Date of Award


Document Type


Degree Name

Master of Science (MS)


Mechanical Engineering

Committee Chair/Advisor

Dr. Oliver Myers

Committee Member

Dr. Cameron Turner

Committee Member

Dr. Suyi Li


This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical energy into mechanical action. The bistability of the composite laminate is the ability to morph between two stable forms of the stacked laminate that will act as the moving element to deflect the incoming particle. The bistable mechanism containing the piezoelectric patch and bistable composite will undergo an optimization algorithm to maximize the chances of a successful deflection event. Having greater distance between states increases the chances of ensuring proper contact with the particle. Optimization can be utilized to maximize the total deflection between states of the bistable composite structure while also maximizing the piezoelectric limits. Areas that influence the bistable laminate such as deformation amount, edge lengths, and MFC patch compatibility will be included in the optimization algorithm. The MFC patch will influence the mechanism based on its active lengths and free strain. For this application-based approach, three different sizes of MFC piezoelectric patches will be used. Based on the particle's characteristics, the timing of the bistable composite mechanism with the MFC patch will be rigorously studied to ensure proper deflection or reduction of impact through a Data Acquisition System and High Voltage Amplifier.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.