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Abstract

This paper focuses on transportation network protection to hedge against extreme events such
as earthquakes. Traditional two-stage stochastic programming has been widely adopted to ob-
tain solutions under a risk-neutral preference through the use of expectations in the recourse
function. In reality, decision makers hold different risk preferences. We develop a mean-risk
two-stage stochastic programming model that allows for greater flexibility in handling risk
preferences when allocating limited resources. In particular, the first stage minimizes the
retrofitting cost by making strategic retrofit decisions whereas the second stage minimizes the
travel cost. The conditional value-at-risk (CVaR) is included as the risk measure for the to-
tal system cost. The two-stage model is equivalent to a nonconvex mixed integer nonlinear
program (MINLP). To solve this model using the Generalized Benders Decomposition (GBD)
method, we derive a convex reformulation of the second-stage problem to overcome algorith-
mic challenges embedded in the non-convexity, nonlinearity, and non-separability of first- and
second- stage variables. The model is used for developing retrofit strategies for networked high-
way bridges, which is one of the research areas that can significantly benefit from mean-risk
models. We first justify the model using a hypothetical nine-node network. Then we evaluate
our decomposition algorithm by applying the model to the Sioux Falls network, which is a
large-scale benchmark network in the transportation research community. The effects of the
chosen risk measure and critical parameters on optimal solutions are empirically explored.
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1. Introduction

Many highway bridges in the United States (U.S.), especially old bridges, can be seriously
damaged or collapse even in relatively moderate natural disasters, such as mild earthquakes [1].
In a recent infrastructure report card issued by the American Society of Civil Engineers (ASCE),
one in nine U.S. bridges was deemed structurally deficient [2]. Since 1960’s, major structural
damage has caused millions of dollars of economic losses in a number of states, including
Alaska, California, Washington, and Oregon [1]. To improve this situation, at-risk bridges
must be identified and evaluated and retrofitting programs should be in place to strengthen its
resilience [1]. Highway bridge retrofit is one of the most common approaches undertaken by
federal and state departments of transportation in order to mitigate negative effects of extreme
events on highway transportation networks. Bridge damages due to extreme events may result
in direct social and economic losses as a result of post-disaster bridge repair and restoration.
There may also be indirect impacts on transportation networks due to short-term evacuations
and emergency responses [3], and even long-term changes in travel activities [4, 5]. These
adverse impacts can be avoided or alleviated if proactive bridge retrofit strategies are deployed.

The Federal Highway Administration (FHWA) estimates that to eliminate the backlog
of all deficient bridges by 2028, an annual investment of $20.5 billion is needed; however,
currently only $12.8 billion is being spent [2]. Due to the limited retrofitting resources, it is
neither practical nor economical to retrofit all bridges to their full health conditions and thus
a prioritized retrofitting scheme is expected. In practice, resources are prioritized to bridges
based on ranked structural deficiencies [1] which neglects the effects of networked bridges.
The resultant solution may be sub-optimal if indirect social losses (e.g., travel delay cost) are
considered, since traffic flows are allowed to redistribute over the transportation network and
affect other at-risk bridges. This justifies the need to consider bridge retrofitting strategies at
a network level.

1.1. Example of a network-based model

Let us consider the benchmark Sioux Falls network, which is commonly used in the trans-
portation research community (cf. LeBlanc et al. [6]), to better understand the importance of
a networked model. Refer to Figure 1. Assume that there are four bridges, labeled as A, B, C,
and D, which are vulnerable to seismic hazards.

A failure of bridge C (i.e., functional obsolescence) would detour the traffic on link 60
from node #20 to #18 to a longer path consisting of links 61, 58, 52 and 50. This may
result in higher travel cost, due to detours and resulting congestion. Additionally, the varied
structural deficiencies of each bridge may require the use of different materials and labor for its
rehabilitation. The main challenge is then formulating strategic allocations of limited resources
to the bridges before they become structurally inadequate and cause undesirable consequences
to the network. A strategy solely based on the ranked structural deficiency status would not
guarantee system optimality. For instance, assuming that bridge D is in a worse condition than
bridge C and that resources are insufficient to support retrofitting both of them, bridge D will



3
@ : ©)
26 4|4
8
3 1 4]
I3 B
7| 85 10| 31
g | 33 |
12 111
E 36
34 |40
37| |38 14]
42 |71
23
73|76
74
39

Figure 1: Sioux Falls network

outrank bridge C in retrofit priority, thus possibly exposing bridge C to a higher chance of
reaching the state of functional obsolescence in extreme events. This solution could be highly
sub-optimal, as the failure of bridge D only affects traffic on links among nodes #20, #21 and
#22 while the failure of bridge C affects traffic on links among nodes #20, #19, #17, #16,
and #18. From a network perspective, bridge C would be better positioned to be retrofitted.

1.2. Relevant literature

Network-based bridge retrofitting is a general transportation network protection problem,
which can be grouped into two broad categories, depending on whether bridges are treated
as links [3, 5, 7] or as paths [8, 9]. The former approach formulates as maximum capacity
or minimum cost network flow design problems with a focus on long-term economic effect of
retrofit, whereas the latter formulates maximal covering network design problems, which are
more focused on short-term emergency response or maximal coverage of population centers.
From a transportation system analysis viewpoint, the transportation network protection prob-
lem is essentially a network design problem (NDP), in which the upper-level problem involves
optimal retrofit decisions for best social welfares (e.g., minimum retrofitting cost and travel de-
lay) while the lower-level problem accounts for the behaviors of network users which normally
present demand-performance equilibrium [10, 11, 12, 13, 14].



Uncertainty is naturally embedded in almost all transportation protection problems. En-
gineering methods based on the wait-and-see approach [15] seek optimal solutions upon the
realizations of uncertainty (in the form of scenarios), that is, the engineering methods focus on
the deterministic optimization problems. The resulting scenario dependent solutions are then
aggregated in order to be implemented [3, 16, 17, 18, 19]. However, since future events are
unknown at the time of making decisions, scenario-specific solutions (policies) may not even
be feasible for other possible scenarios. Thus, a method that can account for a large number of
possible scenarios needs to be developed. Previous studies use either stochastic programming
(SP) [5, 7, 20] or robust optimization (RO) method [21, 22, 23, 24] to take into account all
scenarios. In general, the SP method takes the expectation of consequences of all scenarios and
thus is risk-neutral and suitable for problems aiming to achieve long-term economic effects;
however, it may have poor performance under extreme events. Though rare, these extreme
event hazards exert severe impacts on the system. RO approach, on the other hand, considers
worst-case scenario with low-occurrence probability, which may lead to too conservative and in
most cases costly solutions. Therefore, neither risk-neutral SP approach nor RO-based method
is best to capture the variability of risk. This motivates us to seek a new method for economic,
yet robust, solutions.

In literature, a balance between risk-neutral SPs and RO is accomplished by incorporating
a risk measure into the stochastic program. Such models are referred to as mean-risk SPs.
The conditional value-at-risk (CVaR) is a commonly used risk measure for this purpose. It was
first introduced as a risk assessment technique in portfolio management for hedging a portfolio
of financial instruments to reduce risk [25, 26]. Since then, it has been applied to a number
of engineering applications, such as electricity operations [27], water resources allocation [28],
facility location planning [29], disaster management [30], and hazard material routing [31].
Given a probability distribution and a confidence level a, CVaR is a weighted average of
value-at-risk (VaR), which is the lower a-quantile, and the incremental values beyond the VaR
cutoff point in the distribution. Thus, CVaR accounts for losses exceeding VaR. Since VaR is
monotone in «, a higher confidence level leads to a more risk-averse solution. The RO problem
is equivalent to considering a sufficiently large v (worst-case scenario). CVaR has the desirable
property of coherence [32, 33], meaning that it is a translation invariant, subadditive, positive
homogenous, monotonic function, whereas VaR is a highly nonconvex function [34]. Despite its
coherence, CVaR presents some computational challenges in solving mean-risk SPs, and this has
motivated numerous algorithmic developments for decomposition methods with cutting-plane
approaches [28, 30, 35, 36, 37, 38, 39]. CVaR falls under the category of quantile risk measures,
as opposed to being one of the deviation risk measures such as expected excess and absolute
semi-deviation [40]. Both types of risks take into account the scenarios that exceed some pre-
specified target; the former enjoys the benefit of allowing the user to specify a quantile-level of
the underlying distribution as a target whereas the latter either uses the mean as the target
value or requires some other scalar value to be specified for the target.



1.3. Contributions of this study

In this study, we adopt CVaR as the risk measure in developing a mean-risk two-stage
stochastic programming model for transportation network protection problems, with the goal
of minimizing the direct cost of retrofitting bridges in the first stage and indirect travel cost
in the second stage. The first-stage decisions indicate the assignments of retrofit strategies
to different bridges in an optimized manner, and are made simultaneously with second-stage
traffic assignment decisions. CVaR is used to penalize scenarios with large losses using a user-
specified confidence level and the risk consequence is integrated with the two-stage stochastic
program with a trade-off coefficient. The model is generic and generalizable to different kinds
of natural and man-made disasters.

In the context of transportation network protection, the proposed study is, to the best
of our knowledge, the first study undertaken with CVaR as the risk measure. Our proposed
model is closely related to the stochastic transportation protection model by Liu et al. [5],
in which a central semi-deviation risk measure is used. However, our study is distinct from
this prior study and advances the models in the following aspects. First, the semi-deviation
measure can only capture the effects of scenarios that are worse than the expectation of second
stage costs while CVaR is flexible to incorporate a spectrum of scenarios, depending on the
pre-defined confidence level and the weight of the risk measure. Second, the prior studies held
the assumptions of the binary damage states (i.e., either no damage or collapse) and binary
retrofit strategies (i.e., retrofit or no retrofit). Although these assumptions help reduce the
problem size and consequently the computational challenges associated with solving large-scale
problems, this simplification may result in less informative solutions and overestimate costs.
In this study, we relax the assumption by defining multiple damage states and multiple retrofit
strategies based on a recent study [41] where binary decision variables are used to indicate
whether a specific strategy is selected for a bridge. From the modeling perspective, it is not a
trivial extension to the prior efforts due to the inherent correlations between retrofit strategies,
damage states, and resulting distributions of traffic flows on the network. In addition, bridge
retrofit strategies are subject to a budget limit, thereby adding to the combinatorial complexity
of the problem.

The mean-risk two-stage stochastic programming model is formulated as a non-convex
mixed integer nonlinear program (MINLP), wherein the travel cost for bridge links is a non-
convex nonlinear function of retrofit decisions. In general, it is known that non-convex MINLPs
can be notoriously difficult to solve [cf. 42]. Thus another contribution of this study stems from
the algorithmic development. In particular, we propose a decomposition that is based on the
generalized Benders decomposition (GBD) method [43]. As part of this decomposition, we
present a convex reformulation of the recourse function in order to resolve the issues of non-
separability of first and second stage variables. This enables us to efficiently generate Benders
cuts for our decomposition algorithm. We justify our model and decomposition method on
a hypothetical nine-node network and then apply the model and solution method to solve
a stochastic transportation network protection problem based on the benchmark Sioux Falls
network (cf. Figure 1). We use hazard events as a demonstration to explore the effects of risk



measures and variations in critical parameters on the optimal solutions.

The remainder of the paper is organized as follows. The mean-risk two-stage SP model
is presented in section 2, followed by the convex reformulation of the recourse function in
section 3. Our decomposition algorithm is described in section 4. Computational experiments
on the two networks are carried out in section 5. The paper concludes along with a discussion
of future research in section 6.

2. Mean-risk model

2.1. Parameters and variables

Let G = (N, A) denote a transportation network, where N is the set of nodes and A is the
set of directed arcs (or links) in the network. Denote by R and S, for some R # 0, S C N, the
set of origins and destinations in the network, respectively. The set of origin-destination (O-D)
pairs is some subset OD C R x S. For every (r,s) € OD, d"® € R, is the given travel demand
on traffic originating at = and ending at s. Denote by A, for some A # (), A C A, the set of
links that are subject to hazards, which mainly comprises of the at-risk bridges. The nominal
traffic capacity of each link a € A is equal to c,. For a € A\ A, it is assumed that this link
capacity remains unchanged after any disastrous event (e.g., natural or man-made disasters).
However, the link capacities of links in A reduce due to the damage from the events and the
extent of this change depends on how well the at-risk bridges were retrofitted before the events
happened. The finite set H represents a list of applicable retrofit strategies for at-risk bridges
in A in order to mitigate the adverse impacts caused by disastrous events in the future. The
set H includes the do-nothing option and each at-risk bridge can be retrofitted with exactly
only one strategy. The cost of retrofitting a € A with strategy h € H is b". The total budget
for retrofitting bridges is bg.

In this study, we consider various hazard realizations, where each realization is a prediction
of damage to the structure. Let the finite set K denote the set of hazard scenarios that the
network is exposed to. Each scenario k¥ € K is known to occur with a given probability
pr € (0,1). For every a € A,h € H, and scenario k € K, we use the parameter ght ¢ (0,1) to
describe the ratio of post-event link capacity to the full link capacity, which can be determined
externally by using bridge structural assessment, such as the study [44] for seismic damages.
When disaster happens, the post-event capacity of link a € A that was retrofitted with strategy
h € H is equal to ca92’k.

We now describe the decision variables used to construct our mathematical formulation.
For every a € A, h € H, the binary variable u” is equal to 1 if and only if link a is retrofitted by
strategy h € H. For (r,s) € OD,a € Aand k € K, xz;s’k is the flow on link a corresponding to
the traffic originating at r and terminating at s for scenario k. The total flow on link a € A due
to all O-D pairs is v¥, and 0¥ = > (r,5)€OD 25** Ya € A. In this model, we allow unsatisfied
post-disaster travel demand for various reasons, such as shutdown of certain roadways, acute
increased traffic congestion in the network, etc. The unsatisfied travel demand for any O-D



pair (r,s) is captured by the decision variable ¢"** and we use a big-M to impose a penalty
cost for the unsatisfied demand in the objective function.

Remark 1. In the transportation network literature, traffic is often assumed to be in a user-
equilibrium condition, where no traveler can further reduce their travel cost by simply changing
their own routing decision [45]. This assumption holds for a normal situation, where travelers
have learned and adapted to daily traffic condition. However, modeling travelers’ routing
behavior in an environment following extreme events, such as earthquake, is still arguable [4].
In this paper, it is assumed that traffic flow can be controlled to achieve system-optimization
and the resulting estimated travel cost can be considered as a lower bound of actual travel cost.

2.2. Two-stage stochastic models

2.2.1. Risk-neutral model
We first present a basic two-stage stochastic programming model for our problem. The first

stage considers the retrofit resource allocation problem and decides the retrofitting strategy for
each of the links in A. Define the set U as

U:= {uG{O,l}AX|H| | ZuZzl Va € A, bTugbo} (1)
heH

to include all first-stage decisions — each link in A can be retrofitted with exactly one strategy
and the total budget is by. The problem is to minimize? b"u+E Q(u,w). Here, b u is the total
retrofitting cost and the recourse function Q(u,w) is the incurred travel cost. Equivalently, the
first-stage objective is to minimize E f(u,w), where

flu,w) = b u+ Q(u,w) (2)

is the total cost function. The assumption of finitely many scenarios indexed by the set K
allows us to discretize the expected travel cost function and state our two-stage stochastic
program as

(2-stage SP) : min Zpkfk(u) =min b u+ Zkak(u) st. uwel, (3)
keK keK

where f¥(u) = bTu+Q"(u) is the total cost function for the k" scenario, in which Q*(u) is the
optimal value for the total travel cost, given the retrofitting vector u. The recourse function is

2As is customary in literature, we use w to denote scenarios for the non-discretized model.



based on an explicit traffic assignment model and for the k™ scenario it is defined as

Q¥u)= min Y wite + M Y ¢ (4a)
v acA (r,s)eOD
N D [ S Gl BV S et (4b)
acA (r,s)€eOD
st ok = Z "k va e A, (o8, ¢ e X. (4c)
(r,s)eOD
rs,k

In the second stage, v* is the aggregation of link flow 25™" over all O-D pairs (r,s), ¢"** is the
unsatisfied demand between an O-D pairs (r,s), and

th = toq
a

1+5(ék“(i))4] Va e A (5)

is the link travel time per unit flow. The objective function (4a) is to minimize the total cost
of traffic flow on the network and consists of two terms. Each product v*¢* is equal to the
travel time for the entire flow on link a € A and upon scaling this with the parameter ~ that
converts travel time to a monetary value®. The second term represents the “penalty cost” for
unsatisfied demand. In our second stage problem, unsatisfied travel demand is penalized for
economic concerns and a big positive number M is used to represent peoples’ willingness to
travel. Compared to the value of time, peoples’ willingness to travel is hard to calibrate and is
beyond the scope of this study; we simply use a big number to penalize the unsatisfied demand.
The link travel time per unit flow is usually a non-decreasing link performance function of
the aggregated link flow and a non-increasing function of the post-event link capacity in each
scenario. Equation (5) expresses the dependence of t¥ on v* using the Bureau of Public Records
(BPR) function [46], in which t¢, is a parameter for the free-flow-speed travel time of link a,
§ is an empirical data (e.g., 0.15), and the denominator ¢¥(u), which is a function of the first
stage decision u, denotes the remaining link capacity on link a in scenario k:

o Ca Y heH okl ae A

Co(u) = - (6)

Ca ac A\ A

3In practice, determining the value of v requires approximation of value of travel time savings, which is
assumed to be equal to a nationwide median gross compensation for business travel (U.S. Department of Trans-
portation, 2014).



The recourse function Q*(u) seeks to optimize flows over the set X, defined as:

X = {(x,q) >0,0)] > ar— Y a4 qt=d® Y(rs)eOD (7a)
itr)eA i (mea

dooar— Y afi—q"=-d" VY(rs)€OD (7b)
it(sA)EA i (s)eA

Soalr— Y alf=0 Y(r,s)€ODie N\ {rs}y. (Tc)

J: (hj)€A J: (Ji)eA

For each O-D pair (r, s), equations (7a) and (7b) allow a slack of ¢"* in the flow balance at r
and s, respectively, to account for unsatisfied travel demand, whereas equation (7c) balances
flow exactly at all other nodes in the network.

As the post-earthquake link capacity (6) is a linear function of retrofit decisions for links
in A, the decision variable u appears on the denominator of the travel time cost function in
(5). This imparts non-convexity and nonlinearity to our two-stage stochastic problem and also
leads to the following property.

Observation 1. Problem (2-stage SP) has complete recourse, i.e., subproblem (4) is feasible
for everyu € U.

2.2.2. Mean-risk model
We now turn to introducing our mean-risk stochastic program, which combines the two-

stage risk-neutral SP model and the CVaR function for risk assessment. Recall that the a-level
CVaR of a random variable Z(x,w) is [cf. 34]:

1
CVaR, Z(x,w) := inf |7’ + TEmax{O,Z(;c,w) -n'}
' -«
1
=+ o Emax (0, 2(x.0) ~ 1)

where 1 denotes VaR. If Z(x,w) is the first stage cost of a stochastic program, the mean-
risk objective is E Z(x,w) + ACVaR, Z(x,w), where the coefficient A € [0,00) represents a
trade-off between the risk measure (CVaR) and the expected first stage cost. Since f(u,w) =
bTu + Q(u,w) is the total cost function for our problem, the mean-risk objective for us is
E f(u,w) + ACVaR,, f(u,w). The risk-neutral problem (2-stage SP) corresponds to A = 0.
Upon discretizing with finitely many scenarios as before, performing simple manipulations
arising out of translation invariance of CVaR, and linearizing the max{0, -} function in CVaR,



the mean-risk stochastic program becomes

(Mean-risk SP) : min (1+ )\)bTu + Z kak(u) + A (T] + ﬁ Z pk§k> (8a)

wng keK keK

st. welU (8b)
> QFwu)—n Vke K (8¢c)
¢8>0 Vk e K, (8d)

where QF(u) is defined by equations (4)-(6). The objective is to minimize the total cost of
retrofitting bridges, expected travel cost, unsatisfied demand penalty and the risk term. Here
A is a pre-defined weighting factor. A larger A value leans towards CVaR and thus results in a
more conservative solution. On the other hand, a smaller A value yields a solution that weighs
more on the expected cost, and thus the solution is more risk-neutral.

3. Recourse function

For each scenario k, the recourse function QF (u) is a nonlinear optimization problem in
(4). This problem is non-convex due to presence of the bilinear terms v¥t* in the objective
and nonlinear equality constraints defining t¥. More importantly, since the fractional function

%”—gm in (5) has u appearing linearly in the denominator, the second stage variables are non-

separable from the first stage variable in this formulation. Problem convexity and separability of
the variables are both desirable properties of Benders-type decomposition methods for solving a
two-stage stochastic program with a nonlinear second stage since they guarantee generation of
valid supporting hyperplanes of the recourse function [cf. 43, 47]. Our decomposition algorithm
for solving (Mean-risk SP) is presented in §4. In this section, we derive a reformulation of Q* (u)
in (4b) that is not only a convex program for every u € U but also achieves separability between
first and second stage variables. This reformulation leads to a convex MINLP formulation for
solving (Mean-risk SP) as a single optimization problem.

For a fixed u € U, the recourse value Q*(u) can be obtained by solving the convex opti-
mization problem (4). However this does not tell us anything about the convexity of QF(-).
We exploit properties of the discrete set U to show that the recourse function is indeed convex.
Our main approach is to eliminate u from the denominator in (4b) and make the subproblem
separable in first and second stage variables. In particular, we obtain subproblem constraints
that are linear in u, convex in v and do not contain product terms between v and any of v, ¢, .
There are different ways of achieving this and we present these next.

Let us introduce a auxiliary second stage non-negative continuous variable ylj for each a € A
and add the inequality
(v8)°

a
(ca ZheH ugeﬁ’k)zl

k

Yy > Va € A. (9)

10



The right hand side of the above inequality appears in the objective (4b) with a positive
coefficient vdtg,. Hence we have

Q= min 73 b [oh +oyk] + M ( )quw (10a)
= r,5)€
st (4c), (9). (10D)

The following lemma guides our convex reformulation for Q¥ (u).

Lemma 1. Fora€ A andu e U, (¥ ,cy 92’%2)6 = hen (93’“)[3112 for all § € R.

The proof is straightforward. Since >, . u = 1 and u? € {0,1}, it must be that for

every a € A, we have ul* = 1 for some h € H and u = 0 for all #’ € H \ {h}. Hence both
(O ohen 0% M8 and ZheH(GZ‘k)ﬁ ul are equal to (97%)5.
After clearing the denominator in (9) and applying Lemma 1 with § = 4, we obtain

(kP <l [Z (92k)4u21 y* Vae A (11)

heH

Remark 2. For u € U, since Y, u = 1 and u € {0,1}, the term ), (02’“)4u2 can be
interpreted as the unary expansion of a discrete variable that takes values in the finite set
Uh{(ﬁg’“)4}. The right hand side of inequality (11) is then the product of a discrete variable
and a non-negative continuous variable and is therefore a bilinear term. Another formulation
for this bilinear term can be obtained using the binary expansion of the discrete variable,
where only log, |H| many {0, 1} variables (as opposed to |H| {0,1} u’s in the unary case) are
required. Gupte et al. [48] theoretically compared unary and binary expansion reformulations
for bilinear optimization problems, obtained new valid inequalities to strengthen the continuous
relaxation of the binary reformulation and showed that these convexifications work well on
hard test instances. This encourages the use of binary expansion formulations for general
bilinear problems. However, in our case since the cardinality of H is quite small (e.g., 5),
the discrete variable takes only up to 5 different values and there is no significant benefit of
adopting the logarithmic formulation for Uy (93’“)4. Therefore we choose to not modify the
term )y (Hgk)4u2 in (11).

In mixed integer nonlinear optimization literature, it is common practice to replace each
nonlinear constraint of <-type with the convex envelope of the corresponding nonlinear func-
tion; see Tawarmalani and Sahinidis [49]. Such a replacement usually relaxes the nonlinear
constraint, although if some of the variables are discrete, one may sometimes also obtain an
exact reformulation of the constraint. The <-inequality in (11) has different sets of variables on
the left and right hand sides. Therefore, if we write the constraint as the difference of the left
and right hand sides, taking the convex envelope of this difference is equivalent to separately
taking the convex envelope of the left hand side and the concave envelope of the right hand

11



side. The left hand side in (11) is a univariate convex function of v, over Ry and hence does
not require any convexification. For the right hand side, we have a bilinear term between a

discrete variable ), (93"“‘)4 ul € Uy, {(92’“)4} (cf. Remark 2) and a continuous variable y*.
The concave envelope of this bilinear term is given by its McCormick inequalities [50], which
depend on lower and upper bounds on the variables appearing in the bilinear term. The bounds
for > cnm (03’“)4 ul and y¥ can be obtained as follows. It is clear that for u € U,

4 4 4
k hk h nk k. hk ok .__ hk
0, < hEGH <9a ) u, <0,, where 0;:= (hmellrfl 0, > , 0, = <I;fl€a1§ 0, > .

From equations (4c) and (9) we get the lower bound on y* to be zero. For every a € A, let
Ga > 0 be a large enough positive constant such that every optimal solution to (10) satisfies
Vg < €aSq Va € A. Then by inequality (9) and Lemma 1, every optimal solution to (10) satisfies

s (120)
Zh(ea ) ua
which leads to 5
k CaSq
Yo = ra (12b)

since u € U. Using these lower and upper bounds, the McCormick concave envelope of the
bilinear term on the right hand side of (11) is

¢ mln{ﬂaya, Fyk 4 Cgig Z (92’“)4u2 - Cagg}. (13)

=a heH

and hence we have two inequalities for (11):

(v ) <C49 kN5 4k k (Casa)® i)t h o 5 1
ayav (Ua) < Cagaya + Z ea Ug, (Caga) Va € A. (14)

Gupte et al. [48, Proposition 2.1] tells us that modeling a bilinear term between a general integer
and a continuous variable with the McCormick inequalities allows for more integer solutions.
The same holds true when the bilinear term is between a general discrete and a continuous
variable. Therefore (14) yields a relaxation but not a reformulation of (11). Although this
relaxation can be used to under-estimate the recourse function @*(u), doing so will only yield
weaker cuts in the decomposition algorithm.

In order to derive an exact reformulation of (11), first note that (v, (u?)s,4”) is feasible
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to (11) if and only if there exists some w¥ such that

(v5)° < chwg, (152)

4
0<wh < cisd, wh < [Z (93’“) uZ] Y. (15b)
heH

This equivalence is correct because 0 < v, < CaSa implies that the left hand side of (11) is
upper-bounded by (cas,)®. Since cqs2 < cas20% /6% and the right hand side is the product of
the upper bounds on ), _ (93’“)4 ul and y”, respectively, it is clear that the upper bound on

w” is nontrivial. We will convexify (15b) to obtain a strong reformulation of (11).

Remark 3. Inequalities (14) are precisely the projection of the McCormick relaxation of

4
wh, 0<wlh < [Z <egk) uZ] Ya (16)

heH

where the bilinear term is relaxed using (13). Observe that (15) and (16) are each equivalent
o (11) but (16) is a relaxation of (15) in the (v, (u)p, y¥, wk)-space. Therefore convexifying

a”?
(15b) produces a stronger reformulation in the (v¥, (u)5, y¥, w¥)-space than convexifying 0 <

wh < {Z heH (92’“)4 ug] y¥ in (16) and hence could lead to stronger cuts in the decomposition
algorithm.
Equation (15b) represents a bounded product term between a discrete and a continuous

variable and for such bilinear terms, we note that the McCormick envelopes are neither a
reformulation nor do they yield the convex hull.

Observation 2. DenoteZ := {by, b, ..., by} x[0,d]x[0,n] withm > 3,0< b < b < -+ < by,
andn < bpd. Let R :={(x,y,v) €T |v<ay}, M ={(x,y,v) €T |v <bpny, v<by+dx —
db} be the McCormick relaxation of R, and M’ := {(x,y,v) € [b1, by X [0,d] X [0,n] | v <
by, v < biy+ dx — db } be the continuous relaxation of M. Then R € M and convR C M.

Proof. M being the McCormick relaxation of R leads to R € M and conv R C M’. Denote

d .
Xo = ———, xi:=nmin{l, (6 — f)xo}.
n(l—z+)

Then (62, 3+, x1) € M\ 'R. Note that (6 + X—IO, 7-,1) is an extreme point of M’. Suppose this
point can be written as a nontrivial convex combination of finitely many (1!, 4*,2*) € R. Then
vt = n Vt. Since v < xy! and 1! < by, it follows that y* > n/6y, and hence y* = n/6y,, and
x! = by, for all t. Consequently, 6 + % = b, which is a contradiction because n < b, d by
assumption. ]

An extended formulation for the convex hull of R can be obtained using unary expansion of
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discrete variables. Let v =) . bz with ), z; = 1, z; € {0, 1} Vi. Then disjunctive programming
[51] implies that conv R is equal to the projection onto the (x, y, v)-space of the polyhedron

m m ) m )
{(x,y,v,Z) | x=) bav=) v y=> ¢
=1 i=1 =1

0<y <dg, 0< V' <6z, V' < by Vi (17)
m

Ya=1, zizovz'}.

=1

Since Y, (67%)4u, is the unary expansion of a discrete variable as mentioned in Remark 2,
we may apply (17) directly to (15b). However, we will first strengthen the bounds on the
y* variables in each disjunction. Of the two upper bounds on y¥ in (12a) and (12b), the
former is stronger but is a function of u whereas the latter is weaker but is a constant. The
constant bound in (12b) is necessary for deriving McCormick relaxations of bilinear terms as
in Observation 2. The bound in (12a) can be incorporated into the disjunctive programming

Cagg

approach of equation (17). Since y¥ < SROOETA by equation (12a) and >, u? = 1 and
h\”Ya a

ul € {0,1} Vh for every u € U, it is clear that convexifying (15b) is equivalent to convexifying
the following finite union of polytopes:

U {(ua,ys,w’;>|ua=eh,05yss ng;; 0 < wg < casyy wy < cg(65°)y ’“} (18)
heH a

where ey, is the h" coordinate unit vector. A straightforward application of disjunctive pro-
gramming [51] gives us the convex hull of (18), and hence that of (15b), thereby resulting in a
strong reformulation of the recourse function, which we state next.

Proposition 1. The recourse function of the k' scenario can be formulated as:

Q*(u) = min Zt()a {v +5ya} + M Z q (19a)
o q m acA (r,s)€eOD
yk wk
st ok = Z 'k vae A, (aF ¢F)e X (19b)
(r,s)eOD
<l Z whk gk = Z Yk Va e A (19¢)
heH heH
wyt < 63(92'“)4112’“ VheHuac A (19d)
CaS? _
0<yht < (0%4 hoo<w® <cuduh Vhe HaeA — (19)

where for every a € A, ¢, is a large enough positive constant such that c,S, is the upper-bound
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on the traffic volume of link a.

Notice that Proposition 1 linearly separates the first stage variable u from the second stage
variables. This implies that the recourse function Q¥ (u) is convex in u and can be approximated
by supporting hyperplanes. It also implies a convex MINLP formulation for the mean risk
problem (8).

(Convex MINLP) :  min (1 +A\)b'u + Zpk g Zth [Uéf + 53/5} + M Z q*"

o keK acA (r,5)€OD
1
A - k
+ <n+ > nk )
keK

st. welU >0vVkek

sz’yztoa[vs+5y§:| +M > ¢F-nVkeK
acA (r,s)eOD
(19b) — (19¢) Vk € K

This convex MINLP can be solved to e-optimality using state-of-the-art MINLP solvers. How-
ever we demonstrate in §5 that even on a simple nine-node network, these generic global
optimization solvers take a long time to converge, thereby making this approach intractable for
larger-sized practical instances. This motivates our algorithmic approach in the next section.

4. Decomposition method

Extensive algorithmic efforts have been made to improve the efficiency of solution algorithms
for MINLPs, including the widely used branch and bound [52] with its variants — LP/NLP
based branch and bound method [53] and spatial branch and bound [54], as well as Generalized
Benders Decomposition (GBD) method [43]. The branch and bound method is an implicit
enumeration procedure and can be computationally expensive when the number of integer
variables is large. The GBD, on the other hand, can be effective in handling computationally
challenging MINLPs by decomposing them to smaller tractable subproblems. In this study,
we apply a decomposition method based on GBD. Also note that there are other plausible
solution methods, including Extended Cutting Plane method [55], and outer approximation
[56]. Though beyond the scope of this study, comparisons between these different methods in
terms of solution quality and performance are worthy of investigation in future works.

The mean-risk SP model (8) is decomposed into a master problem and one subproblem
for each scenario k. The master problem is a mixed 0\1 linear program (MILP) and contains
first-stage integer variables u and the value-at-risk 7. The sub-problems are evaluated for the
second-stage cost, given the first-stage variable u. Combined with the first-stage cost, we can
compute CVaR for the overall cost at the optimum of the master problem. We will discuss the
details of our decomposition method in this section.
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GBD was proposed by Geoffrion [43] and a detailed exposition on it can be found, for ex-
ample, in Floudas [47]. In this method, when the first stage variables are temporally held fixed,
the remaining optimization problem is considerably more tractable than the original one. As
for this study, if bridge retrofit decision variable u and the value-at-risk n are temporarily fixed,
the remaining problem (4) becomes a traffic assignment problem based on system-optimization
condition, which may be effectively solved by using commercial nonlinear program solvers. The
CVaR value can be obtained once we have travel cost function values from the traffic assignment
problems corresponding to different scenarios.

In the objective function of the master problem, the recourse function travel cost and
CVaR are not known explicitly in advance. Thus, two optimality cuts are added iteratively
to approximate them. At iteration i, let 7%y > 7r’0” be a cut that lower approximates Q¥ (u).
Then the master problem at any iteration [ reads as

1
Master) : i 1+ M)b" A — kgk
(Master) nin (1+X)b'u+ ¢ + <n+1_ak2p§>
€K
s.t. wel, &>0Vkek
Optimality cut 1 qblzz:pk(ﬂkiu—ﬂ'gi) 1=1,2,...,1
k

Optimality cut 2 fk > ﬂkiu—wgi—n Veke K,1=1,2,...,1

The exact forms of these optimality cuts are presented in Proposition 2. According to Obser-
vation 1, the general problem has complete recourse and the feasibility cut constraint can thus
be omitted.

Let (@,7,&, ¢1) be an optimal solution to the master problem. If ¢ < Z Q¥ (@), then

keK

optimality cut 1 will be added to the master problem. If ), _ peéF < > rek Prmax{o, Q*(u)—
77}, then optimality cut 2 will be added to the master problem. These optimality cuts are
generated using Lagrange multipliers for each subproblem, which is a convex nonlinear problem,
with u fixed to u.

(Subproblem k) : Q%(@) = min  (19a)

’Uk qk xk
yh
s.t.  constraints (19b) — (19d)
5
C —
0 <yt < (6’2;‘;4@2‘, 0<wh* <e,Pal YheHacA
a

The convex reformulation of Q(u) in Proposition 1 and the arguments thereafter imply
that it is straightforward to apply the GBD method for generating optimality cuts in the master
problem.
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Proposition 2. Let @ be an optimum solution of the master problem at I*" iteration. For each
scenario k, let ¥t and N\ be vectors of optimum Lagrange multipliers for the last two sets of
constraints in subproblem QF(u'). Denote

_hk Cagg =
Uy = he H,aec A

Then the optimality cuts for the I iteration are:

¢1> Y pe[QF (') — pMgF(u—at) — AWeye® (u— )] (20a)
keK
> QR — pFF (u— ) — WeoP(u—u)—n Vke K (20b)

Proof. Proposition 1 linearly separates the first stage variable u from the second stage variables,
i.e., the subproblem constraints in (19e¢) are the only ones containing both first and second
stage variables and these can be represented as hq(u) + g1(w) < 0 or ha(u) + g2(y) < 0 where
h1, ho, g1, go are all linear functions. This structure fits in with the so-called P-property of
GBD [cf. 47, §6.3.5.1], allowing for a straightforward application of GBD and thereby leading
to the proposed optimality cuts. O

Multiple optimality cuts may help improve algorithm efficiency. Readers may refer to Birge
and Louveaux [15] for details. The multi-cut version of optimality cut for (20a) is

of > QF(a') — pMyF (u—a') = Aeo®(u — ) (21)

Accordingly, we should use the aggregation of cuts ),z pk¢’f to replace ¢1 in the objective
function of (Master). Note that due to the CVaR function definition, optimality cut (20b) is
already in multi-cut version. In each iteration, there are |K|+1 constraints added to the master
problem, consisting of |K| constraint (20b) and one constraint (20a).

The decomposition algorithm procedure:

1. Initialization [ = 0.
2. Solve (Master). Let (@, 7, €, ¢1, ¢2) be optimal solution and set ¢ = q%—h\(ﬁ%—ﬁ >k Pi€)
3. Fix u = @ and solve (Subproblem k) for all k € K. Set I =1+ 1 and calculate

¢* = pFQ* (@) + ACVaR, Q(a).

keK

4. The procedure terminates if the optimality gap |1 — j*| < € (e is a predefined small value)

is met. Optimal solution is found. Otherwise, add optimality cuts (20a) (or the multi-cut
version (21)) and (20b) to the master problem, and go back to step 2.
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5. Numerical examples

The proposed mean-risk model and decomposition methods are first validated using a hypo-
thetical small nine-node network. The Sioux-Falls network is then used to explore the impacts
of uncertainty, network topology, and critical parameters on the strategic decisions on highway
bridge retrofits. All instances were programmed in AMPL. For our decomposition, the master
problem was solved as a MILP with CPLEX and with the multi-cut version of optimality cuts,
and each subproblem was solved as a convex nonlinear program with CONOPT.

5.1. Nine-node network

The nine-node network is shown in Figure 2. It consists of nine nodes, 24 directional links,
and 72 (= 8x9) O-D pairs. Assume that three bridges on both directions on the network,
labeled as A, B, and C, are vulnerable to seismic disasters and their post-disaster capacities
may be reduced while other road links are assumed intact. The nine-node instances were tested
on a desktop with 8 GB RAM and Intel Core i5-2500@3.40GHz processor under Windows 7

environment.

Figure 2: Nine-node network

The parameter 0% is the ratio of bridge remaining capacity to the full capacity, which
depends on the specific scenario, location of the bridge, and the retrofit strategies applied.
Five strategies, denoted as hg — hy4, are considered. The “do nothing” strategy is hg and a
higher index indicates a more robust, and hence more costly, strategy. In this experiment, we
randomly generated ok ¢ (0,1] while ensuring that a higher numbered strategy results in a
higher value of 0nF . Asa demonstration, Table 1 reports the ratios for one scenario. The initial
values for all second-stage variables are set to be zero. The initial solution for the first-stage
decision variable u is set as follows: for every a € A, u0 = 1 and u” = 0 for h # hg. Other

a

critical parameters are: o = 0.7, = 1000, A = 1, and 3y = 1000.
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Two recent papers [57, 58] demonstrate that commercial MINLP solvers can successfully
solve nonlinear, discrete transportation problems. We obtained benchmark solutions by us-
ing two commercial solvers — BONMIN [59] and FilMINT [60], to justify our decomposition
method by using the small-scale network. We tested the model using four different sizes of
scenario sets. In each set, scenarios are randomly generated to create variations in uncertainty
realizations in order to justify the effects of CVaR.

Table 2 compares optimal objective values and solution times for the MINLP solvers and
our decomposition algorithm (column GBD). As is to be expected, the objective values are
almost identical for all three methods. The solution times using GBD are always substantially
smaller than those using BONMIN and FilMINT. One may also notice that the increase in
the number of scenarios does not necessarily translate to more GBD iterations. With more
scenarios, more sub-problems need to be solved in each iteration, thereby GBD takes longer
total time to finish. This explains why the solution time for GBD is almost identical when
solving 12, 18, 24 scenarios even though the number of iterations was smallest in the case of 24
scenarios compared to the 12 and 18 scenarios. The experimental results in Table 2 justify the
use of our proposed decomposition for large scaled problems, such as the Sioux Falls network.

Table 1: Sample values of 0 for a fixed scenario k.

Link Strategy
ho h1 hg h3 h4

linkb 0.05 05 05 05 1
link6 005 0.5 05 05 1
linkl3 05 05 0.5 0.75 0.75
link14 0.5 0.5 05 075 0.75
link21 0.17 0.33 0.33 0.67 0.67
link22 0.17 0.33 0.33 0.67 0.67

Table 2: Comparisons between GBD and MINLP solvers with a = 0.7, A = 1.

Scenarios Obj. Value (><106) CPU seconds GBD iterations
BONMIN FiIMINT GBD BONMIN FiIMINT GBD

6 466.416 466.416 466.416 1280 466 7 15

12 466.144 466.144 466.144 3754 2487 21 29

18 462.063 462.063 462.063 6340 4673 21 21

24 460.483 460.483 460.484 4315 11377 22 18
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5.2. Sioux Falls network

The Sioux Falls network in Figure 1 consists of 24 nodes, 76 links, and 552 O-D pairs. The
trip demands between all O-D demands are adopted from [6]. We adopted critical parameters
from Fan et al. [7], including the peak 2-hour conversion value v = 2400 to convert peak 2-hour
delay to a monthly monetary value loss, which is set as 8 x 30 x 10 = 2400, where 8 is the daily
adjust factor with 30 days duration and 10 is the value of travel time savings for drivers. We
used € = 0.5% for optimality gap tolerance to terminate the GBD algorithm. The instances
were programmed in AMPL and run on a Linux cluster node with 16 Intel Cores and a total
64 GB RAM.

An engineering method to estimate earthquake damage of structures uses discrete damage
states [61]; that is, the residual post-earthquake capacity ratio Qg’k has discrete values. There
are currently no publicly-available datasets for estimating the post-earthquate damage states
for a given road network. Because collecting such data is beyond the scope of this study, we
randomly generated "% such that there are substantial variations among different scenarios
to justify the use of stochastic programming method in our study.

That being said, we develop a simple mechanism to generate 0%* in two steps. First,
we consider three levels of damages, which are low, medium, and high damages and assume
that the damages to the bridges at risk are independent. For a low-damage scenario k, we
select five values for 91 at random from {1/N,2/N,... (N —1)/N,1} (we used N = 6 in
this study). For medium and high damage scenarios, we pick five numbers randomly from
{1/N,2/N,...,(N=1)/N} and {1/N,2/N, ..., (N —2)/N}, respectively. Note that 6" under
a low-damage scenario has larger range of numbers to choose from than 0% under medium
and high damage scenarios. Statistically, bridge residual capacity under high-damage scenarios
is lower than that under low-damage scenarios for the same bridge. However, due to the
complexity involved in the estimation, such as locations and structures of different bridges,
there are inevitable fluctuations in the residual capacities, which are captured in our scenario
generation mechanism. Also, for any bridge a under scenario k, the 01" value should be non-
decreasing with an enhanced (i.e., higher numbered strategy) strategy h, i.e., ghivik > ghik
for i = 0,...,3. Based on this, we assign the selected five numbers for 93’k according to the
different retrofit strategies. We also assume that the occurrences of the three categories of
scenarios follow a predefined ratio. For example, if a ratio of 5:3:2 is assumed for low-, median-
and high-damage scenarios, respectively, for a total of 20 scenarios, the occurrences of each
category of scenarios will be 10, 6, 4, respectively. The probabilities associated with scenarios
are randomly generated from a uniform distribution.

We adopted the same five-strategy scheme (i.e., hg — h4) and initial value settings from
the nine-node network example. Since the Sioux falls network is much larger in size than the
hypothetical nine-node network from section 5.1 and the experiments in Table 2 convinced us
of the superiority of a decomposition approach over MINLP solvers, we obtained results using
only our GBD method. Next, we explore the impacts of uncertainty, network topology, and
critical parameters on the retrofit strategies from our numerical experiments.
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5.2.1. Effects of risk parameters A\, o and scenarios K

The parameters o and A reflect the decision makers’ risk preferences. We tested a= 0.7,
0.8, 0.9 and 0.95 and A = 0.1, 0.5, 1, and 100 with ¥ = 1500 for 20, 50, and 100 scenarios. The
time limit was set to 24 hours. The confidence level parameter a controls the set of scenarios
to be considered while the coefficient A weighs the CVaR in the integrated mean-risk stochastic
model. Through the numerical experiments, we intend to (i) understand the effects of risk
parameters on system costs; and (ii) highlight the modeling insights of a risk (i.e., CVaR)
integrated stochastic program compared to a risk-neutral stochastic model.

Let us first investigate the breakdown of the total cost plotted in Figure 3 based on the
result of 20 scenarios. For the purpose of this illustration, we experimented with ten different
values for a. The total mean-risk cost or objective value is the sum of total expected costs
and weighted CVaR. The total expected cost can be further decomposed into the retrofit cost
and the expected travel cost. The impacts of the risk parameters on the cost effectiveness and
CVaR will be discussed separately. Note that o represents the risk preference, which quantifies
the mean value of the worst (1 — )% of the total costs. In Figure 3a, CVaR increases as
« increases as per the definition, i.e., a larger value of a accounts for larger realizations of
the total cost, while decreasing as A increases. The total expected cost shown in Figure 3b is
comprised of the retrofit cost in Figure 3¢ and the expected travel cost in Figure 3d. The results
show that increasing both A and « generally increases retrofit cost, because it results in a more
risk-averse policy with enhanced and more costly retrofit strategies. As a result, we expect a
reduced expected travel cost, which implies a lower post-disaster capacity loss. However, the
total expected cost, which is a combined retrofit and expected travel cost, is generally higher
with a higher «. The retrofit cost contributes roughly 14.6%- 20% to the total expected cost.

We are also interested in understanding the managerial insights on the integration of risk
assessment into a traditional risk-neutral two-stage SP model. Table 3 compares the results
of our mean-risk model with the counterparts of the two-stage SP model (first row in the
table). It provides some interesting insights. First, the total expected costs of mean-risk
models are equal or only trivially larger than the result of two-stage SP model even when
there is a discernible increase in retrofit cost. It means that the mean-risk model can hedge
against larger losses at a reasonable low total expected cost. Second, the lowest travel cost of
$285.338M is $25.1M(=310.437-285.338) or 8% lower than the two-stage SP model, while it
costs $29 (=87-58) or 50% more in retrofit. This implies that reducing travel cost is costly.
From a system-cost perspective, achieving the lowest network-wide travel cost may not be the
most economical solution.

We also conducted comparisons between three different sizes of scenario sets for the same
four bridges. The results and solution performances are represented in Tables 4 and 5. A
larger scenario set corresponds to a larger problem size and because of our scenario generation
mechanism, also has a larger number of high-damage scenarios. Between scenarios, CVaR value
changes by a small extent in general. On the other hand, solution times (given in minutes)
experience more noticeable changes, roughly doubling between scenarios. This is to be expected
because the running time for each iteration of a non-parallelized decomposition algorithm is
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Table 3: Comparisons between Risk-neutral and Mean-risk two-stage SP for 50 scenarios. The four cost columns
are for total CVaR, total expected cost, retrofit cost, and expected travel cost.

) Cost (x106) Retrofit Strategy
o
CVaR, f Ef bTu EQ A B C D
0 0.7 410.502 368.437 58 310437 3 3 2 2
0.8 419.683 368.437 58 310437 3 3 2 2
0.9 435.398 368.437 58 310437 3 3 2 2
0.95 447.975 368.437 58 310437 3 3 2 2
0.1 0.7 410.502 368.437 58 310437 3 3 2 2
0.8 419.683 368.437 58 310437 3 3 2 2
0.9 435.398 368.437 58 310437 3 3 2 2
0.95 447.975 368.437 58 310437 3 3 2 2
0.5 0.7 407.472 369.646 76 293646 4 3 2 2
0.8 413.893 369.646 76 293646 4 3 2 2
0.9 424.954 369.646 76 293646 4 3 2 2
0.95 426.484 372.338 87 285338 4 3 3 2
1 0.7 409.03 370.828 715 299328 4 3 2 1
0.8 413.893 369.646 76 293646 4 3 2 2
0.9 424.954 369.646 76 293646 4 3 2 2
0.95 426.484 372.338 87 286338 4 3 3 2
100 0.7 407.472 369.646 76 293646 4 3 2 2
0.8 413.893 369.646 76 293646 4 3 2 2
0.9 420.096 373.841 78 295841 4 3 3 O
0.95 424.233 373.494 825 290994 4 3 3 1
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roughly proportional to the number of scenarios involved in the problem. Note that each of
the 100 scenario instance takes at least 7 hours to solve within 0.5% gap, and one of them
(A =0.5,a = 0.7) takes more than 22 hours.

To test the limits of performance of our GBD method, we also experimented with 200
scenarios. On all of these instances our method had more than 20% gap after the 24 hour time
limit, and because no additional insight was gained from the output, we do not include these
numbers in our tables. This indicates that the current implementation of our decomposition
does not scale well to 200 or more scenarios. In practice, the scenario set of a network protection
problem is estimated using the intuition provided by structural engineers who are able to
somewhat reasonably predict the various hazard realizations and their corresponding damage
to the network. Consequently, these problems typically tend to have less than 200 scenarios.
However, this may not always be true and some applications may require modeling with a
large scenario set. Also, a larger number of scenarios provides a better representation of the
randomness. If indeed one wishes to solve the problem with |K| > 200, either due to practical
application or to have the random variables in the model be as close to having a continuous
probability distribution as possible, then alternate and more efficient implementations must
be sought. We offer some ideas on this in the next section. That being said, we emphasize
that a decomposition approach is still preferred over solving the entire discretized problem as
a MINLP; this assertion was reaffirmed by trying to solve the 200 scenario instances with a
MINLP solver and observing that the solver crashed on most of them or had extremely high
gaps after 24 hours.

6. Summary and future work

We formulated a mean-risk MINLP for transportation network protection (e.g., retrofitting
highway bridges) hedging against extreme disasters (e.g., earthquakes) on a system level, where
CVaR is considered as the risk measurement and integrated into the optimization framework.
This is the first study that explicitly considers CVaR as the risk measure in the field of trans-
portation network protection. The mean-risk formulation is a nonconvex MINLP, but we show
that the recourse function can be reformulated to be convex in the bridge retrofit variables,
which appear as first stage decisions. This leads to the development of a Benders-type decom-
position algorithm to solve the MINLP.

We demonstrate the mean-risk model and decomposition method using two numerical ex-
amples: (i) a small nine-node network used to validate the proposed decomposition method and
exhibit its superior performance in comparison to standard MINLP software; (ii) the benchmark
Sioux Falls network to explore the correlations between risk parameters and retrofit decisions
and their impacts on the system costs. We investigated the capacity of our solution method
in handling different sized scenario sets and also compared the results of our mean-risk model
with the risk-neutral model to understand the costs and effects of using a more risk-averse
model. From the results, there are several worthy notes. First, by using a weighted mean-risk
criterion, the mean-risk model hedges against larger losses where the two risk coefficients reflect
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Table 4: Total expected and CVaR costs (x10°) under different number of scenarios.

. K =20 K =50 K =100
Q
CVaR,f Ef CVaR, f Ef CVaR, f Ef
0 0.7 399.143  365.798 410.502  368.437 417.665  370.661
0.8  408.018  365.798 419.683  368.437 430.958  370.661
0.0 426197  365.798 435.398  368.437 453.774  370.661
0.95 438.264  365.798 447.975  368.437 482.858  370.661
0.1 0.7 399.143  365.798 410.502  368.437 417.665  370.661
0.8  408.018  365.798 419.683  368.437 418.16  371.612
0.9 426197  365.798 435.398  368.437 430.395  371.612
0.95 438.264  365.798 447.975  368.437 439.092  371.612
0.5 0.7 399.143  365.798 407.472  369.646 409.375  371.612
0.8  408.018  365.798 413.893  369.646 418.16  371.612
0.9  409.962  370.116 424.954  369.646 425.02  373.346
0.95 412771  370.116 426.484  372.338 431.136  373.346
1 07 399.143  365.798 409.03  370.828 408.011  373.346
0.8  401.749  369.721 413.893  369.646 416.344  373.346
0.9 410505  369.721 424.954  369.646 425461  374.152
0.95 412771  370.116 426.484  372.338 428.030  374.875
100 0.7 396.316  370.116 407.472  369.646 408.011  373.346
0.8 401.749  369.721 413.893  369.646 416.55  374.152
0.9 407.975  375.106 420.096  373.841 423.003  374.875
0.95 410.876  375.106 424.233  373.494 428.030  374.875
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Table 5: Solution performances under different number of scenarios. Gap refers to optimality gap. Times are in
minutes.

\ K =20 K =50 K =100
a
% Gap Time  # Iter. % Gap Time  # Iter. % Gap Time # Tter.
0.00 0.7 0.10 147.68 31 0.00 342.17 30 0.00 687.05 28
0.8 0.10 156.75 31 0.00 338.43 30 0.00 690.12 28
0.9 0.10 152.76 31 0.00 334.37 30 0.00 684.33 28
0.95 0.10 153.87 31 0.00 334.44 30 0.00 687.51 28
0.1 0.7 0.34 142.62 27 0.00 291.35 31 0.00 757.93 31
0.8 0.34 148.43 28 0.00 377.1 31 0.00 738.95 30
0.9 0.00 170.25 31 0.00 284.38 29 0.17 580.88 28
0.95 0.00 164.37 30 0.00 350.08 30 0.00 604.62 26
0.5 0.7 0.09 160.82 29 0.01 309.52 26 0.38 1336.77 26
0.8 0.33 152.93 29 0.33 303.3 24 0.37 579.1 26
0.9 0.06 141.15 25 0.01 641.13 25 0.05 632.5 27
0.95 0.00 110.53 22 0.43 22592 24 0.07 553.78 23
1 0.7 0.32 126.02 29 0.47 246.38 27 0.07 494.85 27
0.8 0.01 153.35 28 0.16 236.6 26 0.13 489.22 26
0.9 0.32 84.0 21 0.44 295.07 23 0.46 530.88 23
0.95 0.22 102.82 20 0.24 210.3 22 0.37 464.2 19
100 0.7 0.09 128.43 23 0.02 301.83 25 0.03 488.6 26
0.8 0.01 114.7 21 0.01 301.25 25 0.19 494.52 22
0.9 0.01 81.02 20 0.03 170.68 18 0.03 412.75 18
0.95 0.66 92.45 20 0.19 155.65 16 0.04 401.73 17
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decision makers’ risk preferences. It has a slightly larger total expected cost (retrofit cost plus
travel cost) than the two-stage SP model and there is a discernible increase in retrofit cost
and decrease in travel cost. Second, there are quite a few duplicated solutions with different
combinations of risk parameters.

Several future directions involving both the modeling and algorithmic part would be worthy
research efforts. From a modeling perspective, incorporating traffic equilibrium to model route
choices of network users seems relevant. This will make the model a Mathematical Program
with Equilibrium Constraints (MPEC). One of the challenges would be converting this MPEC
to a MINLP through regularization or penalization. Once it is in the form of MINLP, we
may apply the developed decomposition method for obtaining solutions. In addition, more
realistic assumptions on post-disaster traffic capacity (i.e., #%) may be included by integrating
the network model with structural analysis. The structural analysis that relates the bridge
performance with retrofit strategies that cost differently may produce a nonlinear bridge traffic
capacity-cost relationship. Instead of assuming a constant or linear relationship as in most
optimization-based transportation network protection problems, we could use finite element
analysis to construct a structural performance-retrofit level relationship between the structural
strength and allocated budget for each bridge. Lastly, one may also consider modeling with
more general quantile risk measures and empirically comparing the solutions obtained from
different risk measures.

Several enhancements can be explored on the algorithmic side to obtain a more sophisticated
method that achieves faster convergence on problems with large number of scenarios. First,
the subproblems can be solved in parallel at each iteration. Second, the decomposition can be
implemented via a one-tree approach where a single branch-and-cut tree is maintained for the
master problem and at each integer feasible node of this tree, subproblems are solved to generate
globally valid optimality cuts. The choice of modeling and optimization software in this paper
present a handicap with respect to these two extensions, and hence alternate implementations
must be adopted. Third, alternate convex reformulations of the recourse function deserve
attention. These may lead to stronger cutting planes for each scenario. Finally, this paper
proposed a Benders-type (also called primal) decomposition algorithm; a natural extension
would be a dual (also called scenario) decomposition algorithm which would require different
convexification techniques.
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