrMnFeCoNi were melted and cast in a vacuum induction furnace. In order to reduce the resi-
dual stress and chemical inhomogeneities across dendrite arms,
ingots were treated with a homogenization process at 1100 °C for
1 h, 1180 °C for 3 h and 1200 °C for 5 h. Afterward, the materials
were heated to 800 °C for 3 h and wrapped in stainless steel foil
pouches. Hot working including upset forging, step flattening and
squaring, shaped the ingots to the final thickness of 10 mm after hot
rolling. In-depth discussion of the manufacturing, calculation and
characterization process can be found in [45]. The chemical com-
positions (wt%) of the two alloys acquired from the X-ray fluores-
cence (XRF) technique are listed in Table 1.

For the electrochemical experiments, 20 mm × 15 mm × 3 mm
samples were cut from the ingots using electrical discharge machining.
They were wet abraded sequentially from 240 to 1200 grit using SiC paper followed by light polishing with 1 μm alumina
powder, washed with 50% ethanol diluted with distilled water
and then dried immediately with blowing cool air. All surfaces on
each sample, including the connection point, were sealed with a UV
curing epoxy leaving a 1 cm2 circular area on one side which was
used as the exposed surface to the solution. Three replicates for
each material were prepared for each electrochemical test. Before
and after each electrochemical test, samples were examined under
microscope to ensure perfection of the coating.

2.2. Electrochemical methods

All electrochemical experiments were performed in a 0.1 M NaCl
aqueous solution using a conventional three-electrode cell
arrangement, consisting of a saturated calomel electrode (SCE) as
the reference electrode, a Pt gauze electrode as the counter

| Table 1
| Compositions of the alloys used in this study (wt%). |
|----------------|----------------|----------------|----------------|----------------|
| Element | Mn | Cr | Ni | Fe |
| CrFeCoNi | 0 | 22.8 | 26.4 | 25.47 |
| CoCrFeMnNi | 19.6 | 19.37 | 21.32 | 21.47 | 18.15 |
electrode and the sample as the working electrode.

Potentiodynamic polarization measurements were conducted at room temperature. The scan rate was set to 0.005 V.s⁻¹ and was started from 0.01 V below the open circuit potential to the anodic potential of +0.5 V vs. SCE. The results of this test were used to estimate the passive film breakdown potential, E_b, of each alloy which was used for conducting the tests for measuring the CPT for each alloy.

The CPT of the alloy was determined by applying the anodic potential of +0.2 V vs. SCE, which was lower than the E_b at lower temperatures, and increasing the temperature from 25 °C to 75 °C at the rate of 0.6 °C/min. The temperature associated with 1 A.m²⁻¹ (100 µA.cm⁻²)[71] was reported as the CPT. It should be mentioned that this technique was used as potentiostatic electrochemical tests to compare the pitting temperature of CrFeCoNi and CrMnFeCoNi.

EIS tests were also carried out at room temperature from 25 °C to 75 °C with a 10 °C increment. Before the EIS test, each sample was charged by a DC offset potential of +0.2 V vs. SCE for 1 h. The EIS test was then started at the same potential using the 10 mV AC sinusoidal perturbation potential with the frequency ranged from 100 kHz to 50 mHz with 6 frequencies per decade.

2.3. Microstructural and compositional methods

The microstructures and the compositions of the alloys were characterized by X-ray mapping and electron backscatter diffraction (EBSD) using a Hitachi SU6600 SEM operating at 20 kV. The X-Max detector, made by Oxford Instruments, collected diffraction patterns with step size of 1 µm and analyzed using Aztec software. Prior to analysis with EBSD, both HEA pristine samples were further vibrato-polished with 0.6 µm colloidal silica using a Buehler Vibromet 2. Post corrosion observations were carried with the same scanning electron microscope and parameters.

The compositions of the oxide films formed on the alloys after the CPT tests were measured by using a PHI 5000 VersaProbe III Scanning ESCA Microprobe in conjunction with monochromatic Al Kx radiation. After background subtraction, the XPS spectra were analyzed and the peaks were fitted with Gaussian functions using commercial software. The reference binding energy scale was calibrated on the C1s peak (285 eV), and all the other peaks observed were fitted with Gaussian functions using commercial software. The later behavior originated from in-situ Ar⁺ sputtering with various times of sputtering was used to characterize the depth profile of the elements on the corroded surface.

3. Results and discussion

3.1. Microstructural observations

Fig. 1(a1, b1) shows the EBSD orientation maps of the CrFeCoNi and CrMnFeCoNi alloys respectively. Both materials exhibited recrystallized FCC microstructures with high amounts of annealing twins. The average grain sizes were 21.84 µm and 23.87 µm for CrFeCoNi and CrFeCoNi respectively. These results are consistent with previous investigations [12,13,44,72,73], implying that the thermo-mechanical process applied in this study was appropriate to achieve a fully equiaxed microstructure. Fig. 1(a2, b2) presents the image quality and EDS mapping results. In both alloys, no element segregation or clustering was detected in the morphology, and all the alloying elements were distributed evenly in the matrix.

3.2. Electrochemical analysis

Fig. 2 shows the typical potentiodynamic polarization curves for the alloys used in this study. Generally, the corrosion potential, E_corr, of the CrFeCoNi was nobler than that of the CrMnFeCoNi, however in anodic branches the electrochemical responses became distinct where passive films prevented continuous dissolution of the surface. Current spikes are attributed to the formation and repassivation of metastable pits [63,74]. Further increase in the anodic overpotential gradually increased the magnitude and numbers of the metastable pits for both alloys. The averages, from three measurements, of the passivation breakdown potential, E_b, where the current abruptly and continuously increased, were approximately 0.39 and 0.28 V vs SCE for CrFeCoNi and CrMnFeCoNi, respectively. Lower values of passive current and higher values of E_b evidently show the superior corrosion resistance of CrFeCoNi and distinct protection of surface oxide film against localized corrosion compared to CrMnFeCoNi.

To investigate the influence of temperature on the corrosion behavior of the alloys and to determine the comparative CPT of these alloys, the samples were polarized and held at +0.2 V vs. SCE, which was lower than their E_b for both alloys at room temperature. By holding the samples at this potential and continuously increasing the temperature, the breakdown of the passive film and the formation of stable pits versus temperature were recorded and the CPT was determined [75].

Fig. 3 shows the results of the CPT tests for both alloys in 0.1 M NaCl solution. The threshold pitting current density, i.e. 1 A.m²⁻¹ (100 µA.cm⁻²), was achieved in the very early stage for the CrMnFeCoNi at around 35 °C. However, the CrFeCoNi alloy reached this threshold at 62 °C. By increasing temperature beyond the CPT, the current densities corresponding to the CrMnFeCoNi gradually increased while a relatively sharp jump was observed in the current density beyond the CPT for the CrFeCoNi.

Fig. 4 presents the Nyquist plots at different temperatures of both alloys which were anodically polarized at +0.2 V vs SCE for 1 h. Considering the axes scale of the two plots, in general, the CrFeCoNi alloy showed comparable impedance at each temperature compared to the CrMnFeCoNi alloy. All the Nyquist spectra exhibited a depressed semicircle capacitance loop followed by an obscured inductance behavior at lower frequencies. This observation suggested the characteristic of an electrochemical response from oxide film and an incomplete localized electro-dissolution or repassivation of the oxide film. The later behavior originated from the formation of surface species which change surface coverage negatively with potential alternations [76]. This behavior was previously reported for anodically charged Fe-Cr-Ni based alloys, and was attributed to the adsorption/desorption of Cr/Fe intermediate hydroxides [24,28,77,78].

Based on the described mechanism, an equivalent electrical circuit, depicted in Fig. 5, can be attributed to interface interaction.

\[Z_{CPE} = \frac{1}{Q(j\omega)^n} \]

where, j and \(\omega \) are an imaginary unit and angular frequency (2πf), respectively. \(Q \) corresponds to a CPE exponent which attributes to cell geometry and distribution of time constant normal-to-surface [79,82]. For low frequencies, the obscured spectrum is attributed to the relaxation process, thus a \(R_0 \) in series with \(L \) is added into the model, of which \(R_0 \) is the resistance and \(L \) denotes the pseudo-inductance associated with partial active area relating to the localized active dissolution and incubation period for pitting [83–85].
Fig. 1. (a1, b1) EBSD, (a2, b2) image quality and X-ray mapping of the CrFeCoNi and CoCrFeMnNi alloys, respectively. Colored stereographic triangle shows the plane normal directions.

Fig. 2. Typical potentiodynamic polarization plots of CrFeCoNi and CrMnFeCoNi alloys in 0.1 M NaCl solution at room temperature.

Fig. 3. CPT experimental results for the potentiostatic polarization of CrFeCoNi and CrCrFeMnNi alloys at +0.2 V vs. SCE in 0.1 M NaCl solution at various temperatures.
In this study, since the whole semicircles of the Nyquist plots were obtained, using graphical methods provides more realistic, with less error, interpretation and relevant physical parameters of impedance data compared to the simulation. Phase angle, \(\phi \), and impedance modulus, \(|Z|\), were corrected for the ohmic resistance using the following equations \[86\] and were presented in Fig. 6 for both alloys at different temperatures:

\[
|Z|_{\text{adj}} = \sqrt{(Z_{\text{re}} - R_s)^2 + Z_{\text{im}}^2}
\]

(2)

\[
\Phi_{\text{adj}} = \tan^{-1}\left(\frac{Z_{\text{im}}}{Z_{\text{re}} - R_s}\right)
\]

(3)

As shown, in Fig. 6, for both alloys, \(|Z|\) decreased with increase in temperature, especially at lower frequencies. Drops in impedances are most likely due to more active dissolution and facile charge transfer at the surface. In log-log Bode plots, when the \(|Z|\) responses linearly with frequency, and phase angle is relatively constant, CPE behavior reflects oxide film electronic properties \[87\]. For CrFeCoNi, this trend was seen in a range of 20 to \(10^4\) Hz which ultimately truncated by increasing the temperature over 65°C. This drop was attributed to increasing inhomogeneous distribution of time constants along the surface due to an increase in the number and size of surface defects \[80,88\].

It was hypothesized that the active dissolution of pits along the surface was the reason for such behavior. For CrMnFeCoNi, the constant range of phase angles shrunk to \(200\) to \(2 \times 10^3\) Hz for 25 and 35°C testing temperatures and gradually obviated at the higher temperatures. This observation corroborates well with the potentiostatic results for both alloys when established pits contribute to increasing current densities after the critical pitting temperature. However, in very high frequencies (higher than critical frequencies), even for low temperatures, the phases were not constant. This observation originated from the geometry-induced inhomogeneous distribution of current and potential along the surface \[89,90\].

In order to highlight the CPE physical features of the oxide layer, the effective CPE exponents for each spectrum was estimated from a range of frequencies as described above by using Eq. (4) \[79\]:

\[
\alpha = \left|\frac{d(\log|Z_{\text{im}}|)}{d(\log f)}\right|
\]

(4)

Then, the effective CPE at each temperature was obtained for both alloys as \[86\]:

\[
Q_{\text{eff}} = \frac{1}{\sin\left(\frac{\pi}{2} \alpha\right)}
\]

(5)

The graphically obtained values of \(R_t\) and effective CPEs for each temperature are reported in Table 2. For CrFeCoNi, \(R_t\) and \(Q_{\text{eff}}\) values remained relatively constant from 35°C to 55°C. A similar trend was observed in the CPT experiments in Fig. 3, where anodic current densities varied slightly in this range. It is well established that with the incorporation of Co and Cr in Ni-based alloys, both the stacking fault energy and point defect migration increase with an increase of temperature \[91–93\]. It can be hypothesized that by increasing temperature from 35°C to 55°C, surface annihilation is retarded by further migration of beneficial passivating element i.e. Cr interstitials or oxygen vacancies and the formation of a protective oxide film. However, with a further increase of temperature, \(R_t\) declined due to localized attack of chloride. In contrast, for the CrMnFeCoNi, same as previously shown in the CPT test, charge transfer resistances decreased continuously with increasing temperature. Although, incorporation of Mn in CrFeCoNi may increase defect migrations \[16,94\], the formed oxide film is not able to retard...
surface annihilation possibly due to lack of beneficial passivation elements [95]. As a result, the surface dissolved continuously with increasing temperature. Similarly, a drastic decrease in values of α beyond the pitting temperature is interpreted as evidence for increasing surface inhomogeneities and defects along and through the interface [96].

It should be noted that, when the geometry-dominated frequency (f_{max}) approaches the pure CPE relaxation characteristic frequency (f_0), and $\alpha \rightarrow 0.5$, quantitative evolution of CPE parameters is prone to be truncated [89]. In this experiment, as was shown in Bode phase plots for both alloys, by increasing temperature, f_{max} moved towards f_0. As a result, CPE of the interface was affected by ionic transport due to insufficient charge transfer impedance and inhomogeneous active dissolution of pits along the surface. Therefore, increasing values of Q_{eff}, and accordingly interface capacitance [79], can be attributed to the oxide film thinning, increasing defects and ion release into the space charge.

3.3. Post corrosion microscopic observation

Global electrochemical measurements provide quantitative information about surface reactions; however, these methods use an averaged signal of the entire surface and are not capable of providing details of the localized reaction morphologies. Thus, samples obtained from EIS measurements at selected temperatures were examined under SEM. Figs. 7, 8 and 9 show the SEM micrograph of the corroded surfaces of the CrFeCoNi and CrMnFeCoNi HEAs, at 75 °C, 55 °C, and 35 °C, respectively.

At 75 °C, both alloys experienced pitting corrosion, with the CrMnFeCoNi alloy having larger and deeper pits compared to the
Fig. 7. Typical features of surface and pits formed at 75 °C at applied potentials of +0.2 V vs. SCE in 0.1 M NaCl on (a1-3) CrFeCoNi and (b1-3) CrMnFeCoNi at different magnifications. (a4) and (b4) elemental distribution X-ray map around pits shown in (a3) and (b3), respectively.
CrFeCoNi alloy. Except at the pits, the surface of the CrMnFeCoNi alloy was attacked severely compared to that on the CrFeCoNi which is relatively intact. Elemental distribution X-ray maps around the pits showed no distinction of preferential dissolution of an alloying element. However, this measurement is considered overall as an observation; topography and depth of beam penetration may have an influence on the X-ray map resolution. At 55°C, no discernible pitting was detected on the surface of the CrFeCoNi alloy. Localized surface demolitions were attributed to the formation of the metastable pits which passivated within a few seconds. However, deep and wide pits were observed on the surface of the CrMnFeCoNi alloy. Comparing to wide, open pits formed at 75°C for CrMnFeCoNi, the pits mouths were still relatively covered with a crust at 55°C (Fig. 8(b2)). This metal or possibly oxide/hydroxide cover acted as a barrier and retarded the diffusion; as a result, this kept the anodic currents at lower levels at 55°C compared to that at 75°C. At 35°C, no evident grown pits were detected for the CrFeCoNi alloy. However, pits were formed on the surface of the CrMnFeCoNi alloy, but relatively smaller than those formed at higher temperature counterparts. X-ray mapping analysis around the pits again revealed no preferential dissolution of a certain element due to local formation of second phase or microgalvanic cell in the matrix.

Experimnetal evidences and simulation results available in the literature showed that, among all these transition elements existing in examining alloy elements, incorporation of Mn in Ni matrix more efficiently facilitates defects formation and reduces vacancies migration energy [16]. As a result, voids can be formed and annihilated faster [97]. Thus, more preferential zones may provide pit nucleation sites. In contrast, by decreasing the elemental configurations, defect recombination for CrFeCoNi alloy occurred slower. As a result, void clusters enlarged [16] and dissolution may preferentially form at grain boundaries [97–101]. Concavity at grain boundaries was observed clearly in Fig. 7(a2–3), supporting this hypothesis.

Fig. 8. Typical features of surface and pits formed at 55°C at applied potentials of +0.2 V vs. SCE in 0.1 M NaCl on (a1–3) CrFeCoNi and (b1–3) CrMnFeCoNi at different magnifications.

3.4. XPS results and discussion

Fig. 10 shows the in-depth XPS profiles of the alloying elements of the corroded surfaces on both alloys. XPS was conducted on the surface of the samples after the CPT test when they were anodically charged and held in the solution until 75°C. It should be mentioned that three measurements were conducted on each corroded sample at the points that showed no effect of pitting and obtained data were consistent. Furthermore, the formed film may have partially washed away, causing the oxide/hydroxide stoichiometry to change when removing from solution and surface contamination at the topmost layer can have a role on cation fractions. Thus, the presented results only aim to provide a comparison between the composition of the oxide film formed after the CPT tests and cannot
be considered perfect passive films.

In both cases, the concentration of the alloying elements increased, while the oxygen decreased with the increase in sputtering depth which was proportional to the depth. However, the oxygen concentration of the CrMnFeCoNi alloy at the outmost layer of the surface, i.e., the solution/outer oxide interface, was higher than that of the CrFeCoNi alloy. The greater oxygen species valency and concentration of point defects provided an easier migration path through the oxide film during the dissolution process \[102-104\]. It is shown that Mn decreased the vacancy migration energy and led to higher vacancy diffusion rates through the metal matrix \[16\] resulting in transpassivation at a lower overpotential compared to alloys without Mn \[36,48,105-107\]. Thus, on one hand, Mn can be assumed to enhance formation of defects in oxide films. On the other hand, both of the examined HEAs were composed of 3d transition metals in which Cr and Mn have only partially filled d electrons compared to other elements which give them more electron density flexibility to contribute in charge transfer \[108,109\]. In contrast, Ni and Co have nearly fully-filled d electrons \[36,48,102\], mostly accumulated at metal/oxide interfaces. At early stage of polarization, before depassivation, Mn and Cr would favor oxide formation with higher valances, while Ni and Co dissolves without stabilized stable oxide formation \[48,94,110\]. However, among all alloying elements in this study, Cr has the highest heat of adsorption of oxygen with relatively low strength of metal-metal bond, which is the key factor for nucleation of passivation \[111,112\]. XPS profiles showed that introducing of the Mn depleted the oxide film from Cr compounds, which leads to higher current densities during electrochemical tests. Although, the differences in bulk concentration of Cr in CrFeCoNi and

Fig. 9. Typical features and elemental distribution X-ray map around pits formed at 35 °C at the applied potentials of +0.2 V vs. SCE in 0.1 M NaCl for (a1−2) CrFeCoNi and (b1−2) CrMnFeCoNi.

Fig. 10. Elemental composition depth profiles of the corroded surfaces of (a) CrFeCoNi (b) CrMnFeCoNi in 0.1 M NaCl after CPT test.
CrMnFeCoNi solid solutions is around 5 at.%, Cr concentrations at the outmost layers of CrFeCoNi is more than 10 at.% than CrMnFeCoNi, which in turn, provided relatively hindrance for more oxidation and dissolution.

In addition, equiatomic additions of Mn decrease the melting point, T_m, of CrFeCoNi by more than 100 °C [113]. Hence, at a given temperature, T, the homologous temperature, i.e. T/T_m, is greater for CrMnFeCoNi and subsequently encouraged higher rates of substitutional diffusion [4,114].

Compare to Ni and Co oxides, Fe oxides have the lowest ratio of 3d correlation energy to effective initial hybridization energy which makes oxide formation easier [115]. Also, Mn increases the activity of Fe-adsorbed intermediate but reduces activity of Cr-adsorbed counterpart [107]. Accordingly, accumulation of Fe composites at intermediate layer of oxides can be attributed to the insufficient blockade from the oxide film and higher dissolution rates of Mn and Cr with higher oxide valances. Nonetheless, characterization technique, formation of non-stoichiometric oxide solid solution, applied potentials and temperatures can potentially transform the composition profile of oxide films [102,115] and the reasoning discussed here were only qualitative.

4. Conclusions

The electrochemical and susceptibility to pitting corrosion of two equiatomic HEAs, CrFeCoNi and CoCrFeMnNi, were examined at different temperatures in 0.1 M NaCl. The main conclusions are listed below:

- CrFeCoNi showed better corrosion performance at all the examined temperatures compared to CoCrFeMnNi in the studied environment.
- Increasing temperature drastically decreased the pitting corrosion resistance of CoCrFeMnNi in comparison to CrFeCoNi.
- The poor corrosion resistance of CrMnFeCoNi in a chloride solution was attributed to the adverse effect of Mn and the lack of beneficial passivating alloying elements, i.e. Cr, on the surface.
- Generally, the pits on the surface of the CrMnFeCoNi were larger and deeper than those on the surface of the CrFeCoNi, which mostly formed at grain boundaries path.
- Based on the point defect theory of passive film, it can be hypothesized that the oxide film formed on CrMnFeCoNi was more defective than that formed on CrFeCoNi due to facile formation and migration oxygen vacancies.
- Complexity in single phase solid solution alloys in itself would not help to design a reliable and corrosion resistant HEA. Tuning appropriate alloy compositions and element concentrations based on electronic structure and oxidation resistance is a preferred method for obtaining desired properties.

CRediT authorship contribution statement

H. Torbati-Sarraf: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft. Mitra Shabani: Data curation, Formal analysis, Investigation, Writing - review & editing. Paul D. Jablonski: Funding acquisition, Resources, Supervision, Writing - review & editing. Garrett J. Patsky: Conceptualization, Funding acquisition, Project administration, Resources, Writing - review & editing. A. Pouraei: Conceptualization, Resources, Software, Supervision, Validation, Writing - review & editing.

Acknowledgments

The material used in this study was provided by National Energy Technology Laboratory. The electron microscopy was supported through Clemson University’s Core Incentivized Access award and the electrochemical measurements were conducted in the Corrosion Research Laboratory at Clemson University. The open access publication fee was provided in part by Clemson University Libraries’ Open Access Publishing Fund Program.

References

[23] Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Pitting corrosion of the high-entropy alloy Co$_{1.5}$Cr$_{1.5}$Fe$_{1.5}$Ti$_{0.5}$Mo$_{0.1}$ in chloride-containing sulphate solutions, Corros. Sci. 52 (2010) 3481–3491.

