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Abstract

Pulse-coupled oscillators (PCOs) are limit cycle oscillators coupled by exchanging pulses at discrete time
instants. Their importance in biology and engineering has motivated numerous studies aiming to understand
the basic synchronization properties of a network of PCOs. In this work, we study synchronization of PCOs
subject to a global pacemaker (or global cue) and local interactions between slave oscillators. We characterize
solutions and give synchronization conditions using the phase response curve (PRC) as the design element.
It is shown that global synchronization is feasible when using an advance-delay PRC if the influence of the
global cue is strong enough. Numerical examples are provided to illustrate the analytical findings.
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1. Introduction

Pulse-coupled oscillators (PCOs) are limit cycle
oscillators that are coupled together to form a net-
work by exchanging pulses at discrete time instants.
A pulse has two effects on the network state: 1) it
resets the phase at the originating oscillator, and 2) it
induces a jump on the phase of the receiving oscilla-
tors. The magnitude of the impulsive jump induced
is, in general, phase dependent and is given in the
form of a phase response curve (PRC) Q [1]. More-
over, it is customary to include a coupling strength
l to scale the effect of the PRC. In this setting, the
value of l can be interpreted as the extra energy needed
to synchronize the system, as is indeed the case when
PCOs are realized using passive circuits, or as an ex-
tra gain present at the receiver side.

The dynamics of a network of PCOs, and thus its
synchronization properties, are fully determined by

Email addresses:
fenunez@engineering.ucsb.edu (Felipe Núñez),
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the interaction topology (communication network)R,
the number of oscillators in the network N , the ini-
tial phases x0, and the feedback strategy given by Q
and l, i.e., the PRC and the coupling strength. De-
spite the simple formulation and behavior of an iso-
lated firing oscillator, a network of PCOs is able to
exhibit intricate collective dynamics. For this rea-
son, PCOs have emerged as a powerful modeling and
design tool in complex networked biological and en-
gineering systems. Examples of biological systems
that have been modeled using PCOs include cardiac
pacemakers [2], crickets that chirp in unison [3], and
rhythmic flashing of fireflies [4]. While one of the
most important applications of PCOs in engineering
is time synchronization in sensor networks [5, 6, 7].

In a network of PCOs, the role of each agent, i.e.,
leader or slave, also determines the resulting dynam-
ics. In fact, in the achievement of synchronization
the interplay between a global cue and local interac-
tions between agents is an important feature [8]. For
example, in the mammalian olfactory bulb, ensem-
bles of neurons synchronize to discriminate odors
by utilizing intercellular interplays among individual
neurons while at the same time receiving a global
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driving odorant stimulus via the odorant receptors
[9]. In engineering, the coordination of a network
of unmanned ground vehicles is achieved by means
of the interplay between individual vehicles and ex-
ternal coordination from the central resources [10].

In this work, we study the synchronization prop-
erties of a network of PCOs when there is a leader
node, or global cue, that can reach every other node
and does not react to any incoming pulse. In par-
ticular, this work refines and extends the results in
[8] and [11]. In [8], the weak coupling assumption
[12] is used to transform the impulsive dynamics of
a PCO network into an ordinary differential equation
via averaging. Synchronization is proven to emerge
for arbitrary initial conditions when an advance-delay
PRC is used; however, the PRC is restricted to be a
continuous function, which introduces a zero cross-
ing point that precludes global synchronization. An
important finding in [8] is that for a network of PCOs,
global synchronization to a leader is feasible only
when the leader can reach every other node. How-
ever, when the initial conditions are restricted to half
of the circle, the leader reaching a single node is a
sufficient condition for synchronization. In [11], hy-
brid dynamical systems theory is used to allow the
PRC to be a discontinuous mapping. However, the
weak coupling assumption is also used, which lim-
its the applicability in an artificial network of PCOs.
Moreover, no guideline is given regarding the strength
of the global coupling. In this paper, we remove
the weak coupling assumption and prove that global
synchronization is feasible when using a set-valued
advance-delay PRC. Moreover, we provide a explicit
bound for the global coupling that ensures global syn-
chronization. We exploit the hybrid nature of pulse-
coupled networks [13] to pose the synchronization
problem as a set stabilization problem, which we solve
using tools from hybrid systems theory.

1.1. Basic Notation and Definitions
In this work, R denotes the real numbers, R≥0

denotes the set of nonnegative real numbers, R<0(>0)

denotes the negative (positive) real numbers, Z≥0 de-
notes the set of nonnegative integers, Rn denotes the
Euclidean space of dimension n, and Rn×n denotes
the set of n × n square matrices with real coeffi-
cients. For a countable set χ, we denote its car-

dinality as |χ|; for two sets Λ1 and Λ2, we denote
their difference as Λ1 \ Λ2. A set-valued mapping
Φ : A ⇒ B associates to the element α ∈ A the set
Φ(α) ⊆ B; the graph of a set-valued mapping is the
set: graph(Φ) := {(α, β) ∈ A × B : β ∈ Φ(α)}.
A set-valued mapping Φ is outer semi-continuous if
and only if its graph is closed [14, Theorem 5.7(a)].

1.2. Hybrid Systems Preliminaries
We follow the framework given in [15]. A hy-

brid systemH consists of continuous-time dynamics
(flows), discrete-time dynamics (jumps), and sets on
which these dynamics apply:

H :

{
ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D

(1)

where x is the state, the flow map F and the jump
map G are set-valued mappings, C ⊆ Rn is the flow
set, and D ⊆ Rn is the jump set, (F, C, G,D) is the
data of H. A subset E ⊂ R≥0 × Z≥0 is a hybrid
time domain if it is the union of infinitely many in-
tervals of the form [tj, tj+1] × j, or of finitely many
such intervals, with the last one possibly of the form
[tj, tj+1]× j, [tj, tj+1)× j, or [tj,∞)× j. A solution
toH is a function φ : domφ→ Rn where domφ is a
hybrid time domain and for each fixed j, t 7→ φ(t, j)
is a locally absolutely continuous function on the in-
terval Ij = {t : (t, j) ∈ domφ}. φ is called a hybrid
arc, and is such that: for each j ∈ N for which Ij has
nonempty interior φ̇(t, j) ∈ F (φ(t, j)) for almost all
t ∈ Ij , φ(t, j) ∈ C for all t ∈ [min Ij, sup Ij); for
each (t, j) ∈ domφ for which (t, j + 1) ∈ domφ,
φ(t, j + 1) ∈ G(φ(t, j)), φ(t, j) ∈ D. A solution φ
is nontrivial if its domain contains at least one point
different from (0, 0), is maximal if it cannot be ex-
tended, and is complete if its domain is unbounded.

1.3. Graph Theory
Throughout this paper we use several concepts

from algebraic graph theory [16]. Consider a net-
work with N ∈ Z≥0 agents. The communication
between agents is modeled by a weighted directed
graph R = {V , ER,AR}, where V = {1, . . . , N} is
the node set of the graph. ER ⊆ V×V is the edge set
of the graph, whose elements are such that (i, k) ∈
ER if and only if node k receives the pulse emitted
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by node i; we assume that the self edge (i, i) /∈ ER.
AR = [aik] ∈ RN×N is the weighted adjacency ma-
trix of R with aik ∈ {0, l}, where aik = l ∈ (0, 1] if
and only if (i, k) ∈ ER. For a node i, N i− = {k ∈
V : (i, k) ∈ EG} denotes the in-neighbors of node i,
i.e., the set of nodes whose pulses are received by i,
and N i+ = {k ∈ V : (k, i) ∈ EG} denotes the out-
neighbors of node i, i.e., the set of nodes that receive
pulses emitted by i.

2. Model and Problem Formulation

Mirollo and Strogatz [17] presented the classical
formulation of a network of PCOs. The network is
formed by N oscillators, where each oscillator i ∈
{1, 2, . . . , N} follows

zi = f(xi), (2)

where f : [0, 1] → [0, 1] is smooth, monotonically
increasing, and concave down, i.e., f ′(xi) > 0, f ′′(xi)
< 0, and xi ∈ [0, 1] is a phase-like variable such that

∂xi
∂t

=
1

T
= ω (3)

and xi = 1 (xi = 0) when the oscillator is at the
end (start) of the cycle, i.e., when zi = 1 (zi = 0).
Therefore, f(0) = 0 and f(1) = 1 holds. The os-
cillators are assumed to interact by a simple form of
pulse coupling: when an oscillator fires it increases
the state of all the other oscillators by an amount ε,
or forces them to fire, whichever is less. That is,

zi(t) = 1⇒ zi(t
+) = 0 (4)

⇒ zj(t
+) = min(1, zj(t) + ε), ∀j 6= i.

In the following, we reformulate the PCO model
in the hybrid systems framework, which allows us to
consider an arbitrary feedback mapping (in contrast
to the constant ε) and include explicitly the structure
of an underlying communication graph. The particu-
lar network structure considered is the one where an
omnipresent leader is part of the network, which we
denote as the global cue or master node. In this setup,
the network consists of a global cue and N slave os-
cillators aiming to synchronize their phases to the
phase of the global cue. We assume that the slave os-

cillators interact on a given graphR = {V , ER,AR},
not necessarily connected. The phase of each slave
oscillator evolves continuously following its natural
frequency, and jumps impulsively upon receiving a
pulse. The global cue is not affected by pulses, thus,
its phase evolution is determined only by its natural
frequency. Pulses are generated following an integrate-
and-fire process, i.e., when its phase reaches the limit
(2π in this case), the oscillator fires, i.e., emits a
pulse, and resets its phase to 0. When an oscilla-
tor receives a pulse, it updates its phase according to
the coupling strength and the PRC, which is defined
in the framework of hybrid systems as follows:

Definition 1 (Phase Response Curve). A phase re-
sponse curve (PRC), or phase resetting curve [1, 18],
describes the change in the phase of an oscillator
due to a pulse stimulus, as a function of the phase at
which the pulse is received. A phase response curve
Q : [0, 2π] ⇒ R≥0 is called an advance-only PRC.
Similarly, a phase response curve Q : [0, 2π] ⇒ R≤0

is called a delay-only PRC. A phase response curve
Q : [0, 2π] ⇒ R is called an advance-delay PRC if
there exists q̄1 ∈ Q(q1) and q̄2 ∈ Q(q2), with q1 and
q2 in [0, 2π], satisfying q̄1 > 0 and q̄2 < 0.

Remark 1. In the mathematical neuroscience liter-
ature, advance-only PRCs are referred to as Type I
PRCs. Similarly, advance-delays PRCs are referred
to as Type II PRCs. To deal with a delay-only PRC
the system is modeled as an inhibitory system, i.e., a
system where the coupling strength is negative, cou-
pled using a Type I PRC [12, 19].

2.1. Data
The network of N slave oscillators and 1 global

cue is modeled as a hybrid system with state x given
by:

x := [xg, x1, . . . , xN ]T (5)

where xi ∈ [0, 2π] denotes the phase of the ith slave
oscillator and xg denotes the phase of the global cue.
The dynamics are given by:

ẋg = ωg
ẋi = ω

}
=: F (x), x ∈ C (6)

x+
g = 0
x+
i ∈ sat2π0 (xi + giQg(xi))

}
=: Gg(x), x ∈ Dg

(7)
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x+
g = xg
x+
i = 0
x+
k ∈ sat2π0 (xk + aikQl(xk))

 =: Gi(x), x ∈ Di

(8)
where C := {x ∈ [0, 2π]N+1}, Dg := {x ∈ C : xg =
2π}, Di := {x ∈ C : xi = 2π}, ω ∈ R>0 denotes the
natural frequency of the slave oscillators, ωg ∈ R>0

is the natural frequency of the global cue, aij ∈ {0, l}
is the corresponding entry from AR, gi ∈ [0, 1] is
the global coupling strength, Qg : [0, 2π] ⇒ R, and
Ql : [0, 2π] ⇒ R are the global and local PRCs,
and sat2π0 is the linear function with slope one that
saturates at 2π from above and 0 from below. Then,
we define the jump set as:

D := Dg ∪
⋃
i∈V

Di (9)

and the corresponding jump map as:

G(x) :=
⋃

i∈V∪{g}:x∈Di

Gi(x). (10)

In the following we will refer to the model (6)-
(10) as the hybrid systemHg. To continue the analy-
sis we utilize the following assumption.

Assumption 1. The PRCs Qg and Ql are such that:
Qq(0) = Qq(2π) = {0}, q ∈ {g, l}. Moreover, Qg

and Ql are outer semi-continuous set-valued map-
pings, bounded on [0, 2π], and such that Qg(xi) and
Ql(xi) are non empty for all xi ∈ [0, 2π].

Assumption 1 guarantees that the hybrid system
Hg as defined above is well-posed [15]. Moreover,
the condition Qq(0) = Qq(2π) = {0}, q ∈ {g, l}
restricts any undesired avalanche-type behavior.

Remark 2. An important concept used in the anal-
ysis of PCOs is absorption [17], which leads to syn-
chronization in finite time. It should be noted that
in our model (6)-(10) absorption is modeled by the
saturation function.

Remark 3. Note that the use of the saturation at 2π
from above is consistent with the use of the min func-
tion in the Mirollo and Strogatz model [17]. In the
same line, the use of the saturation at 0 from below
is a natural extension for advance-delay PRCs.

Remark 4. It should be noted that the Mirollo and
Strogatz model [17] uses a constant ε to advance the
phase. Although ε is required to be small, a large net-
work is susceptible to firing avalanches since mul-
tiple incoming pulses accumulate [17]. Our model
handles this undesired behavior by requiringQq(0) =
Qq(2π) = {0}, q ∈ {g, l}.

3. Synchronization

In this section we analyze the synchronization
properties of the hybrid system Hg. To conduct the
analysis, we use the following:

Assumption 2. The global cue and the slave oscilla-
tors have identical natural frequencies, i.e., ωg = ω.

Assumption 3. The global coupling is identical and
strictly positive, i.e., gi = g > 0, ∀i ∈ V .

Remark 5. Note that in [8] it is stated that the con-
dition gi = g > 0, ∀i ∈ V is necessary to ensure
synchronization when the oscillators are distributed
in the whole interval [0, 2π]. Moreover, the condi-
tion ωg = ω is required to ensure perfect synchro-
nization in phase. If ωg 6= ω, then a weaker notion of
synchronization is needed.

To analyze synchronization, define the difference
between the global cue and the ith slave oscillator as
ξi := xg − xi and the vector of differences as ξ =
[ξ1, . . . , ξN ]. We consider synchronization achieved
whenever |ξi| = 0 or |ξi| = 2π ∀i. Hence the syn-
chronization set can be written as:

A := {x ∈ C : ξi = 0 or ξi = ±2π ∀i ∈ V}. (11)

The synchronization condition is as follows.

Theorem 1. Consider the network of PCOs given by
Hg. If:

1. Assumptions 1, 2, and 3 hold,
2. Qg and Ql are such that if xi ∈ (π, 2π), then
Qq(xi) ⊂ R>0, and if xi ∈ (0, π), thenQq(xi) ⊂
R<0, ∀q ∈ {g, l},

3. the influence of the global cue is strong enough
compared with the local coupling,
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and moreover, the PRCs satisfy 0 /∈ Qq(π), q ∈
{g, l}, then the network synchronizes from every ini-
tial condition x(0, 0) ∈ C.

PROOF. We will prove synchronization in two steps.
First we will show that there exists a forward invari-
ant neighborhood of A, denoted as B, such that if
the state belongs to B, then the network synchro-
nizes irrespective of the strength of the couplings.
Secondly, we will show that the network eventually
reaches B in finite time from every initial condition,
if the global coupling is strong enough.

In the following, we make use of the concept of
containing arc. Given an arc α, i.e., a connected sub-
set of [0, 2π] with 0 and 2π mapped to each other,
with associated length d(α), α is a containing arc if
and only if xi ∈ α, ∀i ∈ V ∪ {g}. Given x, the set
of all arcs containing x, henceforth called the set of
containing arcs, is denoted Υ(x).

As a first step, we will show that if the smallest
containing arc α has length d(α) < π the network
synchronizes to the global cue for all gQg and lQl.
To this end, consider the Lyapunov candidate

W (x) := inf
α∈Υ(x)

d(α), (12)

and for every µ ∈ R≥0 define the set Lv(µ) := {x ∈
C : W (x) = µ}. We focus on the initial conditions
contained in B := {x ∈ C : W (x) < π}. It is
clear that during flowsW (x) remains unaltered since
there is no interaction and the natural frequencies are
identical. Suppose that x ∈ (D ∩ B) \ A and that
an oscillator i ∈ V ∪ {g} will fire. First, note that α
maps the nodes into a portion of the unit circle, hence
the jump of i from 0 to 2π does not affect its length.
From condition 2, every oscillator m such that m ∈
N i+ is attracted to i after the firing and then, since
d(α) < π, the length of the smallest containing arc
cannot increase, i.e., W+ −W ≤ 0. In particular, if
g jumps, since every i ∈ V belongs to N g+, we have
that after a jump of the global cue W+ − W < 0.
Therefore, W+ −W ≤ 0 for all x ∈ (D ∩ B) \ A.
Moreover, since every solution is complete and the
global cue jumps periodically, for every µ > 0 no
complete solution toHg remains in B∩Lv(µ). Since
the hybrid system Hg is well-posed, we can rely on
the invariance principle to establish synchronization.

In particular, directly applying Theorem 23 in [15]
gives asymptotic stability of the set A with basin of
attraction containing B.

Now consider x(0, 0) ∈ C \ B and define the fol-
lowing family of functions:

Vi(ξ) = min (|ξi|, 2π − |ξi|) . (13)

Note that the Vi are continuous functions and they
are unchanged during flows, due to Assumption 2.
Define U(ξ) :=

∑
i∈V Vi(ξ) as the total distance to

the global cue. Note that U is continuous and posi-
tive definite with respect toA. A sufficient condition
for W (x) < π is U(ξ) < π. Hence, if there exists
a time instant (T, J) such that U(ξ(T, J)) < π, then
the network synchronizes.

Suppose x ∈ D. We analyze the change in Vi(ξ)
when xg jumps. We have that xg = 2π and xi ∈
[0, 2π], then:

Vi = min {2π − xi, xi}
V +
i ∈ min

{
sat2π0 (xi + gQg(xi)), (14)

2π − sat2π0 (xi + gQg(xi))
}
.

Since the phase is advanced if xi ∈ (π, 2π), and the
phase is delayed if xi ∈ (0, π), then, Vi > V +

i holds
for all Vi > 0 independent of the value of xi before
xg jumps. Hence, U+ − U < 0 after a jump of the
global cue. Therefore, if gQg is strong enough such
that U < π after one jump of the global cue, the
network enters B and synchronizes, irrespective of
the strength of the local coupling lQl.

When gQg is not as strong to force U < π on
one jump, the network still enters the set B if gQg

is strong enough compared with lQl. To prove this
claim, we can rely on the practical robustness prop-
erty of well-posed hybrid systems [15, Theorem 17].
In fact, we can consider the local coupling lQl as a
perturbation to a nominal hybrid system for which
lQl(xi) = {0} for all xi ∈ [0, 2π]. From the previous
analysis, we know that when lQl(xi) = {0} the net-
work synchronizes since the global cue jumps per-
sistently and U+ − U < 0 after a jump of the global
cue whenever x /∈ A. Then, when lQl is weak the
network converges to a neighborhood of the set A,
whose size can be made arbitrarily small by restrict-
ing lQl. In particular, given a global coupling gQg,
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we can restrict the local coupling lQl so that the net-
work converges to the set B. Therefore, the network
synchronizes for every x(0, 0) ∈ C. �

Remark 6. Note that Theorem 1 does not impose
any connectivity requirement on the communication
graphR or uses any assumption on the monotonicity
of the PRCs Qg and Ql. This suggests that Theorem
1 is valid for a class of oscillators larger than mono-
tone oscillators, for which the PRC is monotone [20].

Theorem 1 emphasizes the role of the global cou-
pling, which should be strong enough compared with
the local coupling. A practical bound can be stated
as follows.

Corollary 1. Consider the network of PCOs given
by Hg and suppose conditions 1 and 2 in Theorem 1
hold. If the global coupling gQg is such that:

1. for all x ∈ [π
2
, π), if q ∈ Qg(x) then gq < π

2
−x

2. for all x ∈ (π, 3π
2

], if q̄ ∈ Qg(x) then gq̄ >
3π
2
− x

3. if q ∈ Qg(π) then gq ∈ [−π,−π
2
) ∪ (3π

2
, 2π]

then the network synchronizes for all x(0, 0) ∈ C ir-
respective of the strength of the local coupling lQl.

PROOF. Conditions 1, 2, and 3 ensure that after the
first jump of the global cue the oscillators will be
contained in an arc α of length d(α) < π. Hence
the network synchronizes for all x(0, 0) ∈ C. �

The previous Corollary gives a practical bound
since the global coupling does not need to be stronger
than the coupling characterized in Corollary 1.

4. Numerical Experiments

To illustrate the applicability and conservative-
ness of the analytical results previously derived, we
use the hybrid systems simulator [21] to simulate the
networks shown in Figure 1 when the PRCs Qg and
Ql are identical and given by

Q(x) =


2π − x, if x > π

{π,−π}, if x = π

−x, if x < π

(15)

which corresponds to the set-valued regularization of
the discontinuous function Q(x) = 2π − x, x ∈
[π, 2π]; Q(x) = −x, x ∈ [0, π). Note that (15)
is an outer semi-continuous set-valued mapping and
bounded on D; hence Assumption 1 holds.

1

2

3

4 5

g

(a)

1

2

3

4 5

g

(b)

Figure 1: Networks used in the numerical simulations. (a):
Bidirectional 5-nodes cycle network plus an omnipresent global
cue (red node in the middle); (b): All-to-all 5-nodes network
plus an omnipresent global cue (red node in the middle).

To study synchronization, natural frequencies were
set as wi = w = 2π. For the first example consider
the network in Figure 1(a), which consists of a 5-
slave-nodes bidirectional cycle plus an omnipresent
global cue (in red). We simulate the network from a
random initial condition and coupling given by g =
0.1 and l = 0.4. Figure 2(a) shows the simulation
results. It can be seen that the network does not
synchronize. In fact, the local coupling l = 0.4
is not strong enough to synchronize the cycle net-
work globally in the absence of a global cue [22].
Moreover, the global coupling g = 0.1 is not strong
enough to synchronize the slave oscillators to the glo-
bal cue. Hence, the global coupling can be regarded
as a periodic perturbation to the slave system that
precludes convergence to a phase-locked state. Fig-
ure 2(b) shows the simulation results, from the same
initial condition, when the coupling is given by g =
0.51 and l = 0.4. In this case the slave network syn-
chronizes to the global cue. Although the local cou-
pling is not strong enough to synchronize the cycle
network locally, the global coupling is sufficiently
attractive to preclude the slave system to converge
to a phase-locked state and forces the slave system
to follow the global cue. Note that when g = 0.51,
conditions in Corollary 1 hold.

As a second example, consider the the network in
Figure 1(b), which consists of a 5-slave-nodes all-to-
all network plus an omnipresent global cue (in red).
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(a)

(b)

Figure 2: Simulation results for the network in Figure 1(a) with
initial condition xi(0, 0) =

2π
5 i and xg(0, 0) =

2π
6 . (a): Results

when the coupling is given by g = 0.1 and l = 0.4, since
the global coupling is not strong enough the network do not
synchronize; (b): Results when the coupling given by g = 0.51
and l = 0.4, the global cue is attractive enough and the network
synchronizes.

We simulate the network from a random initial con-
dition and coupling given by g = 0.05 and l = 0.05.
The simulation results are shown in Figure 3(a). It
can be seen that the network does not synchronize.
As with the previous example, in this case the global
coupling is too weak and it can be regarded as a per-
turbation precluding convergence to a phase-locked
state. Figure 3(b) shows the simulation results when
the coupling is given by g = 0.2 and l = 0.05. In this
case, the global couping is strong enough to force the
slave system to follow the global cue.

5. Concluding Remarks

Synchronization properties of networks of pulse-
coupled oscillators (PCOs) subject to a global cue
and local interactions between slave oscillators is stud-

(a)

(b)

Figure 3: Simulation results for the network in Figure 1(b) with
initial condition xi(0, 0) =

2π
5 i and xg(0, 0) =

2π
6 . (a): Results

when the coupling is given by g = 0.05 and l = 0.05, since
the global coupling is not strong enough the network do not
synchronize; (b): Results when the coupling is given by g =
0.2 and l = 0.05, the global cue is attractive enough and the
network synchronizes.

ied. It is shown that global synchronization is feasi-
ble in a network of identical oscillators if every slave
oscillator is connected to the global cue and the in-
fluence of the global coupling is strong enough com-
pared with the local coupling. The phase response
curve is assumed to be of the advance-delay type, yet
no requirements on its monotonicity are stated.

Future work includes finding a precise relation-
ship between local and global coupling based on the
exact interaction topology, as well as extending the
results to non-identical oscillators.
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