Spring 2014

Carbon fibers derived from sustainable precursors

Meng Zhang
Clemson University

Jing Jin
Clemson University

Amod A. Ogale
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/chembio_grs

Part of the Biochemical and Biomolecular Engineering Commons

Recommended Citation
Zhang, Meng; Jin, Jing; and Ogale, Amod A., "Carbon fibers derived from sustainable precursors" (2014). Chemical and Biomolecular Graduate Research Symposium. 1.
https://tigerprints.clemson.edu/chembio_grs/1

This Presentation is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Chemical and Biomolecular Graduate Research Symposium by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
Carbon fibers derived from sustainable precursors

Meng Zhang
Jing Jin
Dr. Amod A. Ogale

Chemical and Biomolecular Engineering,
Center for Advanced Engineering Fibers and Films (CAEFF)
Clemson University
Outline

- Literature Review: carbon fiber precursors
 PAN, mesophase pitch, rayon, and lignin
- Motivation and Objectives
- Experimental
 - Melt spinning with ECN organosolv lignin
 - Solution spinning with acetylated Indulin AT
- Results and Discussion
- Conclusions
- Future Work
Carbon Fiber Characteristics

- Excellent Strength and Stiffness = high performance
- Light-weight = fuel-efficient
- Outstanding Electrical and thermal conductivity
- Fire-retardant

- Not Cost-Competitive
- Current precursors are not bio-based and fibers are not produced by environmentally-friendly processes
Production of Carbon Fibers: Background

Precursors → Wet or melt spinning → Precursor fibers → Oxidative stabilization (200-300°C, 1-24 h) → Stabilized fibers → Carbonization (800-1700°C, inert atmosphere) → Carbon fibers

Carbon does not melt!

Therefore, carbon fibers must be produced from a solution or melt processible precursor, and the precursor fibers must be carbonized.
Carbon Fiber Precursors

- Polyacrylonitrile (PAN)
- Mesophase pitch
- Rayon
- Lignin (current research)
PAN Precursors

The precursor for PAN-based carbon fibers is actually a copolymer.

![Polyacrylonitrile](image)

Evolution of HCN and other toxic gases during stabilization and carbonization

Buckley & Edie, 1986
Fitzer & Manocha, 1998
Precursors: Mesophase Pitch and Rayon

Kundu, ..Ogale, CARBON 2008

Not for structural applications

Buckley & Edie, 1986
Chemical Structure of Lignin

E. Alder, Wood Science & Technology, 11, 169 (1977)
Lignin

Source:
wood, grass, wheat straw, etc

Separation process:
kraft, soda, organosolv pulping, etc
Literature Review

- Different lignin precursor, NaOH solution for dry-spinning / melt spinning. 1969, Otani
- Steam exploded hardwood lignin followed by hydrogenation and several extraction steps, melt-spinning. 1991, K. Sudo et al
- Organosolv (acetic acid) hardwood lignin based carbon fiber, melt-spinning 1993, Y. Uraki et al; 1995, S. Kubo et al
- Organosolv (acetic acid) softwood lignin, melt-spinning, 1998, S. Kubo et al
- Acetylated softwood kraft lignin, melt-spinning. 2008, R. C. Eckert
Mechanical properties of lignin based CF

<table>
<thead>
<tr>
<th>Precursor Type</th>
<th>Diameter (µm)</th>
<th>Elongation (%)</th>
<th>Modulus (GPa)</th>
<th>Tensile strength (MPa)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Exploded hardwood</td>
<td>7.6 ± 2.7</td>
<td>1.63 ± 0.19</td>
<td>40.7 ± 6.3</td>
<td>660 ± 230</td>
<td>K. Sudo et al, 1992</td>
</tr>
<tr>
<td>Organosolv Hardwood</td>
<td>14-35</td>
<td>0.64-1.12</td>
<td>2.17-39.1</td>
<td>13.3-355</td>
<td>Y. Uraki et al, 1995</td>
</tr>
<tr>
<td>Organosolv Softwood</td>
<td>84 ± 15</td>
<td>0.74 ± 0.14</td>
<td>3.59 ± 0.43</td>
<td>26.4 ± 3.1</td>
<td>S. Kubo et al, 1998</td>
</tr>
<tr>
<td>Kraft Hardwood</td>
<td>46 ± 8</td>
<td>1.12 ± 0.22</td>
<td>40 ± 11</td>
<td>422 ± 80</td>
<td>J. F. Kadla et al, 2002</td>
</tr>
<tr>
<td>Kraft Softwood, acetylated</td>
<td>5-100</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Robert C., 2008</td>
</tr>
<tr>
<td>Hardwook</td>
<td></td>
<td>2.03</td>
<td>82.7</td>
<td>1070</td>
<td>D. A. Baker, 2013</td>
</tr>
<tr>
<td>Rayon based carbon fiber</td>
<td>5-25</td>
<td></td>
<td>100</td>
<td>100-1000</td>
<td>Buckley & Edie; Fitzer& Manocha</td>
</tr>
<tr>
<td>PAN based carbon fiber</td>
<td>5-15</td>
<td>2</td>
<td>100-500</td>
<td>3000-7000</td>
<td>Buckley & Edie; Fitzer& Manocha</td>
</tr>
<tr>
<td>Mesophase pitch based carbon fiber</td>
<td>5-15</td>
<td>0.6</td>
<td>200-800</td>
<td>1000-3000</td>
<td>Buckley & Edie; Fitzer& Manocha</td>
</tr>
</tbody>
</table>
Goal:
Lignin-based carbon fibers with higher performance properties

Specific objectives:

Chemical modification of separated lignin

Preparation of lignin based carbon fiber
 Spinning
 Thermostabilization
 Carbonization

Microstructure and Properties
 Tensile
 Nanotexture and Graphitic Crystallinity
Experimental

Materials

• ECN lignin (Organosolv lignin, Energy Research Centre of the Netherlands)

• SKL Softwood Kraft lignin (Indulin AT, MeadWestvaco, Charleston, SC)
Melt spinning of ECN organosolv lignin

- Source: Poplar wood lignin from ethanol/H₂O pulping
- Softening point: 155ºC
- Decomposition temperature: ~280ºC from TGA result in N₂ purge

Transient shear viscosity of ECN lignin (@ 160ºC)
Melt spinning of ECN lignin

- Instron Capillary Rheometer
- Temperature: 160°C
- Winding rate: 190 m/min
- Capillary diameter: 254 µm
- Fiber diameter: 29 ± 1 µm
Thermostabilization of ECN fibers

It takes more than 10 days to stabilize to prevent fibers from being tacky.
ECN carbon fibers had a smooth surface and circular cross section

Mechanical properties of ECN carbon fibers

<table>
<thead>
<tr>
<th>Diameter (µm)</th>
<th>Elongation (%)</th>
<th>Modulus(GPa)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 ± 1</td>
<td>1.4 ± 0.4</td>
<td>34 ± 4</td>
<td>450 ± 130</td>
</tr>
</tbody>
</table>
Indulin AT Lignin

- Indulin AT (Softwood Kraft lignin, MeadWestvaco, Charleston, SC)
- No Softening Point, charring occurred due to high molecular weight fraction and dehydration reaction
Previous modification of Indulin AT-Acetylation with high extent of substitution on -OH group and fractionation

- 1 g lignin + 15 ml acetic anhydride, 85°C, 2 hour
- Acetylated Indulin AT (Ace-SKL) had a softening point between 156 and 167°C
• Ace-SKL had a softening point, but unstable melt viscosity.

• Ace-SKL was extracted with 75% acetic acid aqueous solution. Resulted material (75%AA-Ace-SKL) had a softening point of 136-145°C.

• 75% acetic acid extracted Ace-SKL had relatively stable melt viscosity.
- 75% AA-Ace-SKL was melt spun into fibers
- 75% AA-Ace-SKL fibers became tacky during oxidative stabilization

Ace-SKL fibers obtained from high extent of acetylation (15 ml AA/g SKL) could not be stabilized due to the presence of a significant extent of substitution of hydroxyl groups by thermally stable acetyl groups.
Alternative way:
• Ace-SKL lower extent of -OH group substitution, which is favorable for thermostabilization
• Solution spinning instead of melt spinning

- Spectra normalized with peaks at 856 cm\(^{-1}\) (C-H bending on benzene rings).
- The hydroxyl peak decreased as the amount of acetic anhydride per gram of SKL increased.
- Higher content of hydroxyl group is favorable for thermostabilization.
Solution spinning with Ace-SKL

- Ace-SKL acetone solution concentrated
- Take up speed: 50 m/min
- Spinneret diameter: 75-150 µm
- Fiber diameter: 27 ± 3 µm
Solution spinning with Ace-SKL

2.1 g Ace-SKL / ml acetone, 45-45°C spinning

2.1 g/ml acetone room temperature spinning
Thermostabilization of Ace-SKL fibers under tension

Stabilization with constant load
As-spun fiber was glued on both ends with hook and hanging in the oxidation oven with weight loaded.
Fibers can be stabilized and extended up to 800% of original length during stabilization.

Weight
Carbonization and Graphitization furnaces: 1000-2700°C

Carbonization under tension
1000°C carbonized

- Crenulated CF have 35% larger surface area as compared with equivalent circular fibers
- This could lead to higher fiber-matrix interfacial bond strength, and ultimately better realizability of carbon fiber properties in the composites
Mechanical properties of Ace-SKL carbon fibers

<table>
<thead>
<tr>
<th></th>
<th>Diameter (µm)</th>
<th>Strength (MPa)</th>
<th>Apparent Modulus (GPa)</th>
<th>Apparent strain to failure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace-SKL CF (processed without tension)</td>
<td>22.5 ± 0.4</td>
<td>510 ± 50</td>
<td>30 ± 2</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>Ace-SKL CF (processed with tension)</td>
<td>5.9 ± 0.2</td>
<td>1050 ± 70</td>
<td>35 ± 3</td>
<td>3.0 ± 0.2</td>
</tr>
</tbody>
</table>
Ace-SKL CF X-ray Diffraction Spectrum

Silicon crystal standard

002 peak location: 23.3°
Carbonized with tension

Carbonized without tension

Azimuthal angle (degrees)

Intensity %
Conclusions

- A softwood kraft lignin was modified by controlled acetylation and the precursor (Ace-SKL) was solution-spun into fibers, which is capable of thermal-oxidation.
- Mechanical properties of Ace-SKL carbon fibers (CF) can be enhanced by tension. The tensile properties reported here is among the best for lignin-based CF.
- Crenulation on Ace-SKL CF surface lead to larger surface area and potential higher fiber-matrix interfacial strength.

Next steps...

- Rheology of spinning solution is being studied
- Relationship between fiber cross-section shape and mechanical properties will be studied
- UV/thermostabilization to increase stabilization speed
Acknowledgment

ARL-SERDP Grant WPSON-10-03 / W911NF-10-2-0024

ARL/UD/Drexel/Clemson team members including Dr. Marlon Morales and Dr. Young-pyo Jeon

ECN, Netherlands for providing lignin
Crenulated surface are desirable for enhancing fiber-matrix interfacial area.

2400°C carbonized