Date of Award

12-2017

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Bioengineering

Committee Member

Dr. Dan Simionescu, Committee Chair

Committee Member

Dr. Agneta Simionescu

Committee Member

Dr. Christopher Wright

Abstract

Coronary artery disease is one of the number one killers in the U.S. Current treatment of using CABG surgery has limitations from availability of autologous grafts, and low patency of artificial grafts. Tissue engineered grafts would ideally provide more availability, while also replicating the mechanical properties of the native grafts. Current issues in tissue engineering arteries lie in using an effective scaffold to get correct mechanical properties, and allowing for cell infiltration to assist in integrating with native tissue once implanted. This study shows the use of a decellularized and chemically and mechanically porated porcine carotid artery in mechanical characterization and cell seeding experiments. The mechanical properties all exhibit values like that of current autologous grafts. The cell seeding studies show data determining the viability of these porated scaffolds in cell infiltration. It also examines several seeding techniques and how they impact the location of cells. This study concludes that the decellularization and poration procedures result in a scaffold with suitable mechanical properties for CABG grafts. It also concludes that several different cells seeding methods can be effective in getting cells onto the scaffold, but some work remains on developing an ideal tissue.

Share

COinS