Document Type


Publication Date


Publication Title

Infection and Immunity






American Society for Microbiology


Entamoeba histolytica is an intestinal protozoan parasite that causes amoebic dysentery and liver abscess. Phagocytosis by the parasite is a critical virulence process, since it is a prerequisite for tissue invasion and establishment of chronic infection. While the roles of many of the proteins that regulate phagocytosis-related signaling events in E. histolytica have been characterized, the functions of lipids in this cellular process remain largely unknown in this parasite. In other systems, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a major product of phosphoinositide 3 kinase (PI3-kinase) activity, is essential for phagocytosis. Pleckstrin homology (PH) domains are protein domains that specifically bind to PIP3. In this study, we utilized glutathione S-transferase (GST)- and green fluorescent protein (GFP)-labeled PH domains as lipid biosensors to characterize the spatiotemporal aspects of PIP3 distribution during various endocytic processes in E. histolytica. PIP3-specific biosensors accumulated at extending pseudopodia and in phagosomal cups in trophozoites exposed to erythrocytes but did not localize to pinocytic compartments during the uptake of a fluid-phase marker, dextran. Our results suggest that PIP3 is involved in the early stages of phagosome formation in E. histolytica. In addition, we demonstrated that PIP3 exists at high steady-state levels in the plasma membrane of E. histolytica and that these levels, unlike those in mammalian cells, are not abolished by serum withdrawal. Finally, expression of a PH domain in trophozoites inhibited erythrophagocytosis and enhanced motility, providing genetic evidence supporting the role of PI3-kinase signaling in these processes in E. histolytica.


This article has been published in the journal Infection and Immunity. Please find the published version here (note that a subscription is necessary to access this version):

Included in

Microbiology Commons